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SYMBOLS

A dot over a symbol indicates differentiation
with respect to time.

An

r* Fourier cosine coefficient

Indicial admittance

n* Fourier sine coefficient
proportionality factor for characteristic
load

Duhamel integral for base motion
applied force acting on m;

inertia force plus applied force at m; in
the a® mode

characteristic load acting on m; in the a*
mode

impulsive response

impulse applied to m;

spring stiffness for single-degree-of-
freedom system

stiffness coefficient

total mass of a structure

apparent mass in mode a

Duhamel integral for an applied force
participation factor in mode a

inertia force acting on m; in the a®* mode
time

period of a function

velocity step

work

absolute displacement of m;

iii

Xi

Xia

Yei

relative displacement between m; and the
base

relative displacement between m; and the
base in the a™ mode

normal mode shape for mode a

base motion

acceleration due to gravity

i mass

time function for displacement

relative displacement between m; and my
time

weight of i* point

perpendicular distance between m; and
the base

weighting function

stress coefficient

influence coefficient

rotational motion of a base

stress at point ¢

characteristic modal stress at point ¢ due
to characteristic loads from applied force
characteristic modal stress at point ¢ due
to characteristic loads from base motion
orthogonal function

VK/m, the natural frequency far an un-
damped single-degree-of-freedom system
natural frequency of mode a for an un-
damped multi-degree-of-freedom system
frequency of an applied vibratory force
of constant amplitude




Elements of Normal Mode Theory
G. J. O'Hara anp P. F. Cunnirr

Structures Branch
Mechanics Division

Elementary normal mode theory is derived and used in defining the dynamic response of linear
elastic structures. The theory is derived from the definition of a linear elastic structure by using
D'Alembert’s principle and only those mathematical methods which are familiar to most engineers
and are no more complex than necessary. The cases of free vibrations and response to applied forces
and base motion are examined in detail. Each normal mode is shown to respond to dynamic loads as
a single-degree-of-freedom system with specific charactéristics. Equations are developed for stress
-and deflection. It is shown that these can be converted to the form where the stresses or deflections
are considered to be composed of two parts: one which ignores inertial effects (the static solution as
a function of time) and one which represents a dynamic correction. Generalized Fourier expansions
and characteristic load theorems are derived. The general problem of stresses and deflections is pre-
sented for arbitrary applied forces and base motions as well as for steady-state conditions.

INTRODUCTION

The response of linear elastic structures to
dynamic loadings has been the subject of several
earlier works, including NRL reports (1, 2). Re-
cently, normal mode theory has become more
widely used and accepted as a tool for structural
design and analysis. It was felt that a new and
clearer presentation of the background theory
and derivation of the equations was necessary to
help those who use this technique in their design
work.

This report is deliberately limited in its use of
mathematical methods to those which are no more
complex than necessary. No background knowl-
edge of Fourier transforms, Laplace transforms,
Hamilton’s equations, or Lagrange’s equations is
assumed. These general methods are so powerful
for this type of problem that solutions are pro-
duced with deceptive ease. The feeling of really
understanding the problem is lost while following
the operational rules. This report is a self-con-
tained reference text which includes many steps
not often published. However, no claim is made
to originality.

There are two basic approaches for the analyt-
ical representation of a linear elastic structure
responding to dynamic forces. One method breaks
the structure into a finite number of concentrated

4

NRL Problem F02-05; Projects RR 009-03-45.5752 and SF 013-10.01,

. 1793; 2760, 2962. This is an interim report on one phase of the problem;

work is continuing on this and other phases. Manuscript submitted
July 26, 1963.

masses which are restrained by a weightless
structure which has the same strength properties
as the real structure. Such systems are called
lumped parameter systems and have their govern-
ing equations of motion in the form of ordinary
differential equations. The second method treats
the structure as a continuous elastic body (an
infinite number of masses) in which (at least
segmentally) the material is assumed to be homog-
enous, isotropic, and to follow Hooke’s law. These
systems are called distributed parameter systems
and have partial differential equations for their
equations of motion. Most engineering structures
are too complex to be solved by this second
method.

The primary concern of this report is to find
the motions and stresses of undamped linear
elastic structures which are idealized as lumped
parameter systems. It should be noted that the
derivations can be converted to those for distrib-
uted systems by replacing the influence coefficients
with Green’s functions, and replacing the summa-
tions over all the masses by integrations with
respect to the mass. A thorough understanding
of the lumped parameter derivations will place
the reader in a very advantageous position when
dealing with problems of structures idealized as
distributed parameter systems.

The usual assumptions concerning linear elas-
ticity are made in this report. In addition, it is
assumed that all applied forces and deflections
are parallel. Only structures which rest on a base
are considered.

s 'S —0r
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2 G. J. O'HARA AND P. F. CUNNIFF

THE SINGLE-DEGREE-OF-FREEDOM
SYSTEM

Differential Equations

Since the undamped single-degree-of-freedom
system is the simplest possible vibratory lumped
parameter system, some of its properties are re-
viewed. Consider a structure which is idealized as
a concentrated mass supported by a linear spring.
The structure has been modeled as an undamped
single-degree-of-freedom oscillator (Fig. 1). Mo-
tion and an applied force are indicated by Z and
F, respectively, while X indicates the absolute
response of the mass. The equation of motion is

X+wt (X—2)=F/m 1)

where w? = K/m. The relative motion of the mass
(displacement with respect to the base) is desig-
nated by X, where X = X — Z. If there is no base
motion, the relative and absolute motions of the
mass become equal. For this case Eq. (1) becomes

X + 02X =F[m. (2

LLLLLS S L L

Z

'I—Tx

Fig. 1 — Undamped oscillator

The solution of Eq. (2) is composed of two parts,
namely, the particular solution and the comple-
mentary solution. The particular solution for
such an equation is developed in the next section.
The complementary solution of Eq. (2) is

X.=C,cos wt+ C;sin wt.
Therefore,
X=X:+X,
X=C,cos wt+Cysin wt+ X,

where X, is the particular solution. The constants

C: and C; are found by using the known initial"

conditions on displacement and velocity, that is, -

X(0) and X (0). .
If there is no applied force, Eq. (2) becomes

v

X + w?X =0. (3)

This is the well-known equation of free vibration

(3), which describes the motion possible in the
absence of applied forces or base motions. The
solution of Eq. (3) is

X =X(0) cos wt + X((oo)sin wt 4

where C; = X(0) and C» = X(0)/w from the inj.

tial conditions. Let Eq. (1) be written as

sz =

F oo
m+wZ (5)

(BB
+

or
¥+oux=L£_3 (6)
m

The form of Egs. (5) and (6) is the same. How-
ever, one is for absolute motion and one is for
relative motion. This distinction should be clearly
understood. To find the general solution of Egs.
(5) and (6), the particular solution must be added
to the complementary solution. The particular
solution is of the form of a superposition integral
called a Duhamel integral. This integral is de-
rived in the following subsection.

Duhamel Integrals

It is characteristic of linear differential equa-
tions that solutions can be superposed. Thus, if
A1, Az, and A; are individual solutions of such
an equation, then the complete solution is

3
i=1

The indicial admittance and the impulsive re-
sponse are two quantities which are used to
represent superposition integral solutions for a
simple oscillator. The indicial admittance 4 is
the response of the oscillator to a unit step of the
disturbing force 1(¢), and the impulsive response
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G is the response of the oscillator to a unit im-
pulse. Since a unit step is the integral of a unit
impulse (Figs. 2a-2d),

t
A(t) =f G(T) dT (7)
o

because superposition holds.

Assume that a unit step of force as shown in
Fig. 2a is applied to the oscillator and there is no
base motion. Equation (6) becomes

s 1
X+ 0tX =,
m

The method of undetermined coefficients can
be used to find a particular solution. The assump-
tion that X = C, yields w2Co= 1/m; after rearrange-
ment this yields Co = 1/K. Thus the solution is

X=ll(+C, sin wt + C, cos wt

where the C’s are determined from the condition
thatatt=0,X=0and X =0. Then

F(t)
N I
N
\ 1
R 4
] t
Fig. 2a — Unit step of force
Aft)
24
K
il
K
° k.l 2m t
w w

Fig. 2b — Indicial admittance: the response
to 2 unit step of force

F(t)

| I=Lim 1 . ar
AT 0 AT

INNNNNNNNNY
B~

t

:
T

Fig. 2c —~ Unit impulse

3
o E

Y

Fig. 2d — Impulsive response: the response to a unit impulse

-1
mw

X=A() =g U —cosar). (8)

This response is shown in Fig. 2b. Using Eq. (7)
| :

G(t) = sin wt. 9)

This response is shown in Fig. 2d.

