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ABSTRACT

In order to estimate the effects on mounted appa-
ratus of shock or impact loading, simplified elastic systems
may be taken to represent the actual structures, so as to
make possible mathematical analysis. Onre such simplified
system is a simple mass-spring system attached to the frame
or table which is subjected to shock. An analysis of the
probable damage done to this system by a drop test type
of impact has been made previously. Another system is a
cantilever beam, whose clamped end is subjected to a speci-
fied transverse impact. This system differs fundamentally
from the simple mass-spring system in that its flexibility
and mass are distributed, rather than lumped.

In this report a mathematical solution is obtained
for the deflection and stresses in a cantilever beam, whose
base is given a transverse impact of a type approximating
that obtained in a drop test or other simplified shock load-
ings. It is found that the maximum stress, considered as
a function of the duration of impact, differs considerably
from those of the simple mass-spring system.
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INTRODUCTION

(A) Authorization

1. This work was authorized by Bureau of Ships Pro-
ject 1438/42 of 24 September 1941.

(B) Statement and Discussion of Problem

2. The proper protection and design of apparatus to
enable it to withstand severe mechanical shock is a problem
of foremost importance. Considerable has been learned of
the nature of the mechanical shock that shipboard apparatus
must be expected to withstand. Some of this knowledge has
been applied in the construction of naval gear. Designers
have, however, been handicapped by a lack of fundamental
knowledge of the damaging effects of shock impulses of
short time duration,

3. The problem of determining the damaging effects
of shocks is of enormous scope. Both the varieties of
shock and the types of apparatus are innumerable. Any dis-
cussion of this problem must therefore begin with many
assumptions' and simplications, which must always be kept

in mind. An analys%i of part of this problem was made by
Dr. R. D. Mindlin )*,in which the damage effect was considered

under conditions representing those of a "drop-test'"., An
apparatus for the performance of a test of this 5§ture is
described by the American Standard Association.( Figure
1 shows a simplified picture of

the arrangement considered by _

Mindlin. A heavy, rigid table &lement

of mass M has a light, rigid .

mass, my, flexibly mounted on Ek

it by spring ky. A spring !
bumper, K, is attached to the I M|
lower side of M. The assembly A 3}{
falls a distance h and strikes Table” S5
an anvil plate. The direction ,
of motion of M is reversed in '
a sinusoidal manner, and in a A
time determined principally by ;
K and M. The whole assambly

then moves away from the anvil 4@?Viﬂ;%<ﬁ. )
and is caught before rebounding,  SSS A AANRNNR N

Figure 1
* Refer to Bibliography, Page 16



4, The motion of the mass m relative to M is a
function of their respective masseS, the spring constants,
and the striking velocity. The maximum relative displace-
ment, which is the amount by which the spring ky is com-
pressed, may be taken as a measure of the possi%le damaging
effect on the system, of a given shock of this type. Thus
for the system shown in Figure 1, an estimate of the probable
damage to the mounted element, or to the spring k,, may be
obtained from the solution of the deflection of tﬁe spring.

5. Another case of fundamental interest is illustrated
in Figure 2. A light cantilever beam is horizontally mounted
on a rigid, heavy table, M. A

spring bumper, K, is attached _Centilever Beam
to the lower side of the table. / P”JE- y
The assembly is dropped, as ir SR—
the previous case, and it is L /M - ]
desired to determine the prob- Tarhle ” K3
ability of damage to the beam. —*-T—
. A
Anvi/

IUTTVTRN VY SYLIRCLIRY

Figure 2

6, The probable damage to the beam by the impact
is assumed to be determined by the maximum berding stress
in the beam. Hence the criterion of the severity of the
impact in this case is the curvature of the beam at its
clamped end, rather than the displacement of the beam. Thus
to evaluate the effect of the shock we have to obtain first
the deflection curve of the beam, and from this derive the
curvature at the clamped end, both during and following
the impact. These are given as general functions of the
table "stopping frequency" o, the striking velocity V, and
the elastic properties of the beam, by an analysis given
later in this report.

