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THE HYDRODYNAMIC WAKE OF A SURFACE SHIP:
THEORETICAL FOUNDATIONS

INTRODUCTION

A model for describing the hydrodynamic wake of a surface ship is developed. The model
accounts, in some manner, for all significant wake flow processes. Simultaneously, the model is formu-
lated to be computationally realizable. This is necessary because small scale flow behavior on a large
spatial domain is characteristic of the wake.

During the course of the derivation, we observe that several approximations must be made to
obtain the model. The approximations result from a lack of firm theoretical foundations in certain
areas. Besides turbulent flow dynamics, these areas include descriptions of multiphase flows,
turbulence/free-surface interactions, and ambient background characteristics.

Other assumptions and constraints are required to achieve computational realizability. These
include the decomposition of the flow field into potential and viscous dominated parts, limits on allow-
able ship motions, and certain linearizations and simplifications of boundary conditions.

The model does not include several flow phenomena considered of secondary or intermittent
importance. These phenomena are associated with ambient stratification and ambient surface films.

EQUATIONS OF MOTION

Visually, the wake of a surface ship contains, among other things, a foamy mass of white water
caused by sprays, turbulent entrainment of air, and bubbles. To the modeler, the wake is a multiphase
flow field consisting of a gas-water mixture. This leads to immediate modeling difficulties because a
firm theoretical foundation for multiphase flow dynamics does not exist [1,21. As noted in Ref. 1, this
results partially from the particle/continuum dichotomy of multiphase flows and partially from the in-
ability to ascertain fluid constants in multiphase flow systems.

Therefore, to make any progress ,in describing the wake of a surface ship, we must develop an
approximate treatment of the multiphase flow field. To this end, we adopt an, "inertialess particle"
hypothesis [3]. For our problem, the validity of this hypothesis requires, first, that the gas particles
(bubbles) entrained in the water column be dispersed enough to be essentially noninteratting, and
second, that the inertia of the gas particles be much less than the inertia of the entraining water. In
ship wakes, the first requirement is observed empirically to be met away from boundaries. The satisfac-
tion of the second requirement then follows from the satisfaction of the first because of the relative
density ratio between gas and water.

In addition to the above requirements, the inertialess particle hypothesis presumes, from the con-
tinuum viewpoint, that any infinitesimal volume of water is still large enough to allow a meaningful
specification of gas particle distribution in that volume. We denote this specification by the gas particle
(or bubble) volume distribution function fov, which gives the number-of bubbles per unit of water
volume, per unit of bubble volume increment dVB. Here, VB represents the volume of a gas particle.

Manuscript approved March 12, 1984.
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From the definition of fovB, certain useful quantities related to the bubble population can be

obtained directly. In particular, the number of bubbles per unit of water volume having a gas volume

between VB1 and VB2 is f vB2
NoVB P 0vB 2 =VB fovB dVB, (1)

and the total gas volume per unit of water volume, or void fraction, is

YOB ----- 0jfo ,VBdVB. (2)

Within the inertialess particle hypothesis, the velocity UOB, of the gas particle is assumed to be the

velocity u0i of the entraining water, plus the rise velocity UR3 of the gas particle in otherwise undis-

turbed water. Here, we have adopted indicial notation and defined the "3" direction as upwards. We

find

UOBi = UOi + UR3 8A3 (3a)

where 8 j is the Kronecker delta. The rise velocity itself is calculated independently of the water ve-

locity by methods such as those discussed in Ref. 4. The position vector RoB, of the gas particle is

obtained from the integral of
d(
--t ROBi = UOBi. (b

The equations of motion for the water in the inertialess particle limit are developed straightfor-

wardly by noting that inertialess implies that no mass or momentum fluxes are carried by the gas parti-

cles. Hence, the primary influence of the gas particles is to change the density of the water from its
true value p to an apparent value p(l - YOB). Substituting this apparent value for the density in the

flux (or conservation) forms of the continuity and Navier-Stokes equations [5], we obtain the equations
of motion for the water as

t[( - VOB)PI + [(1 - YoB)PUOk] - 0 (4a)
at 8XOk

and

0 [(1 -YOB)puOil + [ - VoB)PUOUOk]at 8X ( -Yn~~kUk

Ol- 0  ___ OulOi OUok 2 OUik f (4b)
=- ao 0(1 - YOB)pg83 + a (1 - YOB) /A _4 X + -O o 8  OXoj (f

aOi XOk IO XOk aX 01  ao

In Eq. (4b), H0 denotes the total pressure, g the acceleration due to gravity, and I.t the viscosity of the

water. The appearance of the factor (1 - YOB) modifying A& follows from the inertialess particle
hypothesis [1, Eq. (6.16)].

BOUNDARY CONDITIONS

Consider the two coordinate systems shown in Fig. 1. The 00x01x0 2x03 system is fixed in the fluid

and is the coordinate system in which Eqs. (1) to (4) have been derived. The undisturbed free surface

coincides with the x03 = 0 plane. The OsXslXs2Xs3 system is fixed in the ship. With respect to this

latter system, RsHi denotes a vector from Os to a point on the surface of the ship. For those points

that have motions in addition to the rigid body ship motions (for example, propellors and control sur-

faces), RsHi is time dependent.

2
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Xs1, usl

0
s1, qs1

X0100

Fig. 1 - Coordinate systems and notation

We also define the vector from 00 to Os by Rosi. Then, with respect to the 00 X0 1X0 2X03 coordi-
nate system, the vector R0HI from O0 to the same point on the surface of the ship is obtained [6],

RoHi = Rosi + TijRsHj. (5)

The transformation matrix T is determined from the noncommutative set of rotations-yaw OS3 about
XS3, pitch OS2 about XS2, and roll Os, about xsl-with positive senses, as indicated in Fig. 1. From Ref.
6, we find

cos OS3 cos OS2

sin 0 S3 COS 
0

S2

_- sin OS2

COS 0 S3 sin OS2 sin 0s,
- sin Os3 cos OsI

sin 0 S3 sin OS2 sin Os,
+ COS 0 S3 COS OS1

cos OS2 sin Os,

COS 0 S3 sin OS2 cos OsI
+ sin 6 S3 sin Os,

sin 0
S3 sin OS2 cos Os1

- COS 0 S3 sin 0s1

COS 0 S2 COS OS1

The velocity uSHi of this point on the surface of the ship is given, with respect to the ship fixed
coordinate system [6], by

USHi = USi + eijkqsjRsHk + dRsHi/dt, (7)

where usi and qs, are, respectively, the linear velocities along, and angular velocities about, the
OSXSlXS2XS3 coordinate system, and etjk is the permutation symbol defined by

J0, if any two of i, j, k are the same
eijk = 1, if ijk is an even permutation of 1, 2, 3