Consider the problem of finding the response to
a general transient force as shown in Fig. 3. The
principle of superposition can be used to find the
solution in terms of the indicial admittance or the
impulsive response. The method consists of break-
ing up the forcing function into a number of steps
at equal time intervals and summing the response
to these steps. The response at any time ¢ is a
function of the elapsed time, ¢ — 7, from the appli-
cation of the step AF. Writing AF = (AF/AT)/AT,
we obtain

t, AF
X(t) =F(0)A(t) + > 7A@ —T) AT. (10)

T=AT

From the fundamental theorem of integral

A3ITITSSVIOND
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F(T)

1
|
Flo) }
I
|

o -
e i

Fig. 3 — General forcing function partitioned into a

number of steps of equal time intervals

calculus the limit of a sum of the form of Eq. (10)
as AT — 0is

tdF
X=F(0)A() + | 54 ~T) dT. (11)
odl
Integration by parts gives

X = F()A(0) + f’ F(T)G(:—T) dT. (12)

For the undamped linear oscillator, Eq. (11)
becomes

_F() —F(0)

X K

+ F;(O) (1 — cos wt)

—lf'F(T) cos w(t —T) dT (13)
K 0
and Eq. (12) becomes

=$J:F(T) sinw(~T)dT.  (14)

These are two of the possible forms for Duhamel
integrals. Inspection of Eq. (6) immediately leads
to a Duhamel integral for base motion alone:

X=-—£f: Z(T) sinw(—T) dT.  (15)

Appendix A discusses differentiation of integrals
in the form of Eq. (15).

INFLUENCE AND STIFFNESS
COEFFICIENTS

If a static force F; is applied to a linear elastic
structure which is fixed to an immovable base, the
deflection due to distortion of any point on the
structure is proportional to the force, or

X;=X;=8;F:. (16)

This is simply the definition of a linear elastic
structure, and the proportionality factor 8 is
called an influence coefficient. It reads as the
deflection at j due to a unit force applied at i. In
the introduction it was assumed that applied forces
and deflections were parallel to each other. If
more than one force is applied to the structure,
then the principle of superposition is used to
find the deflection at any point or set of points.
Thus:

Xl =6”F1+612Fz+ ‘en +81nFn
Xz =821F1 + 822 F + ... +82nF,.

Xn =8mF, + 8,,2F2+ ot 8,,,.1"',,

which may be written as

X; =3 8:F,  j=1,2,.,n (17
i=1

Unless otherwise indicated, from here onward,
all summations are taken from i=1to i = a. For
example,

There is a relationship between the influence
coefficients of the form 8;; and 8x;, known as
Maxwell’s law of reciprocal deflections. To show
this, first apply a force F; and then a force F..
Calculate the internal work. Then reverse the
procedure of loading and calculate the work.
Since for a linear elastic structure the energy
depends only upon the applied loads and final
deflections, the work done in both cases is the
same.

In the first case, when load F; is applied the
work done is

1 1
W =3 FiX; =5 8;F}

AFTITSSYIONT
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and when load F; is applied the work done is

W= % F.X i+ (work done when F; moves due to
F)

=l 8,1F2, + F}-S,-,-F,-.

2
The total work is
] 1

In the second case, application of the loads in

reverse order gives the total work as
1 2 1 2
“2‘ 8iiF§ +E 8;;F; + F;8F;.

To satisfy the equality of energy, 8;; = §;;. There-
fore, the array of influence coefficients

(6, 812 .. 8in ]
621 822 . 8271
_§nl 67.2 s Snn

is symmetric about the principal diagonal.

A stiffness coefficient K;; is the force required
at i when the structure is loaded in such manner
that all points are restrained from moving except
J» which moves a unit distance in the negative
direction. If Eq. (17) is solved for the forces,
there results

F,‘=2 Kinj.
J

Note that Ki; # 1/8;; (see Appendix B). In an
analogous manner it can be shown that K;; =K,
so that the array of stiffness coefficients is sym-
metric about the principal diagonal. For some
Structures it may be more convenient to use
stiffness coefficients than influence coefficients in
defining mode shapes and natural frequencies.

GENERALIZED FOURIER EXPANSIONS

This section reviews some important properties
of generalized Fourier expansions which are

used in the remainder of this report. As an intro-
duction, it is noted that the decisive property of
the set of functions {cos (2amt/T,) and sin (2nwt/
To)} which allows the arbitrary function f(t) to
be expanded in the form

Ao & 2nmwt | & . 2nmt
J(t) =-2—+n§=:lAn cos T, +n§lB,. sin T,

between the limits 0 and 7, is that the integral
of the product of any two of these functions which
are distinct is zero. Sines and cosines are by no
means the only functions with this property. In
fact, they are perhaps only the simplest example
of the infinity of such possible functions.

Orthogonality

If a sequence of n real functions {¢x.} has the
property that over some interval (finite or infinite)

2 Br®iadirs =0
I3

and

S Brdia # 0

k

then the ¢’s are said to be orthogonal with respect
to a weighting function 8.

Completeness

If there exists no function F;, except the identi-
cally zero function, with the property that

2 BidiFi =10
7

for all members of an orthogonal set {¢ iaks
then the set {¢i} is complete. If one of the
members of the set {¢;} were omitted, the re-
sulting set is not complete since

2 Bidiadir = 0.

Expansions

An arbitrary function y; (i =1, ..., r) has a
formal expansion which is analogous to its Fourier

expansion. Let

vi=bidir + badiz + ... + bathyy,

GITIISSYTIONN




6 G. J. O'HARA AND P. F, CUNNIFF

where the ¢'s form a complete set. Mhltiply both  Now let

sides by Bi¢p:, and sum on i:

ZB@mw=h;B@m@rhu

+ba3 Bidia + o

i
+ bnz Bi¢ia¢in-

Now from the orthogonality conditions all the
sums on the right are zero, except the one which
contains the ¢?,. Therefore,

zt_ﬁi(t‘ia')'i

by =—<5—5—.
T TIRe,
This leads to the expansion

biaZBidbjay;

= . 18
Yi 2 J.ZBJ¢jza ( )

Orthonormal Functions

Some authors set
2
EBi¢ia =H
i
as a “normalizing” condition, while others set
2
23i¢ia =1.
i

This last technique is a favorite of mathemati-
cians because it creates an orthonormal set. An
orthonormal set has the property that

- Y Yialis =0
7
and
Z Pi.=1.
J

Any set of orthogonal functions can be converted
into an orthonormal set. In fact, let

nia = bia [ VEBIB, -

Yia = \/E; Nia-

Then
2 YiaPio = 2 Bimiamin =10
3 T

and

S =S g, — Lo

2 = N, =Ssa e =

i e i e iz B i¢?a

since the original ¢’s are orthogonal. Therefore,
it is no specialization to assume that an orthogonal
set is also orthonormal. This fact is not used in
this report, because it is desired to present nor-
mal mode theory as simply as possible and to
present end results that are directly useful for
calculation purposes.

FREE VIBRATIONS
Normal Modes

Assume that a weightless structure attached to
a hxed base is carrying a set of n concentrated
masses m; which are attached at the n points i.
Consider its free vibrations, that is, the possible
motions in the absence of external forces. This is
done by introducing D’Alembert’s principle, which
states that a system in motion can be considered
to be in equilibrium at any instant if appropriate
inertia forces — m; X; are applied to the system.
For the case of the freely vibrating structure,
stmply apply these inertia forces to view the struc-
ture as being in a state of equilibrium. The set of
forces on the structure is now treated as a static
problem. Recall that for an elastically distorted
structure in equilibrium

Xi=28.'ij. (17)

2
For free vibrations the only forces on the structure

are the inertia forces, so

Xi==-3% Biym; X . (19)
7

’

This is a set of r differential equations with con-
stant coefficients expressing the Xi’s in terms of

(ERERRSY RN
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j’s. Since there is no base motion, Xi=X;

;= X;. Equation (19) is rewritten

[ 31z

the
and

Xi=— 3 8im;X;. (19"
J

To obtain a solution try X; = X sin (ot + B),
which is usually done in the single-degree-of-
freedom system. Then

X sin (ot + B) = w? sin (wt + B> 8im;X;
i
or

Xi=wY 6ym;X; (i=1,2,..,n). (20)
i

There may be a solution of the problem if these

n algebraic equations can be solved for the dis-

placement ratios and the w's. When written out,

this set is

(w2m1611 - 1) Yl +w2m3812¥2 +...+ wzmn&nin=0

w2m1821)71+ (wzfnzazz_ I)Yg‘i" +w2m,,82,,/\_’,.=0

@08 X1+ @?madpe X+ ... + (0?*MnSnn—1) Xn=0.

Inspection of this set shows that it is a set of linear
algebraic equations all of which are equal to zero.
If a solution is to exist other than the trivial one
where all the Xj’s equal zero (static equilibrium
case), it occurs only for those values of @ which
make the determinant of the coefficients of the
X;’s equal to zero (4-6). This leads to an algebraic
equation of degree n in w? usually called the fre-
quency equation. Since undamped structures are
considered, these roots are real and positive (4).
These frequencies are called the fixed base natural
frequencies of the system oscillating in the ab-
sence of external forces. Except for a few special
cases they will be distinct. Those systems which
have a pair or more of equal roots are called de-
generate systems. Other techniques for solving
such a set of equations treat them as an eigen-
value —eigenvector problem, which is a charac-
teristic value problem with latent roots (5).

