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ADVANCED ESM ANGLE TRACKER
VOLUME | - THEORETICAL FOUNDATIONS

1. INTRODUCTION

This report summarizes the Naval Research Laboratory (NRL) implementation of tracking filters used
for tracking bearing, elevation, and electronic support measure (ESM) parameters. It describes the theory
behind the NRL MATLAB and C code used for ESM angle tracking, developed to operate with the NRL
ESM-Advanced Technology Demonstration (ESM-ATD) and later transitioned to Lockheed Martin
Corporation for integration into the Advanced Integrated Electronic Warfare System (AIEWS) program.
This code was intended to act as the ESM tracker for AIEWS and to provide feedback control for the
front-end gating of the ESM receiver.

The Advanced ESM Angle Tracker was developed at NRL and embedded within the Joint Maritime
Command Information System (JMCIS) as a prototype segment. This report presents the theory used for
the tracker and represents Volume | of a three-volume set.

Volume Il is a user’s guide [1] for running the remote tracker via JMCIS. It describes how users set
up and control the tracker from JMCIS and display real-time track information, and discusses JMCIS
Tactical Database Manager (TDBM) display integration. Volume Il is a developer’s guide [2] that
documents the software development of the Advanced ESM Angle Tracker. It describes the tracker’s
graphical user interface, the TCP/IP communications required to interface with the remote process, and
the implementation of the tracker algorithms as a remote process.

The filters and tracking algorithm described in this report are unique in several ways. The bearing
filter is an Interactive Multiple Model (IMM) filter [3, 4] that utilizes three Kalman filters of different
orders to track emitter bearing angle. The requirements for combining first-, second-, and third-order
tracks had not been defined and implemented prior to this work. Another unique feature of this tracker is
that it includes all parameters (bearing, elevation, and ESM parameters) in the decision process for
correlation and association of new reports with existing tracks. In addition, a new technique developed for
determining plant noise in the ESM parameters filter estimates plant noise as a function of ESM
parameter agility.

The IMM bearing filter uses three standard Kalman filters as a basis for filtering and predicting
emitter bearing angle. Filter selection for the IMM is based on the expected variation of emitter
trajectories and the imposed spherical coordinate system. The derivation of the IMM is well documented
and is not addressed here; only the unique NRL implementation aspects of the IMM are addressed here.

Manuscript approved September 8, 2006



2 E. N. Khoury

Each of the three bearing Kalman filters is tuned to a different trajectory model. The first of the three
Kalman filter plant (hereafter referred to as trajectory) models is a simple first-order filter that is optimal
for tracking stationary (land-based) emitters. This filter is also suitable for tracking non-maneuvering,
radially inbound or outbound platforms. The second Kalman filter is based on filtering both bearing and
bearing rate. The third Kalman filter tracks bearing, bearing rate, and bearing acceleration so as to
minimize filter lag for crossing emitters and other highly maneuvering trajectories. Platforms tend to fly
in straight line paths; crossing platforms will produce an infinite number of derivatives in a polar
coordinate system, leading to significant filter lag. The defined second- and third-order Kalman filter
trajectory models minimize these effects.

Since it is not known a priori which model is appropriate for any particular platform in track, the
NRL IMM filter estimates the probability of each trajectory model’s applicability for the particular
platform under observation. These trajectory model probabilities are computed based on a hidden Markov
model (HMM) as well as on outputs from each of the three Kalman filters used to filter and predict
platform motion.

The elevation filter is a second-order Kalman filter that tracks elevation and elevation rate. The ESM
parameters filters are first-order Kalman filters that can track either constant or agile parameters by

automatically adjusting the filter plant noise. The ESM parameters filters provide the basis for the full
likelihood association used in associating intermittent bearing/elevation tracks in dense scenarios.

2. IMM BEARING FILTER IMPLEMENTATION

IMM bearing filter update consists of the following steps.
1. IMM bearing filter initialization, which consists of IMM and Kalman filter initialization.
2. The IMM track update process, which consists of state estimator mixing (interaction),

Kalman filter updates, model probabilities update, and combining or merging of the three
state estimates.

2.1 IMM Bearing Filter Initialization

The IMM bearing filter assumes a hidden Markov model that controls trajectory model switching
with a switching probability that is assumed known. This transition matrix is defined as

5 =[p,»j], @

where the transition probabilities are
py =Prob{M (k)|M, (k-1)}, i,j=123, 2
and M, (k) stands for “model ; in effect during the period ending at time & .”

The above expression should be interpreted as the probability that the trajectory model for the track at
time & equals model ; given that at the previous update, the trajectory model was i where (i, ;) range from
1 to 3. For example, in the NRL model, the three elements in the first row of the matrix indicate the
transition probability from the bearing-only model to the bearing-only model (the 1,1 element), to the
second-order model (the 1,2 element), and to the third-order model (the 1,3 element), respectively. The
second and third rows should be interpreted in a similar manner.
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The NRL IMM bearing filter initializes this Markov model transition matrix as

D (1-pu)/2 (1-py)/2
Pg,- = (1_ P2 )/2 P2 (1_ P2 )/2 . (3)
(1_ P33 )/2 (1_ Ps3 )/2 P33

This matrix is initialized by setting

Pu 90
P |=|-99| 4
P33 90

The transition probability p,, should be interpreted as the probability that the first-order model

transitions to itself (or stays a first-order model) during the bearing track update process. Due to the form
of the matrix specified above, there is also a small and equal probability that the current first-order
platform model will transition to the second-order or third-order models during track update. The two

remaining transition probabilities, p,, and p,,, should be interpreted in a similar manner. We note that

the NRL model gives preference to the second-order bearing filter by setting the return probability to a
slightly higher value. Thus, a track that is second-order (maintains bearing and bearing rate) is more likely
to stay second-order during the track update process than a first- or third-order track.

The initial probability distribution associated with the three trajectory models (hereafter referred to
only as models) is also assumed known. In the NRL model, this initial distribution is given by

where this vector is initialized to

.05
p,= .85 . (6)
.10

Again, the NRL model gives preference to initiating second-order tracks. The assoc_f routine
correlates current cluster descriptors (CDs) with prior CDs that have been previously stored and that have
not correlated with existing tracks (defined as first points). A CD is equivalent to an ESM contact
consisting of extracted information from a set of post-processed pulse descriptor words (PDWs). If a
correlation exists in the appropriate parameter space, a new tentative bearing track is initiated. Although
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the transition matrix is a constant, the model probabilities are updated on each track update as discussed
below.

2.2 IMM Track Update Process

Computations associated with the IMM track update process are discussed below.