-1, if ijk is an odd permutation of 1, 2, 3.
(8)

In standard terminology, qsl is the roll rate, qs2 is the pitch rate, and qs3 is the yaw rate. The relation-
ship between the angular rates and rates of change of the heading angles is determined [6] from

(9)qsi = Ro dOsj1 dt,

where the rotational matrix R is

1 0 -sin 052

R = 0 cos Os cos Os2 sin Os,
0 -sin Os, cos OS2 cos Osl

3
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The transform of the velocity uSHi from the ship fixed to the fluid-fixed coordinate system gives
the velocity U0Hi in the latter system as

UOHi = Tj USHJ. (11)

Applying the no-slip condition over the surface of the ship then yields the boundary condition on the
fluid

uti= UoHi for {XOl,XO2 ,X0 3 } = {RoHI,ROH2,RoH3}. (12)

In addition, assuming infinitely deep and unrestricted waters, we have

Uoi , Uo0 i as 1,j -- 00, (13)

where u0-i is the velocity of the fluid at infinity referenced to the 00 x01x0 2x0 3 coordinate system.

Let us now consider conditions at the free surface of the water. We designate by 7 o(X0 1,X0 2,t) the
elevation of this surface above the undisturbed reference plane x03 = 0. Two conditions prevail at the
free surface: the first relating to continuity of stress across the air-water interface and the second relat-
ing to continuity of the interface itself. Neglecting the presence of any ambient surface films, the
former condition can be written [5] as

(1 0 - PA - 2aHo)noi

16u 0, OUOk _2 U~j ' ~ (W)
S- OXU OI 2 k- oj +'k = -0-uik "Ok at x 03 = 7o. (14)

OXk x0, 3 1kxo

Here, PA is the ambient atmospheric pressure and o-k) are the components of the wind stress tensor at
the surface. The coefficient of surface tension is denoted by a. Also, n0o and H0 are, respectively, the
outward normal to the free surface and the local mean curvature of the free surface. The latter quan-
tity is taken as positive if the center of curvature is within the water. From Ref. 7, we have

0- 0 8i, - -- 812 + 8 03

Ox01  OX02  (15a)

[1 + [ I 2x+ I :xq 12] 1/2

and
&2 o 71 1 0o 1 21+ 0~o 070 o 2o710 2 0 710

2Ho 2 2O 1 x -X 0 1 aX02 0X 010X 02  ax0 Ox01
[1+ I a7'0 12 + 1 7o2 1213/2 (15b)

The second condition, relating to continuity of the air-water interface, is obtained as
070 0770 0770

07.__• + /O1 +- 0 2 O00t + x01  + U03 = 0 at x03 = 710. (16)

TRANSFORMATION TO MOVING COORDINATES

Suppose that, in some mean sense, the origin Os of the ship fixed coordinate system is moving in
the negative x0o direction with velocity U. It is then desirable to refer the governing equations of fluid
motion to a coordinate system more closely aligned with the position of the ship than the 0 0 X0 1x 0 2x 03
system. We define this system as the OxIx 2x 3 system with

xi = x0o + U8,lt (17)

4



NRL REPORT 8833

and we have taken the origins of the two systems to coincide at t = 0. The relationships between the
derivatives in the fixed and moving systems are found as

Xoi axi I afixed = t 0 (18)

We also have that any quantity Q0 in the fixed system is given in the moving system as

Qo(xoit) = Qo(xi - U8ilt,t) = Q(xi,t) (19a)

and, conversely,

Q(xit) = Q(x 0i + U8ilt,t) Qo(xo,,t). (19b)

If, in addition to the above transforms, we write the total pressure H1 as the sum of its hydrostatic

and dynamic components or

Hl = PA - PgX3 + P, (20)

the equations of fluid motion in the moving coordinate system are obtained from Eq. (4) as
a G-• YB +(1__ - YB) + ff•-X [(1 -- YB)Uk] = 0 (21a)
Ot Ox1  aOXk

and

(1- B)Ui) {(1 - YB)Ui} + _ {(1 - YB)UUk}

at ax, Oxn

_ 1OP+ g9YB8i3 + 1 I (1- Y -B + -- 8 + (21b)p ax, p Ox,. Ox,- 3 akxj. (1

From Eq. (2), the void fraction YB is
YB -=- fo°7 fvsVBdVB. (22)

The gas particle velocity UBI and location RBi = ROBM + U8ilt in the moving coordinate system

are determined from Eqs. (3a) and (3b) as

UBi = Ui + UR3 8 i3 (23a)

and

d RBi = USil + UBi. (23b)dt

To resolve the boundary condition over the surface of the ship, it is convenient to first define

OSi = rn8i 3 + ObS, (24)

so that the ship-fixed xsl axis is basically aligned with the negative x, axis. The transformation and
rotational matrices, Eqs. (6) and (10), become

- COS Os 3 cos OS2 - COS c•S3 sin •bs2 sin ObS, - cos ObS3 sin cbS2 COS ObsI

+ sin c•S3 COS (Asi - sin cbS3 sin 0bs,

T = - sin cs3 COS t•S2 - sin cbS3 sin cbS2 sin 0bsl - sin cbS3 sin Obs 2 cos cks/ (25a)
- COS O$ 3 COS OS1 + COS OS3 sin 0s,

- sin •bs2 COS '•S2 sin 40s, COS ObS2 COS OSlI

5
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and

1 0 -sin cbs2

R = 0 CoS s, cos 1s2 sin Oksi. (25b)

0 -sin 0•Sl cos 0ks2 cos 0bs,

Further, we write

us, -UT-l,8jI + vs, =-UITj1 + vsi (26)

to separate the basic motion of the ship in the negative x01 direction from the remaining linear velocity
components vs1 along the ship-fixed axes. The velocity of a point on the surface of the ship then is
found from Eq. (7) as

USHi = -UTty1 + vsi + e,,k qsRsHk + dRsHl/dt. (27)

From Eqs. (11) and (12), the boundary condition over the surface of the ship with respect to the
0X1X2X3 coordinate system is obtained as

ui = TijUSHj for {X1,X2,X3} = {RH1,RH2,RH3} (28a)

where, from Eq. (5),

RH, = Rs, + TVRsHJ (28b)

and where Rs5 is the vector from 0 to Os. In addition, we have from Eqs. (13) and (19a)

Ui , UoooA(i -- U~iltt) as V•~x - oo. (29)

At the free surface, the condition on continuity of stresses is found from Eqs. (14) and (20) as

Ou, 2 Ow)k _-- UW)
(P - pg7 - 2aH)n- 1- (1 YB)(. LLxk+ x 3 xj Innk = _.() nk at X3 = (30a)

where, from Eqs. (15a) and (15b),

-6g. 8il - 871 80 + 803

1++Ox -L1 2 + 2I12 (3Ob)

aLx,~ OX2 j
and

aX, i[ X2 6[ Ox 8 OX 2 0Xl0X 2  OX2 aOxl 1
2H= 12 1 1213(30c)

[oxli +I8X2

6
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The condition on continuity of the free surface is obtained from Eqs. (16) and (18) as

Oq + (U + ud) -1 + U2 U3 = 0 at x 3 - . (31)at ax, Ox2

Within the limits of the inertialess particle hypothesis and the neglect of ambient stratification and
ambient surface films, Eqs. (21) through (31) represent an exact description of the hydrodynamic flow
field about a surface ship. The set of equations is unsolvable.