For the systems where the roots of w? are all
distinct, the ratios of amplitudes of the masses
can be found by the back substitution solution

of the set of equations, which is defined by

Xia= wizsijmjija- (21)
J

Note the following: _

1. A subscript a has been added to the Xj’s
to identify those which correspond with w,.

2. The w,'s are called the fixed base natural
frequencies of the system.

3. The sets of the Xj,’s are called the normal
mode shapes, and are defined by Eq. (21) for each
mode a. _

4. Equation (21) is still satisfied if all the X;q’s

are multiplied by any factor €. This means that
the ratios of the displacements have been found
for each mode and not the absolute values. This
is not too surprising because the fixed base natural
frequencies of a linear elastic structure are not
amplitude dependent.
_ 5. The ratios of the numerical values of the
Xiao's can be arbitrarily fixed in any convenient
fashion. One technique sets the amplitude of one
of them equal to unity. The remaining amplitudes
then become some multiple of unity.

6. For the degenerate systems, back substitution
in Eq. (21) does not produce the set of mode
shapes. Other techniques such as matrix defla-
tion or special forms of adjoint matrices can be
used (5). It is assumed that these mode shapes
can be found in order to proceed.

Orthogonality of the Normal Modes

There is some additional information which
can be obtained about the normal mode shapes.
They are orthogonal to each other. To establish
this, multiply both sides of Eq. (21) by m; X, and
sum on i. This gives

SmiXipXia= iy miXip ¥ 8iim;Xja
T : T b
which can be written as

>mi XisXia = iy m; ijazajimi X
5 j 7

since 8;; = §;;. Changing the order of subscripts
in Eq. (21) gives

al!

|

‘izb = zajimi/—\;ib- (219
b i

)

AITITSSYIONN




8 G. J. O'HARA ANDP. F. CUNNIFF

The right side of this equation appears in the
previous one, so

There are two possible cases; b=a, or b # a. When
b = a, the term in the brackets becomes zero and
the summation becomes

Y2
Em_,Xja.
j

This is a series of positive terms which cannot be
zcro. When b # a, the term in the brackets is not
zero, so that the summation term must be zero.
This yields the orthogonality conditions

SmiXla # 0 (22)
j

and

Sm;iXjaXj = 0. (23)
7

Equation (23) shows that the normal modes are
independent of each other.

Type of Normal Mode Solution

The distortion of the structure is completely
described if the set of X;'s is found. However,
when defining the normal shapes, they were found
to be relative ratios which are orthogonal to each
other. Let mode response at point i be X;q(t).
There is no bar over the letter because it is actual
response that is desired. If X;a(t) is found, the
total response X; can be found by superposition,
that is,

Xi = ina.

The problem resolves itself into finding the X,,%.
At each { in_each mode a there is a relative
amplitude of X ;.. There must be a function which
converts the X4 to Xiq. The technique used is
very similar to the concept of the separation of
variables in the solution of certain partial dif-
ferential equations. That is, a solution will be
sought in the form

Xio = Xiaga
so that R

Xi= Y Xiaqa (24)
and

Xi=S Xisda. (25)

Now if g4 is found, the free vibration problem is
solved. Substitution of Egs. (24) and (25) into the
original set of differential equations (Eq. 19') yields

%‘,Yiaqa =— J_Eﬁijmjfa: XjeGa.  (26)
By transposition -
2(6428,-,-%-)7,-,, + Ya;qa) =0
a J
and by usiné Eq. (21) this becomes
g(%%+qa) Xia=0. @7

The orthogonality relationship can now be used.
Multiply both sides of Eq. (27) by m: X and sum
on i: .

2(% + Qa) Emiyibiia = 0.
a a i

There is only one case when the summation over
i is not equal to zero: when a = b. The summation
over all the modes a is reduced to

or

(28)
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where the subscript b is arbitrarily changed to a.
Equation (28) is in the form of Eq. (3) and has the
free vibration solution

44(0)

a

9a= qa(0) cos wat + $in wqt. (29)

Returning 10 Eq. (24),

Sin wat.

4a(0)
w

a

Xi= Eyiaqa(o) COS Wql + EA_’M
: (30)

Initial Conditions
Assume that the general initial conditions at
t=0are X; =X;(0), X;=X,(0). Equation (80)
yields
Xi(0) = Y Xiaqa(0). (31)
e

Upon differentiating and introducing the initial
condition on velocity, Eq. (30) yields

Xi(0) = 3 Xia4a(0). (32)
Again the orthogonality relationship can be used

by multiplying both sides of Egs. (31) and (32) by
m; X and summing on i

zmi-Yn;Xi(O) = Eq::(o)zmiyibiiu
i a i
and .

zmi/?iin(o) = Edu(o)zmi.x_ibx;ia-
i a i

Therefore,
Fmi X 1aXi(0)
q.(0) = —gjnjg— (33)
and
R EmiXiX (0)
Ga(0) = (34)

.y 2
gE‘m‘Xia

Substitution of Egs. (33) and (34) into Egs. (31)
and (32) respectively produces '

X—ia?mjifaxj(o)

Xi(O) = Z

a ?)mj)_(:fa
and
£(0) ;Y—ia?mjyjax.j(o)
' Ea: ?m]‘i}a

This expansion of an arbitrary function into a
series of modal functions is called a generalized
Fourier expansion. Substitution of Eqs. (33) and
(34) into Eq. (30) gives the complete normal mode
solution for free vibrations, that is,

Xiu?”‘_ij;quj(o)
Xi = 2

=7 COS Wqt
a ?ijja

fia?fﬂjijat‘}j(o)

+ sin @qt. (35)

yve
a wa?’anja

Several important points related to free vibra-
tions of undamped linear elastic structures are
now sumimarized.

L. The system is described by ordinary differ-
ential equations which are linear and have con-
stant coefficients. This allows superposition.

2. There are as many modes and natural fre-
quencies as there are independent masses,
although some frequencies may be redundant.

3. Each normal mode is periodic, of frequency
we, and the relative amplitades of each of the
vibrating masses is fixed for this mode.

4. The normal modes are orthogonal to each
other. :

5. A solution of the form of a linear combina-
tion of the normal modes is possible, that is,

Xi = ina = E/—‘_;iaqa

for any possible deflected position X;.
. 6. An arbitrary set of values, such as Xi(0) and
X:(0), which are assigned to each mass point can
be expanded into a series involving the mode
shape functions, and each resulting coefficient of
the series assigned to a different mode (generalized
Fourier expansion).

7. Equation (35) shows that while each normal
mode vibrates freely in a periodic fashion, the re-
sulting motion need not be periodic for any mass

GITITSSYTIIND
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point. It is, in fact, aperiodic except for the case
when the roots of the frequency equation are
commensurable, like a Fourier series.

8. The term X, may be read as the a* mode
shape number at the mass point i. Unlike in-
fluence and stiffness coefficients, the array of the
Xiq as defined by

X = EfiaQa
a

is not symmetrical, so that X 4 is not of necessity
equal to X 4.

RESPONSE TO AN APPLIED FORCE

Consider a structure which rests on an immova-
ble base, and suppose a force Fi, applied to my,
is time dependent but independent of structural
reaction. Using D’Alembert’s principle and in-
fluence coefhicients, the distortion of the structure
is described by the n equations

X( = - Z‘o‘i,-m,-/'\"j + Sika. (36)
J

A solution of the form

Xi=3Xiaqa (24)

is sought. Substitution of Egs. (24) and (25) into
Eq. (36) yields

EiiaQa = - Zaazaijmj'ija + Sika-
a a j
Transposing,
E(Qa Xio+ iiaEsi_iInj ija) =8ixFx.
a J
Using Eq. (21) this may be written as

2(—1—: + qa) Xia=8:ixFu. (37

a a

The left side is the same as in free vibrations.
The influence coefficient §;, times the force F
must be brought into the parentheses. Therefore,
this expression is expanded into a series of the
mode shapes. Let

8icFx = 3 XiaA a (38)
a

Multiply both sides by m:X;, and sum on i;

szmi Xi8ix = ZAkazmi Xi»Xia.
1 a i

The leftside is Fx Xxs/w§ by Eq. (21) and the right
side reduces from a series in a to a single term by
virtue of orthogonality. So,

FirXxp

2
wp

=Akb2m.- fizb‘
i

Therefore, upon changing subscripts,

Av, = FiXia
k R —— e
*Tel3mixs,
Equation (38) becomes
—X—i Xka
8,-ka = Fk ——’LT—-. (39
2 ai3mxr, )

The influence coefficient is given by a normal
mode expansion of the form
Xia Xka
Six = ——————. 39’

For direct influence coeflicients this expression
is a series of positive terms only, that is,

Xie

8 . = T e — .
v 2T T,

(39"

Substitute Eq. (39) into Eq. (37) to obtain

ija v ‘Yia ikaFk
— + a) Xia = —— .
E(w: 9) X0 = 2 uism 13,

Transposing,
l.ia XkaFk .
Ea:(—w—z + qa ——“‘_.—_z') Xie=0.

