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ABSTRACT

Radio astronomy star tracking requirements are
resolved into elevation and azimuth coordinates and
related to servo system transfer function specifica-
tions. Time functions for angular position, velocity,
and acceleration are derived and maximum values found.
A numerical example based upon the latitude of Washing-
ton, D. C., and a star declination such that at transit
the angular distance from the zenith is 10 degrees or
greater, is used in the calculation of the azimuth servo
bandwidth needed to insure ,dynamic errors appropriate for
automatic tracking with a 60-foot parabolic reflector
(tracking error less than 1/4 degree). A bandwidth of a
0.1 radian per second is shown to be adequate. A block
diagram is given for a servo system suitable for the
azimuth coordinate.

PROBLEM STATUS

This report completes one phase of the problem;
work on other phases continues.

AUTHORIZATION

NRL Problem R05-19

Manuscript submitted April 3, 1956
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ELEVATION-AZIMUTH SERVO SYSTEM SPECIFICATIONS
FOR STAR TRACKING

INTRODUCTION

The advent of radio astronomy has seen employed a wide variety of
antennas and means for beam steering. Among these is the parabolic re-
flector mounted on a pedestal with elevation and azimuth coordinates
of motion. Servo system requirements for such "EL-AZ" mounts become
automatically defined upon specification of the tracking problem. In
the study reported here, the tracking problem, a time-domain phenonemon,
is transformed into the equivalent frequency domain function so that the
servo systems may be designed using the frequency response method. In
choosing the open-loop transfer functions for the servo systems several
factors are considered, namely: (1) close fitting of the excitation
function to achieve the maxiamLrn exclusion of noise simultaneous with
adequate bandwdith for transmission of frequency components in the input
signal, (2) suitable gain and phase margins to insure closed-loop servo
system stability, and (3) the proper gain to insure that the maximum
dynamic tracking errors almost equal but do not exceed the specified
limits.

The derivation of time functions for elevation and azimuth angular
position, velocity, and acceleration for star tracking is presented in
the initial part of the body of the report. Guillemin's (1) method of
approximating the frequency domain transform of a time function is then
applied to the above-horizon portion of the azimuth time function. A
transfer characteristic is then chosen folloTing Graham's (2) procedure,
in which the steady-state error series (3) plays a central role. The
block diagram for a possible mechanization is given. The trajectory
equations for the elevation axis are provided so that a similar study
for the elevation coordinate servo may be made following the same pro-
cedure.

CELESTIAL AND TERRESTRIAL COORDINATES

Star tracking angular position, velocity, and acceleration quan-
tities resolved into elevation and azimuth coordinates are desired as
a function of time. The location of nmaxinum values of velocity and
acceleration in both axes is also needed. In the derivations and in
Fig. 1 a modification of the notation used. by Hosmer (4) is employed.
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Let

z = interior angle of astronomical triangle at zenith, degrees

T = hour angle (=*t)

S= apparent angular velocity of the stars about earth's axis,

in radians per second = 2r = 7.272"lo-5, in24-.360o0

degrees per minute = 1/4

t = time, seconds or degrees of rotation

e = azimuth, degrees (e =-z)

h = altitude (elevation angle), degrees

S= declination, degrees

0 = latitude, degrees

AZIMUTH ANGULAR POSITION

To find the azimuthal quantities, start with Eq. (31), page 36
of reference 4,

sin T cosS (1)cosh

Substitute from Eq. (11), page 32 of reference 4,

cos h 'Y I COS 4 -- cos 8 s '1n OP cosT" (2)
cos z

and obtain

sin Z Sin T cos S
cos z siy 8 cos 4-cosS siv i cost
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+ean Z = coT (4)Cos 0) ta- S - sin 4cost