DEVELOPMENT OF THE MODEL

Part 1: Decoupling the Fluid and Gas Particle Flow Fields

The first step in constructing a solvable model for the hydrodynamic wake of a surface ship is to
decouple the water and entrained gas particle flow fields. This entails approximating the void fraction
by YB = 0 in the equations of motion and boundary conditions. Though this decoupling step is not
absolutely essential, it does greatly simplify the numerical work involved in the flow field calculations.
If higher order approximations are necessary, an iterative scheme such as outlined in Ref. 2 can be
used. However, since the equations of motion in the inertialess particle limit are valid only for
YB << 1, the error introduced by setting YB = 0 is generally small. This is especially true at distances
removed from strong sources of gas particles.

With YB = 0, Eqs. (21a) and (21b) reduce to the standard continuity and Navier-Stokes equations
for an incompressible fluid, or

a- = 0 (32a)
OXk

and
0u1  Ou. OU•Uk = 1 OP t& 02Ui--- + U Ox, + aik p OX,+ p" a2 (32b)6~~~~ ~ ~ t x k O XkaXk

Part 2: Converting the Ship and Free Surface Boundary Conditions to Known Surfaces

A fundamental difficulty preventing the solution of Eqs. (21) through (31) is that the ship and
free surface boundary conditions are applied at surfaces whose locations are not known "a priori."
Hence, the second step in constructing a solvable model for the hydrodynamic wake of a surface ship is
to convert these boundary conditions to surfaces whose locations are known "a priori."

a. Ship Boundary Conditions

Referring to Eqs. (28b) and (25a), we see that both Rsi, the vector from 0 to Os, and Tlj, the
transformation matrix, contain terms dependent on the instantaneous location of the ship hull. If we
stipulate that the time-averaged (mean) motions of the ship about its equilibrium motion in the nega-
tive x 01 direction are zero and that these motions are themselves suitably small, then the boundary con-
dition on the ship hull can be applied at the mean location of the hull. For those points on the ship
hull that have motions in addition to the rigid body ship motions, the boundary condition is to be
applied at some appropriate mean location of the points (for example, the equivalent actuator disc of a
propeller [8] or the zero deflection location of a control surface).

7
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Taking the time averages of Eqs. (28b) and (25a) and imposing the above stipulations, we find
the mean location of the ship hull as

RHi = Rsi + TijRsHj, (33a)

where overbars denote time averages (means), and where

T,) = -8j + 2 8i38j3. (33b)

To the same order of approximation, the boundary condition at the mean location of the ship hull is,
from Eq. (28a),

ui = TjusHj for {Xl,X 2,X31 = {RHI,kH2,kH3} (34a)

where, from Eq. (27),

UsHI = U8j1 + vsi + eiJkqsjRsHk + V*SHi. (34b)

Here, dRsH,/dt = v*H indicates that effective, as opposed to actual, velocities may be required at those
points having motions in addition to the rigid body ship motions. (See again Ref. 8 for a discussion of
propeller flow problems.) Combining Eqs. (34a) and (34b), we obtain

ui= -U8iI + Tij(Vsj + ejklqskRsH1 + vsHj) for {xl,x 2 ,x3} = {RHI,RH2,RH3}. (35)

This expression is equivalent to *he standard linearized ship hull boundary condition. Higher
order boundary conditions, based on Tlylor series expansions about this mean condition, have been
developed [9]. However, the flow fields calculated using these higher order boundary conditions do not
differ significantly from those calculated using the mean condition while the numerical work involved
does. Hence, we take Eq. (35) as the appropriate ship hull boundary condition in our model for the
hydrodynamic wake of a surface ship.

b. Free Surface Boundary Conditions

The exact free surface boundary conditions, taken at the unknown surface x3 = r7, are given by
Eqs. (30) and (31). If we stipulate that q is suitably small, these boundary condtions can be approxi-
mated by a Taylor series expansion about x3 = 0. To model the hydrodynamic wake of a surface ship,
we retain only the lowest order terms of these expansions--again noting that higher order boundary
conditions lead to significant increases in numerical complexity while not significantly affecting the cal-
culated results.

To obtain the appropriate boundary conditions to be applied at x 3 = 0, we let r7= Er' where E is a
small dimensionless parameter. Expanding the kinematic free surface boundary condition given by Eq.
(31) about x3 = 0 and substituting for -q, we have

EUl + 2 ' + U2+ r\' 6 +0(2)

-[U3 + E71' 0U3  O(E2) -0 atx 3 =0.

We see that for a consistent expansion u3 = E u' and, with this substitution, find the kinematic free sur-
face boundary condition to lowest order in E as

&'q + ( U + u) -_ + U2 • -u 3 =0 atx 3 =0. (36)
at Ox1 Ox2

8
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Consider now Eq. (30a). With YB = 0, this boundary condition becomes
(P - pgrl - 2aH)ni - O'iknk = -O-oiknk at x3 = q (37a).

where we have put

o0ik = i + x U" (37b)

To estimate o-ik near the free surface, we note that from continuity, Eq. (32a), both 0ul/0lx and
OuJOx 2 are of the order 0u 3/0x 3 = EaOujOx 3. Hence, or1 = E4ol, 0T22 = Eor2 2, and o- 33 = EcoT 3. Simi-
larly, since there is no reason for one horizontal direction to be preferred over the other, o012 = Eo.•2-
Also, since we have stipulated small surface displacements, both 0 Ul/0X 3 and 0 utOx 3 must be small;
or, 0-13 = E' 1•3 and o-23 = EOT' 3 . Thus, we find o'ik = Eo0i'k. Further, from Eq. (30c), we have

2H + + 0(3).