Now the orthogonality relationship is applied.
Thus,

‘-ia X-kaFk ) Y —
- —_—— iXinXia= 0.
g(“’i + ga wiSm, X7, iEm iv Xia

AITITSSVIOND
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Therefore, Xi=Y8,F;. (17)
i
. X xaF : , : - .
Go+ wlqe = o (40) Using D’Alembert’s principle, this becomes
a =~ M j ja
J

Equation (40) is in the same form as Eq. (6) for a
simple oscillator when Z is zero. The simple oscil-
lator was shown to have Eq. (14) as a particular
solution. This same expression is applicable pro-
vided w, replaces o, gqareplaces X, and X ;o F(T)/
?,m_,- X}a replaces F(T)/m. Hence,
t
qa _‘—h-—f Fi(T) sin w,(t —T) dT.
a J0

wameif
2

The solution for X; is

X-iaika ¢ M
X = E-———_T ka(T) sinwg(t—T) dT.
< waJZmJXja 0 (41)

This is the response equation due to an applied
force Fx(T) for a structure which is initially at rest.
If the structure is not at rest, then Eq. (35) should
be added to Eq. (41). It is noted that the ratio of
the response between points i and j in mode a is

|

Xia — _ia
Xja XJ'a.

If more than one force is applied at the same
time, superposition is used to solve the problem.
Since the derivation assumed the force to be ap-
plied at my, sum the d applied forces. In this case

X:= E_X_'a___ ‘
i & wajzmjf-?a 0

[i XkaFk(T)] sin w, (¢ — T) dT  (42)
k=1

for the particular solution.

RESPONSE TO BASE MOTION

Suppose a structure initially at rest is attached
to some base. Assume that this base undergoes a
motion Z(T) which is a known time dependent
function.

Consider the equations of an elastically dis-
torted structure:

Xi=*28iij§j (19)'
J

where X i equals the absolute acceleration of m;.
Since Xi= X — Z, Eq. (19) is written

X,'=—28ijmj(i;j+2). (43)
J

This expresses the relative displacement X; in
terms of the relative acceleration of m; and the
base acceleration. The usual means of solution is
used again. Let

X;= ZiiaQG
a
and substitute into Eq. (43):
Ziiaq:z = - Eéazsijmjx;ja - Zz&jmj.
a a j i

Making use of an expansion in terms of the modes
for ]zaijm)' leads to
l']-a sz] /Yja _
2(_2+qa+ 2y ¥ e ) ia = 0.
w; . waj miXi,

The orthogonality conditions give

' Af-«mj Xia .,
o+ w2ga=—Lt—n-
a a9 ? miXe,
This equation is in the form of the equation of
relative motion for a simple oscillator if there is
a base motion and no applied force, namely Eq.
(6) without the F/m term. A particular solution is
given by Eq. (15). This same expression is applica-
ble provided w, replaces o, gq replaces X, and
Z}Zm,— X,-a/?.m,-Xj?a replaces Z. Hence,

Im;Xja g,
‘1":‘«):,12—,,;,-;?;:](, Z(T) sin wa(t — T) dT
and
X, = — -X—ﬂ’_)—(’—f 7(T) sinwa(¢e—T) dT.
T @aZmiX3, Jo

(44)
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This is a general equation for the relative response
of a linear elastic structure when the base motion
is a known function of time. The absolute motion
ofm; iS/_Yi=Xi+Z, SO

Xi=Z(t)

luzmj
- Emf Z(T) sin @a(t —T) dT.

Before proceeding to some special topics it
might be well to consider some important points
which have arisen in this discussion of applied
forces and foundation motions.

1. A solution in the form of a linear combina-
tion of normal modes was obtained.

2. Each normal mode acts as a single-degree-of-
freedom system with specific characteristics when
responding to applied forces or base motions.

3. Since the equations of motion are linear, the
“initial” conditions for a structure can be ac-
counted for by adding their equation of motion
to the Duhamel integral solutions.

4. A generalized Fourier expansion for the in-
fluence coefficients was obtained in terms of the
mode shapes and natural frequencies.

5. The ratios of the deflections X ;4 were found
to be the same as the ratios of X;,’s.

SPECIAL TOPICS
Response to a Step Function of Force

Equation (8) is the response of an oscillator to
a unit step in force. For a step in force equal to
F, the response is

F F
X = 3 — 5 COs wt.
mo mao

If the corresponding equivalent terms of the
multi-degree-of-freedom model are again sub-
stituted for the oscillator response, the normal
mode solution is

Xi — sz Xiana

2 Y2
m quEm,Xja

Xzana
~ E 2ZmJX2

COS Wql.

Using Eq. (39'), it is written as

Xi=6uFr— F"E COS Wgqt. (45)
ja

4

This produces the interesting result that the de-
flection is the static deflection, 8:x Fu, plus a
dynamic correction.

A similiar equation for X is

2
Xy = 8knFr— Fiy e  COS wat. (46)
a

wzmi
aj

This equation shows that each normal mode term
ialszE,m,- X%, is positive. Therefore, the maxi-

mum possible deflection of X; would occur if
all the cos wqt values were simultaneously — 1.
This leads to the result that

'Xkl max, maxr = 23kka-
Inspectlon of Eq. (45) shows that the term X ;5 X x4

/w’Em, X 3, is negative as well as positive. There-

fore, for a step force applied at &,

= 28:kF ..

IXII mar, maxr

If there are many such applied forces Fy,
superposition is used to write

d —
X d F Xia k;]Fkaa 47
i = ai - — == COs t
kgx 24 4 ; wiZmJ- ija wqt (47)
J

which is again the static deflection plus a dynamic
correction.

Impulse

Using the oscillator response to impulse, the
response to impulse applied at mass k is

XiaX
Xi=1 L"“sm ¢ 48
! kgw Em, Jz @a (48)

where I is I times the unit impulse. So,

X'i — 11.2 Xiu

ka
= COS W4t.
a Jz.m«j

ja




Since the structure rests on a base and the masses
were assumed to be capable of independent move-
ment, then at t = 0, the velocity of m; must be
zero, so that
——X—’; =0. (49)
je
Similarly, the velocity of the mass which is struck
by the impulse is Ix/m; at t = 0. Therefore,
X 1

o= (50)

a szj Xja

If there are many applied impulses all occurring
at the same time, the solution by superposition
is

Xi=3 -———Xz— sin wal. 1)

Sudden Motion of the Base

Consider the response of a structure initially at
rest to a step change in the velocity of the base.
The single-degrec-of-frcedom solution is X =

(— Volo) sin ot, and X = — ¥V, cos wt, where V,
is the velocity step. Therefore, the normal mode
solution is
. iiazmj /Yja
Xi=—-V = oS wql. 52
o§—§xﬁj (52)

At t = 0, the absolute velocity of each mass must
be zero, so that its velocity relative to the base
must be — Fy. When apphed to the above equation,
this means that

Y.-a)_‘mj /—\’-j,,
LieLTrde . 5%
. (53)

a

General Disturbing Force

Starting with the previous solution of Eq. (41),
integration by parts yields

FL(‘)E%_

i¥m
L

ja
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X:aXAa

—F;.(O)E——-——————cos wWat
Em; X3,
_ X:ana -
szzmsz f Fi(T) cos wo(t — T) dT.

IfF :.-(0) =0, this reduces to

e
Xi=suFu(t) - 3 —Tiette [
r maJEm,-XJ.a

Fi(T) cos wa(t — T) dT.

This equation indicates that the deflection can be
considered to be composed of two parts: the re-
sponse, ignoring inertia effects (the statical com-
ponent as a function of time), and a series of terms
which represent the dynamic correction factor.
This equation has the advantage that if F(¢) and
F (t) contain no discontinuties, all of the statical
component is accounted for when the mode series
is cut off at some mode. For many applied forces,
follow the same procedure which was used in de-
riving Eq. (42) from Eq. (41).

Equivalent Forces for Base Motion

As another special case let F(¢) = — mi:C(2),
that is, the force on a mass is proportional to that
mass. Assume that such forces are applied to each
mass and C(¢t) is not a function of k. Then Eq.
(42) becomes

iaZmi Xy
——X.—IC(T) sinwq (¢—T) dT.

