S NRL Report 5974
7;"';; NAREC Reference #30

NABUR

A NAREC Assembler for the Burroughs D825
Modular Data-Processmg Computer e

ROBERT M. MASON AND IRENE G FISHMAN '

- Applied Mathematzcs Staﬁ”
Oﬁce of Dzrector of Research

January 13, 1964

. s NAVAL RESEARCH LABORATORY ey
- Washmgton, D. C a

e
[

e

. t .
P o
: . vy

CONTENTS

FN Y - Lo OO PPN 1
N 0]) (S0 ST 2 1) (T S 1
AUthOTIZAtON ..ot ettt eeaeaen 1
INT RO DU C T ION Lttt ittt et ettt et ettt et et e e et et e e e aaaaaseneeaanes 1
PART I — NABUR LANGUAGE ..ottt ettt ettt e 1
1. Preliminary DiSCUuSSIONooeuuiiiiiiiiiiiiie e 1

2. Programming SHEEtsccoiiiiiiiiiiiiiiiii e 3

3. Symbolic Addresses or Labelsooooiiiiiiiii 8

4. Regular or Quasi-Regular D825 Instructions.........c.ceueviiiiniiiinniininnine e, 10

[T B RT: Vs Tol o) u s s LI TN 10

6. Operator Syllables..........cooooiiiiiiiii ereeeeens 11

7. Index Sylableso.ooiiiiiiiii 12

8. Basic Address Syllables (Memory and Branch).................... 12

9. Special-Use Syllables............oo.iiiiiiiii 13

| LU ST Te (o 20 B0 T8 0 019 1) o I 15
11. NABUR Operator Instruction Sheet...........coooviiiiiiiiiiiiiiiii 18
12. Source Tapesccovviviiiiiiiiiiini e e 18
LT O 5 0o a1 7211 30 01 o L T 18
PART II — THE NABUR ROU TINE L.ttt ittt iestterar sttt eneeneeenaenenans 19
1. Name of Programcooiiiiiiiiiii 19

b O LT S USSPt 19

B PUIPOSE c.vviiniit i e r e eaiteateaa e 19

4. Language Used.........oocoviiiiniiiiinin e 19

LT N1 1 o) . B PP TP 19

6. FOrmal Statement. .. oottt ittt e e e v e e eeanseeensaeaneeaaanseraneranenns 19

7. Operator INSLIUCHONS ..vuuttiiiiiiiiiiiie et e e e e e e 24

8. OULPUL ettt ittt et e e e et e e sae e 24

9. Tape Labelsciviiiii s e 25

| LUV s DT B0Y {0 00111 To) o SO PP 25
11. External Working MeEmOTYcocoiiniiiiiiiiiiii e 25
12, Versatility ..ooeovinin 25

| T TS 10 V- o S 25
ACKNOWLE D GMEN TS ittt ittt ettt et ar e astaraas e tatate e eeasaaeaaananeans 26
REFE R EN CES .ottt et et e ettt et e ettt et s et e ieet et e e eaaaerananeas 26
APPENDIX A — Numerical Listing of Burroughs 825 Instructions................co.ooeii. 40
APPENDIX B — Block Diagrams of Key Subroutinescooooo. 41
APPENDIX C — Summary of NABUR Rulescooooviiii 48

AT ITLLUTIAMNN

NABUR

A NAREC Assembler for the Burroughs D825
Modular Data-Processing Computer

RoBERT M. MasoN AND IRENE G. FISHMAN

Applied Mathematics Staff
Office of Director of Research

NABUR, an assembly routine written for the Naval Research Electronic Computer (NAREC), pro-
duces object programs suited to the Burroughs D825 Modular Data-Processing Computer. The input
data for this routine may consist of one or more punched tapes coded in a source language that aug-
ments D825 basic machine language. This report discusses conventions to be followed in writing source
programs and general aspects of the routine itself. A numerical listing of Burroughs D825 instructions,
block diagrams of key subroutines, and a summary of NABUR rules appear as appendices.

INTRODUCTION

This report concerns an.assembly routine called
NABUR, written for the NAREC (Naval Research
Electronic Computer), that permits the use of
this machine in the automatic assembly of object
programs for running on another of NRL’s com-
puters, namely, a Burroughs D825. The D825
Modular Data-Processing System has been devel-
oped to perform command-and-control functions
in a large military man-machine complex. The
initial system, constructed for NRL with the des-
ignation AN/GYK-3(V), has now been installed
and tested. Reference 1 is a paper reviewing the
design-criteria analysis and design rationale that
led to the system structure of the D825.