Expanding Eq. (37a) about x3 = 0 and substituting the above results, we find

EP' + E 27' r 3 + 0 (E3) - pgE7_ + ae[ 0 2  + 2  + 0(3)

2 + O (. E3) (w) atX30

[II-oik "+ •7 63 I(3 nk = nix =0

where, for a consistent expansion, we have set P = EP'. Taking the i = 1, 2, and 3 components of this
expansion and observing from Eq. (30b) that nl, n2, and n3 are of orders E,E, and 1, respectively, we
obtain, to lowest order in E, the conditions on continuity of stress across the free surface as

+~ 0u-3 1 .1(w)
lx 3, +Ox = aU 3 at x 3 = 0, (38a)

0u2 +0u 3  (W) --x3 + x2 23 at x 3 = 0, and (38b)

Pax2 OU 3  w at x 3 =0. (38c)

Equations (36) and (38) are the desired free surface boundary conditions for our model of the

hydrodynamic wake of a surface ship.

Part 3: Decomposing the Flow Fields

To proceed with the development of our model, we next wish to decompose the flow field into
ship-induced and interaction-induced components. This decomposition allows us to both visualize and
calculate the overall flow field as two basically different, but interacting, components.

Let us write

Ui= V, + v" + w, (39)
where we define vi and vi', respectively, as the mean and randomly fluctuating flow velocities induced
by the ship motions in otherwise still water and wi as the flow velocities induced by the background and
background/ship flow interactions. Several assumptions are implicit in the decomposition of the flow
field represented by Eq. (39).

9
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First, we have assumed, through the introduction of v,, that turbulence modeling will be incor-

porated into our description of the hydrodynamic wake of a surface ship.

Second, we have assumed that the turbulent velocity fluctuations vi' produced by the ship motions

are significantly larger in magnitude than fluctuations occurring on the same time scale in the back-

ground. Hence, the term w,' has been neglected in the velocity decomposition given by Eq. (39). This

assumption is physically reasonable since oceanic sources of turbulence are normally weak compared to

the sources resulting from the presence of a ship.

Third, we have assumed that the time scale of the turbulent fluctuations vi' is small compared to

the time scales of both the mean ship-induced flow vi and the mean interaction flow wi. This assump-

tion permits the unambiguous decomposition of the velocity field given by Eq. (39). The fundamental

limit on this assumption is the time scale of the shortest gravity-capillary waves present in the back-

ground. For example, for 3.5-cm waves, we find that the turbulent fluctuations must occur with a fre-

quency > > 20 Hz which is near the limit of strict validity of the assumption. For much shorter waves,

the assumption clearly fails though certain mitigating factors possibly are present because of the very

small depth of penetration of such waves.

In a manner similar to the decomposition of the velocity field, we write the dynamic pressure P

and surface elevation 71 as

P = Pv + Pv' + Pw (40a)

and ' (40b)"77 -- 7v + "0v, + 77w,

where the subscripts v and w refer, respectively, to quantities induced by the ship motions in otherwise

still water and to quantities induced by the background and background/ship flow interactions. The

three assumptions applicable to the decomposition of the velocity field are applicable also to the decom-
positions of P and 7).

Proceeding to substitute Eqs. (39) and (40) into Eqs. (32) governing the fluid motions and Eqs.

(29), (35), (36), and (38) governing the fluid behavior at the boundaries of the flow, and time averag-

ing the resultant expressions, the turbulent equations of motion and the turbulent boundary conditions

are obtained. We separate these equations of motion and boundary conditions into sets of terms

identified, respectively, with the flow field induced by ship motions in otherwise still water and the flow

field induced by the background and background/ship flow interactions. Setting these sets of terms

individually to zero, since they are individually separable and equal to zero at infinity, produces the

governing equations of motion and boundary conditions for the two components of the decomposed
flow field.

a. Ship-Induced Flow Field

We find the continuity and turbulent Navier-Stokes equations for the ship-induced flow field to be

given by

Ov,xv-k = 0 (41a)
axk

and
Ov, Ov, Ovlvk 1 OPv 0 f p~ Ov, -' -_

a- t + U a'8Xk V . (41b)

The boundary conditions applicable to this flow field are obtained as

vi - 0 as x -* -, (41c)

1W
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vi U8 i I + T,,(vsj + eJ,,kqsk RSHI + vSHJ) for {x1,x 2 ,x3} = {RH1,RH2,RH 3 }, (41d)

(0v1  0v3 1--
I Ix3 + XlI + 0r13v = 0 at x 3 = 0, (41e)

0v2  Ov3 1 -
/.I+- - + 0-23 v = 0 atx 3 -O, (41f)

2 21V 02av -I v3 +,-
PV Pg9)v-2 + cOI v - 2.L - - 33v = 0 at X3 = 0, (41g)

and
+- U 7 + (vi7V + viv) - v3 =0 at x3 =0. (41h)

aOt Ox1  Ox,
In developing Eqs. (41e) through (41g), we have allowed for the possibility that the average values of
both the fluctuating stresses o-!v and fluctuating surface tension o-"v are not zero. Also, Eq. (41h) has
been developed by writing Eq. (36) in the equivalent form

+ U + aU - U3= 0
at Ox1  O xi

which follows from Eq. (32a) and the fact that 71 is independent of x3.

b. Interaction-Induced Flow Field

For the interaction-induced flow field, the governing equations of motion and boundary conditions
are found as

S- 0, (42a),Xk

a1 W+ 2wiOx+'--t1Wi++ (WiWk + WiVk + ViWk) = + P_ (42b)a~~ t X X xi P 8gxkaXk'

wi -" Uoi(x - U8ilt,t) as V ---x -o, (42c)

w- 0 for {x 1,x 2,x 3} = {RH1,RH2,RH3}, (42d)

[Wl Ow3 1 w)MI -x3 +ax =O-- at x3 = O, (42e)

I Ow2  O ýw 3  w)
/A .x3 =a 2 at x3 = 0, (42f)

0217w+ 0271W Ow3  (w)(4g

"P. - pg'q a I +w3 - 2  pr 2/A O atx 3 =O, (42g)

and
--- + u -+ - (wi7 + w 1 v + vilw)- w3 = 0 at x3 = 0. (42h)
at Ox1  Ox1

Part 4: A Matched Asymptotic Expansion for the Ship-Induced Flow Field

Equations (41) describing the ship induced flow field in otherwise still water are, with currently
available techniques, unsolvable on large domains regardless of the turbulence model used. The princi-
pal difficulties preventing a solution are the nonlinear free surface boundary condition given by Eq.

11



R. A. SKOP

(41h) and the second order viscous derivative terms in Eq. (41b). These derivative terms, which are
influential only in the vicinity of the ship hull and the ship turbulent wake, give Eqs. (41) the charac-
teristics of what Van Dyke [10] terms a singular perturbation problem. For such problems, further
progress can be made by applying the method of matched asymptotic expansions [10] to the solution
procedure. Before applying this method, we must nondimensionalize Eqs. (41) to identify the relevant
governing parameters, and before this, introduce the rudiments of a turbulence model.