However, this is precisely Eq. (44), if C(T) =
Z(T). Therefore, the displacement response for
many applied forces can be converted to the
relative displacement response due to base motion
by the substitution Fi(T) = — miZ(T) and sum-
ming over all k. This is not too surprising since it
is a principle of mechanics that acceleration of
the frame of reference is indistinguishable from
a change in the gravity field. This is precisely
the meaning of “let Fi(T) equal — m:Z(T) and

sum over all k.

AITIISSYTaND




ment at i,

Xzz X—iaika
i " wﬂjz.mji}a

placement at &:

A_,ia/?ka

Y2
a wa?m,/\’ja

Xk=

If F,(T) = F[.(T), then X; = X,.
This reciprocity theorem has

applications.

r'k=2_——(i‘ia—¥_k0) t
! o waii:m;Xl?a 0

i=1

and for foundation motion

Tik = — Y2
a waJE_m,-Xja

Steady-State Vibrations

Relative Motion Between Masses

(Xja— X—ka)gmiiia J't

0

Z(T) sin wa(t ~T) dT.

F(2). First apply F at k and measure the displace-

ft Fi(T)sinwqa(t—T) dT.

Now apply the force at i and measure the dis-
t

f Fi(T) sinw, (¢t —T) dT.
[}

many uses
and is especially advantageous in impedance

Sometimes it is necessary to know the relative
motion between two mass points j and k. Let
rjx be this motion. For many applied forces

[i i,—,,F,-(T)] sin wa(t — T) dT (54

(55)

In this section the response to disturbing func-
tions of the periodic type is derived. Consider
the steady-state response of a system to a forcing
function of the type Fi = Fy sin Q¢. The equations
of motion X; = 2Xiaqaand §, + wiq, = (X4,

Fisin Q)/3m; X2, are now solved. First assume
5 .
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Reciprocity Q) #* w, Then,
As in the static case, there is a reciprocity XiuXs
theorem for the dynamic response of a linear X; = Fy sin Q¢ > e (56)
elastic structure. Consider any forcing function ¢ Wil ——)Zm; X2
wz j Ja
a

plus the solution which involves the modal re-
sponses at their own frequencies. For a structure
initially at rest this is

XieXkasin wgyt

— F:Q3 0 —.
“ w11 ;;E)?”UX—?“

This second part of the solution is usually ignored,
and only the first part is considered. The result
is called the “steady-state response.” If the func-
tion Fy = Fy cos Q¢ is applied, it is only necessary
to exchange cos Q¢ for sin Qt in the steady-state
solution to find the response. That portion which
is usually ignored has the set of sin w,¢'s replaced
by cos wgt's.

As in the single-degree-of-freedom case, for
1<<w; (the fundamental natural frequency),
the steady-state solution becomes

Xi == 8,’ka sin .

The steady-state response for many applied forces
all of the same phase becomes

d
Xia k§1 Fkaa

X =sin Q¢ 2 az —. (57)
e @? ( 1 ——7>};ij2.
a wa j Ja
Letting Fy = — mké and summing on %, the

steady-state response to a periodic base motion
is

X,-=—Zsinﬂt2

It may occur that () coincides with one of the
w S, say ws. Then for this mode the solution
changes. Consider

X ioF i sin @yt

do + wlqy =
b Zm;X},

This has the particular solution

aaTAISSYIOND
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tF i Xy cos wpt

@ =- =
2mb§m_,' X_?b

So the steady-state solution is

b-1 n Y. Y. .
X.~=(E + 3 )[ XlaXl\awF;kSln m:t:l
SIS wz(l—-i;)zm,-xg
@ w?/J ja

tFy Xkbiib
mcos wpt. (59)

Mode b grows with time because of the presence
of the ¢ term. This is an example of resonant
buildup.

Consider now the problem of a periodic dis-
turbing force Fy (t) of period Ty which is not a
simple sine or cosine function; the steady-state
response is desired. A general method of solu-
tion is to let

nwt
Ty

Fi(e) =i;—9+ zEA,.cos
n=1
or

] nwt
F.(t) = B, sin ——
! n§=:1 To

where T, is the period. These are the Fourier
cosine and sine half range expansions (6, 7) of
the functions. The coefficients are given by Refs,
6 and 7:

2 [Te
A0=——f Fi(t) de
Tl) (4]

2 (To nart
A,l——'i.—ofo F*(t) COS’TTdt

nw

To
Ba=-=2 [ Fe(t) sin 27t 4¢.
0 T0

T,

Reference 7 gives a practical way of calculating
these coefficients.

Since the response to sine and cosine functions
is known, replace F sin Q¢ in Eq. (56) by

nmwt
s

NSIB,. sin To

to obtain

(60)

2.r2 —
= wg(l -2 );.mjxga

22
To“’a

X‘-=§: i Xio XiqB, sin nn-t/To.

CHARACTERISTIC LOAD THEOREMS

A concept known as characteristic shape is now
discussed. A knowledge of these theorems will be
of considerable help when considering stress.

Definition

A load distributed over a structure in such a
manner that the load intensity is proportional to
the product of mass and mode shape for a particu-
lar frequency is called a characteristic load. That
is,

Fianamiiia- (61)

There is no loss of generality if the proportion-
ality constant E, is replaced by the product of
w? and a new proportionality constant C. Equa-
tion (61) becomes

Fig= 02Com;X,. (61
Statical Theorem

“If a structure is loaded statically with the g
characteristic load, then the deflection curve is
proportional to the a¢® normal mode shape.”

Proof of this theorem is as follows: Consider
the static deflection of the j® point on a structure.
This deflection is

ijzajiFi. (17)

If the set of F,’s form a characteristic load, then
Eq. (17) may be written as X; = @;CeX85im; Xiq.
Equation (21) states that

Xja= wﬁES;;m;X’;a. (21)
i

Hence
Xj = Cai;ja.

The deflection of any point j is proportional to

FITITECYIOND
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the normal mode displacement, thus proving the
theorem.

Virtual Work Theorem

“If a structure loaded with a characteristic load
of the a™ mode is subjected to a virtual displace-
ment corresponding to the " mode, then the
characteristic load does no virtual work.”

Proof of this theorem is as follows: The work
done at point j under these conditions is

1= < C s o

’iFjanb =7a“’imixf“x”'
The total work is the summation over all points
j, or

— Ca 9 Y v
W —“i‘wazijjanb.
J

From orthogonality conditions

Em,-z\_',-a)?jb = 0.
J

Hence the work is 0.

Transient and Steady-State Response

“When a structure is loaded with a character-
istic load which varies as some function of time,
it responds as a single-degree-of-freedom system
with the natural frequency and mode shape
corresponding to the characteristic load.”

Proof of this theorem is as follows: Consider
the response to a transient force system,
X~=2A—f [sz Fk(T)]

! Py wajzmj/?;a [} K *

sin we(t —T) dT.

Let the Fi(T)’s form a characteristic load for
mode b. Then if f(¢) is a function of time,

7 ,
Xi:E_XLJ.

X2
a m,,?m,Xja 0

[%wﬁbe(T)mk)?kb)?ka] sin wo(t — T) dT.

The Duhamel integral has a valuc only when
a = b, because of the orthogonality conditions,
so that

_ t
X = Xibd)obe S(T) sin wp (¢ — T) dT
0

thus proving the theorem.

As a special case consider a structure subjected
to a set of steady-state driving forces Fi(t) = Fy
sin A2. If the F’s form a normal characteristic load
for mode b, i

XiaCbmg%ka“, X kg sin At
Xi = E AE — .
a mi(l*;)?m;)&’fu
a

from the orthogonality relationship,

_ Chfiosin At

Xi= G

This equation indicates motion is only possible
for the mode for which the characteristic load is
applied, because the sum has been reduced to one
term.

Characteristic Shape Coefficients

In this section on characteristic shape theorems,
much use is made of a proportionality factor C,,
but nothing has been said about how to calculate
it. Since normal mode expansions are intimately
connected with the theory of generalized Fourier
expansions, it is possible to compute the coefhi-
cients C,4 in the normal manner by means of the
orthogonality relationships.

Consider a structure of n masses subjected to
the action of a set of n forces which remain
proportional to each other in time (some of these
forces may be zero). The i** force may be ex-
pressed as

Fi=F;f(¢).

If the set of Fy's form a characteristic load which
is summed over all modes, then

F f(¢) =f(t)zcamiiiuwi.

To compute the coefficient C,, multiply both




sides of this equation by X;;, and sum over i
i to get

SFiXin=3Cawl¥miXiaX.
: a T
This expression only has a value when a = b, so
SFiXu=Cooi3miXi.
The generalized Fourier coeflicient is then

2FiXia
T @2 X2
wa?m"xia
It is now possible to write out the response of
mass k as

_ t
Xi = SCoX 1awa f F(T) sin wa(t — T) dT.
a [}

Note that for a single applied force F; this im-
mediately reduces to

Y. '. _ ¢
xe=y XeXealt [ iy o (o= 1) ar.
]

Y2
S ma?:mJXja

FORCES AND STRESSES
Single Applied Force

Before proceeding with a discussion of stress,
it is necessary to determine the inertia loadings
that the masses apply to the structure. It has been
shown that each normal mode acts as a single-
degree-of-freedom system with certain character-
istics. If the absolute acceleration of each mass
point m; is found, the inertia forces can be added
to the structure as a loading by D’Alembert’s
principle.

