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 This report summarizes the NRL implementation of a filter used for ESM angle tracking. The filter is an Interactive Multiple Model (IMM) 
filter that uses three standard Kalman filters as a basis for filtering and predicting emitter bearing angle. Filter selection for the IMM is based on the 
expected	variation	of	emitter	trajectories	and	the	imposed	spherical	coordinate	system.	The	derivation	of	the	IMM	is	well	documented	and	is	not	
addressed	in	this	report;	only	implementation	aspects	of	the	IMM	are	addressed	here.
	 The	ESM	angle	tracker	was	developed	to	operate	with	the	NRL	ESM-ATD,	which	provides	highly	accurate	but	intermittent	bearing	and	eleva-
tion reports. ESM parameters are tracked with first-order filters and provide the basis for associating intermittent bearing/elevation tracks in dense 
scenarios.	The	tracker	is	fully	automatic,	uses	sequential	Bayesian	hypothesis	testing	for	track	initiation,	and	uses	maximum	likelihood	association	
implemented across all filters to maximize single-event association probabilities.
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ADVANCED ESM ANGLE TRACKER 

VOLUME I – THEORETICAL FOUNDATIONS 

 

1. INTRODUCTION 
 

This report summarizes the Naval Research Laboratory (NRL) implementation of tracking filters used 
for tracking bearing, elevation, and electronic support measure (ESM) parameters. It describes the theory 
behind the NRL MATLAB and C code used for ESM angle tracking, developed to operate with the NRL 
ESM-Advanced Technology Demonstration (ESM-ATD) and later transitioned to Lockheed Martin 
Corporation for integration into the Advanced Integrated Electronic Warfare System (AIEWS) program. 
This code was intended to act as the ESM tracker for AIEWS and to provide feedback control for the 
front-end gating of the ESM receiver. 

 
The Advanced ESM Angle Tracker was developed at NRL and embedded within the Joint Maritime 

Command Information System (JMCIS) as a prototype segment. This report presents the theory used for 
the tracker and represents Volume I of a three-volume set. 

 
Volume II is a user’s guide [1] for running the remote tracker via JMCIS. It describes how users set 

up and control the tracker from JMCIS and display real-time track information, and discusses JMCIS 
Tactical Database Manager (TDBM) display integration. Volume III is a developer’s guide [2] that 
documents the software development of the Advanced ESM Angle Tracker. It describes the tracker’s 
graphical user interface, the TCP/IP communications required to interface with the remote process, and 
the implementation of the tracker algorithms as a remote process.   

 
The filters and tracking algorithm described in this report are unique in several ways. The bearing 

filter is an Interactive Multiple Model (IMM) filter [3, 4] that utilizes three Kalman filters of different 
orders to track emitter bearing angle. The requirements for combining first-, second-, and third-order 
tracks had not been defined and implemented prior to this work. Another unique feature of this tracker is 
that it includes all parameters (bearing, elevation, and ESM parameters) in the decision process for 
correlation and association of new reports with existing tracks. In addition, a new technique developed for 
determining plant noise in the ESM parameters filter estimates plant noise as a function of ESM 
parameter agility.   

 
The IMM bearing filter uses three standard Kalman filters as a basis for filtering and predicting 

emitter bearing angle. Filter selection for the IMM is based on the expected variation of emitter 
trajectories and the imposed spherical coordinate system. The derivation of the IMM is well documented 
and is not addressed here; only the unique NRL implementation aspects of the IMM are addressed here. 
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Each of the three bearing Kalman filters is tuned to a different trajectory model. The first of the three 
Kalman filter plant (hereafter referred to as trajectory) models is a simple first-order filter that is optimal 
for tracking stationary (land-based) emitters. This filter is also suitable for tracking non-maneuvering, 
radially inbound or outbound platforms. The second Kalman filter is based on filtering both bearing and 
bearing rate. The third Kalman filter tracks bearing, bearing rate, and bearing acceleration so as to 
minimize filter lag for crossing emitters and other highly maneuvering trajectories. Platforms tend to fly 
in straight line paths; crossing platforms will produce an infinite number of derivatives in a polar 
coordinate system, leading to significant filter lag. The defined second- and third-order Kalman filter 
trajectory models minimize these effects. 

 
Since it is not known a priori which model is appropriate for any particular platform in track, the 

NRL IMM filter estimates the probability of each trajectory model’s applicability for the particular 
platform under observation. These trajectory model probabilities are computed based on a hidden Markov 
model (HMM) as well as on outputs from each of the three Kalman filters used to filter and predict 
platform motion. 

 
The elevation filter is a second-order Kalman filter that tracks elevation and elevation rate. The ESM 

parameters filters are first-order Kalman filters that can track either constant or agile parameters by 
automatically adjusting the filter plant noise. The ESM parameters filters provide the basis for the full 
likelihood association used in associating intermittent bearing/elevation tracks in dense scenarios. 

 

2. IMM BEARING FILTER IMPLEMENTATION 
 

IMM bearing filter update consists of the following steps. 
 

1. IMM bearing filter initialization, which consists of IMM and Kalman filter initialization. 
 
2. The IMM track update process, which consists of state estimator mixing (interaction), 

Kalman filter updates, model probabilities update, and combining or merging of the three 
state estimates. 

 

2.1 IMM Bearing Filter Initialization 
 

The IMM bearing filter assumes a hidden Markov model that controls trajectory model switching 
with a switching probability that is assumed known. This transition matrix is defined as 

 ij ijP p⎡ ⎤= ⎣ ⎦ , (1) 

where the transition probabilities are  

 ( ) ( ){ }Prob 1 , , 1, 2,3ij j ip M k M k i j= − = , (2) 

and ( )jM k  stands for “model j  in effect during the period ending at time k .” 
 

The above expression should be interpreted as the probability that the trajectory model for the track at 
time k equals model j given that at the previous update, the trajectory model was i where (i, j) range from 
1 to 3. For example, in the NRL model, the three elements in the first row of the matrix indicate the 
transition probability from the bearing-only model to the bearing-only model (the 1,1 element), to the 
second-order model (the 1,2 element), and to the third-order model (the 1,3 element), respectively. The 
second and third rows should be interpreted in a similar manner. 
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The NRL IMM bearing filter initializes this Markov model transition matrix as 
 

 
( ) ( )

( ) ( )
( ) ( )

11 11 11

22 22 22

33 33 33

1 2 1 2
1 2 1 2
1 2 1 2

ij

p p p
P p p p

p p p

− −⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥− −⎣ ⎦

.  (3) 

 
This matrix is initialized by setting 
 

 
11

22

33

.90

.95

.90

p
p
p

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

. (4) 

 
The transition probability 11p  should be interpreted as the probability that the first-order model 

transitions to itself (or stays a first-order model) during the bearing track update process. Due to the form 
of the matrix specified above, there is also a small and equal probability that the current first-order 
platform model will transition to the second-order or third-order models during track update. The two 
remaining transition probabilities, 22p  and 33p , should be interpreted in a similar manner. We note that 
the NRL model gives preference to the second-order bearing filter by setting the return probability to a 
slightly higher value. Thus, a track that is second-order (maintains bearing and bearing rate) is more likely 
to stay second-order during the track update process than a first- or third-order track. 

 
The initial probability distribution associated with the three trajectory models (hereafter referred to 

only as models) is also assumed known. In the NRL model, this initial distribution is given by 
 

 
1

2

3

j

p
p p

p

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, (5) 

 
where this vector is initialized to  

 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

10.
85.
05.

jp . (6) 

 
Again, the NRL model gives preference to initiating second-order tracks. The assoc_f routine 

correlates current cluster descriptors (CDs) with prior CDs that have been previously stored and that have 
not correlated with existing tracks (defined as first points). A CD is equivalent to an ESM contact 
consisting of extracted information from a set of post-processed pulse descriptor words (PDWs). If a 
correlation exists in the appropriate parameter space, a new tentative bearing track is initiated. Although 
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the transition matrix is a constant, the model probabilities are updated on each track update as discussed 
below. 

 

2.2 IMM Track Update Process 
 

Computations associated with the IMM track update process are discussed below.  

2.2.1 State Estimator Mixing (Interaction) and State Prediction 
 

For any initiated track, once an associated contact is identified, the first step in the IMM bearing 
update process is mixing the previous filter estimates stored in the extended track file (ETF). This process 
is known as mixing, or interaction, and allows the IMM to achieve the accuracy associated with a second-
order generalized pseudo-Bayesian (GPB2) filter [4] while maintaining three rather than nine separate 
Kalman filters. 

 
The 3 × 3 mixing probability matrix is given by 
 

 

1311 12
1 1 1

1 2 3

2321 22
2 2 2

1 2 3

31 32 33
3 3 3

1 2 3

i j i j

pp pp p p
c c c

pp pP p p p p
c c c
p p pp p p
c c c

⎡ ⎤
⋅ ⋅ ⋅⎢ ⎥

⎢ ⎥
⎢ ⎥

⎡ ⎤= = ⋅ ⋅ ⋅⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥

⋅ ⋅ ⋅⎢ ⎥
⎣ ⎦

, (7) 

 
where c  is a 3 × 1 normalizing constant given by 

 

 
1

2

3

ij j

c
c c P p

c

⎡ ⎤
⎢ ⎥ ′= =⎢ ⎥
⎢ ⎥⎣ ⎦

 (8) 

 

and ijP ′  is the complex conjugate transpose of ijP .  
 