For our present purposes, it is sufficient to use isotropic eddy viscosity and diffusivity models for
the turbulent stresses and diffusivities appearing in Eqs. (41). More complex models can be readily
incorporated without changing the basic results of this section. Following Rodi [11], we write

- (--7-~- V 1 Ov, +OV,, 1 _ 2 k,, 4aý7 Oikv V 2
-Vi~k =_ T - t" -k+ i - k8 kik, (43a)

Ox,, Ox, J 3
where vt is the turbulent viscosity, and k is the turbulent kinetic energy per unit mass,

1 --
k= - vv. (43b)

2

By analogy with Eq. (43a), we also take

otv a ft ax+ 2 OX2J (44a)

where a, denotes the coefficient of turbulent surface tension. Further, in analogy with eddy diffusivity
models for turbulent heat or mass transport, we put

= - On V (44b)

Oxi

where o-. is a dimensionless number. We also set

= V = o'•vt (45a)
P

and a =oaat. (45b)

Here, V is the kinematic viscosity of the water; oa- is the ratio between this and the turbulent viscosity;
and o-c is the ratio between the coefficient of surface tension and the coefficient of turbulent surface
tension.

Since our primary interest is in the hydrodynamic wake produced by the ship, we choose nondi-
mensionalizing parameters associated with this wake. As a length scale, we use the dominant Kelvin
wavelength [121 2 7r U2/g and, as the time scale, the dominant Kelvin frequency 27r U/g. This choice of
scaling parameters renders the wake Froude number equal to unity. The dimensional quantities appear-
ing in the ship wake problem then are given, in terms of their dimensionless counterparts, as

2___ 2ir U2
t = 2-T U: xi - 2,rU26, vi = Urci,

g g

pv = P U 2P,5 vsi = UVSi, V SHi = U € *SHi,

9 - 27TU ?i ýi=2TU
qsi = 2,7r U qsi, RSHi 9 g sI, Ri 2 R U Hi,

g 2r7 U2 = -U2

Rsi = - R si, and 7,- = -U . (46a)
g g

12
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For the turbulent kinetic energy, we take

"kVg - (46b)
27rU U

which insures that both dimensionless components of Eq. (43a) are of the same order of magnitude, as
required for dimensionless analysis.

Substituting Eqs. (43) through (46) into Eqs. (41), we obtain the dimensionless equations govern-
ing the ship-induced flow field problem as

Pi ; 0, 
(47a)

1 O- +i1 + o [ - + -v+ - (47b)

OT_ 66 66 +i O, IRK, Rk, of,, a~j 3

vl, - 0 as V - -*oo, (47c)

•¢i = -811 + (i(ilsj + ejkjqs,,ksHl + VsHJ) for {1,•2,•3} = {R H RH2,RH3}, (47d)

O il3 + -1 =0 at 3 = 0, (47e)

O 2 + - L =0 at ý3 = 0, (47f)

/5v 27•,v + (0-" + 1) -a - --. 2v 2(o+• + 1) 8V3 + 2 _k -0 at 3 = O, (47g)
RKt I0? "l J RKt, R3 3 RK,

and

' + -1 + 0- tA Ot" -- V3 = 0 at 3 =0. (47h)

6T- + i &, I.- (r RKI Ri I

In these expressions, RKI and aKt are, respectively, the turbulent-flow Reynolds number and
turbulent-flow inverse capillary number, both based on the Kelvin wake. We have

Rt 2irrU 3  2irrU 3

RKI ',U V 27r U VRK (48a)gut gV

aKt aa a,OK (48b)
p Upt o0- p UP O-,

where RK and aK are, respectively, the laminar-flow Reynolds number and laminar-flow inverse
capillary number. Typical values of RK and aK for water are

RK = 6.4 x 105 U3, aK = 73/U

with Uin rn/s (1 m/s - 2 knots).

13
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As explained in Ref. 10, the method of matched asymptotic expansions is a solution technique for
problems such as given by Eqs. (47) where the higher order derivatives have only limited influence on
the flow field. The technique consists of developing two series solutions, one governed by an outer
flow parameter that takes into account the unimportance of the higher derivatives for this flow; the
other governed by an inner parameter that recognizes the limited influence of these higher derivatives.
The final or composite solution is obtained by an appropriate combination of the two series that is valid
over the entire flow field.

The terms outer and inner have arisen historically because of the application of the method to
boundary layer and wake flows in infinite domains. For these problems, it is easy to visualize two dis-
tinct flow regions. For the ship wake problem, as we shall see, this analogy falters, because both outer
and inner solutions occupy the flow region aft of the ship. However, the formalism of the method does
not depend on defining specific flow regions, and we retain the terms outer and inner only for historical
consistency.

a. Ship-Induced Outer Flow Field

Following the formalism laid out in Ref. 10, we seek an outer asymptotic solution to Eqs. (47) for
large RK(=RKt/O',) since the inverse of this parameter multiplies the highest order derivatives in the
equations. We write

rV(T,•j;RK) - lim I(RK) (49a)I RKO -M

/5v (T-, i; RK) - lim 8 (RK)I /v(7, e d, (49b)
I RK•O M I

k(-,ej;RK) [ lim 8(RK) k k(T,e,), (49c)
[RK•O

and

-.'~e,2RK i R =8 (RK)I 17(T,e 1,02 (49d)

where a superscript t denotes the flow variables associated with the outer flow field, and where 8 (RK)
is an expansion parameter to be determined. Substituting these expansions into Eqs. (47) and taking
the limits as RK -- co, we find

av!
0 - 0, (50a)

8+ t + [Rlim 8(RK) (50b)

V! "- 0 as v• Ti co (500)

1r,- [ lim (1 J [-8,, + Yj(rj + eJkIlsRs-I + VSHJ)]I [RK-M 8 (RK) k4kA11 +VIH

for {e1, f 2,3} N {-RH1,R•H2,R•H3), (50d)
0j,1t Oir 1I
I + "1= 1 0 at 3 - 0, (50e)

OVI + = 1 0 at 3 -= 0, (500

151- 2rf= 0 at f 3 - O, (50g)

14
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and

O + .+ 8 (RK)] V -V = 0 at 63 = 0. (50h)

We see from Eq. (50b) that the highest order derivatives have been lost in the outer asymptotic
expansion as has kt. The outer problem is thus reduced to an inviscid flow problem (we set -t= 0
since it is indeterminate). Having lost the highest order derivatives, the boundary conditions on the
ship hull given by Eq. (50d) cannot be identically satisfied nor can the entirety of free surface stress
conditions given by Eqs. (50e) through (50g). We instead specify zero fluid penetration through the
hull or, equivalently, zero normal velocity and continuity of the normal stress component across the
free surface. Hence, Eqs. (50e) and (50f) are ignored in the outer flow approximation. Additionally,
we drop v Hj from the outer problem since these effective velocities are associated with vorticity pro-
duction, which is inconsistent with the inviscid nature of the outer problem.