Part 1 of this report states the rules of NABUR
language. These rules must be followed explicitly
in writing D825 source programs for NAREC
assembly. Part II explains the assembly program’s
basic features, so that later improvements can be
made to the NABUR system, if required. It is of
interest to note that the NABUR program has
also been written in an assembly language, namely
NAR (NAREC Assembly Routine) symbolism.

Although the NABUR program bears some in-
ternal resemblance to the Burroughs 220/D825
Modular Processor Assembler (e.g., at one stage
in its development it copied its error statements
from this assembly program verbatim), it differs
markedly in regard to basic conventions. The
symbolism employed in writing NABUR source

NRL Problem R06-07; Projects RF.001-08-41-4552 and SF 001-08-
01, Task 9249. This is an interim report on one phase of the problem;
work on this problem is continuing. Manuscript submirted May 23,
1963.

programs has been planned to conform closely
to the symbolism of the Burroughs D825 machine
language. Thus, all combinations given in Ref. 2
are retained to designate D825 operations (these
are listed in Appendix A), and only combinations
consisting of three letters are introduced to repre-
sent quasi-regular and pseudo-instructions. The
use of these terms will be made apparent in later
sections of this report.

The underscore symbol, te. applied
to a numeral is used in this report to indicate
decimal numbers, unless they appear as expo-
nents or subscripts or are otherwise unambig-
uous. No such indication is used in describing
outputs, either in listing NABUR error statements
or in illustrating the checking-output format.
The comma symbol, z.e.“,” after a numeral is used
in this report to indicate octal numbers only where
it is necessary to show the correct usage of the
comma according to the rules of NABUR source
language.

“« ”

Part1
NABUR LANGUAGE

1. PRELIMINARY DISCUSSION

A “NABUR source program” is a routine hand-
written in symbolic (e, NABUR) form. Such a
program is typed on one of several NAREC Flexo-
writers using so-called standard six-bit NAREC
character representation to obtain a punched
tape called a “NABUR source tape.” One or more
of these source tapes are read into the NAREC
memory at assembly time in order to arrive at

AITITrAUTIAMA

2 R. M. MASON AND L. G. FISHMAN

the subject data which is handled internally by
the NABUR assembly routine. The end product
of the assembly process is a D825 machine-lan-
guage program called the “object program.” The
output consists of a bioctal punched paper object
tape for input to the Burroughs D825 computer
and a hard copy of the checking output.

The NABUR assembly process therefore splits
up into two important phases: input and output.
The input phase precedes the first of two passes
made by the assembler through the subject data.
It involves reading in first the NABUR system
tapes, and second, the source tapes. That part
of the output phase that produces an object tape
for later inptit to the D825 will follow an assem-
bly if the assembly is successful. Otherwise, an
object tape is produced only by special request.
The object phase also includes some line printing
that occurs (a) during readin, (b) at midpass, and
(¢) at regular intervals during the second pass.
It also may include a printout of error statements
during either the first or second pass, or both. It
is not necessary to punch out a tape during this
preliminary part of the output phase, but it is
possible to do so if this is requested as a special
instruction on the NABUR Opcrator Instruction
Sheet.

At readin, printout consists of a listing of head-
ing and check sum for each source tape. This in-
formation will be checked for accuracy by the
NAREC machine operators, if they are advised of
the expected values of the check sums in advance.
In case of a discrepancy, the operators then can
take nccessary steps to cnsure a correct run,
either by rereading the tape in question to try to
obtain the correct sum, or if this fails, by return-
ing the problem folder to the programmer for
further study. At midpass, printout consists of
a listing of labels and their octal equivalents. Some
of these labels were reserved in advance by the
NABUR system to relate actual addresses in thin
film to the common names of certain D825 regis-
ters or to render binary meanings to certain
mnemonics helpful in stating transmit modifier
syllables or 16-bit absolute addresses. Others
have been reserved in name only (semireserved)
so that the programmer may tell the assembler
what he is placing in the BAR, BPR, or SAR regis-
ters. The remainder are labels that have been
either preassigned, defined, or assigned to NA-
BUR words as symbolic addresses by the pro-
grammer. During the second pass, printout

consists of a checking output in which D825 octal
coding worked out by the assembler appears
alongside a restatement of the original lines of
the source program. A more complete discussion
of the nature of NABUR output is to be found in
Part II, Section 8 of this report.. At the success-
ful conclusion of an assembly, printout consists
of a most inscrutable six-bit character represen-
tation of the bioctal object tape which serves pri-
marily to assure the programmer that his assem-
bly was successful and that an output tape was
punched.