Using the above mixing probabilities, the mixed filter estimates are obtained as 
 

 ( ) ( ) ( )ˆ ˆm
j i i j

i
x k x k p k= ∑ , (9) 

 
where ( )ˆm

jx k  is the mixed estimate for model j, ( )ˆix k  is the ith filtered estimate (i,j = 1,2,3) obtained 

from the ETF, and jip  are the mixing probabilities defined above. The associated scalar covariances are 

given by 
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 ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }ˆ ˆ ˆ ˆm m m
j i i j i ji j

i
v k p k v k x k x k x k x k ′⎡ ⎤ ⎡ ⎤= + − −⎣ ⎦ ⎣ ⎦∑ . (10) 

 
It should be noted that for j = 1, both ( )1̂

mx k  and ( )1
mv k  are 1 × 1 or scalars. For j = 2,3, this is not 

the case. Since, in general, the filter estimates vary in size from 1 × 1 for the first-order filter to 3 × 1 for 
the third-order filter, mixing the ETF estimates is not straightforward. Before computing the above 
mixing equations, it is necessary to resize the filter estimates and their associated covariance to 
appropriate sizes for mixing. This can be called upsizing and downsizing. For example, assume that the 
form of the ETF estimate and covariance for the third-order filter may be written as 

 

 ( )

( ) ( )
( ) ( )
( ) ( )

( )
( )
( )

1
33

2
3 3 3

3
3 3

ˆˆ
ˆˆ ˆ
ˆˆ

b kx k

x k x k b k

x k b k

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥= =⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

&

&&

 (11) 

and 

 ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

(1,1) (1,2) (1,3)
3 3 3
(2,1) (2,2) (2,3)

3 3 3 3
(3,1) (3,2) (3,3)
3 3 3

v k v k v k
v k v k v k v k

v k v k v k

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

,  (12) 

where ( )3̂b k  is the filtered bearing estimate. Downsizing is simply the elimination of the appropriate row 
and column before mixing. 

 
Downsizing the third-order filter for mixing to obtain a mixed first-order estimate is accomplished by 

defining the intermediate downsized third-order filter estimate as 
 

 ( ) ( ) ( )1
31 3ˆ ˆdx k x k⎡ ⎤= ⎣ ⎦  (13) 

 
and associated covariance as 

 

 ( ) ( ) ( )1,1
31 3
dv k v k⎡ ⎤= ⎣ ⎦ . (14) 

 
Upsizing in the NRL implementation implies the addition of zero elements to expand the filter 

estimate and associated covariance for mixing. Consider the j = 3 case above. Both the first- and second-
order filters require upsizing before the mixing process. To upsize the first-order filter, an intermediate 
vector is defined as 
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 ( )
( )1

13

ˆ
ˆ 0

0

u

x k
x k

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (15) 

 
and the associated 3 × 3 upsized covariance is defined as 

 

 ( )
( )1

13

0 0
0 0 0
0 0 0

u

v k
v k

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

. (16) 

 
Similarly, the second-order filter is upsized to 
 

 ( )

( ) ( )
( ) ( )

1
2

2
23 2

ˆ

ˆ ˆ
0

u

x k

x k x k

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (17) 

 
and the associated 3 × 3 upsized covariance is defined as 

 

 ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1,1 1,2
2 2

2,1 2,2
23 2 2

0

0
0 0 0

u

v k v k

v k v k v k

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. (18) 

 
All other upsizing and downsizing are handled in a similar manner. 

 

2.2.2 Kalman Filter Updates 
 

The three Kalman filters should be treated as subroutines for the IMM bearing filter. Therefore, 
Kalman filter updates may be performed by passing in the bearing data and the mixed estimates ( )ˆm

jx k  

and their covariance ( )m
jv k  in lieu of the normal ETF values. The corresponding output of the Kalman 

filters for time k are defined as ( )kx jˆ  and ( )kv j , respectively. These outputs are used for merging the 
estimates using the updated model probabilities. These values are also saved in the ETF along with the 
merged estimate and its covariance. In addition, each of the three Kalman filters sends back the 
innovation sequence and its covariance, which are used for the update of model probabilities. 
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2.2.3 Update of Model Probabilities 
 

The model probabilities are updated in two steps. First, the likelihood associated with each of the 
filter updates is computed. This likelihood is defined as 

 

 ( ) ( ) ( ){ }1, k
j jk P z k M k Z −Λ = , (19) 

 
where ( )z k is the current bearing measurement from the associated contact and 1kZ −  is a vector 

representing all the data through time 1k − . This may be computed as  
 

 ( )
( )

{ }

1

1/ 2

1exp
2

det 2

j j j

j

j

S
k

S

γ γ

π

−⎧ ⎫′−⎨ ⎬
⎩ ⎭Λ =

⎡ ⎤⎣ ⎦
, (20) 

 
where jγ  is the innovation obtained during the update of the jth  Kalman filter and jS  is its associated 

covariance. Since the dimensionality of jS  is always equal to the dimensionality of the measurement 

space, jS  is always a scalar and the inverse indicated above never needs to be computed. Therefore, the 
above may be simplified to 

 

 ( )
( )

( )( )

1exp
2

2

j j
j

j

j

S
k

S

γ γ

π

⎧ ⎫⎪ ⎪′−⎨ ⎬
⎪ ⎪⎩ ⎭Λ = . (21) 

 
Based on the likelihoods defined above, the updated model probabilities may be computed as 
 

 ( ) ( )j j
j

k c
p k

c
Λ  

= , (22) 

 
where a second normalizing constant is defined as 

 

 ( )j j
j

c k c= Λ ⋅∑  (23) 

 
and jc  was previously defined. 
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2.2.4 Merging the State Estimates 
 

The merged estimates and their covariances are obtained by computations similar to that discussed 
above for mixing (Section 2.2.1). The merged minimum mean-squared error (MMSE) filter estimate is 
given by 

 

 ( ) ( ) ( )∑=
i

ii kpkxkx ˆˆ , (24) 

 
and its associated covariance by 

 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }ˆ ˆ ˆ ˆ1i i i i
i

v k p k v k x k x k x k x k ′⎡ ⎤ ⎡ ⎤= − + − −⎣ ⎦ ⎣ ⎦∑ , (25) 

 
where the individual estimates and their covariance must be upsized and downsized appropriately as 
discussed in Section 2.2.1. The correlation and association process uses the estimates associated with the 
individual filters.  
 

2.3 Extended Track File Entries 
 

The track file database must save the three separate Kalman filter estimates, ( )kx jˆ , which vary in 

size from 1 × 1 to 3 × 1, and their associated covariances, ( )kv j , which vary in size from 1 × 1 to 3 × 3. 

In addition, the merged estimate ( )kx̂  and its covariance ( )kv  should be saved. 
 

2.4 The Single-State Bearing Filter 
 

The following describes the mathematics for the recursive, single-state bearing angle filter. This 
report describes both the initialization and the update of the filter. The purpose of the filter is to estimate 
bearing for stationary or radially inbound emitters and to compute optimal time-varying bearing gates. 

 
The bearing filter is a first-order Kalman filter that models only bearing. This is one of the three 

independent bearing filters used in the IMM architecture. The filter assumes that the measurement error 
variance is properly defined for the ESM bearing angle as a function of measured frequency and signal-
to-noise ratio (SNR). 

 

2.4.1 Overview 
 

The bearing filter described is a first-order Kalman filter. The filter's general equation corresponds to 
an alpha filter and is given by 

 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1 1ˆ ˆ ˆ, 1 1 , 1 1x k k k x k K k z k H k k k x k= Φ − − + − Φ − −⎡ ⎤⎣ ⎦ , (26) 

 
where the subscript indicates the first-order filter. For the first-order bearing filter we define 
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 ( ) ( )1 1̂ˆ ,x k b k⎡ ⎤= ⎣ ⎦  (27) 

 ( ) [ ]1 , 1  1 ,k kΦ − =  (28) 

 ( ) ( ) ,mz k b k=  (29) 

and 

 ( ) [ ]1 1H k = . (30) 

 

In the above, ( )1ˆ1 −kx  is the 1 × 1 vector of filtered bearing estimates valid at time ( )1k −  from the 

previous iteration and valid before the current bearing data is received. Time ( )1k −  is the last time the 
track was updated (time of previous cluster update), and time k  is the current cluster measurement time. 

( ) ( )mz k b k=  is the bearing angle measurement from the current CD. ( )1 , 1k kΦ −  is a 1 × 1 state or 

plant transition model and describes the emitter motion from time segment ( )1k −  to k . ( )kH1  is a 1 × 

1 measurement transformation vector, and due to the form of 1H , ( )kK1  is a 1 × 1 vector of Kalman gain 
coefficients that weight the measurement residuals. 