2.2.1 State Estimator Mixing (Interaction) and State Prediction

For any initiated track, once an associated contact is identified, the first step in the IMM bearing
update process is mixing the previous filter estimates stored in the extended track file (ETF). This process
is known as mixing, or interaction, and allows the IMM to achieve the accuracy associated with a second-
order generalized pseudo-Bayesian (GPBZ2) filter [4] while maintaining three rather than nine separate
Kalman filters.

The 3 x 3 mixing probability matrix is given by

@'pl @'pl @'pl
G &) G
p p p
P,‘]:[p,‘]}: %'pz %'pz %'pz ' (7)
' G G C3
@'ps @'ps @'ps
L G %) G |

where ¢ is a3 x 1 normalizing constant given by

G
Gy

and Bj' is the complex conjugate transpose of Py .

Using the above mixing probabilities, the mixed filter estimates are obtained as
%7 (k)= 2% (k) py, (K), (©)

where X" (k) is the mixed estimate for model j, X; (k) is the i" filtered estimate (i, = 1,2,3) obtained
from the ETF, and py; are the mixing probabilities defined above. The associated scalar covariances are
given by
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0= X, () o (0= ()57 ()] ()37 ()] | @0

It should be noted that for j = 1, both X" (k) and v}" (k) are 1 x 1 or scalars. For j = 2,3, this is not

the case. Since, in general, the filter estimates vary in size from 1 x 1 for the first-order filter to 3 x 1 for
the third-order filter, mixing the ETF estimates is not straightforward. Before computing the above
mixing equations, it is necessary to resize the filter estimates and their associated covariance to
appropriate sizes for mixing. This can be called upsizing and downsizing. For example, assume that the
form of the ETF estimate and covariance for the third-order filter may be written as

(k) (11)

and

Vél,l) (k) V:gl,Z) (k) v:gl,?:) (k)
vy ()= V&9 (k) w22 (k) 29 (k) |, 12)
vés‘l) (k) vés'z) (k) v§3‘3) (k)

where 153 (k) is the filtered bearing estimate. Downsizing is simply the elimination of the appropriate row
and column before mixing.

Downsizing the third-order filter for mixing to obtain a mixed first-order estimate is accomplished by
defining the intermediate downsized third-order filter estimate as

% (k) =| 27 (k) | (13)

and associated covariance as

vy (k) = (k) | (14)

Upsizing in the NRL implementation implies the addition of zero elements to expand the filter
estimate and associated covariance for mixing. Consider the j = 3 case above. Both the first- and second-
order filters require upsizing before the mixing process. To upsize the first-order filter, an intermediate
vector is defined as
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Xy (k)=| 0 (15)

vi(k) 0 0
vis(k)=| 0 0 0. (16)
0 00

R (k) =| 27 (k) (17)

W (k) W (k) 0
vig (k)= W (k) W2 (k) 0. (18)
0 0 0

All other upsizing and downsizing are handled in a similar manner.

2.2.2 Kalman Filter Updates

The three Kalman filters should be treated as subroutines for the IMM bearing filter. Therefore,
Kalman filter updates may be performed by passing in the bearing data and the mixed estimates fc;?z (k)

and their covariance vf (k) in lieu of the normal ETF values. The corresponding output of the Kalman

filters for time & are defined as fcj (k) and v, (k) respectively. These outputs are used for merging the

estimates using the updated model probabilities. These values are also saved in the ETF along with the
merged estimate and its covariance. In addition, each of the three Kalman filters sends back the
innovation sequence and its covariance, which are used for the update of model probabilities.
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2.2.3 Update of Model Probabilities

The model probabilities are updated in two steps. First, the likelihood associated with each of the
filter updates is computed. This likelihood is defined as

A, (k)= P{z(k)|m, (k) 2"}, (19)

where z(k) is the current bearing measurement from the associated contact and Z*™* is a vector

representing all the data through time &k —1. This may be computed as

exp{—;(%ﬁjlm)}

H= (det[275,])" @

where y is the innovation obtained during the update of the /M Kalman filter and S ; Is its associated
covariance. Since the dimensionality of S is always equal to the dimensionality of the measurement

space, S, is always a scalar and the inverse indicated above never needs to be computed. Therefore, the
above may be simplified to

1/,
eXp{_zs(7j7j)}
J

A, (k)= : (21)

(2”)(Sj)

Based on the likelihoods defined above, the updated model probabilities may be computed as

p,(k)=—"—=~, (22)

where a second normalizing constant is defined as
=Y A, (k)¢ (23
J

and ¢, was previously defined.



8 E. N. Khoury

2.2.4 Merging the State Estimates
The merged estimates and their covariances are obtained by computations similar to that discussed

above for mixing (Section 2.2.1). The merged minimum mean-squared error (MMSE) filter estimate is
given by

x(k)= D" % (k)p, (k). (24)

and its associated covariance by

v(K)=2 (k=) (k) +[& (6) = % (k) ][5 (0) - 3 (0)] |, (25)

where the individual estimates and their covariance must be upsized and downsized appropriately as
discussed in Section 2.2.1. The correlation and association process uses the estimates associated with the
individual filters.

2.3 Extended Track File Entries

The track file database must save the three separate Kalman filter estimates, % ; (k) which vary in
size from 1 x 1 to 3 x 1, and their associated covariances, v, (k) which vary in size from 1 x 1to 3 x 3.

In addition, the merged estimate )?(k) and its covariance v(k) should be saved.

2.4 The Single-State Bearing Filter

The following describes the mathematics for the recursive, single-state bearing angle filter. This
report describes both the initialization and the update of the filter. The purpose of the filter is to estimate
bearing for stationary or radially inbound emitters and to compute optimal time-varying bearing gates.

The bearing filter is a first-order Kalman filter that models only bearing. This is one of the three
independent bearing filters used in the IMM architecture. The filter assumes that the measurement error
variance is properly defined for the ESM bearing angle as a function of measured frequency and signal-
to-noise ratio (SNR).

2.4.1 Overview

The bearing filter described is a first-order Kalman filter. The filter's general equation corresponds to
an alpha filter and is given by

() =@, (kok ~1)3, (6-1) K, (]) = (k) - H, (k) @, (k k-1 5, (k-1)], 20

where the subscript indicates the first-order filter. For the first-order bearing filter we define
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&(0)=[4.(0)] @)

O, (k,k-1)= [1], (28)
z(k)=b, (k), (29)

and
H,(k)=[1]. (30)

In the above, y?l(k —1) is the 1 x 1 vector of filtered bearing estimates valid at time (k —1) from the

previous iteration and valid before the current bearing data is received. Time (k—l) is the last time the

track was updated (time of previous cluster update), and time & is the current cluster measurement time.
z(k)=b, (k) is the bearing angle measurement from the current CD. @, (k,k—1) isa 1 x 1 state or

plant transition model and describes the emitter motion from time segment (k—l) to k. Hl(k) isalx

1 measurement transformation vector, and due to the form of H,, K, (k) isa 1 x 1 vector of Kalman gain
coefficients that weight the measurement residuals.