On its first pass through the subject data the
assembler must search and partially decode the
information available to it in order to associate
a numerical value with each symbolic address or
label. At this time the assembler begins to form
a pre-image of the D825 object program in the
NAREC memory. It does this by creating a skele-
tal frame on which to hang the object data. As
each operator syllable is formed it is placed in this
frame. As each nonoperator syllable is discovered,
a blank syllable consisting of twelve binary-zero
digits is inserted in the frame, but only for the
time being. During the first pass the assembler
may find a few obvious mistakes, such as the same
symbolic address assigned more than once or an
erroneous character punched on the tape. If so,
it will record one or more suitable error mes-
sages, for example, the statement “duplicate la-
bel,” or the statement “improper number of spaces
in the specification field.” If any critical mistake
is found during the first pass, the assembly process
will stop at midpass, after first listing the labels
used and indicating the occurrence of a “bad
stop” by printing five asterisks, ie. “FFEERET opn
the output sheet. Otherwise, the assembly process
will continue.

On its second pass through the subject data the
assembler tries to complete the object program
started earlier, by filling in the missing pieces of
object data in their proper places. This object
data is injected (one, two, three, or four consecu-
tive syllables at a time) by means of a “Store Q"
subroutine. A block diagram of this subroutine
appears in Appendix B. Further checking for
illegalities is carried out during the second pass,
notably for exceeding the maximum size limits on
components for syllables, writing octal or decimal
numbers improperly, etc.

Sometimes several diagnostic messages will
bracket a single mistake and help the programmer

NRL REPORT 5974 3

to pinpoint it. However, there is no guarantee
that every mistake contained in the source mate-
rial will be turned up by the assembly routine,
for logical errors often masquerade as legitimate
source statements. During the second pass the
object program is completely filled in, if it is pos-
sible to do so. Provided no mistakes are found,
the assembly process concludes by punching out
a copy of the object program on paper tape. This
tape contains the machine-language D825 object
program that has been produced. This program
is punched in the same character coding as that
provided by the Flexowriter model associated
with the D825 computer.

2. PROGRAMMING SHEETS

Figure 1 shows a sample NABUR Programming
Sheet. At its top, space is provided for stating
the title of the problem, the programmer’s name,
the date of completion of the sheet, the RCC
problem number, the tape label assigned, and
finally the page number. The remainder of the
sheet is divided into rows, corresponding to
NABUR source lines, and columns, correspond-
ing to various chunks of information which go to
make up complete source statements.

Tape feeds and code deletes are ignored by
the NABUR source-program input routine;*
hence, they are not counted as characters. All
other characters in the source programs, includ-
ing format characters (carriage return, tab, and
space), will enter the NAREC memory. Recogni-
tion of format characters is basic to the assembly
process. Because format characters play a funda-
mental role in keeping the assembly routine on
the right track, rules for their use must be care-
fully observed.

Excluding comment lines, which do not reappear
in the checking output, each line of NABUR source
programming contains one and only one instruc-
tion. Sometimes this instruction will be regular
or quasi-regular, leading to insertion in the object
program of an operator syllable followed by at
most six other syllables. At other times, it will
be a pseudo-instruction, perhaps FLO (floating
point) or INT (integer), not calling for insertion
of an operator syllable, but rather for insertion
of four data syllables; or, in the case of SYL (syl-

*A. B. Bligh and I. G. Fishman, “Alphanumeric Tape Readin Sub-
routine,” NAREC Bulletin No. 60, April 22, 1963.

lable), calling for insertion of a single data syl-
lable. Less often, it will be a pseudo-instruction
notifying the assembler of something of which it
must take cognizance, but not leading to insertion
of any syllables in the object program at all.