Consider the case of an apphed force at my
with no base motion. The g4 equation is

Ga + wiQa = XkaF'L(zt) .
JE.m_ija
! Solving for ¢,
- XkaF;—;_(t) _ 2(]41-
?ijJ’a ¢
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Since
/.Y'i = Eiiaéa
a

then

v fiax-kaFk(‘) Y

Xi=S et - 2Xiaqa.

i ; ?mj X}a ;wa iaq

It has been shown that

Xiana
B e (] 49
)y S X, (49)
and
Xia 1
——— = 50
ks (50)

so that for any mass but the &** (where the force
is applied)

Ex . F. (1 -
Xo= Ko = :n(k) = St Xrea
The inertia loadings are
Oi=2wimiiia¢h (i#k)
a

and
Qir=—F.(t) + melmkikaqa.
a

These equations describe the inertial loadings
for each mass point. At m, there is an external
force F ;. The sum of the forces on m; is the net
applied force:

Ox + Fi(t) = 3 wmi Xroga-
a
The structure is therefore loaded in mode ¢ by a

force system of the form

Fio= wzmiyiaq:z

(for all §). (62)
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These forces acting on each mass in mode a
are characteristic loads if it is recalled that

Xia ‘
q4,= x f Fi(T) sin w,(t — T) dT.
[}

m.,?mj /i’-f
Equation (62) may be rewritten
Fia= w2miX ,C/Ny(t) (63)

where

C, _ Xka

a —_——-—
2y X2
w@lm,X}.a

t
Nq(t) = m,,f Fi(T)sin w,(t—T) dT.
0
Therefore,

F,‘a = PiaNa(l)
where

f‘iu = wﬁmiXiaC;.

(637)

Many Applied Forces

Consider the case where there are many applied
forces acting on a structure which vary as dif-
ferent functions of time. The g, equation is

— wiqa

- wf,XiaCIa

—X%‘ (;Y—laFl_i" izan
Eij?

J Je

+ ...+ .YMF,"F e + YdaFd)

e wiyiaqa.

Therefore,
. . X2 F; —
Xi=3YXig=Y —"=——Yw?X;q
1 ; ?a ; ]ijx.?a ; a taya

=Film; — %wifiaQa
using Egs. (49) and (50). The inertia loadings are

Qi=—m Xi=—Fi+ S 0miXiuga

The net force acting on each mass is
Qi+Fi=Y wmiXiga (for all i),
a

These loads are characteristic loads of the form

Fio= wlm:X:,C"N' (1) 64)
where
w1
¢ wiZm;f}?a
J
t d —
N (1) = wa"’ [kEle..Fk(T)]sinwa(t—T)dT
|2

Alternative Form

In deriving the characteristic loads for a single
applied force and many applied forces, it has
been assumed that the summation over all of the
modes is performed. This is required in order
to use Egs. (49) and (50). The following presenta-
tion derives the equations one may use for the
case where the summation does not include all
the modes, say the first “u” modes of the “n”

modes present.

Single Applied Force

The absolute acceleration of m; is

o XiaXxaFi(t) & v
X;= — 2 X;aqa-
2 zijfa g Wy Aiaq,
J

a=1

The inertia load at each point is

m,‘iia/_\/—l\'aFK(t) L -
T e v + 2 iXia a-
?ijﬁ, ;::l w2m;Xiaq

Qi=i

a=1

<

=
<3
-
P
£
L]
e
-
oo
e

-
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The net force on my is

fﬁh‘iza Fl\'(t)

X2
?mj Xja

Filt) + Qs = Fi() = 3

a=1

u
+ 2 wgm,‘qua.

a=1
Many Applied Forces

9

The absolute acceleration in mode “a” is

— d —
Xia 2> Xl\’aFK
— K=1

/“:ia = - wziia a-
JZMjX§a é 7
Therefore,
¥ - u Xla El XKaFK u _
K= K= 5 g~ & ik
a=1 a=1 Ja

The inertia loadings are

miXia i XkaFx
K=1

Y2
szija

Qi=—miXi=—§u:

a=1
u —
+ > wimiXidga.
a=1
The net force acting on each mass is

miX;ia g: iKaFK
K=1
Fi+Qi=Fi— Y T SmXn
j

u —
+ 2 w?m; Xiaqa.

a=1

Base Motion

Consider the case of base motion algne. Equa-
tion (6) becomes X + w2X=~ Z or X =— w2
The @™ mode equation for a multi-degree-of-
freedom system can be written by replacing X by
Xia, by wg, and X by X aq « Therefore,

_Xia == wziiaQa

so that the inertia force acting on each mass is

Qic=—miXiec=w2miXiaqa (for all i). (65)

Once again, these inertia forces are characteristic
loads acting on each mass in mode a. If the ex-
pression for g, is introduced into Eq. (65), it
becomes

Qia == miiiaFaDa(‘)
where

Zm; ija
L

Pa= =
?ij}a

Da(t) = w.,f' 7(T) sin wa(t — T) dT.

L]

The term P,is sometimes called the participation
factor.

Stresses

The concept of a characteristic load is used to
show a practical procedure for stress calculation.
It is true that the stress at some point c is propor-
tional to a load, say Fi. This is a direct conse-
quence of the assumption of linear elasticity. For
example, if the load is doubled, the stress is
doubled. Therefore,

T = '}'cka

where yer is the stress at ¢ due to a unit load at
k, and can be considered to be a stress coefficient.
If there are many applied forces

d
0c= 3 YerFr. (66)
k=1

Suppose there are n applied forces and two
stresses of interest. Then

Te = ‘YCIFI + ‘)’cze + ...+ ‘)’ann

Og = ’yan] + ‘Yngz + ...+ ')'ﬂnFn-

Note that the array of the ¥’s need not be square,
and there is no reciprocal relationship.
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Suppose the set of Fi's applied to the structure
is a characteristic load for mode a. A “character-
istic modal stress” at point ¢ could then be deter-
mined as

Cea = E'Yci]':ju‘ (67)
i

It has been shown that each of the characteristic
loads vary in time proportional to the solution of
the Duhamel! integral

Na(t) = wa f Fo(T) sin wa(t — T) dT.

Therefore,
Tea = E(:alva(t)

so that

0c=200u=250a1va(t)- (68)

The procedure is to find the modal characteristic
stress in mode a due to the characteristic loads on each
mass, multiply them by the proper Duhamel integrals,
and sum over the modes.

In order to show that the stress can be con-
sidered to be composed of two parts as in the case
of response, first expand y.; by the generalized
Fourier expansion theorem and then integrate
Eq. (68) by parts. By proper substitution the
desired result will be found.

The generalized Fourier expansion for vy, is
obtained directly from Eq. (18) by replacing ¢iq
and Bi by Xis and m;, respectively. Therefore,

Xjazmifia')’ci
s = [ 69
Yei ; §maX?a (69)

Now,

Tea = Z'chfju
i

where the Fj, arc characteristic forces, defined

by Eq. (63"), so

yeim; XjaXka X"“?"‘J’Xja')’cj

Teg= =

4 X2
J ‘?:m'Xia

TmiXe,

Summing on all a,
— ?mi _X_ia'Yci
Gea = ke, = Yex (70
}a) ca ; a 3m X2, c )

by Eq. (69).
Now integrate Eq. (68) by parts:

T, = ;EcaFk(t) — Fk(O)EEca cos wgq!
a

_ 2& f: Fi(T) cos wa(t — T) dT.

Using Eq. (70),

g. = vyerFi(t) — Fk(o)zaca COS @al
a

. .
—Eﬁcaf Fi(T) cos we(t — T) dT.
a (] .

This states that the stress at ¢ can be considered
to be composed of two parts: the stress, ignoring
inertia effects, and a series of terms which repre-
sent a dynamic correction factor.

To find a similar expression for base motion let

Fi(t) =— me.(t)

and sum on all &. Hence,

Te = — Z(t)ka70k+ Z(O)Eﬁca COS Wql
A a

t ..
+ ga,,f Z(T) cos wa(t — T) dT
@ [

where o.q is the characteristic modal stress at
point ¢ due to the motion of the base. Multiply
the numerator and denominator of the first term
bv g (the acceleration due to gravity):

- 'Z% ;uﬂ.-')/ck-

Now

Ewk‘)’ck
k

|
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is the static stress due to the structure’s own
weight; so,

o _____Z_l(g_t). (os) + 2(0)2500 COs wqt

T ..
+ zc:rmf 7 (T) cos @a(t — T) dT
a [}

which is again in the form of a statical component
and a dynamic correction.