The above general equation for the filter update (Eqg. 26) may also be simplified by introducing the
predicted estimates and the predicted measurement terms. In terms of the predicted estimates, the general
form of the filter equation may be written as

%, (k) =% (k k-1)+K, (k)] z(k) )% (k k-1)], (31)

where

2k k=) =@, (k k-1) %, (k1) =b,(k, k1), (32)
and 51 (k,k-1) is defined as the predicted bearing. Defining the predicted measurement as
2 (kk=1) = H, (k)& (k,k =1) = b, (k,k -1) (33)
allows the final form of the general Kalman filter equation to be written in compact form as
% (k) =% (k. k-1)+ K, (k) z(k)-Z,(k,k-1)]. (34)

Due to the form of H, above, the form of the Kalman gain equation is recognized as 1 x 1. Taking
this into account and expanding the above yields one simple filter equation for bearing:
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by (k) = by(k, k1) + K, (k)-| b, (k) bk, k=D) |. (35)

The sequence 7, (k)=z(k)—Zz (kk—1) is known as the innovation sequence and represents the

new information to the filter. This term is also passed up to the IMM bearing filter for model probability
updates. Finally, expanding the predicted estimate defined as @, (k,k —1)x, (k—1) yields the expansion

for the filter predictions as

by(k,k—1) = b, (k-1). (36)

2.4.2 Initialization

The single-state bearing angle Kalman filter may be initialized using one of two equivalent
methods.

Method 1

In this method, the bearing filter is initialized with a large variance:
%,(0)=0 and v,(0)=10%, (37)
where vl(O) is the initial 1 x 1 filtered covariance value. A large covariance value simply indicates no a
priori information and, therefore, large uncertainty.

Method 2

In this method, the bearing filter is initialized from the first cluster measurement of bearing angle. In
this case we define

% (1)=b,0) and v, (1)=v,.(1), (38)

where b, (1) is the bearing measurement provided with the first cluster and v, (1) is the computed

measurement variance associated with the same bearing measurement discussed in Section 2.4.5. The first
measurement is used to initialize the filter and the filter iteration starts at time k£ =2 with the second
measurement, while in Method 1, the iteration starts at time k& =1 with the first measurement.

2.4.3 Predicted Estimate

When a new measurement is associated with the bearing track, the first step in the filter update
process requires that the ETF estimate be predicted to the time of the current associated measurement
(time alignment). For the bearing filter, the predicted estimate is obtained from the transition matrix
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defined above (Eq. 28), the filtered estimate )El(k—l) from the previous ETF update, and the time
difference between the associated contact and the ETF time (time of the last track update) as

fcl(k,k—l):Cbl(k,k—l)fcl(k—l) (39)
or, equivalently,
by(k,k—1) = b, (k-1), (40)

where the 1 x 1 vector %, (k,k —1) is the prediction of %, (k —1) to the current CD time and X, (k —1) is
the previous filtered estimate obtained from the ETF.

2.4.4 Predicted Variance and Plant Noise Estimates

Once the prediction is computed, computation of the Kalman filter gain is required to merge the
bearing CD data with the bearing angle of a track. The Kalman gain computation requires an estimate of
the predicted variance and the measurement variance. The 1 x 1 predicted variance is given by

v, (k,k=1) = v, (k=1)+7 (k), (41)

where ¥, (k) is the 1 x 1 plant noise estimate and v, (k —1) is obtained from the track file (ETF). For the
bearing filter, the plant noise is set to

5 (k) =5 ()l -9 (& @)

where

b (k)=1. (43)

wl(“) is a constant and should be approximately set to

w*) =0.17/180/ 40 = 0.00005 . (44)

Therefore,

7, (k) =0.00005. (45)
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As a final note, wl(") is a tuning parameter that controls filter bandwidth and should be optimized during
testing.

2.4.5 Filter Gain and Measurement Noise Estimate

The 1 x 1 Kalman gain K| is given by

(k) B vl(k,k—l)Hl’
S Hy (k k=1 H] 4, (k)

(46)

We note here that a simple divide is used and that no matrix inverse operation is required since the
term Hlvl(k,k—l)Hl’ is a scalar. However, to compute this gain, an estimate of CD bearing

measurement noise is required. If the CD bearing measurement noise is not included in the cluster
message it can be computed from the single pulse specification variance according to the following
equation:

v, (k) = V’"}Ek) , (47)

where the variable v, (k) is the measurement noise variance in bearing associated with the cluster

estimate. The variable v, (k) is the single pulse measurement accuracy (equivalent to the PDW

accuracy) of the bearing angle, and » is the number of pulses reported in the CD message. For the bearing
estimate, the measurement accuracy is a function of frequency, SNR, and measured emitter bearing angle.
These features must be represented as such in a suitable tabular format. This representation should be
obtained from system testing and should follow the form

vm(k)={0'a Jo j (48)

where o, should be characterized and is the base bearing accuracy, which is a function of measured
emitter bearing angle, and £, is the constant frequency at which o, is measured. The term f (k) is the

frequency measurement associated with the bearing angle provided in the cluster descriptor. v, (k)

should be inversely proportional to SNR and limited to a constant that represents best-case bearing
accuracy.

The actual value of o, must be obtained from system measurements and testing and used here if

reliable tracking is to be expected. This same comment applies to the elevation filters. Note also that o,

should be an over-bounded approximate estimate of accuracy in bearing angle as a function of frequency
and measured bearing angle.
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The Kalman gain may also be written in terms of the covariance of the innovation sequence as

_w(kk-1)H,

Kl (k)_ Sl (k) (49)

where Si(k) is the scalar covariance of the innovation sequence defined above and is given by the
equation

S,(k)=Hw, (k,k=1)H] +v,, (k). (50)
This term is also passed up to the IMM bearing filter for model probability updates.