Numerical evaluation of Eq. (4) gives an angle z which is 1800 from the
correct angle. This occurred through the use of the sine formula with
its inherent ambiguity. Making this correction and the changes of
variable T = at and z = -e, we have

tayt e slys CA (5)
A - B cos w

where

B= S4%f

AZIMLUTH ANGULAR VELOCITY

Azimuth angle e as given by Eq. (5) may be differentiated to obtain
the corresponding angular velocity. Thus,

sec~e 4 (A-Bos S3C*'I. Q1) +.H. (6)
4* ( (- 5 cos w*)a

-A to cos wb + 13 vo(7

(A-B cos W02

go &t oZ fa 2  [B.A Cos Wt]

oIR = I-siSoL (8)

Azimuthal angular velocity is given by Eq. (8) except at points where
sin at = 0. For these points, return to Eq. (7) and write

4
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Figure 2 shows the azimuth angular velocity as calculated for t = 0
using Eq. (9) and a latitude 0 = 390 (approximately the latitude of
Washington D. C.). The extreme values shown, - *P + 10 390+ 100 =
490 and 29 , are hereafter referred to as Case 1 and Case 2 respectively.
Since Case 2 exhibits a higher absolute value of azimuth velocity for a
given approach to the zenith, detailed calculations are made for Case 2.
Returning to Eq. (5), the constants become

Case 2

, = 390

$ - 290

A = cos 390 tan 290 = 0.77715-0.55431 = 0.43078

B = sin 390 = 0.62932

Figure 3 shows Eq. (5) calculated for Case 2 over a 24-hour period.
The indicated points corresponding to the star rising and setting are
from calculations shown later in the report. Using Eq. (9), the maxi-
mum azimuthal angular velocity becomes

Case 2
de 7.272 • '
G* It-o 0.62932 -0.43S078

7.272 - 0.3G63 radian per second

0.1985*i
Thus, for Case 2, at t = 0 the azimuth angle is e = 1800 and the angular
velocity is e = 0.3663 radian per second = 1.259 degrees per minute.
For 8 < (as in Case 2), the azimuth angle increases continuously from
star rise to set. For $> 4¢ (as in Case 1), the azimuth angular rate
is initially positive but reverses twice before the star sets.
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Of interest in servo system design is the relative period during
which the input angular velocity is less than the minimum velocity of
the servo motor, as installed in the mount. Good design may yield a
dynamic range, or ratio of maximum to minimum motor speed, as high as
100 to 1; thus the region of inputs where the rate is less than 1%
of the maximum may be called the "near-zero rate region." This region
is related to star tracking in the azimuth coordinate from a station
in the northern hemisphere as follows:

a. Stars with south declination and stars with north declina-
tion less than the latitude of the tracking station exhibit
continuous azimuth rates from east through south to west,
with minimum values at star rise and star set.

b. Stars with north declinations greater than the latitude
will exhibit two regions of near-zero rate.

c. A single continuous region of near-zero azimuth rate occurs
for stars of declination approximately equal to 900 North.

d. The relative duration of the regions of near-zero rate
increases with declination from zero, for stars with de-
clination equal to latitude, to 100% for stars with de-
clinations approximate.ly equal to 900 North.

AZIMUTH ANGULAR ACCELERATION

To find angular acceleration in the azimuth coordinate, differen-
tiate Eq. (8) with respect to time and obtain, after simplification,

s~ 2 [ill t.an 8Cos# Cos Wt]m
4t 1 *

+ COS~w to(10

Equation (10) set equal to zero may be solved for the time corres-
*ponding to the maximum value for angular velocity in azimuth. The values
t = o, e = 00 or 180o are found to be mathematically and intuitively cor-
rect. Accordingly, the azimuthal arimilar velocities previously calculated
for t = o are the maximum rates (as indicated on Fig. 2) for stars passing
tangent to a 100 radius circle about the zenith.
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Maximum azimuthal acceleration is found in the vicinity of at =
7.50 either side of star transit. By finding the slope between values
of e calculated for ft = 50 and at = 100 , a value 0 = 4.28-106
degrees per second per second was computed for the maximum accelera-
tion. The velocity at this time is e = 1.55.10-2 degrees per second.