 
The above general equation for the filter update (Eq. 26) may also be simplified by introducing the 

predicted estimates and the predicted measurement terms. In terms of the predicted estimates, the general 
form of the filter equation may be written as 

 

 ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1ˆ ˆ ˆ, 1 , 1x k x k k K k z k H k x k k= − + − −⎡ ⎤⎣ ⎦ , (31) 

where 

 ( ) ( )1 1 1 1̂ˆ ˆ( , 1) , 1 1 ( , 1)x k k k k x k b k k− = Φ − − = − , (32) 

 
and 1̂( , -1)b k k  is defined as the predicted bearing. Defining the predicted measurement as 

 

 ( ) ( ) ( ) ( )1 1 1 1̂ˆˆ , 1 , 1 , 1z k k H k x k k b k k− = − = −  (33) 

 
allows the final form of the general Kalman filter equation to be written in compact form as 

 

 ( ) ( ) ( ) ( ) ( )1 1 1 1ˆ ˆ ˆ, 1 , 1x k x k k K k z k z k k= − + − −⎡ ⎤⎣ ⎦ . (34) 

 
Due to the form of 1H  above, the form of the Kalman gain equation is recognized as 1 × 1. Taking 

this into account and expanding the above yields one simple filter equation for bearing: 
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 ( ) ( )1 1 1 1
ˆ ˆ ˆ( ) ( , 1) ( , 1)mb k b k k K k b k b k k⎡ ⎤= − + ⋅ − −⎣ ⎦ . (35) 

 
The sequence ( ) ( ) ( )1 1̂ 1k z k z k,kγ = − −  is known as the innovation sequence and represents the 

new information to the filter. This term is also passed up to the IMM bearing filter for model probability 
updates. Finally, expanding the predicted estimate defined as ( ) ( )1 1̂, 1 1k k x kΦ − −  yields the expansion 
for the filter predictions as 

 

 ( )1 1
ˆ ˆ( , 1) 1b k k b k− = − . (36) 

2.4.2 Initialization 
 
The single-state bearing angle Kalman filter may be initialized using one of two equivalent 

methods. 
 

Method 1 
 
In this method, the bearing filter is initialized with a large variance: 

 

 ( ) ( ) 12
11 100  and  00ˆ == vx , (37) 

 
where ( )1 0v  is the initial 1 × 1 filtered covariance value. A large covariance value simply indicates no a 
priori information and, therefore, large uncertainty.  

 
Method 2 

 
In this method, the bearing filter is initialized from the first cluster measurement of bearing angle. In 

this case we define 
 

 ( ) ( )1 1ˆ 1 (1) and  1 (1)m mcx b v v= = , (38) 

 
where (1)mb  is the bearing measurement provided with the first cluster and ( )1mcv  is the computed 
measurement variance associated with the same bearing measurement discussed in Section 2.4.5. The first 
measurement is used to initialize the filter and the filter iteration starts at time 2k =  with the second 
measurement, while in Method 1, the iteration starts at time 1k =  with the first measurement.  

 

2.4.3 Predicted Estimate 
 

When a new measurement is associated with the bearing track, the first step in the filter update 
process requires that the ETF estimate be predicted to the time of the current associated measurement 
(time alignment). For the bearing filter, the predicted estimate is obtained from the transition matrix 
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defined above (Eq. 28), the filtered estimate ( )1ˆ1 −kx  from the previous ETF update, and the time 
difference between the associated contact and the ETF time (time of the last track update) as 

 

 ( ) ( ) ( )1 1 1ˆ ˆ, 1 , 1 1x k k k k x k− = Φ − −  (39) 

 
or, equivalently, 

 

 ( )1 1
ˆ ˆ( , 1) 1b k k b k− = − , (40) 

 
where the 1 × 1 vector ( )1,ˆ1 −kkx  is the prediction of ( )1ˆ1 −kx  to the current CD time and ( )1ˆ1 −kx  is 
the previous filtered estimate obtained from the ETF. 

 

2.4.4 Predicted Variance and Plant Noise Estimates 
 

Once the prediction is computed, computation of the Kalman filter gain is required to merge the 
bearing CD data with the bearing angle of a track. The Kalman gain computation requires an estimate of 
the predicted variance and the measurement variance. The 1 × 1 predicted variance is given by 

 

 ( ) ( ) ( )1 1 1, 1 1v k k v k v k− = − + % , (41) 

 
where ( )1v k%  is the 1 × 1 plant noise estimate and ( )11 −kv  is obtained from the track file (ETF). For the 
bearing filter, the plant noise is set to 

 

 ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1
a a av k b k w b k ′= ⋅ ⋅% , (42) 

where 

 ( ) ( )1 1ab k = . (43) 

 
( )
1

aw  is a constant and should be approximately set to 
 

 ( )
1 0.1 /180 / 40 0.00005aw π= ≅ . (44) 

 
Therefore, 

 

 ( )1 0.00005v k =% . (45) 
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As a final note,  ( )
1

aw  is a tuning parameter that controls filter bandwidth and should be optimized during 
testing. 
 

2.4.5 Filter Gain and Measurement Noise Estimate 
 

The 1 × 1 Kalman gain 1K  is given by 
 

 ( ) ( )
( ) ( )

1 1
1

1 1 1

, 1
, 1 mc

v k k H
K k

H v k k H v k
′−

=
′− +

. (46) 

 
We note here that a simple divide is used and that no matrix inverse operation is required since the 

term ( )1 1 1, 1H v k k H ′−  is a scalar. However, to compute this gain, an estimate of CD bearing 
measurement noise is required. If the CD bearing measurement noise is not included in the cluster 
message it can be computed from the single pulse specification variance according to the following 
equation:   

 

 
( )( ) m

mc

v k
v k

n
=  ,  (47) 

 
where the variable ( )mcv k  is the measurement noise variance in bearing associated with the cluster 

estimate. The variable ( )mv k  is the single pulse measurement accuracy (equivalent to the PDW 
accuracy) of the bearing angle, and n is the number of pulses reported in the CD message. For the bearing 
estimate, the measurement accuracy is a function of frequency, SNR, and measured emitter bearing angle. 
These features must be represented as such in a suitable tabular format. This representation should be 
obtained from system testing and should follow the form 

 

 ( ) ( )

2

0
m a

m

fv k
f k

σ
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

, (48) 

 
where aσ  should be characterized and is the base bearing accuracy, which is a function of measured 

emitter bearing angle, and 0f  is the constant frequency at which aσ  is measured. The term ( )mf k  is the 

frequency measurement associated with the bearing angle provided in the cluster descriptor.  ( )mv k  
should be inversely proportional to SNR and limited to a constant that represents best-case bearing 
accuracy. 

 
The actual value of aσ  must be obtained from system measurements and testing and used here if 

reliable tracking is to be expected. This same comment applies to the elevation filters. Note also that aσ  
should be an over-bounded approximate estimate of accuracy in bearing angle as a function of frequency 
and measured bearing angle.  
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The Kalman gain may also be written in terms of the covariance of the innovation sequence as  
 

 ( ) ( )
( )

1 1
1

1

, 1v k k H
K k

S k
′−

= , (49) 

 
where S1(k) is the scalar covariance of the innovation sequence defined above and is given by the 
equation 

 ( ) ( ) ( )1 1 1 1, 1 mcS k H v k k H v k′= − + . (50) 

 
This term is also passed up to the IMM bearing filter for model probability updates. 

 

2.4.6 The Filtered Estimate 
 

After the Kalman gains are computed, the new filtered or ETF track estimate is given by 
 

 ( ) ( ) ( ) ( ) ( ){ }1 1 1 1ˆ ˆ ˆ, 1 , 1x k x k k K k z k z k k= − + − −  (51) 

 
or 

 ( ) ( ) ( ) ( )1 1 1 1ˆ ˆ , 1x k x k k K k kγ= − + , (52) 

 
where ( )1̂x k  is the filtered bearing estimate,  ( )z k  is the current bearing cluster measurement, and 

( )1 kγ  is the innovation sequence. As mentioned above (Eq. 35), this is equivalent to computing 
 

 ( ) ( )1 1 1 1
ˆ ˆ( ) ( , 1)b k b k k K k kγ= − + . (53) 

 

2.4.7 Filtered Variance 
 

The filtered variance of this estimate is simply 
 

 ( ) ( ) ( )1 1 1 11 , 1v k K k H v k k⎡ ⎤= − −⎣ ⎦ , (54) 

 
which may be expanded as 

 

 ( ) ( ) ( )1 1 11 , 1v k K k v k k⎡ ⎤= − −⎣ ⎦ . (55) 
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2.4.8 Track Coasting 
 

There will be times when an emitter bearing estimate is not available. For example, this may be due 
to ESM system failures, improper dwell scheduling, and emitter fading due to low SNR. Since, in these 
cases, bearing estimates will not be available, the bearing track should be coasted to the time associated 
with the bearing update. The coasting duration time is a function of track confidence as well as track 
status. This is discussed in a different document.  

 
If the bearing ETF track is in coast mode, the corresponding elevation and ESM parameters must also 

be in coast mode. It is possible, and at times necessary, to update a bearing track while coasting the 
corresponding elevation track.  

 
It should also be noted that for these reasons, the initiate and drop track criteria for bearing angle 

should be evaluated separately from the associated elevation track. That is, bearing tracks should be 
allowed to initiate and drop without reference to the elevation track. However, as mentioned earlier, if a 
bearing track does not continue to exist, then the corresponding elevation and ESM parameter track will 
also cease to exist. 

 
The simplest way to derive the filter for coasting is to recognize that coasting is equivalent to 

receiving a measurement with zero accuracy (or infinite measurement variance). Using this analogy 
implies the Kalman gain (see the appropriate equation above) goes to zero and the filtered estimate simply 
becomes the predicted estimate. The sequence for filtering during a bearing coast is the same for each of 
the three bearing filters. Coasting a track is achieved by setting the filter gain to zero (equivalent to setting 
the measurement variance to infinity). 