At the beginning of any line, the character
“carriage return” followed by an “m” will indicate
the end of that particular source program (there
may be more to follow); the character “carriage
return” followed by the character “tab” will indi-
cate that the remainder of the line represents a
comment* or the continuation of a comment; and
the character “carriage return” followed by any
character other than those mentioned above will
indicate the start of a line designation. Additional
carriage returns will always have the effect of re-
initializing for the beginning of a line.

Three vertical double bars cross the NABUR
programming sheet (Fig. 1), dividing each line into
compartments. These double bars represent
“tabs.” The first two of these tabs enclose and set
off the symbolic address assignment field, which
may be left vacant; the remaining tab terminates
the address speciﬁcétion field. Four vertical single
bars also appear on the NABUR programming
sheet. These single bars represent “spaces.” The
first space follows the operation field and must be
there, even though the operation in question re-
quires no address groupings (e.g., SSU —step stack
up). In this case the remaining spaces are omitted
by the typist, and the tab signified by the last
double bar comes immediately after the space fol-
lowing the operation symbol. The next two spaces
act to separate address-grouping fields. The
second one is omitted if address grouping III is
not entered, and both spaces are omitted if and
only if address groupings II and III are both not
entered. The tab signified by the last double bar
immediately follows the last address grouping
entered, if any. A space is typed (along with the
remark that follows) only if the letter “r” appears
in the remark indication field labelled “r.” Re-
marks reappear in the checking output.

These format requirements are summarized
below for instructions having three, two, one, or
zero address groupings.

(3) CR Line TAB Symb. Addr. TAB Op. SPACE
Al SPACE A2 SPACE A3 TAB r SPACE
Remarks CR

*A distinction is made among “comments,” “remarks,” and “astdes”

by the NABUR system. The exact differcnces in the meaning assigned to
these terms are stated explicitly on Page 8.

AT ITLALUTIAMNN

FISHMAN

R. M. MASON AND 1. G.

199ys SutwreaSoad yngvyN — 1 Sy

SAAVINDY

H1 DNIAO™HD) ssaay

1 ONILI038) SSTIAay

I ONI4.0™) SSTdaay

dO

HAAY HINAS

ANTT

affeg

oqey ade

UN qoad

EITR

aunN

PLL

(29/11/9) LIAHS ONINWVIDO0Ud HNIVYN

NRL REPORT 5974 5

(2) CR Line TAB Symb. Addr. TAB Op. SPACE
Al SPACE A2 TAB r SPACE Remarks CR

(1) CR Line TAB Symb. Addr. TAB Op. SPACE
Al TAB r SPACE Remarks CR

(0) CR Line TAB Symb. Addr. TAB Op. SPACE
TAB r SPACE Remarks CR
Symbolic addresses and remarks often are omitted.

The left-most column of the NABUR program-
ming sheet is used for line designations. Usually
these are decimal line numbers, but as long as they
include one non-tab character and do not start
with an “m,” “tab,” or “carriage return,” their
composition is arbitrary. In normal practice, a
source line will consist of a line designation fol-
lowed by a tab followed optionally by a symbolic
address followed by a tab; then willcome a NABUR
instruction word. This word will always begin
with a three-letter operation symbol followed by
one space and as many as three address groupings,
each separated by one space. This word will always
end with a tab. Theoretically, there is no limit to
the number of charactersin a NABUR word. After
a NABUR instruction word possibly comes an
“r,” a “space,” a remark, and then a “carriage
return.” If there is no remark, the last tab is
immediately followed by the carriage return.

The columns headed “Address Grouping 1,”
“Address Grouping 11,” etc., correspond exactly
to the syllable layout of D825 instructions given in
Appendix D of Ref. 2. When the operation at hand
has nonoperator syllables associated with it, those
columns corresponding to the positions of these
syllables in the layout are to be filled in by the
programmer. All other columns are to be left
empty. Prior to the first address grouping and
immediately after the operation symbol, a space
will be inserted by the typist. A space will also be
inserted between each adjacent pair of address
groupings. The last address grouping in a line will
be immediately followed by a tab. No space or tab
characters are permitted within an address
grouping.

All numbers appearing in address groupings
are considered to be decimal integers, if not
immediately followed by a comma character.
Otherwise, they are to be taken as octal integers.
NABUR takes care of conversions to binary. Octal
integers are translated, character by character,
from 6-bit to 3-bit form to obtain binary; decimal
integers are translated; character by character,
irom 6-bit to 4-bit form and then converted to ob-

@

tain binary. Leading binary zeros are added as
necessary.