ELEVATION ANGULAR POSITION

Using Eq. (30) (reference 4, page 35), we write for the elevation
angle

sin C cos 3) -8)-2 cos ýCoss sv;k -V

sC D esi,

Case 1

(11)

(12)

€ = 390

3 = 490

C = cos (0 -S) = cos (390 -490)

= cos (-lo) = o.98481
D = 2 cos 4 cos 8 = 2 cos 390 cos 490

= 2"0.77715 *o.65606 = 1.01971

Case 2

, = 390

&=290

C = cos 100 = 0.98481

D = 2-0.77715-0.87462 = 1.35942
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Star rise and star set occur at zero elevation. From Eq.
this occurs at

C = D Sin 2--(At

Sin 2 w = Cos 0 - )
2 2cos4+coss

Case 1

, owl I + -a,+ ,ta

wt = 2sin Wa
2 J

= Z si, [1+ 0.,80978 1-1504. = 0-9657

=2 sin ,Io.8Z73 =2 (t 792zo')= ± Is84d

= z s�'I i +4'"39"*t12'*Ir

= 2 S;[I + o.8o978 *o.543.3
I.

= 0.724-43]$1

= s, 0,15114 = Z + (58*Zd) = t II6o4.

The maximum elevation angle was o-l.-gt.mal.y chosen as 800 for both
cases.

10,

(12),

(13)

Cos ?coss+ sin i S A
2. cos 4 cos 8 (14)

(15)

Case 2

[ 2

"i + -, 3,%,..,t 49']
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ELEVATION ANGULAR VELOCITY AND ACCELERATION

Take the derivative of Eq. (12) to obtain the elevation angular
velocity as follows:

cos h Dk W gDu yl Wt Cos Ltat (16)2. 2

+ A A w (17)
dt - Z4I (c-.Dsi 2 (1

+() SV~~ (18)

w o [4_(Z C.D + 1o)C ) 2OS (ts)

For purposes of numerical evaluation of h, hL, and h as a function
of time, the alternative form may be used for elevation angular rate
as given by

D w )SInl t (19)
do-t z c60sk

Figure 4 shows elevation angle and angilar rate as a function of
time for both Case 1 and Case 2.

Elevation angular acceleration is found by taking the derivative
of Eq. (19). Thus,

S= w --- ••sl (20)
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The points of maximum and minimum velocity are found by setting
acceleration equal to zero. Accordingly,

&a C ok Cos Wt + S6 tbn k I = 0

Cos h 6s -at

sin2 (ot

2 cas h

D sivh
a cost-

(22)

(23)

(24)sivV h Costot

Trial of values in the heighborhood of •ot = 450 were made using
Eq. (24) as the measure, with the result. for Case 2 that

S+ 47.15 degrees (25)

and, substituting into Eq. (12), Eq. (19), and Eq. (20),

hj1 0Rb
OEM 50o23 degrees

T 0. 19 43 degrees per minute

=0

(26)

(27)

13
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The minimum value for angular velocity in the elevation coordinate
is zero at transit (at = 0, h = 800).

A region of near-zero elevation rate occurs near maximum elevation.

Maximum acceleration (positive rate of change of velocity) in the
elevation coordinate occurs at the horizon (h = 0) where at = ± 158040'
for Case 1 and at = + 116040, for Case 2. Using Eq. (20), we obtain

- I
00

" MI A

IIz C Cos CosLA03.