2.4.6 The Filtered Estimate

After the Kalman gains are computed, the new filtered or ETF track estimate is given by

%, (k) =% (kb =1)+ K, (k) {z (k)= 2 (k. k1) (51)
% (k)= (k,k=1)+K, (k)7 (), (52)

where %, (k) is the filtered bearing estimate, z(k) is the current bearing cluster measurement, and

VA (k) is the innovation sequence. As mentioned above (Eq. 35), this is equivalent to computing
bl(k):bl(k,k—1)+Kl(k)y/1(k). (53)

2.4.7 Filtered Variance

The filtered variance of this estimate is simply
v (k)=[1-K, (k) H, v, (k,k-1), (54)

which may be expanded as

v (k) =[1-K, (k) ]v (k,k-1). (55)
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2.4.8 Track Coasting

There will be times when an emitter bearing estimate is not available. For example, this may be due
to ESM system failures, improper dwell scheduling, and emitter fading due to low SNR. Since, in these
cases, bearing estimates will not be available, the bearing track should be coasted to the time associated
with the bearing update. The coasting duration time is a function of track confidence as well as track
status. This is discussed in a different document.

If the bearing ETF track is in coast mode, the corresponding elevation and ESM parameters must also
be in coast mode. It is possible, and at times necessary, to update a bearing track while coasting the
corresponding elevation track.

It should also be noted that for these reasons, the initiate and drop track criteria for bearing angle
should be evaluated separately from the associated elevation track. That is, bearing tracks should be
allowed to initiate and drop without reference to the elevation track. However, as mentioned earlier, if a
bearing track does not continue to exist, then the corresponding elevation and ESM parameter track will
also cease to exist.

The simplest way to derive the filter for coasting is to recognize that coasting is equivalent to
receiving a measurement with zero accuracy (or infinite measurement variance). Using this analogy
implies the Kalman gain (see the appropriate equation above) goes to zero and the filtered estimate simply
becomes the predicted estimate. The sequence for filtering during a bearing coast is the same for each of
the three bearing filters. Coasting a track is achieved by setting the filter gain to zero (equivalent to setting
the measurement variance to infinity).

With the Kalman gain set to zero, the remaining equations for filtered estimate and variance are the
same as those defined above (Egs. 51-53). In this case, the filtered estimate is given by the prediction

)Acl(k)Z)Acl(k,k—l) (56)
or, equivalently,
by(k) = b (k. k-1), (57)

and the filtered variance takes the form

v, (k)= v, (k, k-1). (58)

2.5 The Two-State Bearing Filter

The following describes the theory used for the recursive, two-state bearing angle filter. This
section describes both the initialization and the update of the filter. The purpose of the filter is to estimate
bearing for nominal trajectory emitter platforms and to compute optimal time-varying bearing gates.
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The bearing filter is a second-order Kalman filter that models both bearing and bearing rate. This
is one of the three independent bearing filters used in the IMM architecture. The first- and third-order
bearing angle Kalman filters are described in separate sections. The filter assumes that the measurement
error variance is properly defined for the ESM bearing angle as a function of measured frequency and
SNR.

2.5.1 Overview
The bearing filter described is a second-order Kalman filter. The filter's general equation corresponds
to an alpha-beta filter and is given by

%, (k) =@, (k,k—1)%, (k-1)+ K, (k)| z(k)— H, (k) ®, (k,k-1) %, (k1) ], (59)

where for the bearing filter we define

(k)= (60)

@, (k,k-1)= {1 At} (61)
A N
z(k)=b, (k), (62)
and
H,(k)=[1 0]. (63)

In the above, %, (k —1) is the 2 x 1 vector of filtered bearing estimates valid at time £ —1 from the

previous iteration and valid before the current bearing data is received. At is the difference between the
current cluster measurement time and the last time the track was updated (time of previous cluster

update). z(k)=>5, (k) is the bearing angle measurement from the current CD. @, (k,k—1) isa 2 x 2

state or plant transition model and describes the emitter motion from time segment k~1to k. H, (k) is
a 1 x 2 measurement transformation vector, and due to the form of H, , K, (k) is a2 x 1 vector of
Kalman gain coefficients that weight the measurement residuals.

The above general equation for the filter update may also be simplified by introducing the predicted

estimates and the predicted measurement terms. In terms of the predicted estimates, the general form of
the filter equation may be written as

%, (k) =%, (k. k=1)+ K, (k)| z(k)- H,(k)X, (k,k-1)], (64)
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where

: (65)

iz(k,k1)=q>2(k,k1)5cz(k1){22(""‘1)]: b, (k=1)+At-b,(k-1)
b, (k,k 1)

where 152 (k,k—1) is defined as the predicted bearing estimate and 152 (k,k —1) is defined as the predicted
bearing rate estimate. Defining the predicted measurement as

2, (k,k=1) = H, (k)Z, (k, k1) = b, (k,k 1) (66)

allows the final form of the general Kalman filter equation to be written in compact form as
%, (k) =%, (k,k=1)+ K, (k){z(k)-Z,(k,k=1)}. (67)

Due to the form of /, above, the form of the Kalman gain is recognized as 2 x 1. Taking this into

account and expanding the above yields two simple filter equations for the bearing and bearing rate
filters:

by (k) = by (k,k ~1)+ K" (k){z (k) - 2, (k,k ~1)}
- . (68)
b, (k) = b,k k—1)+ K3P (k){z(k)- 2, (k. k -1)}.

The sequence y,(k)=z(k)—2Z,(kk—1) is known as the innovation sequence and represents the

new information to the filter. This term is also passed up to the IMM bearing filter for model probability
updates.

Finally, expanding the predicted estimate defined as @, (k,k —1)X, (k—1) yields the expansion for
the filter predictions as

[gz(k’k_l)} 52(k—1) At- 'Z(k_l) (69)

b, (k,k —1)

2.5.2 Initialization

The two-state bearing angle Kalman filter may be initialized using any one of three equivalent
methods.
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Method 1

In this method, the bearing filter covariance matrix is initialized with large values on the diagonal:

iz(o)z{g} and v,(0)=10"1,, (70)

I_10
2700 1|

v, (0) is the initial 2 x 2 filtered covariance value and I, is a 2 x 2 identity matrix. A large value simply

where

indicates no a priori information and, therefore, large uncertainty.
Method 2

In this method, the bearing filter is initialized from the first cluster measurement of bearing angle. In
this case we define

0 107

:, (1){’3"151)} and v, (1) = [Vmc @ o } )

where b, (1) is the bearing measurement provided with the first cluster and v, (1) is the computed

measurement variance associated with the same bearing measurement. The filter iteration starts at time
k = 2 with the second measurement.