ANALYSIS OF DEFLECIION AND STRESS IN 'A CANTILEVER BEAM

7. The system considered is shown in Figure 2. The
cantilever beam is assumed to be light in comparison with
the table, so that the motion of the table during the im-
pact is governed only by its own mass and the bumper spring
constant., The motion of the table during the impact is
taken as

]

u, = L sinot (o< tSD)
w (V]

where vy, = displacement of table (= displacement of clamped end of beam)
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V = j2gh = velocity of table just before impact
® =/§ (see Figure 2)

The quantityco=j%_ will be referred to as the "stopping
frequency" of the table. There is, of course, no contin-
uous vibration of the table at this frequency. The dura-
tion time of the impact is T =J. It is assumed that after
the impact is completed, i.e. for1;>'%, no forces act on
the system.

8. The deflection curve of the beam is the solution
of the partial differential equation

Y w D?u

ot T ERE 2 T °

which satisfies the required boundary conditions, both
during and following the impact. In this equation wu(x,t)
is the displacement of the beam measured from its initial
straight position at the start of the impact, W is the
weight per unit length of the beam, E is Young's modulus,
I is the cross-sectional moment of inertia of the bean,
and g is the acceleration due to gravity. A complete
solution of this problem is given in Appendix 1 of this
report.

RESULTS AND CONCLUSION

9. A curve showing the maximum deflection of the
spring, k,, which is a measure of damage probability for
the first considered case (see paragraph 4 ard Fig., 1)
is given in Plate 1. Thif gurve was plotted from the equa-
tions derived by Mindlin. 1) For the interpretation of
this graph it is best to consider a fixed arrangement of
mounted apparatus, i.e. consider wy; a parameter of any
fixed value. The variables considered are then X and w.
The time of impact is the half period corresponding to
0w, Which is equal to g. The graph indicates that the prob-
ability of damage (see paragraph 4) increases as o in-
creases until a maximum value is reached, with nothing
unusual happening in the neighborhood of @ = @ . For all
practical considerations this maximum value is attained
when o > 3w). This means that the probability of damage
is independent of the impact time, if the impact time is
short compared with the period of the flexibly mounted
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apparatus. It means that, under those conditions, the
change of velocity is the important factor, and that the
magnitudes of accelerations involved, for a given velocity
change, are of little importance.

10, In the above analysis the mass of the flexible
mounting was neglected. Plate 2 illustrates the effect of
impacts of various time durations on a cantilever beam,
which is a system with distributed flexibility and mass.
The bending stress at the clamped end of the cantilever
beam is plotted as a function of the "stopping frequency"
of the table. The impact time is, as before, equal to one
half the period associated with this frequency, or 7. The
frequency and other properties of the beam should be con-
sidered as fixed parameters for any given set-up. The
curve demonstrates that, for a given velocity change, the
bending stresses continue to increase as the time of
impact decreases. Thus high magnitude accelerations, of
time duration short compared to the period of the beam,
may be of considerable importance in this case in contrast
to the previous case. It has been determined that the maxi-
mum bending stress at the clamped end occurs during the
impact when 9/a,<1, and after the impact when®/q,»1.% The
curves of Plates 1 and 2 are quantitative in nature and
provide means of estimating numerical values for practi-
cal problems that may be simplified to fit the assumed
conditions. It should be noted that, as far as mathematical
analysis is concerned, the present solution applies to many
types of shock or impact loading of elastic structures,
as well as to the "drop test" type of shock, TFor example,
if a velocity -V were superimpnosed on all parts of the
systems illustrated in Figs. 1 and 2, the motion of the
table would approximate that of the anvil plate of a hammer-
type shock machine, However, the questions of the suita-
bility of using a sinusoidal displacement function, and of
the interpretation of the analytical results, must be
decided by experimental work. This is now in progress.
Further discussion of the limitations of these results is
given in Paragraphs 8 and 9 of the Appendix.

%* @, is the fundamental frequency of free vibpation of the beam.



APPENDIX I
ANALYSIS OF DEFLECTION AND STRESS IN A CANTILEVER BEM

SUBJECTED TO_A DROP-TEST TYPE _OF TRANSVERSE IMPACT

1. It is required to determine the maximum bending
stress in a cantilever beam, when the clamped end under-
goes a specified change of
motion. The physical condi- b
tions are illustrated in - L > _4*~
Figure 2. A beam of small V. o
mass is clamped in a hori- Vl./ - =
zontal position to a heavy
table. The table is dropped
on a flexible spring and the
direction of motion of the
table is reversed sinusoidally. Figure 3

2. Some nomenclature to be used is given below:

t T time (t is taken as zero at the instant the
table springs make contact with the anvil),