 
With the Kalman gain set to zero, the remaining equations for filtered estimate and variance are the 

same as those defined above (Eqs. 51-53). In this case, the filtered estimate is given by the prediction 
 

 ( ) ( )1,ˆˆ 11 −= kkxkx  (56) 

 
or, equivalently, 
 

 1 1
ˆ ˆ( ) ( , 1)b k b k k= − , (57) 

 
and the filtered variance takes the form 
 

 ( ) ( )1,11 −= kkvkv . (58) 

 

2.5 The Two-State Bearing Filter 
 
The following describes the theory used for the recursive, two-state bearing angle filter. This 

section describes both the initialization and the update of the filter. The purpose of the filter is to estimate 
bearing for nominal trajectory emitter platforms and to compute optimal time-varying bearing gates. 
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The bearing filter is a second-order Kalman filter that models both bearing and bearing rate. This 
is one of the three independent bearing filters used in the IMM architecture. The first- and third-order 
bearing angle Kalman filters are described in separate sections. The filter assumes that the measurement 
error variance is properly defined for the ESM bearing angle as a function of measured frequency and 
SNR. 

 

2.5.1 Overview 
 

The bearing filter described is a second-order Kalman filter. The filter's general equation corresponds 
to an alpha-beta filter and is given by 

   

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 2ˆ ˆ ˆ, 1 1 , 1 1x k k k x k K k z k H k k k x k= Φ − − + − Φ − −⎡ ⎤⎣ ⎦ , (59) 

 
where for the bearing filter we define 

 

 ( )
( )
( )

2
2

2

ˆ
ˆ ,ˆ

b k
x k

b k

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦
&

 (60) 

 ( )2

1
, 1  ,

0 1
t

k k
Δ⎡ ⎤

Φ − = ⎢ ⎥
⎣ ⎦

 (61) 

 ( ) ( ) ,mz k b k=  (62) 

and 

 ( ) [ ]2 1 0H k = . (63) 

 

In the above, ( )1ˆ2 −kx  is the 2 × 1 vector of filtered bearing estimates valid at time 1k −  from the 
previous iteration and valid before the current bearing data is received.  Δt is the difference between the 
current cluster measurement time and the last time the track was updated (time of previous cluster 
update). ( ) ( )mz k b k=  is the bearing angle measurement from the current CD. ( )2 , 1k kΦ −  is a 2 × 2 

state or plant transition model and describes the emitter motion from time segment 1k −  to k . ( )kH 2  is 
a 1 × 2 measurement transformation vector, and due to the form of 2H  , ( )2K k  is a 2 × 1 vector of 
Kalman gain coefficients that weight the measurement residuals. 

 
The above general equation for the filter update may also be simplified by introducing the predicted 

estimates and the predicted measurement terms. In terms of the predicted estimates, the general form of 
the filter equation may be written as 

  

 ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2ˆ ˆ ˆ, 1 , 1x k x k k K k z k H k x k k= − + − −⎡ ⎤⎣ ⎦ , (64) 
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where 

 ( ) ( ) ( ) ( )
( )

2 2 2
2 2 2

2 2

ˆˆ ˆ( , 1) 1 1
ˆ ˆ( , 1) , 1 1 ˆ ˆ( , 1) 1

b k k b k t b k
x k k k k x k

b k k b k

⎡ ⎤⎡ ⎤− − + Δ ⋅ −⎢ ⎥⎢ ⎥− = Φ − − = =
⎢ ⎥⎢ ⎥− −⎣ ⎦ ⎣ ⎦

&

& &
, (65) 

 

where 2̂ ( , 1)b k k −  is defined as the predicted bearing estimate and 2
ˆ ( , 1)b k k −&  is defined as the predicted 

bearing rate estimate. Defining the predicted measurement as 
 

 ( ) ( ) ( ) ( )2 2 2 2̂ˆˆ , 1 , 1 , 1z k k H k x k k b k k− = − = −  (66) 

 
allows the final form of the general Kalman filter equation to be written in compact form as 

 

 ( ) ( ) ( ) ( ) ( ){ }2 2 2 2ˆ ˆ ˆ, 1 , 1x k x k k K k z k z k k= − + − − . (67) 

 
Due to the form of 2H  above, the form of the Kalman gain is recognized as 2 × 1. Taking this into 

account and expanding the above yields two simple filter equations for the bearing and bearing rate 
filters: 

 

 
( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }

1
2 2 2 2

2
2 2 2 2

ˆ ˆ ˆ( ) ( , 1) , 1
ˆ ˆ ˆ( ) ( , 1) , 1 .

b k b k k K k z k z k k

b k b k k K k z k z k k

⎧ = − + − −⎪
⎨

= − + − −⎪⎩
& &

 (68) 

 
The sequence ( ) ( ) ( )2 2ˆ 1k z k z k,kγ = − −  is known as the innovation sequence and represents the 

new information to the filter. This term is also passed up to the IMM bearing filter for model probability 
updates. 

 
Finally, expanding the predicted estimate defined as ( ) ( )2 2ˆ, 1 1k k x kΦ − −  yields the expansion for 

the filter predictions as 
 

 
( ) ( )

( )
2 2 2

2 2

ˆˆ ˆ( , 1) 1 1
ˆ ˆ( , 1) 1

b k k b k t b k

b k k b k

⎡ ⎤⎡ ⎤− − + Δ ⋅ −⎢ ⎥⎢ ⎥ =
⎢ ⎥⎢ ⎥− −⎣ ⎦ ⎣ ⎦

&

& &
. (69) 

 

2.5.2 Initialization 
 

The two-state bearing angle Kalman filter may be initialized using any one of three equivalent 
methods. 
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Method 1 
 
In this method, the bearing filter covariance matrix is initialized with large values on the diagonal: 
 

 ( ) ( ) 12
2 2 2

0
ˆ 0   and  0 10

0
x v⎡ ⎤

= = Ι⎢ ⎥
⎣ ⎦

, (70) 

where 

 2

1 0
0 1

⎡ ⎤
Ι = ⎢ ⎥

⎣ ⎦
. 

 
( )2 0v  is the initial 2 × 2 filtered covariance value and 2Ι  is a 2 × 2 identity matrix. A large value simply 

indicates no a priori information and, therefore, large uncertainty.  
 

Method 2 
 
In this method, the bearing filter is initialized from the first cluster measurement of bearing angle. In 

this case we define 
 

 ( ) ( ) ( )
2 2 12

(1) 1 0ˆ 1  and  1  
0 0 10

m mcb v
x v

⎡ ⎤⎡ ⎤
= = ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦
, (71) 

 
where (1)mb  is the bearing measurement provided with the first cluster and ( )1mcv  is the computed 
measurement variance associated with the same bearing measurement. The filter iteration starts at time 

2k =  with the second measurement. 
 

Method 3 
 
In this method, the bearing filter is initialized from the first two cluster measurements of bearing 

angle. In this case, we define 

 ( )2

(2)
ˆ 2  (2) (1)

m

m m

b
x b b

t

⎡ ⎤
⎢ ⎥= −⎢ ⎥

Δ⎣ ⎦

 (72) 

and 

 ( )
( ) ( )

( ) ( )
( )

2

2

2   
2

2 2   2 2

mc
mc

mc mc

v
v

t
v v v

t t

⎡ ⎤
⎢ ⎥Δ⎢ ⎥= ⎢ ⎥
⎢ ⎥Δ Δ⎢ ⎥⎣ ⎦

. (73) 

 
The filter iteration starts at time 3k =  with the third measurement. 
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2.5.3 Predicted Estimate 
 

When a new CD is associated with the bearing track, the first step in the filter update process requires 
that the ETF estimate be predicted to the time of the current associated CD (time alignment). For the 
bearing filter, the predicted estimate is obtained from the transition matrix defined above, the filtered 
estimate ( )1ˆ2 −kx  from the previous ETF update, and the time difference between the associated CD and 
the ETF time (time of the last track update) as 

 

 ( ) ( ) ( )2 2 2ˆ ˆ, 1 , 1 1x k k k k x k− = Φ − −  (74) 

 
or, equivalently, 

 

 
( ) ( )

( )
2 2 2

2 2

ˆˆ ˆ( , 1) 1 1
ˆ ˆ( , 1) 1

b k k b k t b k

b k k b k

⎡ ⎤⎡ ⎤− − + Δ ⋅ −⎢ ⎥⎢ ⎥ =
⎢ ⎥⎢ ⎥− −⎣ ⎦ ⎣ ⎦

&

& &
, (75) 

 
where the 2 × 1 vector ( )1,ˆ2 −kkx  is the prediction of ( )1ˆ2 −kx to the current CD time and ( )1ˆ2 −kx  is 
the previous filtered estimate obtained from the ETF. 

 

2.5.4 Predicted Variance and Plant Noise Estimates 
 

Once the prediction is computed, computation of the the Kalman filter gain is required to merge the 
bearing CD data with the bearing angle of a track. The Kalman gain computation requires an estimate of 
the predicted variance and the measurement variance. The 2 × 2 predicted variance is given by 

 

 ( ) ( ) ( )2 2 2, 1 1v k k v k v k− = − + % , (76) 

 
where ( )2v k%  is the 2 × 2 plant noise estimate and ( )2 1v k −  is obtained from the track file (ETF). For 
the bearing filter, the plant noise is set to 

 ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2
a a av k b k w b k ′= ⋅ ⋅% , (77) 

 
where 

 ( ) ( )2 1
a t

b k
Δ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

. (78) 

 
( )
2
aw  is a constant and should be approximately set to 

 ( )
2 0.1 /180 / 40 0.00005aw π= ≅ . (79) 
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Therefore, 

 ( )
2

2 0.00005
1

t t
v k

t
⎡ ⎤Δ Δ

= ⋅ ⎢ ⎥Δ⎣ ⎦
% . (80) 

 
As a final note, ( )

2
aw  is a tuning parameter that controls filter bandwidth and should be optimized during 

testing. 
 