Case i

=-1/16 cos 39' cos 490 cos 158040f

= 0O77715"0.65606-0.93144

= 0.0297 degree per minute per minute

-.1/16 cos 390 Cos 290 cos 116040,

= 0.77715.-o87462.0.44870
16

-~0.01906 degree per minute per minute

(28)

4 = 390

=- [90

Case 2

, = 390

S= 290

00 el



FREQUENCY DOMAIN EQUIVALENT OF AZIMUTH TIME FUNCTION

Figure 3 may be interpreted as a time-domain specification of the
problem of azimuth tracking imposed by the motion of the hypothetical
star represented by Case 2. For the purposes of servo system design,
the frequency domain transformation of this time function is desired.
This transformation is obtained by Guillemin's impulse method (1,5),
in which the integrand of the Laplace integral is converted to a set
of impulses in order that the integral may be evaluated without numeri-
cal methods. Steps in the application of the method are indicated on
Fig. 5. The position of the time function that lies between star rise
and star set is replotted in Fig. 5a, taking the new origin of coor-
dinates at the time and azimuth angle .of star rise.

To obtain the set of impulses, the derivative of the time function
is first plotted, Fig. 5b, and approximated by a broken line (this
approximation is equivalent to fitting the time function with a series
of parabolic segments). The broken line approximation is then differ-
entiated twice, Fig. 5c and 5d, to obtain a set of impulses. The
change in units from radians/second2 to radians/second 3 associated with
the taking of the third derivative is offset by the fact that the in-
dicated strengths are related to areas with time as the abscissa. The
impulses shown in Fig. 5d are an approximation representing the infor-
matiqn within the interval between star rise and star set with the
assumption that a continuous function is involved. That is, e1 e, e,
etc., have the same value immediately prior to the star rise point
(t --0) as immediately after. In like manner, the function is also
continuous at the end, i.e., at star set.

Appendix A contains the details of the mathematical processing
from the impulses of Fig. 5d to the continuous frequency domain equiva-
lent shown in Fig. 6.

AZIMUTH SERVO SYSTEM TRANSFER FUNCTION

In the Graham design procedure (2), use is made of a steady-
state error series having the general form

0go ego

eL + I + + see
I+Kp- Kv 'Ka K&

where

Kp= position error constant

15
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Kv = velocity error constant

Ka = acceleration error constant

KA = rate of change of acceleration error constant

Anticipating need for information regarding.the input motion and its
derivatives, expressions for ei , 6i , and ei were derived and appear
earlier in the report. Variations in design predicated upon higher
derivatives than the second (acceleration) should be avoided (6).

Study of Fig. 6 leads to the choice of the servo system transfer
characteristic shown in Fig. 7. The low-frequency asymptotic slope
of -1 is followed by a high-frequency asymptotic slope of -2 with
unity gain at the break frequency (7). For such a system, the steady-
state error expression is

@ A (30)

The maximum required bandwidth, i.e., maximum value for cul , is found
by using the maximum value of input velocity in Eq. (30). For an
assumed specification of 1/40 maximum allowable error, wl = 0.084.
Thas, a bandwidth of 0.1 radian per second is adequate for the train
axis. If the tracking accuracy requirements had been lower, less of an
"overcoat fit"' of the excitation function shown in Fig. 6 would have
resulted.

AUTOMATIC TRACKING REQUIREMENTS STARTING FROM REST

Consider a radio star tracking system in which the antenna feed
point is nutated to permit development of an error signal. For such
a system it would be possible to demand of the servo system an ability
to start from initial conditions in which an error in 0, 0, 0, etc.,
exists.

The function shown in Fig. 6 is based upon zero initial errors.
To illustrate the effect of an error, consider the initial conditions
(where the minus and plus subscripts refer to the instant before and
the instant after the transient)
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e_ = e+ , as in Fig. 5a

_ , e , etc. = 0

+, 0+ , etc., same as in Fig. 5a

The effect of initial conditions is to introduce an impulse at
t = 0 in Fig. 5c which becomes a doublet (8) in Fig. 5d. The strength
is established by the step at t = 0 in Fig. 5b, i.e., +0.473. The
approximation of the transform of the time function is

e~~c3 ): I.A, • .
= t. sid Cq.(AI) + Q~.I L = Rt. s~ke Eq.(A7) a~-(j W)a :Fa

0.7 GSYFs a+ Co 2.1F
=-0 1 ,+_ F32eIF]+j 1ý FS' 1 (31)

The magnitude of Eq. (31) is given by

a2.02.Y
0.473 o4-73 G .sh4v 2.r9F r

F5 10+ (32)