X = coordinate giving position along iength of
beam (x=0 at free end ; see (Fig. 3).

u(x,t) = displdcement of beam, measured from its .
original straight position at the instant
the table strikes§ the anvil (see Fig. 3)
K2 = &EI

w
E = Young's modulus of material of beam

I= Ergg§;fgct%onal moment of inertia of beam
~ see Fig. 3)

b = width of beam

d = depth of beam

L = length of beam

weight of beam per unit length

acceleration due to gravity

striking velocitywof table

£
it

Eﬁj < o 3
1]

"stopping frequency" of table

.5‘



T = % = duration time of impact

2 17
T Tx° |
Pp(n=1,2...0) = roots of frequency equation of cantilever,

1 + coshBpcosPp= O

a, = %Zﬁi = natural frequencies of cantilever

Additional notations used in the analyvsis are 'defined as
introduced.

3. The deflection curve of the beam is the solution
of the equation

d 1 % (1)
- = 0
PRI

subject to the boundary conditions given below:

a. The initial and terminal conditions required
during the impact are as follows:

t =0 : u=0, LU=y (2a)

I'hese express the conditions that the bar was initially
straight and moving with a velocity V, For té'g-, (the
impact period), the conditions at the free end of the bar
(x = 0), are:

/N2 0 3
(33) - (32) -o (20)
o (o]

Also for t € g, at the clamped end of the bar (x = L),
the conditions are assumed that

u =

. )
LT ot (ﬁrfo (2¢)

el

b. The conditions applying to the motion after
the impact, t > I , may be simplified by taking a new time
coordinate t' =t - X , so that t' =0 corresponds to the
instant the impact is completedj; and by superimposing a
velocity 4V on the entire system, so as to bring the table
to rest, If the deflection and velocity functions of the
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beam at the completion of the impact are denoted as
ul(x, 1/0) = F(x)
a (x, /o) = G(x),

then the following conditions are required (using w' (x,t')
to deénote the displacement after the impact):

tt = C: u'(x) = F(x)

. (4a)

u'(x) = G(x) +V

21 31
=0 (f d):M_) =<3u -
X ree en (éx2 ] ax2.° 0 (4p)
X = L (clamped, fixed end): u' = éﬂi. =0
L {ox L (4c)

4, )

The solution of equation (1) for the motion
during the impact (0 <€ t $n/o ) may be obtained by

applying the Laplace transforma%i n., The transform
w(x,%) ~of u(x,t) is defired as®3

e}
a(x,\) =] ulx, t)e™ b at
4o

Equation (1) transforms to

The complete solution of this equation is

u a-%%+ A cosh ux + B sinh ux + C cos px + D sin px
k



where A, B, C, D are constants to be determined so as to
satisfy the transformed conditions at the ends of the beam,
derived from equations (3b) ard (3e). BEvaluating these
constants, we obtain

F(x,0) = ¥ - T ( coshux+cosux) (coshul+cospl )~( sinhux+sinux)(sinhul~sinul)
’ A2 2X2(x2+m2) 1 + coshulcosuL

By the Fourier-Mellin inversion theorem, (3) we have

u(x,t) = B (x,2)ert ax

Br

The evaluztion of this line integral is obtained by
transforming the path »f integration to a closed contour,
and applying the calculus of residues. Poles of the inte-
grand are as follows:

(1) Double pole at \ = C
(2) Simple poles at = + iw
(3) Simple poles at roots of 1 + coshulcosyl = O

Ivaluating the residues at all these poles ard adding, "'e
obtain, firally

u = LY ) sinot + 2V ﬁ % n(X) sina t (6)
—

2w 2 2
Bndn(e”-ay")

where .
& (x) ‘(coshgn§+cosen§)(c?sh3n+cosen)—(sinhﬁn%+sinﬁnf)(s1nhen—§1nBP)

coshB,sinfn-sinhfncospy,

@ (x)= (coshy fwosr.f)(COShY +cos y )-(sinhy F*siny ¥)(sinhy -siny )
1+ coshycosy

Bh = the nth root of the freauency equation for a cantilever,
1 + coshBpcosB, = 0



a, = %52-3; = the nth natural frequency (radians/sec,) of the
cantilever,

r=1[%

It may be verified that this solution, eq. (6), satisfies
the differential equation (1), and the initial and termi-
nal conditions (3a) (3b) and z3c).