2.5.5 Filter Gain and Measurement Noise Estimate 
 

The 2 × 1 Kalman gain 2K  is given by 
 

 ( ) ( )
( ) ( )

2 2
2

2 2 2

, 1
, 1 mc

v k k H
K k

H v k k H v k
′−

=
′− +

. (81) 

 
We note here that a simple divide is used and that no matrix inverse operation is required since the 

term ( )2 2 2, 1H v k k H ′−  is a scalar. However, to compute this gain, an estimate of CD bearing 
measurement noise is required. If the CD bearing measurement noise is not included in the cluster 
message it can be computed from the single pulse specification variance according to the following 
equation:   

  

 
( )( ) m

mc

v k
v k

n
= , (82) 

 
where the variable ( )mcv k  is the measurement noise variance in bearing associated with the cluster 

estimate. The variable ( )mv k  is the single pulse measurement accuracy (equivalent to the PDW 
accuracy) of the bearing angle, and n is the number of pulses reported in the CD message. The 
computation of  ( )mv k  is discussed in Section 2.4.5. 

 
The Kalman gain may also be written in terms of the covariance of the innovation sequence as  
 

 ( ) ( )
( )

2 2
2

2

, 1v k k H
K k

S k
′−

= , (83) 

 
where ( )2S k  is the scalar covariance of the innovation sequence defined above and is given by the 
equation 

 

 ( ) ( ) ( )2 2 2 2, 1 mcS k H v k k H v k′= − + . (84) 
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2.5.6 The Filtered Estimate 
 

After the Kalman gains are computed, the new filtered or ETF track estimate is given by 
 

 ( ) ( ) ( ) ( ) ( ){ }2 2 2 2ˆ ˆ ˆ, 1 , 1x k x k k K k z k z k k= − + − − , (85) 

 
where ( )2x k  is the filtered bearing estimate and ( )z k  is the current bearing cluster measurement. As 
mentioned above, this is equivalent to computing 

 

 

( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }

1
2 2 2 2

2
2 2 2 2

ˆ ˆ ˆ( ) ( , 1) , 1
ˆ ˆ ˆ( ) ( , 1) , 1

b k b k k K k z k z k k

b k b k k K k z k z k k

⎧ = − + − −⎪
⎨

= − + − −⎪⎩
& &

 (86) 

 
or, equivalently, 

 

 
( ) ( ) ( )

( ) ( ) ( )

1
2 2 2 2

2
2 2 2 2

ˆ ˆ( ) ( , 1)
ˆ ˆ( ) ( , 1) ,

b k b k k K k k

b k b k k K k k

γ

γ

⎧ = − +⎪
⎨

= − +⎪⎩
& &

 (87) 

 
where ( )2 kγ  is the innovation sequence. 
 

2.5.7 Filtered Variance 
 

The filtered variance of this estimate is simply 
 

 ( ) ( ) ( )2 2 2 2 2 , 1v k I K k H v k k⎡ ⎤= − ⋅ −⎣ ⎦ , (88) 

 
which may be expanded as 

 

 ( )
( ) ( )

( ) ( )
( )

1
2

2 22
2

1 0
, 1

1

K k
v k v k k

K k

⎡ ⎤−
= ⋅ −⎢ ⎥

−⎢ ⎥⎣ ⎦
, (89) 

 
where 2I  is the 2 × 2 identity matrix, and ( )2 , 1v k k −  was defined above. 
 

2.5.8 Track Coasting 
 

As discussed in Section 2.5.5, the filter gain is set to 
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 ( ) ⎥
⎦

⎤
⎢
⎣

⎡
=

0
0

2 kK . (90) 

 
With the Kalman gain set to zero, the remaining equations for filtered estimate and variance are the 

same as those defined above. In this case, the filtered estimate is given by the prediction 
 

 ( ) ( )1,ˆˆ 22 −= kkxkx  (91) 

 
or, equivalently, 

 

 2 2

2 2

ˆ ˆ( ) ( , 1)
ˆ ˆ( ) ( , 1),

b k b k k

b k b k k

⎧ = −⎪
⎨

= −⎪⎩ & &
 (92) 

 
and the filtered variance takes the form 

 

 ( ) ( )1,22 −= kkvkv . (93) 

 

2.6 The Three-State Bearing Filter 
 

The following describes the theory for the recursive, three-state bearing angle filter. This section 
describes both the initialization and the update of the filter. The purpose of the filter is to estimate bearing 
for highly maneuvering emitter platforms and to compute optimal time-varying bearing gates. 

 
The bearing filter is a third-order Kalman filter that models bearing, bearing rate and bearing 

acceleration. This is one of the three independent bearing filters used in the IMM architecture. The first- 
and second-order bearing angle Kalman filters are described in separate sections. The filter assumes that 
the measurement error variance is properly defined for the ESM bearing angle as a function of measured 
frequency and SNR.  

 

2.6.1 Overview 
 

The bearing filter described is a third-order Kalman filter. The filter's general equation corresponds to 
an alpha-beta-gamma and is given by 

   

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }3 3 3 3 3 3 3ˆ ˆ ˆ, 1 1 , 1 1x k Φ k k x k K k z k H k Φ k k x k= − − + − − − , (94) 

 
where for the bearing filter we define 
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 ( )
( )
( )

3

3 3

3

ˆ

ˆˆ ,
ˆ ( )

b k

x k b k

b k

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

&

&&

 (95) 

 ( )

2

3

1 2
, 1 0 1 ,

0 0 1

t t
k k t

⎡ ⎤Δ Δ
⎢ ⎥Φ − = Δ⎢ ⎥
⎢ ⎥⎣ ⎦

 (96) 

 ( ) ( ) ,mz k b k=  (97) 

and 

 ( ) [ ]3 1 0   0H k = . (98) 

 

In the above, ( )1ˆ3 −kx  is the 3 × 1 vector of filtered bearing estimates valid at time 1k −  from the 
previous iteration and valid before the current bearing data is received. Δt is the difference between the 
current cluster measurement time and the last time the track was updated (time of previous cluster 
update). ( ) ( )mz k b k=  is the bearing angle measurement from the current cluster descriptor (CD). 

( )1,3 −kkΦ  is a 3 × 3 state or plant transition model and describes the emitter motion from time segment 

( )1k −  to k . ( )kH 3  is a 1 × 3 measurement transformation vector and due to the form of 3H , ( )kK3  is 
a 3 × 1 vector of Kalman gain coefficients that weight the measurement residuals. 

 
The above general equation for the filter update may also be simplified by introducing the predicted 

estimates and the predicted measurement terms. In terms of the predicted estimates, the general form of 
the filter equation may be written as  

 ( ) ( ) ( ) ( ) ( ) ( ){ }3 3 3 3 3ˆ ˆ ˆ, 1 , 1x k x k k K k z k H k x k k= − + − − , (99) 

 
where 

 

( ) ( )

( ) ( ) ( )
( ) ( )

( )

3

3 3 3 3

3

2
3 3 3

3 3

3

ˆ ( , 1)
ˆˆ ˆ( , 1) , 1 1 ( , 1)
ˆ ( , 1)

ˆ ˆˆ 1 1 0.5  1   
ˆ ˆ1  1 ,

ˆ 1

b k k

x k k k k x k b k k

b k k

b k t b k t b k

b k t b k

b k

⎡ ⎤−
⎢ ⎥
⎢ ⎥− = Φ − − = −
⎢ ⎥
⎢ ⎥−⎣ ⎦

⎡ ⎤− + Δ ⋅ − + ⋅ Δ ⋅ −⎢ ⎥
⎢ ⎥= − + Δ ⋅ −⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

&

&&

& &&

& &&

&&

 (100) 
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where 3̂ ( , 1)b k k −  is defined as the predicted bearing estimate, 3
ˆ ( , 1)b k k −&  is defined as the predicted 

bearing rate estimate, and 3
ˆ ( , 1)b k k −&&  is defined as the predicted bearing acceleration estimate. Defining 

the predicted measurement as 
 

 ( ) ( ) ( ) ( )3 3 3 3̂ˆˆ , 1 , 1 , 1z k k H k x k k b k k− = − = −  (101) 

 
allows the final form of the general Kalman filter equation to be written in compact form as 

 

 ( ) ( ) ( ) ( ) ( ){ }3 3 3 3ˆ ˆ ˆ, 1 , 1x k x k k K k z k z k k= − + − − . (102) 

 
Due to the form of the 3H  matrix, the Kalman gain is recognized as a 3 × 1 matrix. Taking this into 

account and expanding the above yields three simple filter equations for the bearing, bearing rate and 
bearing acceleration filters: 

 

 

( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }

1
3 3 3 3

2
3 3 3 3

3
3 3 3 3

ˆ ˆ ˆ( ) ( , 1) , 1
ˆ ˆ ˆ( ) ( , 1) , 1
ˆ ˆ ˆ( ) ( , 1) , 1 .

b k b k k K k z k z k k

b k b k k K k z k z k k

b k b k k K k z k z k k

⎧ = − + − −
⎪
⎪ = − + − −⎨
⎪
⎪ = − + − −⎩

& &

&& &&

 (103) 

 
The sequence ( ) ( ) ( )3 3ˆ 1k z k z k,kγ = − −  is known as the innovation sequence and represents the 

new information to the filter. This term is also passed up to the IMM bearing filter for model probability 
updates. 