Figure 2 is a reproduction of a portion of a
source program as it originally appears on the
NABUR Programming Sheet. Figure 3 shows the
complete typed copy of the corresponding source
tape which was obtained as a byproduct during
tape preparation. For comparison, the output
example given in Part II, Section 8, includes this
same source program as one of four that were
assembled together using the NABUR program.
An explanation of this output must be postponed
until that section is reached.

The following terminology is used throughout
the remainder of this report in dealing with the
subject of address groupings.

ADDRESS PREFIX

Either a leading “+” (sometimes understood)
or a leading “—" is carried by an address grouping
to indicate how the following quantities are to be
interpreted. This interpretation may be summa-
rized as follows:

Address Grouping Pertains to Meaning

M — Memory Syllable The following
quantity is a di-
rect address (+) or
an indirect ad-
dress (—).

S — Shift Syllable The following
quantity is a count
of leftward (+) or
rightward (-)
binary displace-
ments.

The following
quantity is an in-
crement (+) or
decrement (—).

la — Index Increment
Amqunt Syllable

A leading “slash” (or “oblique”) character, i.e.,
“/,” 1s used to introduce a triadic form. (See Part I,
Section 5.)

AEITITroUTALN

MASON AND I. G. FISHMAN

R. M.

atoN "weidoad 20un

‘¢ "8 Jo saulf £ 181y yim 2duapuodsariod

os uanumpuey jo 1dasoxy — g -8y

2
1 ON140YY $SSH4AaY

-

afeg

R 111 NI
h\\\ Pqe adeg

22 £ YD 2t 77 2/
2 2t f T | PR 74
20 4 5 Fov /! S/
2 E4 Z i K/
2e A 2 7 £/
Cd g 2oy k< | 777 2/
d i Ea il /7
Vi et > PP “E PrL o/
B e] PPvD 4 <7 4
2t 7. 22 |l 1 gaer| s
Pal 224 2t e TF YA
2 / - e 777 9
21 2 Y8 5
2 2 % 777 V4
Hl+ 2 777 | 12
2 PP 777 2°
Amger | 7P o
\w&w\g 777 00
77] /
7 0

i L)

(29/11/9) LIAHS ONINWVHEDI0Ud JNAVN

NRL REPORT 5974

R

4815 arcsin/arccos subroutine campbell/ej
nnnn
0 arch stf bpr n
1 1tf n bar
00 def inbpr arcb
[128 def inbar arcb
2 stw ssr n
3 1tw n +74,
4 bad h n n
5 1tf n 17,
6 esl n+ln
g brb n n arch2
arcbl trm n pu n
9 cls h arccl archb3
10 cgr h arcc2? arcbi
11 bmu h n n
12 bsu n arcc3 n
13 dsa n 42 n
14 bmu h h n
15 bsu arck5 h n
16 bdv arcki n n
17 bad n arck3 n
18 bsunnn
19 bdv arck?2 n n
20 bad n arckl n
21 bmu n n n
22 bad n arccd n
23 uct arcb6
24 arch2 xuc +1 //17,/0, arcbl
25 arch3 bmu h h n
26 bsu arck5 h n
27 bdv arckd n n
28 bad n arck3 n
29 bsu n nn
30 bdv arkk? n n
31 bad n arkkl n
32 bmu n n n
33 uct archb
34 arcbl stf 17, n
35 1tf£ o 37,
36 1tw h +160,
37 bsu arcc5 n n
38 srj 3, 0,
39 arcerl stf 37, n
4o 1tf n 17,
41 stw +160, n
4o bmu n arckb n
43 bsu arcka n n
L4 bmu n n n
45 bsu arcc6b n n
46 stw +74, n
4 1tw n ssr
4 arch6 uct arcb7/17,
49 . arcb7 srr
50 ab7l trm n xu n
51 srr
52 ab72 bsu arcct n n
53 srr
54 ab73 bad arccé n n
55 srr
56 arcecl int 132404 746316 3255,
5 arcc? int 166203 674746 1000,
5 arce3 int 040000 000000 0000,
59 arck5 int 132465 255632 1603,
60 arckl int -005241 026062 4515,
61 arck3 int 343532 000065 6622,
62 arck2 int 031201 621751 2156,
63 arckl int 041463 102013 1753,
64 arkk2 int 062403 443722 4334,
65 arkkl int 103146 204026 3726,
66 arcch int 062207 734244 3343,
67 arcch int 200000 000000 0000,
68 arcka int 212716 304511 6426,
69 arckb int 025641 515104 4031,
70 arccé int 144417 665212 2212,
mmmmmanmn