The zero frequency asymptoti c fu%.ctioi is

4. 1 ..(0.47310. = G.78 9.78 10 (33)
F+*O Fa F~ to~

as compared w th the 2.84.10 - F function given in Eq. (All) where no
starting tran.sient servo requirements are invoived. If sao.ch a servo
system is desired, the excitation funation represented by Eq. (32) may
be studied in the same manrp as Eq. (AW). The transfer characteristic
should be a Type II, that is, ore in which the initial asymptotic slope
is -2, followed by a mid-frequency asymptotlc slope of -1, and ending
with a high-frequency -2 slope (9).

PROPOSED SERVO SYSTEM

Figure 8 shows, in block diagram form, a possible sezvo system
arrangement for the automatic star tracking problem in azimuth in which
elimination of errorr Aue to initial transients is not required -- the

20
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problem and system of Figs. 5, 6, and 7. The error expression for
the system shown is substantially identical to Eq. (30).

The switch shown in Fig. 8 provides a means whereby the antenna
may be held in a fixed position until tracking is desired. The intro-
duction of a fixed voltage corresponding to a selectable constant an-
gular velocity reduces the servo tracking problem to tracking the
difference instead of the total. The W2 of the equalizer should be
approximately 10 wl or 1 radian per second.

CONCLUSIONS

Star tracking with an elevation-azimuth coordinate system has
been studied. Time functions have been given for position, velocity,
and acceleration components in both axes. Details of the transforma-
tion to the frequency domain equivalent and the design of a suitable
servo system for the azimuth axis are included. A bandwidth of 0.1
radian per second is shown to be adequate for the azimuth servo system.
A proposed system is shown in block diagram form.
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APPENDIX A

TIME DOMAIN TO FREQUENCY DOMAIN TRANSFORMATION

The approximation of the transform of the time function shown in
Fig. 5 is

+ 0.633
-io 0.6 .o04.

_ca2.05. 16'T

+I.S185e +
- 11 . 95 10 ,

4.
-Ot G33 e

9.08 E

1.o8 t

,2. .O4"

-.3 3.1 - o0

m

-11.33 e
e

4-
-. 0.33.( -Yt~oil

2.45.10 4.
4'sehslo

(Al)

Writing the exponentials in the form of in-phase and quadrature
components, we have

0~ .0 .

ow( ~ = .I - 0.7.[..3 3 + 0.3 (cos o0. .0 (o 5w1 - o.i 1ow)
+ 1.85 (CoS 2.05,o-1 .j SM 2,05.- 10 4+l.0. (Cos .O;.i 0,o-o S1%yk..('o*,i,)

4 4 4.
+ 5.085(COS 3.1~i -1 lj sM05IO))9O(CS~1 £0- s1z ~

+ S r -0*C0j 5 s'n .I 4w) 0, 3 - (W%10 o )-j S;-A 2.9S104

(A2)

Introducing a reference angular frequency o = 10- radian per
second and letting F = G/%o , we have

24
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*04 {[.oz3~ si-n O*-F +0 6.~3,3S v0,(F

+I.96 sy 2.05 F +9.09 si- 2.S F-II.3 s'- .24.5F -11 33 sr'n 2.95 F

+ 1 . * % 3 SMi v S a # ( " S p - 0 . ; 9 S v .4 F

+ j L-o0m3 Cos 0.P+ O,3 Co s &6,4F 4-1.LS"cdos 2.6 1F

+U.oScos 2,SF -If.33 coS 2,.5'F -l 313 s 2, 9S F

+9.o0 ,s So.1 F +I 1,%5" e>s 9.55F +O.(33Ce.oS F

-023Cos 5 F~l

-642S3 (ShAOF +s;-AS,&F)
1+04933 (sinA t.(F: + st"I S F)