 
Finally, expanding the predicted estimate defined as ( ) ( )ˆ, 1 1k k x kΦ − −  yields the expansion for 

the filter predictions as 
 

 

( ) ( ) ( )
( ) ( )

( )

2
3 3 3 3

3 3 3

3 3

ˆ ˆˆ ˆ( , 1) 1 1 0.5 1   
ˆ ˆ ˆ( , 1) 1 1
ˆ ˆ( , 1) 1

b k k b k t b k t b k

b k k b k t b k

b k k b k

⎡ ⎤⎡ ⎤− − + Δ ⋅ − + ⋅Δ ⋅ −⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥− = − + Δ ⋅ −⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥− −⎣ ⎦ ⎢ ⎥⎣ ⎦

& &&

& & &&

&& &&

. (104) 

 

2.6.2 Initialization 
 

The three-state bearing angle Kalman filter may be initialized using one of three methods. 
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Method 1 

 
In this method, the bearing filter covariance matrix is initialized with large values on the diagonal: 
 

 ( ) ( ) 12
3 3 3

0
ˆ 0 0   and  0 10

0
x v

⎡ ⎤
⎢ ⎥= = ⋅ Ι⎢ ⎥
⎢ ⎥⎣ ⎦

, (105) 

 
where 

 

 3

1 0 0
0 1 0
0 0 1

⎡ ⎤
⎢ ⎥Ι = ⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
( )3 0v  is the initial 3 × 3 filtered covariance value and 3Ι  is a 3 × 3 identity matrix. A large value simply 

indicates no a priori information and, therefore, large uncertainty.  
 

Method 2 
 
In this method, the bearing filter is initialized from the first cluster measurement of bearing angle. In 

this case, we define 
 

 ( ) ( )
( )

12
3 3

12

(1) 1  0 0
ˆ 1 0   and  1 0 10 0

0 0 0 10

m mcb v
x v

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

, (106) 

 
where (1)mb  is the bearing measurement provided with the first cluster and ( )1mcv  is the computed 
measurement variance associated with the same bearing measurement. The filter iteration starts at time 

2k = . 
 

Method 3 
 
In this method, the bearing filter is initialized from the first two cluster measurements of bearing 

angle. In this case, we define 
 

 ( )3

(2)
(2) (1)ˆ 2  

0

m

m m

b
b bx

t

⎡ ⎤
⎢ ⎥−⎢ ⎥=

Δ⎢ ⎥
⎢ ⎥
⎣ ⎦

 (107) 
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and 

 

 ( )

( ) ( )

( ) ( )
( )3 2

12

2   
2 0

2 2 2
2 0

0 0 10

mc
mc

mc mc

v
v

t
v v

v
t t

⎡ ⎤
⎢ ⎥Δ⎢ ⎥
⎢ ⎥

= ⎢ ⎥Δ Δ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

. (108) 

 
The filter iteration starts at time 3k =  with the third measurement. 
 

2.6.3 Predicted Estimate 
 

When a new CD is associated with the bearing track, the first step in the filter update process requires 
that the ETF estimate be predicted to the time of the current associated CD (time alignment). For the 
bearing filter, the predicted estimate is obtained from the transition matrix defined above, the filtered 
estimate ( )1ˆ3 −kx  from the last ETF update, and the time difference between the associated CD and the 
ETF time (time of the last track update) as 

 

 ( ) ( ) ( )3 3 3ˆ ˆ, 1 , 1 1x k k k k x k− = Φ − −  (109) 

 
or, equivalently, 

 

 

( ) ( ) ( )
( ) ( )

( )

2
3 3 3 3

3 3 3

3 3

ˆ ˆˆ ˆ( , 1) 1 1 0.5 1   
ˆ ˆ ˆ( , 1) 1 1
ˆ ˆ( , 1) 1

b k k b k t b k t b k

b k k b k t b k

b k k b k

⎡ ⎤⎡ ⎤− − + Δ ⋅ − + ⋅Δ ⋅ −⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥− = − + Δ ⋅ −⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥− −⎣ ⎦ ⎢ ⎥⎣ ⎦

& &&

& & &&

&& &&

, (110) 

 
where the 3 × 1 vector ( )1,ˆ3 −kkx  is the prediction of ( )1ˆ3 −kx  to the current CD time and ( )1ˆ3 −kx  is 
the previous filtered estimate obtained from the ETF. 
 

2.6.4 Predicted Variance and Plant Noise Estimates 
 

Once the prediction is computed, computation of the the Kalman filter gain is required to merge the 
bearing CD data with the bearing angle of a track. The Kalman gain computation requires an estimate of 
the predicted variance and the measurement variance. The 3 × 3 predicted variance is given by 
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 ( ) ( ) ( )3 3 3, 1 1v k k v k v k− = − + % , (111) 

 
where ( )3v k%  is the 3 × 3 plant noise estimate and ( )3 1v k −  is obtained from the track file (ETF). For the 
bearing filter, the plant noise is set to 

 

 ( ) ( ) ( ) ( ) ( ) ( )3 3 3 3
a a av k b k w b k ′= ⋅ ⋅% , (112) 

where 

 ( ) ( )
2

3

2

1

a

t
b k t

⎡ ⎤Δ
⎢ ⎥= Δ⎢ ⎥
⎢ ⎥⎣ ⎦

. (113) 

 
( )
3

aw  is a constant and should be approximately set to 
 

 ( )
3 0.1 /180 / 40 0.00005aw π= ≅ . (114) 

 
Therefore, 

 

 ( )

4 3 2

3 2
3

2

4 2 2
0.00005 2

2 1

t t t
v k t t t

t t

⎡ ⎤Δ Δ Δ
⎢ ⎥= ⋅ Δ Δ Δ⎢ ⎥
⎢ ⎥Δ Δ⎣ ⎦

% . (115) 

 
As a final note, ( )

3
aw  is a tuning parameter that controls filter bandwidth and should be optimized during 

testing. 
 

2.6.5 Filter Gain and Measurement Noise Estimate 
 

The 3 × 1 Kalman gain 3K  is given by 
 

 ( ) ( )
( ) ( )

3 3
3

3 3 3

, 1
, 1 mc

v k k H
K k

H v k k H v k
′−

=
′− +

. (116) 

 
Note here that a simple divide is used and that no matrix inverse operation is required since the term 

( )3 3 3, 1H v k k H ′−  is a scalar. However, to compute this gain, an estimate of CD bearing measurement 
noise is required. If the CD bearing measurement noise is not included in the cluster message it can be 
computed from the single pulse specification variance according to the equation 
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( )( ) m

mc

v k
v k

n
= , (117) 

 
where the variable ( )mcv k  is the measurement noise variance in bearing associated with the cluster 

estimate. The variable ( )mv k  is the single pulse measurement accuracy (equivalent to the PDW 
accuracy) of the bearing angle, and n is the number of pulses reported in the cluster descriptor message. 
The computation of  ( )mv k  is discussed in Section 2.4.5. 
 

The 3 × 1 Kalman gain may also be written in terms of the covariance of the innovation sequence as  
 

 ( ) ( )
( )

3 3
3

3

, 1v k k H
K k

S k
′−

= , (118) 

 
where ( )3S k  is the scalar covariance of the innovation sequence defined above and is given by the 
equation 

 ( ) ( ) ( )3 3 3 3, 1 mcS k H v k k H v k′= − + . (119) 

2.6.6 The Filtered Estimate 
 

After the Kalman gains are computed, the new filtered or ETF track estimate is given by 
 

 ( ) ( ) ( ) ( ) ( ){ }3 3 3 3ˆ ˆ ˆ, 1 , 1x k x k k K k z k z k k= − + − − , (120) 

 
where ( )3x̂ k  is the filtered bearing estimate and ( )z k  is the current bearing cluster measurement. As 
mentioned above, this is equivalent to computing 

 

 

( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }

1
3 3 3 3

2
3 3 3 3

3
3 3 3 3

ˆ ˆ ˆ( ) ( , 1) , 1
ˆ ˆ ˆ( ) ( , 1) , 1
ˆ ˆ ˆ( ) ( , 1) , 1

b k b k k K k z k z k k

b k b k k K k z k z k k

b k b k k K k z k z k k

⎧ = − + − −
⎪
⎪ = − + − −⎨
⎪
⎪ = − + − −⎩

& &

&& &&

 (121) 

 
or, equivalently, 
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( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1
3 3 3 3

2
3 3 3 3

3
3 3 3 3

ˆ ˆ( ) ( , 1)
ˆ ˆ( ) ( , 1)
ˆ ˆ( ) ( , 1) ,

b k b k k K k k

b k b k k K k k

b k b k k K k k

γ

γ

γ

⎧ = − +
⎪
⎪ = − +⎨
⎪

= − +⎪⎩

& &

&& &&

 (122) 

 
where ( )3 kγ  is the innovation sequence. 
 