Fig. 3 — Typewritten source program

AITITAAUTAL

8 R. M. MASON AND I. G. FISHMAN

ADDRESS UNIT

An unsigned, uncompounded element may be
either (a) a decimal or an octal integer, or (b) a
label written in accordance with the definition
given 1n Part I, Section 3. If it is an integer, call it
X, then it must satisfy the inequality 0 < x =< 4095,
unless otherwise stated. If not, an error will be
noted.

EXAMPLES
3891

sam

17,

ADDRESS QUANTITY

An unsigned, possibly compounded element
consists of one or more address units joined by
“+7 or “=" concatenation symbols. These symbols
operate as “plus” or “minus” signs, respectively.

EXAMPLES

3891+17,—sam
17,43891—sam
0—sam+3891+17,

NOTE: All of these expressions will produce the same numerical value

ADDRESS GROUPING

Either a “+” prefixed address quantity is fol-
lowed by three or less “/” prefixed address quan-
tities, or a “/” prefixed address quantity is fol-
lowed by five or less “/” prefixed address quanti-
tics. An address grouping is terminated by the
first space or tab character; an address quantity,
by the first space, tab, or slash character; and
an address unit, by the first space, tab, slash, plus,
or minus character.

ADDRESS ARITHMETIC

This 1s a feature of NABUR assembly that is
provided by a fundamental subroutine, called
“Adar.” See the block diagram of this subroutine
given in Appendix B. The expression

“—sam+pete—3,..."

appearing at the beginning of a memory syllable
address quantity has the following interpreta-
tion. (a) The leading “— sign indicates that the
following quantity is to become an indirect ad-
dress. (b) Both “sam” and “pete” are unreserved
labels having numerical values determined by
the assembler during the first pass, and for the
rest of the assembly these values are to be found
in the table of octal correspondences. (c) Both
“pete” and “3” are “address modifiers,” whereas
“+pete” and “—3” are successive “modifications”
of sam. (d) The plus sign “+” and minus sign
“=,” are concatenation symbols used to form the
compound address quantity. The Adar subrou-
tine places no restriction on the number of modi-
fiers that can be used in writing a single address
quantity.

The last column, headed “Remarks,” is provided
for the convenience of the programmer. The
typist will not punch on the source program tape
what is written in this column, unless the letter
“r” (which is typed too) appears in the remark
indicator field. Thus, the last column will contain
(a) nothing, (b) an aside, which is not typed, or
(c) a remark, which is typed and reappears in the
checking output. To have the source tape contain
a passage of explanatory text that is felt to be
too long to be a part of the checking output, sim-
ply initiate the line with a “CR tab” combination.
Such a line will constitute a “comment.” Comments
differ from asides in that they are typed on the
source tape; they differ from remarks in that
they do not reappear in the checking output.

3. SYMBOLIC ADDRESSES OR LABELS

Some operator syllables must occupy the left-
most syllable position of a computer word. For
example, repeated instructions must be stored
with their operator syllables occupying a leading
position. In order to accomplish this through
assembly, each such instruction must be marked
in the source program. The mark is a “symbolic
address.”

A NABUR word is assigned a symbolic address
by making an appropriate entry on the NABUR
programming sheet in the column headed “Symb.
Addr.” and adjacent to the word itself. Each such
entry must meet the following definition of a
label. A “label” is a string of five or less strictly
alphanumeric characters containing at least one
unmistakable letter somewhere in the string (i.e.,

NRL REPORT 5974

some alphabetic character other than the letter
“I”). The programmer should also be careful to
avoid confusion between the letter “0” and the
numeric character “0,” which have different cod-
ing. A certain number of such strings, some called
“reserved labels” and others called “semire-
served labels,” are already present in the NABUR
program table of octal correspondences and there-
fore cannot be used for symbolic addresses by
the programmer. These are listed in Table 1.
Although permissible, it is not advisable for sym-
bolic addresses to be chosen so that they spell
out operator symbols.