5. The solution of equation (1) for the motion
following the impact (t2> n/w, or t' > o ) may be obtained
directly in terms of the characteristic functions of the
cantilever beam. The normalized characteristic functions
for the cantilever are

1 X X sinhBn-sinfn X X
= hBn=+ = - n n s s —
Un(x) Er{cos BnL COSBnL SoshBricoshy { 1nhﬁni+51anL) (7)

where 1 + coshPpcosfp= O

The solution is then taken as

'g)“"‘! ' .
u'(x,t') = fzii Un(x) [Pncosant',+ Qnsinantg (8)
n=

where Pp, Qn are constants to be determined so as to give
the required displacement and velocity functions at t' = O,
The following relations exist:

u'(x,0) = E Un(x)Pp = F(x) (9a)
n=

v’ (x,0) 2 Up(x)Qpap= 6(x) + V (9b)
n=



where @

Upsinn®R coshp,,+cos
F(x) = u(x,n/w) = 2Ve? —_— . Pn - Pn
Bpop(wR-a,?) coshB,sinB,-sinhp,cosP,
n=1
X X
6(x) = Wz, n/w) = - g (coshy +cosy )(coshy F+cosy )
1+ coshycosy
(sinhyr-siny)(sinhy %+sin)r f)
® - 1 + coshycosy
nan
. 202 Uncos —= coshB,+cosBy,
Bn(an?) coshfpsinPp-sinhBpcosfn
n=1

Multiplying equations (9a) and (9b) by U,(x) and integrating
from O to L, we have, since the Un’s are normalized,

L
Pp =/ F(x)Up(x)dx

[¢]

anQn ‘ﬁG(X)‘*V} Un(x)dx
0

The integrals for Pn, Qn may be evaluated by making use of
the properties of orthogonality of the characteristic
functions, and of the functions contained in F(x), G(x).
The following result is finally obtained, after considerable
simplification (taking t as defined originally):

o

j :.l(x)cos I %n

u'(x,t) = 4V 229) sin(apt - Ton ) (10) o
a 2w

A=/ Bnln (1" (.02)

where tﬁn(x), Bn are the same as defined above for equation (6) .
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It should be noted that the above result gives the motion
of the beam (after the impact) which would be seen by an
observer moving with the beam, at constant velocity -V,
It may be verified that this result, equation (1C), at

t = /o, gives the same displacement and velocity as does
the solution for the motion during impact (eq.6).

FUMERICAL EVALUATION

6. The curvature at the clamped end of the canti-
lever is first obtained from equation (6) and (1C) as
follows:

(a) During impact:

sinhf,sinf,

(11a)

k/d%\ _ [_sinhysiny] . ~sinop
N\ R L l+coshy cosy sinwt + 4 Bn(1- 02_1_12) coshBp,sinfp-sinhppcosPy
n= W

(b) After impact:

nan
2., ©o8 T3 inhp,,si
%(“;2‘3211) = BZ a 7 ‘.cdsﬁ :izsgi;:ﬁg cosp J sin(ant—g:n)
L - &,Lwﬂg) L n>+"*n n n

These equations cannot be applied when w=a , 1i.e.
when the "stopping frequency" of the table i% eq
one of the natural frequencies, since in the above forn

they lead to indeterminacies in. these cases, The limiting
values in these "resonance" cases may be shown to be finite,

and to be given by the following:

- 11 -
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2
L
(a) During impact, for o =ap 7=8, = ’0.0,1.(_

k(Q%ur) f“’k [ - sinhy siny
V(ax2 ) = {2 ;2- t coswt + [cotanhy tcoty ~ 7,]smcot> sinh‘)r Gosy ~coshy STy
L

m . .
v 4 \. | sinapt sinhfpsinfy (12a)
, an?, | coshB,sinf —-sinhB,cosf;,
nFEp Bn( 1~ (,02 )

(b) After impgct, for o= o 5 7= 8p = /9%— ’

k(%) | 2n sinhy siny 1
V(()x2 >L ) Y [Cosh‘rsin'f -sinh-r cosy J coswt

na
Q cos5—= sinhB,sinB, a (12b)
+ 8 . — sin(a t— —=
7 2 coshBy,sinpy,~sinhp,cosfy, 2w

an

.Bn( 1"-;2-)