Method 3

In this method, the bearing filter is initialized from the first two cluster measurements of bearing
angle. In this case, we define

b,(2)
%(2)= | b (2)-b @) (72)
At
and
(@) =2
@) 2.2 79
At (At)2

The filter iteration starts at time & =3 with the third measurement.
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2.5.3 Predicted Estimate

When a new CD is associated with the bearing track, the first step in the filter update process requires
that the ETF estimate be predicted to the time of the current associated CD (time alignment). For the
bearing filter, the predicted estimate is obtained from the transition matrix defined above, the filtered

estimate X, (k —1) from the previous ETF update, and the time difference between the associated CD and
the ETF time (time of the last track update) as

%, (kk=1)= @, (k, k1) %, (k-1) (74)
or, equivalently,
bk k=1) | | b,(k-1)+ At by (k1) -
b, (k k-1 by (k-1 |

where the 2 x 1 vector %, (k,k —1) is the prediction of %,(k —1)to the current CD time and %, (k —1) is
the previous filtered estimate obtained from the ETF.

2.5.4 Predicted Variance and Plant Noise Estimates

Once the prediction is computed, computation of the the Kalman filter gain is required to merge the
bearing CD data with the bearing angle of a track. The Kalman gain computation requires an estimate of
the predicted variance and the measurement variance. The 2 x 2 predicted variance is given by

v, (k k=1) = v, (k=1)+7, (k). (76)

where Vv, (k) is the 2 x 2 plant noise estimate and v, (k—l) is obtained from the track file (ETF). For
the bearing filter, the plant noise is set to

7, (k)= b (k)-wi B (k) (77
where

A
by (k) :[ 11' (78)

wg") is a constant and should be approximately set to

wi¥) = 0.1 /180/ 40 = 0.00005 . (79)
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Therefore,

(80)

2
7, (k) = 0.00005.{“ Ar }

At

As a final note, wg") is a tuning parameter that controls filter bandwidth and should be optimized during
testing.

2.5.5 Filter Gain and Measurement Noise Estimate

The 2 x 1 Kalman gain K, is given by

% (k,k—l)H'
K = 2 2 .
2 (k) Hyyv, (k,k=1)Hy+v,, (k)

(81)

We note here that a simple divide is used and that no matrix inverse operation is required since the
term szz(k,k—l)Hz’ is a scalar. However, to compute this gain, an estimate of CD bearing
measurement noise is required. If the CD bearing measurement noise is not included in the cluster

message it can be computed from the single pulse specification variance according to the following
equation:

Aty (82)

n

where the variable Vmc(k) is the measurement noise variance in bearing associated with the cluster

estimate. The variable vm(k) is the single pulse measurement accuracy (equivalent to the PDW

accuracy) of the bearing angle, and » is the number of pulses reported in the CD message. The
computation of v, (k) is discussed in Section 2.4.5.

The Kalman gain may also be written in terms of the covariance of the innovation sequence as

k.k—1)H,

K, (k) =2 SE (83

where Sz(k) is the scalar covariance of the innovation sequence defined above and is given by the
equation

Sz(k)=szz(k,k—l)H;Jrvmc(k). (84)
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2.5.6 The Filtered Estimate

After the Kalman gains are computed, the new filtered or ETF track estimate is given by
%, (k) =%, (k.k=1)+ K, (k){z(k) - 2, (k,k=1)}, (85)

where x, (k) is the filtered bearing estimate and z(k) is the current bearing cluster measurement. As
mentioned above, this is equivalent to computing

by (k) = by (k,k ~1) + K (k){z (k)= 2, (k,k ~1)}

A A (#9)
by (k) =b,(k, k1) + K (k){z (k) -2, (k.k-1)}
or, equivalently,
{52 (k) = b, (k, k=1)+ KO (k) 7, (k) o
by (k) = by (k k1) + K1 ()7, (k)
where 7, (k) is the innovation sequence.
2.5.7 Filtered Variance
The filtered variance of this estimate is simply
o (0) <[ =K (0, ] v, (k=) @
which may be expanded as
1-K (k) 0
v, (k)= : v, (k,k-1), 89
0 [ng)(k) | et @

where 7, is the 2 x 2 identity matrix, and v, (k,k —1) was defined above.

2.5.8 Track Coasting

As discussed in Section 2.5.5, the filter gain is set to
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K, (k)= m | (90)

0

With the Kalman gain set to zero, the remaining equations for filtered estimate and variance are the
same as those defined above. In this case, the filtered estimate is given by the prediction

)Ez(k)ziz(k’k_l) (91)

or, equivalently,

by (k) = b, (k,k ~1)

N N (92)
B,(k) = b, (k. k 1),

and the filtered variance takes the form

v, (k)= v, (k,k-1). (93)

2.6 The Three-State Bearing Filter

The following describes the theory for the recursive, three-state bearing angle filter. This section
describes both the initialization and the update of the filter. The purpose of the filter is to estimate bearing
for highly maneuvering emitter platforms and to compute optimal time-varying bearing gates.

The bearing filter is a third-order Kalman filter that models bearing, bearing rate and bearing
acceleration. This is one of the three independent bearing filters used in the IMM architecture. The first-
and second-order bearing angle Kalman filters are described in separate sections. The filter assumes that

the measurement error variance is properly defined for the ESM bearing angle as a function of measured
frequency and SNR.

2.6.1 Overview

The bearing filter described is a third-order Kalman filter. The filter's general equation corresponds to
an alpha-beta-gamma and is given by

%y (k) =@, (k,k —1) %, (k=1)+ K, (k){z (k) - Hy (k) @, (k,k -1) % (k-1)}, (94)

where for the bearing filter we define
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b, (k)
(k) =| by(k) |, (95)
by (k)
1 At A?)2
®,(kk-1)=l0 1 Ar |, (96)
0 0 1
z(k)=b, (k). (97)
and
H,(k)=[1 0 0]. (98)

In the above, *,(k —1) is the 3 x 1 vector of filtered bearing estimates valid at time k —1 from the

previous iteration and valid before the current bearing data is received. At is the difference between the
current cluster measurement time and the last time the track was updated (time of previous cluster

update). z(k) =b, (k) is the bearing angle measurement from the current cluster descriptor (CD).
D, (k, k —l) is a 3 x 3 state or plant transition model and describes the emitter motion from time segment
(k-1) to k. H, (k) is a 1 x 3 measurement transformation vector and due to the form of H,, K, (k) is
a 3 x 1 vector of Kalman gain coefficients that weight the measurement residuals.