Stresses Using Deflections

Some engineers prefer to use deflections as a
means of finding stresses. It has been demon-
strated that each mode responds in a character-
istic mode shape. Then for unit deflection of any
mass j in each of the modes (provided this modal
deflection is not zero, Xjq > 0) there is a charac-
teristic stress at ¢ due to deflection of the mode.
Call this 5,. Then

E{G)_(jafka !
Oc = —_— F-(T)sinwa(t—T)dT
2,," maJZm,-XJ?a jo ’

and

E{WXM?miXia J~¢

Tc=— =
; waJE_ij]?a 0

Z(T) sin wa(t — T) dT.

Stress and Deflection Checking

If the purpose of an analysis is to compute
stresses or deflections, normal-mode theory in-
dicated that the proper equation must be solved
as a function of time and the separate modal
responses added together‘timewise to produce the
desired results. For engineering purposes, how-
ever, it is often quite satisfactory to use shock
spectra for calculating these structural effects.
A shock spectrum is a plot of the maximum abso-
lute values of the relative displacement, times
scaling factors if desired, of a set of either damped
or undamped single-degree-of-freedom oscil-
lators with negligible mass which have been sub-
jected to the shock motion. As a second definition,
instead of using the maximum absolute values of
the relative displacement, a shock spectrum may
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plot the maximum positive and maximum nega-
tive values of the relative displacement.

It is noted that the time to the peak values is
ignored in the definition of a shock spectrum. In
the case of the second definition of a shock
spectrum, this technique gives two stresses or
deflections for each point, a maximum of maxi-
mum positive values, and a maximum of max-
imum negative values.’

For example, consider a structure of n-degrees-
of-freedom, subjected to a base motion, where
stress is the object of consideration. The stress
contribution of mode a at point ¢ is

Cca = TcaDa(t).

This can be thought of as having two parts, o cq
and D,(t). When G, is computed, it is either
positive or negative. If only the maximum values
of D,(t) are used, then there are two stresses of
interest: the maximum positive and maximum
negative values. For each mode there are then two
products &..D; (product positive) and GcaDa
(product negative). If the two sums

2(—;“1): and Z?MD;

are formed, then a conservative value for both
the positive and negative maximum stresses will
be found. This method will give a better result
than simply using maximum absolute values and
is, of course, still conservative because of the
neglect of the time to peak stress in each mode.

Sometimes only a design shock spectrum (8-11)
is provided. A design shock spectrum is a plot of
values for use of the analyst in predicting the
stresses, etc., in a contemplated structure for
which no measured shock spectrum exists. It is
noted that a design shock spectrum for a par-
ticular structure is composed of carefully selected
information and is not just a combination or
envelope of data points taken from existing shock
spectrum curves for similar types of structures.
Since this is a set of maximum of maximum values
there is no way of knowing whether D is positive
or negative. A possible procedure is to argue that
the largest stress (or deflection) at ¢ occurs, and
because of phasing, etc., a “statistical expected
value” of the rest is added to it. This results (for
stress) in a formula like

'o'r:l = 'Vcbl + I/Iz(acu)ﬂ — (aep)? (71

FATITSSYIONN
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where |ocs] is the largest stress at ¢ caused by a '

mode. Such a formula should never be used for
an intermediate step, but only for a final result.

EFFECTIVE MASS WITH BASE MOTION v

The question often arises as to the dynamic
reaction of a structure on its base. The problem
is to replace the actual structure by a set of simple
oscillators, such that the force transmitted across
the base is precisely the same for the simple oscil-
lators as for the structure. These oscillators must
have the same fixed base frequencies as the struc-
ture, so their frequencies must coincide with
normal mode frequencies in order that the time
variation of the forces be correct. The question
then arises as to how much mass each oscillator
should be assigned. Consider the case of a com-
plex structure subjected to a unidirectional
translation shock motion Z(t), applied at the
base with no rotation. The absolute acceleration
of the point i in mode a is

XiaEm;iXja
S it

Xia 2
?m,-Xja

Dq(2).

From Newton’s laws the force exerted by this
mass i is

miiiazmj /Yja
R —

X2
?m,X}.a

Qia Da(t).

The force present in mode a is then the sum of
the individual forces, or

(?miiiu)z

X2
?mJ Xja

Q. Da(t).

Now the force exerted upon the foundation by a
simple oscillator is

F=—MD(t)

where M is the total mass. Therefore the effective
mass acting in mode a must be

(?miiiu)z

X2
?mJ Xjn

M, = (72)

G. J. OHARA AND P. F. CUNNIFF

It is of interest to compare the sum of the
modal masses with the total mass of the structure,
The sum of the modal masses is

-

(?ﬂh‘-’?m)z

X2
z ?m,X}.a

MI

This may be written as

It was shown that

X-iaz.mj ~X_ja
—_—

S %:ijJ?a

=1. (53)

Therefore,

M =Sm=M. "(73)

Equation (73) then indicates that the sum of all
the effective masses M, for the total number of
modes is equal to the total mass of the actual
structure. Since the effective mass is always a posi-
tive quantity, this enables one to estimate the
amount remaining in the other modes after a
few modes have been calculated.

The location of these simple oscillators is
prescribed by the fact that the moment of each
must equal that of its corresponding mode.
Choose a point on the base to take moments
about. Then if the perpendicular distance to mass
i is ¥i, the moment of the a® mode is

Imi fia}'i?mjxj

torque g = — Da(t).(74)

The distance to the oscillator for the gt* mode is
the torque divided by the force or

_ E"HYiayi
Ya="" = -
Ei:mixia

(75)
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| SUDDEN CHANGE
1 IN THE GRAVITY FIELD

As an example of theoretical interest showing
how normal mode theory may be used in the ab-
stract sense, consider a structure vibrating freely
after a sudden change in the gravity field, say
from zero to gravity g. The maximum deflection
of the point i in mode a from the new equilibrium
position becomes

8X iugm kX ka
- 2 X2

@ a?’ m; Xja

ia

The maximum potential energy of mode @
becomes
g (3m.X,,)?

2(»202]}ij§.“

%Eﬂﬁxmz

In mode a the maximum kinetic energy of
vibration is

_]_ X:. o2
2Zm,X|awa

where X, is the actual modal displacement at j.
During a free vibration the potential energy must
- equal the kinetic energy, so

g (EmiXi)
202Zm; X2 =§w:lZmiX';’a-
aj Ja

Now from the section on effective mass with base
motion

(zi:miiia)z

a
~Im: X2
7 e

(72)

is always positive and less than M, the total mass.
Therefore

52/‘4g . El ij';a

“’:; M~ M
Taking the square root of both sides

Ma
M

X (rms) = f;

where X, (rms) is the root-mean-square value of
the actual amplitude of the mode shape. This
equation shows that X ,(rms) tends to vanish in
the higher modes because

M,
M

<1

and
%%Oas wg —> o,
a

A similar result may be obtained for strain
energy in the following manner:

is divided by the total mass, giving
_l_j'—_&_z_(}i.)_dv=l S wiX: (ms).
M), 2E 2 &@ata

However, since

&M,

Xg (ms) = wiM

then

g (v) g'Mq

g\ \7/ = £ _“a

fr v =M

The strain energy in a mode tends to go down as
mode number goes up since

A

= 0as w, = w.
)

2
a

Although these results do not seem to have
immediate practical significance they were in-
cluded, as stated before, to show an example of
the abstract use of normal mode theory.

RESPONSE TO BASE ROCKING

Sometimes the base of a structure undergoes a
rocking motion. If the time history of this motion
is known, then the concept of many applied forces
and changes in the gravity field can be used to

solve this problem. Since this report deals only

with those structures which deflect parallel to the
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applied loads, the results presented here will be
for the relative motion of a mass parallel to the
base and perpendicular to a line drawn through
the center of rotation. That is, only components
of inertial forces parallel to the base are consid-
ered. This is a good approximation if the motions
are small.

If the base rotational acceleration is 8(t), then
each mass has a force — m;y;6(t) applied to it.
Summing these forces gives:

XiaZm;Xjay; e
R L

X2
" a.na?m,Xja

6(T) sin w,(t—T) dT. (76)
The absolute motion of m; is
Xi=X;+y:6(2). (7N

The remaining equations for acceleration,
stress, etc., can be derived in a similar manner
as for those equations presented in this report.

Appendix C shows that a structure under uni-
translation and small rotation may be treated as
a lumped parameter system of n masses for uni-
directional translation under the following
restrictions:

1. The sum of the n masses equals the total
mass.

2. The n masses are so placed on the model
that the moment of inertia about the center of
gravity equals the moment of inertia of the orig-
inal structure about the center of gravity.

SUMMARY

Some important points brought out in this dis-
cussion of normal mode theory are the following:

1. Undamped linear elastic structures have
ordinary linear differential equations with con-
stant coefficients as their equations of motion.
This allows the principle of superposition to he
used.