+ 93.6% (SA25 F + SiAn 3.L F) - 11. 3 (Siv% 2.4.5 F+5iv 2.9.55 F)j

/
+ 0.(053 (Co O,4F+CosSF) + -i-i,5(os 2,.o• FP+ cos 35F

+ 9 .0 (c s25F +Co3.s 3.1 F) -, A. 33(tos 2.45"F + cos 2.$5 F)] J
(A4)

"-•4
go{F3.*IS 2.F S2.8Fj(-G)

G =O.4re CoS 2.2 F -J.26r GcoS 2.2 F

-3.7 cos 0.'7• F - It.g1 cos o. F
+ 22.G Cos 0.15 F

(A5)

(A6)

(A3)

where

e,*(j W) =

66 0 or + cos 5,1P



6 *j ()
I4G- (sin 2.8 F -j cos 2.8 F)F3

The magnitude becomes

io4 G
FS 1I

Before numerical evaluation is made of Eq. (A7) as a fu
frequency, consider its nature as3 frequernCy approaches zero,

rnction of
The expansion

os X~ 21
%4, .. ,.Ued in evaluating G for F-iO. Thus,

(A9)

J&,n
F-0o

I+0.46(
6 - -2.

,2.F
0 .7 5 1 -

-3.7 (1 - 2

-, 4. 22.64 (1- 0.• -5F.,

2. o,4( . 1. 2 (- 2.2

75 3.. - 1,..1 t• .2 2. 66. 3"15) •o
Substitution of Eq. (AI0) int• E.. (A')"#-i .

F+ e'~4w F=O4~2 ~ .~ .? . . w 1 O5~l~

Z' 4- 104'
F

2.. 4
w6=

26

(A7)

(A8)

I

I G*(j ) 1



Equation (All) shows that the excitation function frequency domain
equivalent, when plotted on log-log scales, has a minus one slope as
the frequency approaches zero. This minus one slope eftended has a
value of unity at a frequency F = o= . = 2.84-1lo or w = 2.84.

W0o 10-

The series expansion of the cosine functions fails to facilitate
similar determination of the high-frequency asymptote. Instead, the
cyclic nature of Eq. (A7) must be considered and a determination of
the peak value made. The asymptotes are tangent near the peak values.
The function itself makes cyclic excursion to zero or minus infinity
on the log plot. Hence, the asymptotes must be regarded as defining
the upper limit of the function.

Repeating Eq. (A6),

. G = 0-O.446 cos 2.% F + 1.2.66 Cos 2.2 F +3.7 cos O.7S-F

+- 1.16 CSO.3 F -22.4(0eo$s0.is F] (A12)

may be re ,ten as

+ 191 e*k7t21 v.22-4 co.S(-E\zW (A13)

where zr2.r M
0.T . = 2 4 0.150'0. 6

Considering the factor 21r separately, express the fractions
using the least common denominator as follows:

1 , 1 , 1 , i , 1

2 2.2 0.75 0.30 0.15 (A14)

become

165 , 210 , 616 , 1540 , 3080
1772 IM 442 42 62- (Al5)
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The number of cycles of each frequency in the composite period is
found by determination of the least common multiple of the numerators
of the ratios (A15). Thus, the numbers

165, 210, 616, 1540, 3080 (Al6)

lead to

56-165, 44.210, 15.616, 6.1540, 3-3080 (A17)

The products (Al7) show that the number of cycles of each cosine term
of Eq. (A7) in the period of the combination is 56, 44, 15, 6, and 3
respectively. The relative importance of the terms progresses down-
ward as frequency increases. Since the sign of the two low-frequency
terms are opposite, the value of F for which they are out of phase
appears to be a region where a maximum occurs.