The above general equation for the filter update may also be simplified by introducing the predicted
estimates and the predicted measurement terms. In terms of the predicted estimates, the general form of

the filter equation may be written as

%y (k) =% (kb =1)+ K5 (k) {z(k)— Hy (k) % (k. k -1)}, (99)
where
by (k,k—1)
Ry k—1) = @, (k k—1) %, (k ~1) = | by (k, k ~1)
bk k~1)
- 5 5 - (100)

by(k—1)+At-b,(k-1)+0.5- At -b,(k-1)
- by (k~1)+ At-b, (k-1) ,

by (k-1)
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where l;s(k,k—l) is defined as the predicted bearing estimate, Bs(k,k—l) is defined as the predicted

bearing rate estimate, and 53 (k,k —1) is defined as the predicted bearing acceleration estimate. Defining
the predicted measurement as

2, (kyk =1) = H, (k) % (K, k =1) = by (k, k -1) (101)

allows the final form of the general Kalman filter equation to be written in compact form as
% (k) =%, (kk=1)+ K, (k){z(k) -2, (k. k-1)}. (102)

Due to the form of the /, matrix, the Kalman gain is recognized as a 3 x 1 matrix. Taking this into

account and expanding the above yields three simple filter equations for the bearing, bearing rate and
bearing acceleration filters:

by(k) = b, (k, k=) + KO (k) {z(k)~ 2, (k,k~1)}
By(k) = by (k, k1) + K (k) {z (k) — 2, (k, k 1)} (103)

by (k) = by (k. —1) + KO () {z (k) ~ 2, (k. —1)}.

The sequence y,(k)=z(k)—2Z;(kk—1) is known as the innovation sequence and represents the

new information to the filter. This term is also passed up to the IMM bearing filter for model probability
updates.

Finally, expanding the predicted estimate defined as ®(k,k —1)x(k —1) yields the expansion for
the filter predictions as

— ~ —_
N A

bk k=) | | by (k=1)+Ar-b, (k-1)+0.5- A -b, (k1)
by(k k-1 | = 33(k—1)+Az-z§3(k—1) . (104)

A~

by (k. k ~1) by (k1)

2.6.2 Initialization

The three-state bearing angle Kalman filter may be initialized using one of three methods.
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Method 1

In this method, the bearing filter covariance matrix is initialized with large values on the diagonal:

0
%(0)=|0] and v,(0)=10""1,, (105)
0
where
1 00
L,=|0 1 0},
0 01

Vv, (0) is the initial 3 x 3 filtered covariance value and I, is a 3 x 3 identity matrix. A large value simply
indicates no a priori information and, therefore, large uncertainty.

Method 2

In this method, the bearing filter is initialized from the first cluster measurement of bearing angle. In
this case, we define

b, (1) v.(1) 0 0
%)= 0 |and v(1)=| 0 102 o0 |, (106)
0 0 0 10%

where b, (1) is the bearing measurement provided with the first cluster and v, (1) is the computed
measurement variance associated with the same bearing measurement. The filter iteration starts at time
k=2.

Method 3

In this method, the bearing filter is initialized from the first two cluster measurements of bearing
angle. In this case, we define

b, (2)
~ b (2)-b (1
8(2)= |2 )At (D)

(107)
0
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and

v..(2
v,.(2) it) 0
2) 2v (2
v;(2)= vch(z) (vzctgz) 0 |. (108)
0 0 10*

The filter iteration starts at time & =3 with the third measurement.

2.6.3 Predicted Estimate

When a new CD is associated with the bearing track, the first step in the filter update process requires
that the ETF estimate be predicted to the time of the current associated CD (time alignment). For the
bearing filter, the predicted estimate is obtained from the transition matrix defined above, the filtered

estimate X, (k —1) from the last ETF update, and the time difference between the associated CD and the
ETF time (time of the last track update) as

%, (K k=1) = @, (k,k—1) %, (k-1 (109)

or, equivalently,

Bk k—1)| | b, (k—1)+Ar-by(k-1)+05- Al b (k1)
by(k k-1 | = by (k~1)+ At-b, (k1) , (110)

by k~1) by (k1)

where the 3 x 1 vector %,(k,k —1) is the prediction of X,(k —1) to the current CD time and X, (k —1) is
the previous filtered estimate obtained from the ETF.

2.6.4 Predicted Variance and Plant Noise Estimates

Once the prediction is computed, computation of the the Kalman filter gain is required to merge the
bearing CD data with the bearing angle of a track. The Kalman gain computation requires an estimate of
the predicted variance and the measurement variance. The 3 x 3 predicted variance is given by
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vy (k,k=1) = v, (k=1)+ 7, (k), (111)

where 7, (k) is the 3 x 3 plant noise estimate and v, (k —1) is obtained from the track file (ETF). For the
bearing filter, the plant noise is set to

7, (k) =B (k) -wi - (k) (112)
where
A?[2
B (k)=| A |. (113)
1

wé“) is a constant and should be approximately set to

wi”) = 0.17/180/ 40 = 0.00005 . (114)

Therefore,

At*/4 AP[2 A)2
7,(k)=0.00005-| AF/2 A At | (115)
A2 At 1

As a final note, w§”> is a tuning parameter that controls filter bandwidth and should be optimized during
testing.

2.6.5 Filter Gain and Measurement Noise Estimate

The 3 x 1 Kalman gain K, is given by

K, (k) = v, (k,k~1)H,
N Hyy (k k1) Hy+v,, (k)

(116)

Note here that a simple divide is used and that no matrix inverse operation is required since the term
Hyv, (k,k—l) H is a scalar. However, to compute this gain, an estimate of CD bearing measurement

noise is required. If the CD bearing measurement noise is not included in the cluster message it can be
computed from the single pulse specification variance according to the equation
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v, (k) = v’”}gk) : (117)

where the variable vm(k) is the measurement noise variance in bearing associated with the cluster

estimate. The variable v (k) is the single pulse measurement accuracy (equivalent to the PDW

accuracy) of the bearing angle, and » is the number of pulses reported in the cluster descriptor message.
The computation of v, (k) is discussed in Section 2.4.5.

The 3 x 1 Kalman gain may also be written in terms of the covariance of the innovation sequence as

v (k,k—l)H?')

K, (k)= 5. 08) (118)

where S, (k) is the scalar covariance of the innovation sequence defined above and is given by the
equation

S;(k)=Hyvy (k,k=1)Hy+v,, (k). (119)

2.6.6 The Filtered Estimate

After the Kalman gains are computed, the new filtered or ETF track estimate is given by
%y (k) =% (kb =1)+ Ky (k){z (k)= 2 (k, k=1)} , (120)

where X, (k) is the filtered bearing estimate and z(k) is the current bearing cluster measurement. As
mentioned above, this is equivalent to computing

by(k) = b, (k, k=2 + KO (k) {z(k)~ 2, (k,k-1)}
By(k) = by (k. —1)+ KO (k) {2 (k) — 2, (k, k1)) (121)
by (k) = by (e, —1)+ KO (k) = ()~ 2, (k. —1)}

or, equivalently,
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by(k) = by (k,k =1) + K (k) 7, (k)
by(K) = by(k, k~1) + K (k) 7, (k) (122)
by(K) = b,k k=1) + KO (k) 7, (k).

where 73(k) is the innovation sequence.