2. The normal mode shapes may be defined by
using either stiffness or influence coefficients. Max-
well’s law of reciprocal deflections holds for both
cases.

3. There are as many normal modes and natural
frequencies as there are independent masses,
although some frequencies may be redundant.

4.In a free vibration each normal mode is
periodic with frequency w, and the relative am-
plitudes of each of the vibrating masses is fixed
in this mode.

5. The norméal modes are orthogonal to each
other.

6. In all cases investigated a solution was found
in the form of a linear combination of the normal
mode solutions. That is,

Xi= EXia= Eiiaqa.

7. The theory of generalized Fourier expansions
was presented, which allowed an arbitrary velocity
and displacement set of initial conditions to be
used in the solution of the free vibration problem.

8. For free vibrations each normal mode vi-
brates in a periodic fashion, but the resulting
motion need not be periodic.

9. The array of the normal mode coefficients
is not symmetrical.

10. Each normal mode acts as a single-degree-
of-freedom system with specific characteristics
when responding to the applied forces or base
motions.

11. The solutions were presented for structures
initially at rest. Since superposition holds, the
initial conditions may be accounted for simply by
adding their equation of motion to the solutions
which were derived.

12. It was shown that the stress or deflection at
a point could be considered to be a component
which ignored inertial effects, plus a dynamic
correction.

13. For the single-degree-of-freedom system it
is often stated that the maximum stress or deflec-
tion due to a step change in force is double the
static case. This was shown to be true for deflection
of the mass where the force was applied but not
true for the other masses.

14. It was demonstrated that the results for a
structure responding to many applied forces can
be converted to the relative response due to base
motion by the principle of mechanics which states
that the acceleration of a frame of reference is
indistinguishable from a change in the gravity
field.

15. As in the static case a reciprocity theorem

for the dynamic response of a linear elastic struc-
ture was shown.
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16. The special cases of response to impulses,
sudden base motions, steps of forces, and steady-
state vibrations were discussed.

17. The characteristic load theorems were
proven.

18. The distribution of forces applied to the
structure by applied forces or base motions were
shown to be characteristic loads for each of the
modes.

19. Stress coefficients and their use were
introduced.

90. The use of characteristic loads and stress
coefficients was shown to be an advantageous way
of solving the stress problem.

21, Three approaches were shown for the prob-
lem of stress and deflection checking: (a) use of
Duhamel integrals as time functions, (b) use of
both the maximum positive and negative values
of these integrals, and (c) use of the maximum
absolute value of the integrals.

99 The effective mass and its location for a
structure subjected to a base motion were derived.

23. The effect upon modal stress and deflec-
tion of a sudden change in the gravity ficld was
discussed.

94. The response of a structure to base rocking
was discussed.

[
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APPENDIX A
DIFFERENTIATION OF AN INTEGRAL

The Duhamel integrals given in the single-
degree-of-freedom section were for relative dis-
placement. Sometimes the velocity or acceleration
might be desired, and one may wish to differenti-
ate one of these integrals. The following is known

as Leibnitz’s rule and its derivation may be found:

in almost any advanced calculus or advanced
engineering mathematics textbook.* Given

-5(t)
o(t) = f(T,¢) dT

a(t)

then
—d—d)— b(!)d_f _d_b
dt - ) dt dT+f[b(t)9t] dt

~ fla(, 1 52,

For example:

X=——1—j‘ 7(T) sin w(¢ — T) dT

w
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. ""
X——'—j Z(T) cos w(t —T) dT

- [—-Z'—(-z—)sin w(O)](l)

w

- [— 200 ., m] (0).

@

Therefore,
. t ..
X =-—J’ Z(T)cos w(t —T) dT.
[}
Differentiation again yields
. t .. ..
¥ = f F(T) sin w(t—T) dT — Z(1).
[}

Note that
j_(:= X+7Z=—0X

LI
=wf Z(T)sin w(t—T) dT.
0 . .

APPENDIX B

USE OF STIFFNESS COEFFICIENTS

In the section on influence and stiffness coef-
ficients it was stated: “A stiffness coefficient, de-
noted by the symbol Kjj, is the force required at
i when the structure is loaded in such a manner
that all points are restrained from moving except
j, which moves a unit distance in the negative
direction.” If Eq. (17) is solved for the forces,
there results

Fi= zKinj.
J
For free vibratons apply D'Alembert’s principle:

— miX; = KX (B1)
J

*For example, C.R. Wylie, Jr., “Advanced Engineering Mathematics,”
New York:McGraw-Hill, 1951.

Assuming a solution in the form X; = X sin
(wt +B) yields

mi X iw?sin (ot + ) =sin (ot + 8) ZKUYJ-
, ]

or

m;X—,-w’ = EKUYJ'
j

This is a set of equations of the form

(m1 wz——Ku)yr—K,J(-z+...+—K,,,)?,,=0

_K21Y1+(mﬂx)z'—K:zz)/?z'*‘...+—Kznin=0

K X1 —K, 2 Xo+ et (mow?— Kan) Xa=0.




Inspection shows that it is a set of linear algebraic

equations equal to zero. The determinant of the
. coefficient of the Xj's is the frequency equation,
and :

- 1 -
Xia= SKij Xja- (B2)
7

miw?

The normal modes are the same ones which were
found before, so they are orthogonal.
Multiply both sides by m ;X and sum on i:

=

Zmi/?ib/?ia= ® ziithijija
i i i

ok
n» L)

== ;/?jnZKjiilb
since Ki; = K j;. Now

S K Xin=m; Xisw?

50
- _ w? .
zm:XmX.a=—22mJXJme
wy ~
i J
This reduces at once to
wy XX
w:) S X i Xie =
1

which is the same expression as was found pre-
viously for the orthogonality conditions.

The equations of normal mode theory for uni-

- directional motion may be used for the case of a
" structure which has unitranslation and rotation
+in a plane provided certain modifications are
‘made to the lumped-parameter model represent-
ing the structure. The only restriction in what
follows is that the rotation, §, must be small.
As an example consider the body shown in
Fig. C1. The mass of the body is M, and r is the
radius of gyration of the body about the center
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Letting
Xi=3Xiq,
a
we have from Eq. (B1)
mi3 Xiafa + ;KUE Xieqa=0
a a
which may be written as

Z(mi Yl'a(-ia + qaZKi)'X:ja) =0
J

or
Do+ 0iga)miXia=0

since

miXicw? = SKi; X,
J
Multiply by X ;, and sum on i. Then
Go+ 02g. =0

as before.

This is as far as the use of stiffness coefficients
is demonstrated, because the results for deflec-
tions, stress, etc., are the same as for influence
coefhicients. Note that

1
K #Ei—J.

APPENDIX C

REPLACEMENT OF ROTARY
INERTIAS BY MASSES

REFERENCE AXiS

k Ay 12_’!

Fig. Cl — Example of translation and rotation of a beam
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of gravity. Let x and @ be the translational and
rotational displacements about the center of grav-
ity respectively. The equations of motion for the
body in free vibrations are

Mx + K, (x— £,0) + Ka(x+ £50) =0 (Cl)

Mr2g — K Li(x— £,9) + K2l (x+ £.9) = 0.
(C2)

Fig. C2 —~ Replacement of the beam by two masses
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Fig. C3 — Free-body diagram showing the forces acting
on the beam

Suppose this structure is replaced by two masses
such that m, + m; = M, and the masses are placed
at distances e; and e,, respectively, from the cen-
ter of gravity such that mie; = mse,. Find e,
and e; so that the new structure is equivalent to
the original structure. Figure G2 shows the masses
on the model of the structure. Figure C3 shows
this model at some instant after motion of the
structure .occurs,

The equation of motion in the x-direction is

dz2
™o (7T

d2
e.8) + mzﬁ (x + e:8)

+ Ki(x— £,0) + K, (x + 2:0) =0

or

(ml + m,z)ri; + (— miey + m2€2)é

+Ki(x— £2,08) + Ko (x + £,8) = 0.
Now,
— mie; + mse; = (0

and
my+me=M.
Therefore,
Mz + Ki(x— £,8) + Ko(x + £:0) =0. (C3)

The equation of motion in the #-direction is
(mie? + m2e§)§ — K 2 (x— £,8)
+K2£2(x+220) = 0. (C4)

Comparing Egs. (C1) and (C2) with (C3) and (C4),
respectively, if

Mr? = mie? + mye?

the two sets of equations are thie same. Therefore,
a structure which translates and rotates may be
idealized by a lumped paramcter model of two
masses such that the influence coefficients are
found only for unidirectional motion, provided
the following restrictions are met: (a) the sum of
the two masses equals the total mass, and (b) the
two masses are so placed on the model that the
moment of inertia about the center of gravity
equals the moment of inertia of the original
structure about the center of gravity.

Therefore, all equations developed in this re-
port for unidirectional motion are applicable.

It is noted that a logical selection of the two
masses is m, = ms. It then follows that ey =exy=r.
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