Defining the normal to the ship hull with respect to the ship fixed coordinate system by nsH,, the
normal ni in the OxIx 2x 3 coordinate system becomes, consistent with the suitably small restrictions
already imposed on the ship motions,

ni = Tlj nsfj. (51)

The appropriate outer flow boundary condition on the ship hull then is obtained as

il/tn = [ lim 1 I [-nI + ni(Tij(-sj + ejkl skRSH1)][RK- 8(RK)

for {€,,¢2, 3} -= {HI,RH2,RH3}• (52)

From this equation, we note that the only nondegenerate outer flow problem results from assigning a
finite, nonzero value to lim 8 (RK). Without loss of generality, we can set this limit to unity.

RK --

The outer flow problem, since it is inviscid and irrotational, can be simplified considerably by
introducing a dimensionless outer flow velocity potential kt related to its dimensional counterpart ckt
through

ot= 2ir U3  t. (53a)
g

Then

Vil- (53b)

and Eq. (50a) yields Laplace's equation for the potential as

a2ýt -- 0, 
(54a)

while Eq. (50b) can be integrated to give Bernoulli's equation

Pt + +0 1  0. (54b)

The appropriate boundary conditions, which all can be cast in terms of t, are given by Eqs. (50c),
(50g), (50h), and (52).

The above problem is, essentially, still unsolvable because of the nonlinearities appearing in Eqs.
(50h) and (54b). However, as pointed out by Newman [121, neglecting these nonlinearities is necessary

15
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for consistency with the approximations already made in reducing the free surface boundary condition
to the plane 6 = 0. This is easy to verify. Recall that for this reduction, we took ý ýv- E- ' where E
was a small dimensionless parameter. This gave lf •- •' and P, - Epv' in the vicinity of the free
surface. The free surface boundary condition was then expanded about 63 = 0, and all terms of higher
order than E were neglected. Referring to Eq. (54b), we see also that, for the outer flow problem,
l-[- E' in the vicinity of the free surface. Hence, kt and, consequently, ill are, respectively, of

order W/ t' and EPf' in the vicinity of the free surface. Thus, the nonlinear terms in Eqs. (50h) and
(54b) are of order E2 for the outer flow problem and must be dropped to ensure consistency with our
previous approximations.

Returning to dimensional quantities via Eqs. (46a) and (53a), we can summarize the ship-induced
outer flow field problem as

a2o t = 0, (55a)

OxiOxi

v x04/ (55b)ax•'

vit -* 0 as -x 0, (55c)

vitni = -Un 1 + niTij(vsj + ejk,,qskRSH1 ) for {Xl,X 2 ,X 3} = {RH1,RH2,RH3}, (55d)

and

S+2Ua + U2 O?+g O 0 atx 3 =0, (55e)St2 0taXl aX2 aX3

together with the prognostic relations

Pt = -O1 a-t + U l (55

and

IQ=- g 1 6 Ut aU x atx 3 = 0. (55g)

Equations (55) are recognized as being the traditional Kelvin-Neumann problem [121 for determining a
ship's Kelvin and radiated wave systems. This problem, while nontrivial, is solvable.

One cautionary note is in order. For the outer problem to be fully consistent over the entire flow
domain, it is necessary that the n, component of the ship normal be everywhere small (of order E).
For, if at some points on the hull it is of order unity, we find from Eq. (52) that, at those points,
i1t [ 0(1) as opposed to order E. Hence, the consistency of the outer flow approximation breaks down
at such singular points. Physically, such points give rise to the nonlinear bow wave problem [12] which
must, in itself, be treated by other expansions and then incorporated within the traditional Kelvin-
Neumann problem.

b. Ship-Induced Inner Flow Field

Having lost the viscous derivatives in the outer asymptotic expansion, we have been forced to
neglect ship boundary layer and propeller effects and the ship turbulent wake generated by these effects.
These viscous phenomena, which are confined to thin regions adjacent to the ship hull and circum-
ferential to a line (the resultant thrust axis) running aft of the ship, must be recouped in the inner
asymptotic solution. The technique leading to this solution uses the thin nature of the viscous regions,
and the concomitant knowledge that flow quantities vary much more rapidly across these regions than

16
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along other regions, to rescale and simplify the equations and boundary conditions governing the gen-
eral ship-induced flow field.

Since our interest is in the hydrodynamic wake of the ship, we begin by considering the inner
asymptotic solution for the region aft of the ship. Before starting, however, one more cautionary note
is in order. The subsequent developments restrict the resultant thrust axis to be parallel to the direction of
motion of the ship; that is, canted neither significantly towards nor away from the free surface.

Following again the formalism laid out in Ref. 10, we introduce an inner expansion parameter
A(RK) that represents, in dimensionless terms, the circumferential extent of the viscous wake region
about the resultant thrust axis. This parameter requires the property

A(RK) - 0 as RK -- oo. (56)

Since the region is thin, a nonuniform scaling of coordinates is necessary to ensure that derivatives
across and along the region are a uniform length scale. We accomplish this by modifying the dimen-
sionless global coordinates ej as

1 = SI, e2 = A(RK)S 2 , •3 = A(RK)S 3  (57)

where the s, give the required uniform inner coordinates. We have, here, tacitly assumed that the wake
axis parallels el, from which assumption the above-noted restriction on the direction of the resultant
thrust axis has been obtained.

Based on the scaled coordinates, we seek an inner asymptotic solution to Eqs. (47). By definition,
the dimensionless velocity ii1 along the wake axis must exist if a long, thin, viscous region running aft
of the ship is to exist. Hence, il must be relatively independent of the circumferential extent of the
wake, and we write

i1(&,si;RK) - Zil(T,S,) (58a)

where a superscript * denotes the flow variables associated with the inner flow field. The velocities il2
and il3 transverse to the wake axis are taken, more generally, in terms of the inner expansion parameter
as

V'2(r,s,;RK) - lim AX(RK) I (lr,si), (58b)

andr1
an3 (T,si;RK) - [lim AX(RK)l'*(Tr,s,), (58c)

IRK - I
where the nonnegative exponent X is to be determined.

Substituting Eqs. (57) and (58) into Eq. (47a), we obtain the continuity equation for the inner
flow field as

O + lirnA (RK jO 2 + 0 =3 0. (59)a, IRK - I82 S

Thus, for the fundamental property of conservation of mass to be preserved in the inner flow field, we
must take X = 1. Employing this result and Eqs. (57) and (58) in the dimensionless version of Eq.
(43a), we then find

k(&,si;RK) - k* (",si) (60)

if both components of the inner form of Eq. (43a) are to be of the same order of magnitude, as
required for dimensionless analysis.