2.6.7 Filtered Variance

The filtered variance of this estimate is simply
v, (k) =[ 1, = K, (k) Hy v, (k, k=1), (123)

which may be expanded as
1 0| -w(kk-1), (124)

where 1, is the 3 x 3 identity matrix, and v, (k, & —1) was defined above.

2.6.8 Track Coasting

As discussed in Section 2.5.8, when a track is to be coasted, the filter gain is set to
0
K;(k)=]0]. (125)
0

With the Kalman gain set to zero, the remaining equations for filtered estimate and variance are the
same as those defined above. In this case, the filtered estimate is given by the prediction

3, (k)= %, (k, k —1) (126)

or, equivalently,
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by (k) = b, (k, k1)
by (k) = by (k. k —1) (127)
by (k) = by (k, k ~2),
and the filtered variance takes the form
vy (k)=v,(k, k -1). (128)

3. THE ELEVATION FILTER

The following describes the mathematics for the recursive elevation filter. Both the initialization and
the update of the elevation filter are described. The purpose of the filter is to estimate elevation and to

compute time-varying elevation gates.

The elevation filter is a second-order Kalman filter that models both elevation and elevation rate. This
same filter structure is used for the second-order bearing filter. The filter assumes that the measurement
error variance is properly defined for elevation angle as a function of measured frequency and SNR.

3.1 Overview

The elevation filter is a second-order Kalman filter. The filter equation corresponds to an alpha-beta

filter and is given by

#(k) = @ (k,k~1) £ (k—1)+ K (k)[ 2 (k) - H (k) ® (k,k~1)

where for the elevation filter, we define

and

x(k-1)], (129)

(130)

(131)

(132)
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H(k)=[1 0]. (133)

In the above, X(k)is a 2 x 1 vector of filtered estimates valid at time -1 from the previous iteration

and valid before the current elevation data is received. Az is the difference between the current cluster
measurement time and the last time the track was updated (time of previous cluster update).

z(k)=e, (k) is the elevation angle measurement from the current CD. @ (k,k—1) is a 2 x 2 state or

plant transition model and describes the emitter motion from time segment k—1to k . K(k) isa2x 1
vector of Kalman gain coefficients and A (k) isa 1 x 2 measurement vector.

The above equation for the filter update may also be written as

X(k)=x(k,k-1)+K (k)| z(k) )% (k,k-1)], (134)
where the above is written in terms of the predicted estimate

x(k,k-1)=e(k,k-1). (135)

Expanding the above yields the two equations for elevation and elevation rate as

(136)

where K (k) is equivalent to the gain, a, used by an alpha-beta filter and K(z)(k) is equivalent to
B/At.

In addition, the predicted estimates presented above are defined as follows:
é(k,k—-1)=eé(k-1)+At-é(k-1) (137)
is the predicted elevation angle,
é(k,k—1)=é(k—1) (138)

is the predicted elevation angle rate, and

2(k,k—1)= H (k) ®(k,k-1)%(k-1)=é(k,k-1) (139)
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is the predicted elevation cluster measurement.

The sequence z(k)—Z(k,k—1) is known as the innovation sequence and represents the new
information to the filter.

3.2 Initialization

The elevation filter may be initialized using one of three equivalent methods.

Method 1

In this method, the bearing filter covariance matrix is initialized with large values on the diagonal:

£(0) :m and v, (0)=102.1,, (140)

I_10
210 1]

v,(0) is the initial 2 x 2 filtered covariance value and I, is a 2 x 2 identity matrix. A large value simply
indicates no a priori information.

where

Method 2

In this method, the elevation filter is initialized from the first cluster measurement of elevation angle.
In this case, we define

g(l)z{emo(l)} and v, (1):{"06 @) o } (141)

0 10¢

where e, (1) is the elevation measurement provided with the first cluster and v, (1) is the measurement

accuracy associated with the elevation measurement. The filter iteration starts at time k£ =2 with the
second measurement.

Method 3

In this method, the elevation filter is initialized from the first two cluster measurements of elevation
angle. In this case, we define



32 E. N. Khoury

2

A ,(2) w(2) %
1(2)=|,@-e,@ | @ v.(2)=|, 5) 2, (2)| (142)

At Al (At)2

The filter iteration starts at time & =3. This is the preferred method since it starts the filter when a CD
elevation measurement has correlated with a first point. Therefore, the initial elevation CD is not the first
ETF track entry.

3.3 Predicted Estimate

When a new CD is associated with the elevation track, the first step in the filter update process
requires that the ETF estimate be predicted to the time of the current associated CD (time alignment). For
the elevation filter, the predicted estimate is obtained from the transition matrix defined above, the filtered

estimate )?(k) and the time difference between the associated CD and the ETF time (time of the last
track update) as

e(k—l)fAt-e(k—l)]' w9

e(k—l)

% (k,k-1)= @ (k,k—1)%(k-1) = {e;(k’k_l)} {

e(k,k—l)
where %(k,k —1) is the prediction of X(k—1) to the current CD time and X(k —1) is the filtered
estimate obtained from the ETF.

3.4 Predicted Variance and Plant Noise Estimates

Once the prediction is computed, computation of the Kalman filter gain is required to merge the
elevation CD data with the elevation track. The Kalman gain computation requires an estimate of the
predicted variance and the measurement variance. The predicted variance is given by

v, (k,k=1)=v,(k-1)+7v,(k), (144)

where v, (k) is the plant noise estimate. For the elevation filter, the plant noise is set to

7, (k)=b,(k)-w,-b,(k), (145)
where
ar
b(k)=| 2 | and w,=0". (146)
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af is a constant and should be approximately set to
af =0.1-7/180/40 = 0.00005. (247)

Therefore,

Aty a8
- 2 2
v, (k) =0.00005- (148)
3
A_t AZ‘Z
2
3.5 Filter Gain and Measurement Noise Estimate
The Kalman gain is given by
v, (k, k —1)H’
(k)= , . (149)
Hv, (k,k=1)H'+v, (k)

We note here that a simple divide is used and that no matrix inverse operation is required since the
term Hve(k,k—l)H’ is a scalar. However, to compute this gain, an estimate of CD elevation

measurement noise is required. If the CD elevation measurement noise is not included in the cluster
message, it can be computed from the single pulse specification variance according to the equation

v, (k)= V'”en(k) , (150)

where v(,e(k) is the measurement noise variance in elevation associated with the cluster estimate,

Vme(k) is the single pulse measurement accuracy (equivalent to the PDW accuracy) of the elevation

angle, and » is the number of pulses reported in the cluster descriptor message. The computation of
v, (k) was discussed previously.