It may be checked that the above equations for the curva-
tures before and after impact agree at t = v/,

7. A convenient dimensionless form for these results
may be obtained by rewriting them in terms of the ratios

foz @ = "stopping freguency" of table
T fundamental frequency of cantilever
r = _t - time after start of impact

n/o - duration time of impact

The bending stress at the clamped end is given by

_ Edfd%u
gy = 3 (axz) L

- 12 -



where d 1s the depth of the beam. We now write

2 2
k{Q%u\ _ 1%l , 2 .2 12 0 N o]
( ) v 612» Ea G’O !312 Ed. —\; 0"0 +599 E4dV ¢0

The equations expressing the severity of the impact are,
finally:
(a) During impact (os t €1)

2 = A sin & an”:
a
—‘?——L—-—]:-O"O=Asinﬁt+ n £ B? (13a)
312 Ed V o 7
i n= __1 ﬁn
£2 Byl
(b) After impact (T > 1)
2
Q.. 2 Ap cos I Pn” )
2 a R B
2 L 1 = 1 sm[g-'n ("L'—]-'-)
= == o
12 %V §n=1' 1 P £ 2 2l
| £2 8y (13b)

_ sinhBy f-i:- sinBq f?
1 + coshBy T cosByJT

3 1
fn Bn cotanhf,-cot,

In the'resonance" cases, @ = a,, these are replaced by the
following equations:

- 13 -



(a) During impact, for w=a, (0§ T § 1)

p
2L2a1 a, = _ B A 2"1: voot é_ '
812Edv ) A B;~—-cosnt‘ + [%otanth cotBy~ Bp] sinnT
)
An B 2
. w Pn
sin ¥ TR
+Z 1 an’ f ﬁlQ
1 -3 7
ngép £ P
(b) After impact, for o = a, (T > 1)
212
— L g, "~ f_‘gp_ cos nT
B, 2EAV
L 2
n_ B
+ 2 Ap cos 2f By2 x Bn 1 (14b)
i o[t 5 (- )]
P 13- 1fn P
- 5
£° B

In all of the above, the values of B, are the roots of the
cantilever frequencsr equation: 1 + coshB,cosf, = O.
Their values are (4):

B1 = 1.87510
B2 = 4469410
B3 = 7.85476
n> 4, 8= &L,

8. It is found, by plotting @, vs. T for a series
of values of f, that the maximum stress occurs during the
impact when f<1 while the maximum stress occurs after
the impact, for f> 1 Figure 2 gives a plot of the maximum
bending stress at the clamped end of the beam for a range

(14a)



of f from 0.1 to 100, These maximum values of stress, after
the impact, have been obtained by adding the amplitudes of the
component oscillations, without regard for their phase relation-
ships, The solution (equations (13a) and (1l4a)) shows that, as

f 1is increased, the amplitudes of the higher harmonics are
increased, and it is this greater prominence of the high fre-
quency beam vibrations at larger values of f , that causes
the maximum stress to continue to increase with f , as shown
in Figure 2, It should be noted that although it is justifiable
to take the maximum stress as simply the sum of the amplitudes
of the component harmonics when f 1is not very large, it-1is
not permissible to continue this up to arbitrarily large values
of £ . If £ 1is large, say 1000, the above solution
indicates that the natural frequencies of the beam which will
be prominent in the stress response, will be those up to about
the 20th harmonic, (since appfay = Bpo?/B1?2 =2 1000).
However, these high harmonics will not contribute to the bending
stresses in the beam in the manner predicted by the above
analysis, due to the existence of internal damping, shear, and
rotatory inertia effects which are important in the high har-
monics, but negligible in the low harmonics. In fact, the
differential equation (1) for the transverse vibrations of a
beam, which was used as the basis of this analysis, is an
approximate equation, valid only at sufficiently low frequencies,
However, for the range of f from O to 100, which is of
practical interest, the method used to calculate the maximum
bending stresses probably gives a good approximation to the
actual values which would be obtained in a beam under the
assumed impact conditions.

9. With this restriction on the analytical results, the
variation of maximum stress with duration of impact is found to
be basically different from that of the simple one-degree of
freedom system, in which the deflection becomes independent of
the shortness of the impact duration at a value of f equal
to about 3. This conclusion, and the extension of these results
to impacts of arbitrarily short duration, must be checked by
experimental work, which is now in progress.
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