17
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Using Eq. (48a), Eqs. (47b) become

lim + 02) 2- 2
RK- 1 as, a Os, 3

+ s {oRKA2(RK)

+ { 1I [

+ 1) a + A2 (RK) P 11
OS2 Os,

+ 1) a + A 2(RK) S ]I
8S3 Os,1

"2 +-2. + Ps, -
6 T as, 6 +

O o-{RlA2(RK) [(-S+2) 3

+ 1 +o 1R ) ' "2+ r 1 3

O6r +as,+ Osi
Rlim . 1  aPv + a 1A2(RK)(o + ls + O-s3 }RK-- I A2(RK) aS3 " si -•1 ,RKA2(RK)as S

"+ 0S2 o,,RKA 2 (RK)

+ • , oRKA2(RK)

(o-. + 1) OSi + ls3

(o ' + 2) sl L 3 2 (61c)

Examining these expressions in the limit RK 00, we see that, for the inner asymptotic expansion to
be both well behaved and to retain viscous flow effects, lim RKA 2 (RK) must be a finite, nonzero

RK-•oo

number. Hence, without loss of generality, we set

which yields

lim RKA 2(RK) = 1
RK ) 1o

A(RK) = 1/RY 2.

(62a)

(62b)

18
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O~ s, O si

11B(61a)

6 {O 1 RK A2(RK) [()( + 1) Oil O2+ ljJ
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With this limiting value for RKA 2 (RK), we see, in addition, that, to eliminate singular terms from the
inner asymptotic equations, -

PV(&,si;RRK) K) P*(,r,si). (63) Fr'
R K - o K ,, :

Using the identities

1 o il11 s Os20s11 (64a)

Os1 i 0s, 8S OS2 Osi 0-,,

and

O- 11 P 0s = _P---7 a3 i 1 (64b)

Os Si o 0s, JS Os3 Os, 0o,

which follow from Eq. (59) and assuming (soon to be demonstrated) that the wake region is steady in
the frame of reference moving with the ship, the inner flow equations for describing this region reduce
to

-=0, (65a)

Os-1 + Os 0s2 -o. 02 + Os3 + 0+ I s3 (65b)

Os-- + Os1  Osj +Os2 Os1

O-as2 o0, 0s2 3 o. , Os3  r o s 3

Oas O Si OS3 "0- a Si0Si,
+ I- +I I

Osa s, aOi S3  Os3 Os,1 0vj

+0 0 J 0 0_'I - -__1 (65d)

We note that all second order derivatives involving sl, along with axial gradients of the pressure and
turbulent kinetic energy, have disappeared from the inner flow problem. Hence, Eqs. (65) are hyper-
bolic in the s, direction and elliptic in the (s2,s 3) cross plane (i.e., parabolic overall). Mathematically,
this means that the values of the inner flow variables on some plane s, + dsl are determined entirely
from their values on the plane s, together with the boundary conditions on the plane s, + dsl. Physi-
cally, this implies that if the values of the inner flow variables are steady on some plane sl aft of the
ship, they remain steady as we progress further downstream from the ship. Since we have already re-
stricted the unsteady motions of the ship about its mean motion to be small, the primary sources of the
wake are the boundary layer of the ship in uniform motion and the commensurate propeller effects.
Both of these sources are nominally steady; thus, our assumption that the wake region is steady in the
frame of reference moving with the ship has been validated.
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Let us turn our attention now to the boundary conditions for the inner flow problem. We assume
that somehow (computationally, experimentally, or parametrically) the values of the inner flow vari-
ables on a plane aft of the ship have been specified. Hence, as follows from the parabolic construction
of the inner flow problem, the boundary conditions on the ship, given by Eqs. (47d) are irrelevant
regarding the subsequent downstream values of these variables. Substituting Eqs. (57), (58), and (63)
into the remaining boundary conditions [Eqs. (47c) and (47e) through (47h)], using Eqs. (48) and
(62), and invoking the steady nature of the wake region, we find

V*7- 0 as V2 + S3- (66a)

O- i 0  at s3 = 0 (66b)
Os3

+ + = 0 at s3 = 0 (66c)

Os3  Rs2

2+ 2 +1 + lim { - + 0-V J a s 2s][o'-,+210 0K R2v*

K s a 02 at S3 0 (66d)

a__ Oývi o*: o [o, Or8V 1o%7+ V* - + V2 o• o • b
as, as, 052 Os2  0-, ar s2 j

-lim a 1 0 at s3 1 (66e)
RK--oo IRK OSa o l +SR 200 ats 3 -- 0. (

In arriving at the latter two boundary conditions, we have taken
ýv(r",$x,$2"[RK) - lim A2K(RK)it*(Sl,S 2) lim 1 ]77&5,5;K R'-o j RkJ 71:($1'12) (67)

where the nonnegative exponent K is to be determined.

Consider Eq. (66d). 'For K less than, equal to, and greater than unity, respectively, we have in
the limit RK 00

[, + 1I a2ý*
K < 1, -21r *+ Jcr-K 0=O ats 3 -=O (68a)

+ *+ I +' j 7s1

K1-i j - 21rý+ a a' O =0 ats 3 =0 (68b)t<-l 1: 3 o- V ( T a- s3 1 8, s2

K2>,- 2-0 atS3= 0 (68c)3 o', I (V 8S3

The condition obtained for K < 1 is independent of the inner flow field and, except for the solution
v* =- 0, gives a continuously increasing elevation for S2 > 0 since [(o-, + 1)/oaJaK is positive.

Hence, we determine either K > 1 or K < 1 with i * 0. With either constraint, Eq. (66e) yields, in
the limit RK 00,

VI= 0 at s3 = 0. (69)

Together with this result, Eq. (68c) overspecifies the boundary conditions on the inner flow problem.
Thus, we require for a well-stated problem either K - 1 or K < 1 with - * = 0. Since the former con-
straint is less restrictive, we conclude K = 1.
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Summarizing, the boundary conditions for the inner flow problem are ascertained to be

7'"- 0 as V1fS22 + S3 (70a)

and

3 . . 0. . 0 at s3 = 0 (70b)6S3 as3

along with the prognostic relation for 'v* given by Eq. (68b). We note from Eq. (70b) that the free
surface acts as a plane of symmetry for the inner flow field. Hence, we arrive at the important result
that the solution to the ship-induced inner flow problem is identical to the lower half space (s3 K 0) solution
that would be obtained by solving the inner flow problem for the ship and its image (about s3 = 0) in an
infinite fluid.