The Kalman gain may also be written in terms of the innovation sequence as
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(151)

where S (k) is the scalar covariance of the innovation sequence defined above and is given by the scalar
S(k)=H-v,(k,k-1)-H' +v, (k). (152)
3.6 The Filtered Estimate
After the Kalman gains are computed, the new filtered or ETF track estimate is given by

2(k)=x(kk-1)+K (k) z(k)-Z(k.k-1)], (153)

where )E(k) is the filtered elevation estimate and z(k) is the current elevation cluster measurement. As
mentioned above, this is equivalent to computing

“ (154)
e(k)=e(k,k-1)+ K" (k) z(k)-Z(k,k-1)]
3.7 Filtered Variance
The filtered variance of this estimate is simply
=|1,-K(k)H |v,(k,k-1), (155)

where 7, is the 2 x 2 identity matrix, and v, (k, k —1) was defined above.

3.8 Track Coasting

To coast a track, the filter gain is set to

K(k)= m . (156)
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With the Kalman gain set to zero, the remaining equations for filtered estimate and variance are the same
as those defined above. In this case, the filtered estimate is given by the prediction

x(k)=x(k,k-1) (157)

and the filtered variance takes the form

v, (k)=v,(kk-1). (158)

4. THE ESM PARAMETERS FILTER

The ESM parameters filter is a simple first-order Kalman filter that may be used to update both agile
and non-agile parameters as well as automatically generate gates for ESM front-end sorting. The filter
equation for all ESM parameters is identical to an alpha-only filter and is given by

x(k)=x(k-1)+af z(k)-x(k-1)], (159)

where x is the parameter to be stored in the track file and may be represented by frequency, pulsewidth,
pulse repetition interval (PRI), or amplitude, and z is the current measured and averaged parameters from
the cluster descriptor.

4.1 Initialization

Each ESM parameters filter may be initialized using one of two equivalent methods.

Method 1

The filter is initialized with

x(O) =0 and v, (0) =10"
k=0
Gate = ESM parameter default size,

where v, (k) is the associated filtered covariance value. A large value simply indicates no a priori

information. In this case, v, (k) is a scalar since the filters are one-dimensional. Gate is the default ESM

gate size associated with the front-end default gates for the parameter of interest. The default gate results
in initial clusters, which represent first points to the ETF.
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Method 2

In this method, the ESM parameters filter is initialized from the first cluster measurement. In this
case, we define

x(1)=z,(1) and v,(1)=v_.(1), (160)
where z (1) is the ESM parameter measurement of interest (frequency, PRI, pulsewidth, or amplitude)

and v_ (1) is its associated scalar covariance. v_ (k) is the measurement accuracy associated with the
ESM parameter measurement provided in the cluster descriptor. The filter iteration starts at time &k =2.

4.2 Predicted Estimate

For the ESM parameters filter, the predicted estimate is simply the filtered estimate since no higher-
order derivatives are used for ESM parameter tracking:

x(k,k-1)=x(k-1), (161)
where x(k,k —1) is the one step prediction of x(k—1) .

4.3 Predicted Variance, Measurement Noise, and Plant Noise Estimates

The predicted variance is given by
v, (kk=-1)=v,(k-1)+v,(k), (162)

where ﬁp (k) is the plant noise estimate. For the case with jitter, the cluster plant noise may be estimated
as

v (k) _ (Vo = in) , (163)

where v (k) refers to the measured plant noise or spread (max minus min) obtained from the parameter

measurements provided in the cluster descriptor, and (xmax,xmin) are the largest and the smallest

parameter measurement in the cluster descriptor, respectively. The average plant noise may be obtained
by using an appropriate alpha filter with gain limited to 0.1, or
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5, (k)=7, (k-1)+0.1- W—ﬁp(k—l) , (164)

where this filter is initialized with the first measurement of spread provided in the cluster descriptor.

This will accurately estimate the plant noise if the measurement noise is negligible by comparison
(always the case for a jittered measurement). If the estimate of parameter spread is small, then no agility
is present and the plant noise should be set to one-tenth of the measurement noise for heavier smoothing.
This is checked for by implementing the test described below.

For
v, (k)<4v_(k) or Freq Type="Fixed',
set

4.4 Filter Gain

The filter gain, alpha, is a function of the predicted variance. This gain is computed after the cluster is
received and begins the filter iteration for the current update. The Kalman gain is given by

v, (kk-1)
a(k)= v, (kk=1)+v, (k)

(165)

However, to compute this gain, an estimate of parameter measurement noise is required. This is
computed as

v, (k)= v’”zn(k) : (166)

where v_ (k) is the measurement noise variance associated with the cluster estimate, v, (k) is the

single pulse (PWD) measurement accuracy of the parameter of interest, and » is the number of pulses
reported in the cluster descriptor message.

If unknown, the cluster measurement variance may be approximated by

(1.5-res)2

v.(1)= — (167)

where res is the resolution of the parameter of interest.
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4.5 Filtered Estimate

The filtered estimate is given by

x(k)=x(k-1)+a (k)| z(k)-x(k-1)], (168)

where x(k) is the filtered ESM parameters estimate and z(k) is the current ESM cluster measurement.
Due to the initialization, for the first ESM parameter update this should yield

a=1and x(1)=z(1). (169)

4.6 Filtered Variance

The filtered variance of this estimate is simply given by

v, (k)=[1-a(k)]v, (kk-1). (170)

For the first cluster update, this will be approximately equal to the initial cluster measurement variance
v, (D)=v, (1). (171)

5. SUMMARY

An ESM angle tracker was developed to provide highly accurate angle and angle rate estimates to a
combat system. The tracker was developed to operate with the NRL ESM-ATD that provides accurate but
intermittent bearing and elevation reports. This report describes the theory behind the bearing, elevation,
and ESM parameters filters contained within the tracker.

The bearing filter is an IMM filter that automatically adjusts to optimally track stationary, constant-
velocity, or constant-acceleration targets. The IMM bearing filter uses three standard Kalman filters of
different orders as a basis for filtering and predicting emitter bearing angle. Details on how to combine
estimates from the first-, second-, and third-order Kalman filters within the IMM are developed and
described in this report.

The inclusion of ESM parameters in the tracking algorithm makes it possible to associate and
correlate intermittent bearing/elevation measurements with existing tracks in dense scenarios. The ESM
parameters filters are first-order Kalman filters, but they have the ability to track both constant and
jittered parameters by automatically adjusting the filter plant noise. The technique for estimating plant
noise from the received measurements is described in this report.
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