2.6.7 Filtered Variance 
 

The filtered variance of this estimate is simply 
 

 ( ) ( ) ( )3 3 3 3 3 , 1v k I K k H v k k⎡ ⎤= − −⎣ ⎦ , (123) 

 
which may be expanded as 

 

 ( )

( ) ( )
( ) ( )
( ) ( )

( )

1
3

2
3 3 3

3
3

1 0 0

1 0 , 1

0 1

K k

v k K k v k k

K k

⎡ ⎤−
⎢ ⎥

= − ⋅ −⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

, (124) 

 
where 3I  is the 3 × 3 identity matrix, and ( )3 , 1v k k −  was defined above. 

2.6.8 Track Coasting 
 

As discussed in Section 2.5.8, when a track is to be coasted, the filter gain is set to 
 

 ( )3

0
0
0

K k
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

. (125) 

 
With the Kalman gain set to zero, the remaining equations for filtered estimate and variance are the 

same as those defined above. In this case, the filtered estimate is given by the prediction 
 

 ( ) ( )1,ˆˆ 33 −= kkxkx  (126) 

 
or, equivalently, 
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3 3

3 3

3 3

ˆ ˆ( ) ( , 1)
ˆ ˆ( ) ( , 1)
ˆ ˆ( ) ( , 1),

b k b k k

b k b k k

b k b k k

⎧ = −
⎪⎪ = −⎨
⎪

= −⎪⎩

& &

&& &&

 (127) 

 

and the filtered variance takes the form 
 

 ( ) ( )1,33 −= kkvkv . (128) 

 

3. THE ELEVATION FILTER 
 

The following describes the mathematics for the recursive elevation filter. Both the initialization and 
the update of the elevation filter are described. The purpose of the filter is to estimate elevation and to 
compute time-varying elevation gates. 

 
The elevation filter is a second-order Kalman filter that models both elevation and elevation rate. This 

same filter structure is used for the second-order bearing filter. The filter assumes that the measurement 
error variance is properly defined for elevation angle as a function of measured frequency and SNR. 

 

3.1 Overview 
 

The elevation filter is a second-order Kalman filter. The filter equation corresponds to an alpha-beta 
filter and is given by 

   

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ, 1 1 , 1 1x k k k x k K k z k H k k k x k= Φ − − + − Φ − −⎡ ⎤⎣ ⎦ , (129) 

 
where for the elevation filter, we define 

 

 ( )
( )
( )

ˆ
ˆ ,ˆ

e k
x k

e k

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦&
 (130) 

 ( )
1

, 1 ,
0 1

t
k k

Δ⎡ ⎤
Φ − = ⎢ ⎥

⎣ ⎦
 (131) 

 ( ) ( ) ,mz k e k=  (132) 

and 
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 ( ) [ ]1 0H k = . (133) 

 

In the above, ( )kx̂ is a 2 × 1 vector of filtered estimates valid at time k-1 from the previous iteration 
and valid before the current elevation data is received. Δt is the difference between the current cluster 
measurement time and the last time the track was updated (time of previous cluster update). 

( ) ( )mz k e k=  is the elevation angle measurement from the current CD. ( ), 1k kΦ −  is a 2 × 2 state or 

plant transition model and describes the emitter motion from time segment 1k −  to k  . ( )kK  is a 2 × 1 
vector of Kalman gain coefficients and ( )kH  is a 1 × 2 measurement vector. 

 
The above equation for the filter update may also be written as 

  

 ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ, 1 , 1x k x k k K k z k H k x k k= − + − −⎡ ⎤⎣ ⎦ , (134) 

 
where the above is written in terms of the predicted estimate 

 

 ˆ ˆ( , 1) ( , 1)x k k e k k− = − . (135) 

  
Expanding the above yields the two equations for elevation and elevation rate as 

 

 
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1

2

ˆ ˆ ˆ, 1 , 1
ˆ ˆ ˆ, 1 , 1 ,

e k e k k K k z k z k k

e k e k k K k z k z k k

⎧ = − + − −⎡ ⎤⎪ ⎣ ⎦
⎨

= − + − −⎡ ⎤⎪ ⎣ ⎦⎩ & &
 (136) 

 
where ( ) ( )1K k  is equivalent to the gain, α, used by an alpha-beta filter and ( ) ( )2K k  is equivalent to 
β/Δt. 
 

In addition, the predicted estimates presented above are defined as follows: 
 

 ( ) ( ) ( )ˆˆ ˆ, 1 1 1e k k e k t e k− = − + Δ ⋅ −&  (137) 

 
is the predicted elevation angle,  

 

 ( ) ( )ˆ ˆ, 1 1e k k e k− = −& &  (138) 

 
is the predicted elevation angle rate, and 

 

 ( ) ( ) ( ) ( ) ( )ˆ ˆˆ , 1 , 1 1 , 1z k k H k k k x k e k k− = Φ − − = −  (139) 
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is the predicted elevation cluster measurement. 

 
The sequence ( ) ( )ˆ , 1z k z k k− −  is known as the innovation sequence and represents the new 

information to the filter.  

3.2 Initialization 
 

The elevation filter may be initialized using one of three equivalent methods. 

 

Method 1 
 

In this method, the bearing filter covariance matrix is initialized with large values on the diagonal: 
 

 ( ) ( ) 12
2

0
ˆ 0   and  0 10

0 ex v⎡ ⎤
= = ⋅ Ι⎢ ⎥

⎣ ⎦
, (140) 

where 

 2

1 0
0 1

⎡ ⎤
Ι = ⎢ ⎥

⎣ ⎦
. 

 
( )0ev  is the initial 2 × 2 filtered covariance value and 2Ι  is a 2 × 2 identity matrix. A large value simply 

indicates no a priori information. 
 

Method 2 
 

In this method, the elevation filter is initialized from the first cluster measurement of elevation angle. 
In this case, we define 

 

 ( ) ( ) ( )
12

(1) 1 0ˆ 1   and  1
0 0 10

m ce
e

e v
x v

⎡ ⎤⎡ ⎤
= = ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦
, (141) 

 
where (1)me  is the elevation measurement provided with the first cluster and ( )1cev  is the measurement 
accuracy associated with the elevation measurement. The filter iteration starts at time 2k =  with the 
second measurement. 

 

Method 3 
 

In this method, the elevation filter is initialized from the first two cluster measurements of elevation 
angle. In this case, we define 
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 ( ) ( )
( ) ( )

( ) ( )
( )2

2
2(2)

ˆ 2   and  2(2) (1) 2 2 2

ce
cem

em m
ce ce

v
ve t

x ve e v v
t t t

⎡ ⎤
⎢ ⎥⎡ ⎤ Δ⎢ ⎥⎢ ⎥= =− ⎢ ⎥⎢ ⎥

Δ ⎢ ⎥⎣ ⎦ Δ Δ⎢ ⎥⎣ ⎦

. (142) 

 
The filter iteration starts at time 3k = . This is the preferred method since it starts the filter when a CD 
elevation measurement has correlated with a first point. Therefore, the initial elevation CD is not the first 
ETF track entry.  

3.3 Predicted Estimate 
 

When a new CD is associated with the elevation track, the first step in the filter update process 
requires that the ETF estimate be predicted to the time of the current associated CD (time alignment). For 
the elevation filter, the predicted estimate is obtained from the transition matrix defined above, the filtered 
estimate ( )kx̂ , and the time difference between the associated CD and the ETF time (time of the last 
track update) as  

 ( ) ( ) ( )
( )
( )

( ) ( )
( )

ˆˆ , 1 ˆ 1 1
ˆ ˆ, 1 , 1 1 ˆ ˆ, 1 1

e k k e k t e k
x k k k k x k

e k k e k

⎡ ⎤−⎡ ⎤ − + Δ ⋅ −
− = Φ − − = = ⎢ ⎥⎢ ⎥

− −⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

&

& &
, (143) 

 

where ( )1,ˆ −kkx  is the prediction of ( )1ˆ −kx  to the current CD time and ( )1ˆ −kx  is the filtered 
estimate obtained from the ETF. 

3.4 Predicted Variance and Plant Noise Estimates 
 

Once the prediction is computed, computation of the Kalman filter gain is required to merge the 
elevation CD data with the elevation track. The Kalman gain computation requires an estimate of the 
predicted variance and the measurement variance. The predicted variance is given by 

 ( ) ( ) ( ), 1 1e e ev k k v k v k− = − + % , (144) 

where ( )ev k%  is the plant noise estimate. For the elevation filter, the plant noise is set to 

 ( ) ( ) ( )e e e ev k b k w b k ′= ⋅ ⋅% , (145) 

where 

 ( )
2

2and2e e e

t
b k w

t
σ

⎡ ⎤Δ
⎢ ⎥= =⎢ ⎥

Δ⎢ ⎥⎣ ⎦

. (146) 
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2
eσ  is a constant and should be approximately set to 

 2 0.1 /180 / 40 0.00005eσ π= ⋅ ≅ . (147) 

 

Therefore, 

 ( )

22 3

3
2

2 20.00005

2

e

t t

v k
t t

⎡ ⎤⎛ ⎞Δ Δ
⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠= ⋅ ⎢ ⎥Δ⎢ ⎥Δ
⎢ ⎥⎣ ⎦

% . (148) 

 

3.5 Filter Gain and Measurement Noise Estimate 
 

The Kalman gain is given by 
 

 ( ) ( )
( ) ( )

, 1
, 1
e

e ce

v k k H
K k

Hv k k H v k
′−

=
′− +

. (149) 

 

We note here that a simple divide is used and that no matrix inverse operation is required since the 
term ( ), 1eHv k k H ′−  is a scalar. However, to compute this gain, an estimate of CD elevation 
measurement noise is required. If the CD elevation measurement noise is not included in the cluster 
message, it can be computed from the single pulse specification variance according to the equation 
 

 
( )( ) me

ce

v k
v k

n
= , (150) 

 

where ( )cev k  is the measurement noise variance in elevation associated with the cluster estimate, 

( )mev k  is the single pulse measurement accuracy (equivalent to the PDW accuracy) of the elevation 
angle, and n is the number of pulses reported in the cluster descriptor message. The computation of 

( )mev k  was discussed previously. 
 