In the general case great difficulty may be experienced in locating
the region of the peak value. Setting the derivative of G equal to zero
results in a sum of sine terms with the desired value of F implicit. A
series expansion of the cosine terms in G prior to taking the derivative
changes the problem to a solution of a high order polynomial which, since
it is based upon a limited number of terms of the series, gives only
approximate answers.

A simple, easily applied, procedure consists of setting up as
many rows as terms (five in the present example) and providing columns
in which the location of the maximum positive and the maximum negative
value may be indicated for all cycles of each cosine term. The point
of favorable coincidence can be established through scanning by eye.
This was done for the example using the follow-Ing:

Columns per cycle Term

220 cos 0.15 F

110 cos 0.30 F

44 cos 0.75 F

15 cos 2.2 F

165/14 =• 11.78 cos 2.8 F
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As it developed, the composite function showed symmetry about the half-
cycle point and the process was completed using 330 columns. The non-
integral columns per cycle for the highest frequency term caused no
particular difficulty. At columns 110 and 550 a value 36.487 was found.
The peak occurs at column 330 with the value 37.92.

Equation (A8) may be regarded as having two parts. The denominator
gives rise to a -3 slope on a log-log plot. The remaining problem is to
locate this -3 slope so that tangency with the cyclic numerator is ob-
tained. The numerator will have a -3 slope (on a log-log plot) at the
points of tangency. Proceed by setting

a (,a8)

- = - 3(A19)

d ( 09 10F al4
__Io 910E .d

Substitution of Eq. (A6) for G leads to

'4 Feo[.0.4V. i -73 4 2.2F + L 266 -2,2 S ivl 2e2. F-3 F 0

+3÷.7.0.77S Sno.sSF H+ S.160.0.3 sl% 0.? F
- 22.6(6 .0,15 Siv O.15 F]

+ 4-4o.46( cos 2.2F -1.Z cacs 2.2.F
13.71 cos 3.75; F - I1t. (4 a6 5 0 03F

f -22. coS 0.1 I( F (20)

. (I.3•+S si 2.$F (A2..671 .1 2.2.F - 2,.775S •ivo.SF

-5.444 sM O,3F -. 3.39 siO.aSF)•.(O.4,, cos 25SF

-L'#, cc2.UF-3,7c 0.7• F ,..I:.IS co..•aF 4. {,•sO ) (A21)
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The equality of interest is, as already established, in the region

" 15 21. 2oTr =(,ZB'S S

Trial and error yields the approximation

F = 63.5748

For F = 63.5748, Eq. (A8) gives

1 8Cj•) o IjP-3.s74S = 1.449 5 +3.22. A6
The next point of tangency occurs one cycle later or for

F = 63.5748 + 125.6637 = 189.2385

1= 5.4.5S' .1= -_25.20A6

The high-frequency asymptote crosses unity gain at

F 3 = 37.23745.104 4 .3723745.106
F = 71.94
D = 7.194.10-3

Therefore, the equation of the high-frequency asymptote is

4.37.237.10
F 

3

_.7 8,37.2.37 ,10
F.oo

The low-frequency asymptote intersects the high-frequency asymptote at
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(A28)

(A22)

(A23)

at which

(•24)

(A25)

(A26)

(A27)

I p)I F: =s 185258



F 32.84 'to (A29)

The function, as given by Eq. (A8), and the asymptotes, as given by
Eq. (All) and Eq. (A28), are plotted in Fig. 6.

The high-frequency asymptotic slope of -3 results from the three
derivatives in the approximation process. If, instead of one deriva-
tive before the broken-line approximation, two derivatives had been
taken, then the high-frequency asymptotic slope would have been -4.
Clearly, since the final high-frequency slope is a function of the
total number of derivatives taken, the actual slope has no significance.
In looking at the entire curve of Fig. 6 then, one must keep in mind
that the relative accuracy is highest at the low-frequency end and
drops to zero as the final slope is reached. Since servo systems with
greater than -2 slope (through unity gain) become unstable, sufficient
accuracy for the present purposes is provided in Fig. 6.
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