Returning to uniform dimensionless quantities via Eqs. (57), (58), (60), (63), and (67) and,
thence, to dimensional quantities via Eqs. (46), we obtain, with the aid of Eqs. (45) and (48), the
dimensional form of the ship-induced inner flow field problem as

Ov. 0 (71a)
Ox1

U Ov Ovv7 1ovt1 0o[ ovl
OxU Ox + O 2  +Vt) 2j+ (V+V) +(71b)

OvU Ov6v*_ 1 OPv* 0v7 Ov,
Ox+ Ox, p Ox2  Ox2 Oxi

+ a (V + V') Ox2  3 -x 3 (V +v Ox3 ] (71c)

OvS Ov~v* 1 OP'• 0v,* Ovt
U ++ -

Ox+ Oxi p Ox3  Ox3 Ox,

+O V+ v') _ [(V+') 0v* 2 kl(71d)
"&X 2 1  t) OX2 J +-X 3 I(+Vt OX 3  3

v7- 0 as xx +x] -X3 0 (71e)

v* Ovtv Ova 0 at x3 =0 (71f)

&X3 6X3

together with the prognostic relation for 77V*
(a + a,) O2 Ppgq* = 2p(v + v,) av.. _O -Ox3 - - -I pk* at x3 =0. (71g)

Ox2 x3  V 3

c. Ship-Induced Composite Flow Field

The ship-induced composite flow field is derived most straightforwardly by the method of additive
composition detailed in Ref. 10. Basically, to obtain the uniform, first order, composite solution, we
sum the first order outer and first order inner solutions and subtract the part they have in common so
that it is not counted twice. Formally, this procedure translates into summing the first order outer and
inner solutions and subtracting either the outer expansion of the inner solution or the inner expansion
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of the outer solution. Because we have developed a matched asymptotic solution, these latter two
expressions are, by construction, equal and, in our case, identically zero.

To see this, let us rewrite the inner problem in terms of the independent outer variables fi. Sub-
stituting Eqs. (57) into Eqs. (65) and (70) and taking the limit as RK -- 00, we find the outer represen-
tation of the inner flow problem as

SI - 0, (72a)

t--- 0 as -'22 + 132 "-(72b)

and
i - =0 at 3 = 0 (72c)

663 O63

where the superscript * t denotes the outer value of the inner variable. Hence, the outer expansion of
the inner solution-that is, the solution of Eqs. (72) -is

iV.t(e ) = 0. (73)

For completeness, let us also rewrite the outer problem in terms of the independent inner variables s,.
Substituting Eq. (57) into the nondimensional versions of Eqs. (55) and taking the limit as RK -- 00,
we find the inner representation of the outer flow problem as

S+ * = 0, (74a)

0s2

O "-*0  as -2 + S3-- , (74b)
Os1

and

0 =0 at s3 = 0 (74c)
6s 3

where the superscript t* denotes the inner value of the outer variable. Here, the boundary condition
on the ship hull has been neglected since the matched asymptotic solution encompasses fully only the
region aft of the ship. Thus, the inner expansion of the outer solution satisfies a two-dimensional
Laplace's equation with zero gradient boundary conditions. From Ref. 13 and Eq. (74b), we obtain

t*(r,sd) = constant, (75a)

or

il/*( (,si) - 0. (75b)

Consequently, the method of additive composition, together with Eqs. (58), yield the ship-

induced composite flow velocities aft of the ship as

l1& (r, •e) = vAT(r, ) + v d (,), (76a)
(72(, ,) = !t(T, ,) + RK 1- 1 i/2V ), (76b)

and

V3 = ( iVAT) + RK 1/ 2vl (31 ), (76c)

or, in dimensional terms, as

v1 (t,x,) = v,(t,x,) + v.*(x,). (77)
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Let us now turn our attention to the ship-induced composite pressure and surface elevation fields.
From Eqs. (63) and (67), both the inner pressure and elevation are of second order in the inner
expansion parameter A (RK). Hence, they do not contribute to the uniform, first order, composite
pressure and elevation fields. However, the inner flow velocities do have a first order corrective effect
on the outer elevation field and, as a result, on the outer pressure field.

To demonstrate this, we return to the dimensionless statement of the kinematic, free surface
boundary condition for the ship-induced flow field given by Eq. (47h). Substituting Eqs. (76) into the
kinematic condition, dropping the products of il/ and iv since they are of order E2 in the surface eleva-
tion, and using Eq. (70b), we find, in the limit RK -- 00,

87v + O"'v + *--L - 3t- = 0 at 3 =0. (78)

This expression represents the uniform, first order, kinematic free surface boundary condition. Setting

7v = 7'vt + 1v (79)

where ýv gives the correction to the outer elevation field, we obtain, with the aid of Eq. (50h), the
governing relation for Zv as

a-v o a3-(
+ (1 + il) a-- -0---0 (80)

This correction to the outer dynamic head leads to a proportionate correction in the outer pressure
field. We have

PV _1v

Pit -t
kv 7

or, from Eq. (79),

P= vt + t(81)

which, since P tlf/ is well behaved, is itself well behaved.

Returning to dimensional variables via Eqs. (46), we find

7v 1 71! + Cv (82a)

and

Pv-- Pt + Vt Pvt (82b)
17V

where Cv satisfies
8*v +_v (_vt

) at x 3= - 0. (82c)
at Ox, Ox1

SUMMARY

A model for the hydrodynamic wake of a surface ship has been developed. Neglecting only

ambient stratification and ambient surface films, we have begun with the general equations and bound-

ary conditions for the flow field and, through a series of rational approximations, reduced the problem
to a solvable one.

23



R. A. SKOP

The approximations are:

* The fluid dynamics are independent of the gas particle (bubble) dynamics.

* The ship undergoes only small motions about a uniform mean motion.

* The free surface elevations are small.

* The ship-induced turbulence is significantly stronger than the ambient turbulence.

With these approximations, the overall problem becomes separable into one governing the ship-induced
flow in otherwise still water and one governing the interaction of the background with the ship-induced
flow.

The former problem was examined further by applying the method of matched asymptotic expan-
sions. We found that the ship induces an outer flow field that satisfies the traditional Kelvin-Neumann
problem for calculating a ship's Kelvin and radiated wave systems. This outer flow field is determined
by Eqs. (55). We found also that the ship induces an inner flow field-its turbulent wake. This flow
field is governed by the steady, three-dimensional, parabolic Navier-Stokes equations with plane of
symmetry boundary conditions at the free surface. The inner problem is given by Eqs. (71). The
overall, or composite, ship-induced flow field is derived from these two asymptotic flow fields via Eqs.
(77) and (82).

Besides the plane of symmetry boundary conditions at the free surface for the turbulent wake
problem, the more significant results of this paper include:

* Surface tension effects are unimportant in determining the uniform, first order, ship-
induced flow field in otherwise still water; and

* The inner flow field produces a first order modification to the traditionally calculated ship
wave elevations. This result could explain the experimentally observed differences
between the transverse wave systems of model and full-scale ships..
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