The Kalman gain may also be written in terms of the innovation sequence as  
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 ( ) ( )
( )

, 1ev k k H
K k

S k
′− ⋅

= , (151) 

 

where ( )S k  is the scalar covariance of the innovation sequence defined above and is given by the scalar 

 

 ( ) ( ) ( ), 1e ceS k H v k k H v k′= ⋅ − ⋅ + . (152) 

 

3.6 The Filtered Estimate 
 

After the Kalman gains are computed, the new filtered or ETF track estimate is given by 
 

 ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ, 1 , 1x k x k k K k z k z k k= − + − −⎡ ⎤⎣ ⎦ , (153) 

 
where ( )x̂ k  is the filtered elevation  estimate and ( )z k  is the current elevation cluster measurement. As 
mentioned above, this is equivalent to computing 

 

 
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1

2

ˆ ˆ ˆ, 1 , 1
ˆ ˆ ˆ, 1 , 1 .

e k e k k K k z k z k k

e k e k k K k z k z k k

⎧ = − + − −⎡ ⎤⎪ ⎣ ⎦
⎨

= − + − −⎡ ⎤⎪ ⎣ ⎦⎩ & &
 (154) 

 

3.7 Filtered Variance 
 

The filtered variance of this estimate is simply 
 

 ( ) ( ) ( )2 , 1e ev k I K k H v k k= − −⎡ ⎤⎣ ⎦ , (155) 

 
where 2I  is the 2 × 2 identity matrix, and ( ), 1ev k k −  was defined above. 

3.8 Track Coasting 
 

To coast a track, the filter gain is set to 
 

 ( ) ⎥
⎦

⎤
⎢
⎣

⎡
=

0
0

kK . (156) 
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With the Kalman gain set to zero, the remaining equations for filtered estimate and variance are the same 
as those defined above. In this case, the filtered estimate is given by the prediction 

 

 ( ) ( )ˆ ˆ , 1x k x k k= −  (157) 

 

and the filtered variance takes the form 

 

 ( ) ( ), 1e ev k v k k= − . (158) 

 

4. THE ESM PARAMETERS FILTER 
 

The ESM parameters filter is a simple first-order Kalman filter that may be used to update both agile 
and non-agile parameters as well as automatically generate gates for ESM front-end sorting. The filter 
equation for all ESM parameters is identical to an alpha-only filter and is given by 

 

 ( ) ( ) ( ) ( )1 1x k x k z k x kα= − + − −⎡ ⎤⎣ ⎦ , (159) 

 
where x is the parameter to be stored in the track file and may be represented by frequency, pulsewidth, 
pulse repetition interval (PRI), or amplitude, and z is the current measured and averaged parameters from 
the cluster descriptor. 
 

4.1 Initialization 
 

Each ESM parameters filter may be initialized using one of two equivalent methods. 
 

 
Method 1 
 

The filter is initialized with 
 

( ) ( ) 120 0  and  0 10

0
  ESM parameter default size,

fx v

k
Gate

= =

=
=

 

 
where ( )fv k  is the associated filtered covariance value. A large value simply indicates no a priori 

information. In this case, ( )fv k  is a scalar since the filters are one-dimensional. Gate is the default ESM 
gate size associated with the front-end default gates for the parameter of interest. The default gate results 
in initial clusters, which represent first points to the ETF. 
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Method 2 

 
In this method, the ESM parameters filter is initialized from the first cluster measurement. In this 

case, we define 
 

 ( ) ( ) ( ) ( )1 1   and  1 1m f czx z v v= = , (160) 

 
where (1)mz  is the ESM parameter measurement of interest (frequency, PRI, pulsewidth, or amplitude) 

and ( )1czv  is its associated scalar covariance.  ( )czv k  is the measurement accuracy associated with the 
ESM parameter measurement provided in the cluster descriptor. The filter iteration starts at time 2k = . 

 

4.2 Predicted Estimate 
 

For the ESM parameters filter, the predicted estimate is simply the filtered estimate since no higher-
order derivatives are used for ESM parameter tracking: 
 

 ( ) ( ), 1 1x k k x k− = − , (161) 

 
where ( ), 1x k k −  is the one step prediction of ( )1x k −  .  

 

4.3 Predicted Variance, Measurement Noise, and Plant Noise Estimates  
 

The predicted variance is given by 
 

 ( ) ( ) ( ), 1 1p f pv k k v k v k− = − + % , (162) 

 
where ( )pv k%  is the plant noise estimate. For the case with jitter, the cluster plant noise may be estimated 
as 
 

 ( ) ( ) 2
max min

12pc

x x
v k

−
= , (163) 

 
where ( )pcv k  refers to the measured plant noise or spread (max minus min) obtained from the parameter 

measurements provided in the cluster descriptor, and ( )max min,x x  are the largest and the smallest 
parameter measurement in the cluster descriptor, respectively. The average plant noise may be obtained 
by using an appropriate alpha filter with gain limited to 0.1, or 
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 ( ) ( ) ( ) ( )
2

max min1 0.1 1
12p p p

x x
v k v k v k

⎡ ⎤−
= − + ⋅ − −⎢ ⎥

⎣ ⎦
% % % , (164) 

 
where this filter is initialized with the first measurement of spread provided in the cluster descriptor. 

 
This will accurately estimate the plant noise if the measurement noise is negligible by comparison 

(always the case for a jittered measurement). If the estimate of parameter spread is small, then no agility 
is present and the plant noise should be set to one-tenth of the measurement noise for heavier smoothing. 
This is checked for by implementing the test described below. 
 

( ) ( )

( ) ( )

For
4   or  Freq Type 'Fixed' ,

set

 .
10

pc cz

cz
p

v k v k

v k
v k

≤ =

=%

 

 

4.4 Filter Gain 
 

The filter gain, alpha, is a function of the predicted variance. This gain is computed after the cluster is 
received and begins the filter iteration for the current update. The Kalman gain is given by 

 

 ( ) ( )
( ) ( )

, 1
, 1
p

p cz

v k k
k

v k k v k
α

−
=

− +
. (165) 

 
However, to compute this gain, an estimate of parameter measurement noise is required. This is 

computed as 

 
( )( ) mz

cz

v k
v k

n
= , (166) 

 
where ( )czv k  is the measurement noise variance associated with the cluster estimate,  ( )mzv k  is the 
single pulse (PWD) measurement accuracy of the parameter of interest, and n is the number of pulses 
reported in the cluster descriptor message. 
 

If unknown, the cluster measurement variance may be approximated by 
 

 ( ) ( )21.5
1cz

res
v

n
⋅

= , (167) 

 
where res is the resolution of the parameter of interest. 
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4.5 Filtered Estimate 
 

The filtered estimate is given by 
 

 ( ) ( ) ( ) ( ) ( )1 1x k x k k z k x kα= − + − −⎡ ⎤⎣ ⎦ , (168) 

 
where ( )x k  is the filtered ESM parameters estimate and ( )z k  is the current ESM cluster measurement. 
Due to the initialization, for the first ESM parameter update this should yield 
 

 ( ) ( )1  and  1 1x zα ≅ ≅ . (169) 

 

4.6 Filtered Variance 
 

The filtered variance of this estimate is simply given by 
 

 ( ) ( ) ( )1 , 1f pv k k v k kα= − −⎡ ⎤⎣ ⎦ . (170) 

 
For the first cluster update, this will be approximately equal to the initial cluster measurement variance 
 

 ( ) ( )1 1f czv v≅ . (171) 

 

5. SUMMARY 
 

An ESM angle tracker was developed to provide highly accurate angle and angle rate estimates to a 
combat system. The tracker was developed to operate with the NRL ESM-ATD that provides accurate but 
intermittent bearing and elevation reports. This report describes the theory behind the bearing, elevation, 
and ESM parameters filters contained within the tracker. 

 
The bearing filter is an IMM filter that automatically adjusts to optimally track stationary, constant-

velocity, or constant-acceleration targets. The IMM bearing filter uses three standard Kalman filters of 
different orders as a basis for filtering and predicting emitter bearing angle. Details on how to combine 
estimates from the first-, second-, and third-order Kalman filters within the IMM are developed and 
described in this report. 

 
The inclusion of ESM parameters in the tracking algorithm makes it possible to associate and 

correlate intermittent bearing/elevation measurements with existing tracks in dense scenarios. The ESM 
parameters filters are first-order Kalman filters, but they have the ability to track both constant and 
jittered parameters by automatically adjusting the filter plant noise. The technique for estimating plant 
noise from the received measurements is described in this report. 
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