EXAMPLES

valid: b2b5 d alpha

wl 111tl
not valid: snag bar stk4 xr
not advisable: fad cla nop

If a source line is assigned a symbolic address,
then the object syllables resulting from it will
always be left-justified in the object program.
NABUR will, if necessary, generate a sufficient
number of “dummy” NOP instructions (zero
operator syllables) as filler. On the other hand,
if a source line is not assigned a symbolic address,

TABLE 1
Octal Correspondences
Label Octal Equivalent

RESERVED snag 400000

indi 200000

bar 000055

bpr 000054

sar 000060

iar 000063

per 000057

ric 000114

ipr 000110

tfc 000124

xir 000122

idr 000074

isr 000040

pdr 000064

rcr 000062

rpr 000044

SST 000050

ccr 000123

rir 000130

psrl 000100

psr2 000102

rprl 000047

stk 000140

stk2 000144

stk3 000150

stk4 000154

pu 000001

mu 000002

Xu 000003

pr 000005

mr 000006

Xr 000007
SEMIRESERVED inbar no fixed value; initially zero

inbpr no fixed value; initially zero

msar no fixed value; initially zero

10 R. M.

then the object syllables resulting from it will not
necessarily start out a new computer word. This
means that data specificd by either a FLO or an
INT pseudo-instruction will not necessarily be
placed in a single word. The four syllables of data
that result will “go around the corner,” if neces-
sary. It is important to remember that each in-
struction to which a jump is made must be assigned
a symbolic address.

It has proven advantagcous to give the thin-
film registers their common names, so that the
asscmbly routine can fill in their actual addresses
where required. This has been accomplished in
a straightforward manner by permanently re-
serving these names and addresses in the table
of octal correspondences. Table 1 lists the labels
currently accorded such preferential treatment
by the NABUR system.

The majority of these reservations connect the
common names of D825 thin-film registers with
their octal codes or actual addresses. The remain-
der relate binary numbers with mnemonics usc-
ful in coding variant syllables for the transmit
modifier instruction (TRM), or simplify setting
“snag” or “indirect address” bits in second or

higher level, 16-bit absolute addresses. All of

these correspondences are fixed. The semire-
served labels, on the other hand, correspond to
no fixed octal codes or actual addresses. Thus,
they are reserved in name only. For example,
in the DEF (Define) pseudo-instruction they tell
the assembly routine what the D825 program
being assembled expects to have “in BAR,” “in
BPR,” or “in SAR.”

A label must not contain more than five char-
acters; if it does, an error statement is printed
out and only the first five characters enter the
table of octal correspondences. The total num-
ber of distinct labels that may be used by the pro-
grammer must not exceed 2747. If this rule is
violated, another error printmill result.

4. REGULAR OR QUASI-REGULAR
D825 INSTRUCTIONS

NABUR language is patterned after the ma-
chine language of the D825 computer, as defined

NOTE: NABUR rules, as distinguished from NAR rules, permit
only one type of symbolic address, namely, the internal symbolic ad-
there are no numbered mstructions or external

dress. In particular,
symbolic addresses in the NABUR language. Nevertheless, table look-
up and table enury are accomplished by means of subroutines written
for the NAREC Assembly Routine. The authors wish 1o thank Alan B.
Bligh for making these subroutines available to them.

MASON AND I. G.

FISHMAN

in the Instruction Index (Appendix D of Ref. 2).
In fact, it might be said to follow D825 language
to the letter, because it upholds both the mne-
monics for instruction names and the syllable
layouts. Instructions listed in Appendix A form
the class of “regular instructions” of the D825;
that is, they are all machine-language instructions.
Some of these regular instructions involve variant
syllables that are particularly difficult to specify.
For convenience in these cases, the mnemonic for
a particular octal order number has been extended
to form a set of related mnemonics that carry
extra information in the operation symbol. This
move obviates much programmer tedium. Such
related mnemonics are called “quasi-regular in-
structions.” In every case the use of quasi-regulars
in the NABUR system is recommended but not
mandatory.

First of all, regular operations STF (store thin
film) and LTF (load thin film) each have two-
member quasi-regular sets; containing respec-
tively, STF (store thin fragment), STW (store
thin word); and LTF (load thin fragment), LTW
(load thin word). Secondly, the regular operation
XLC (Index, Limit-Compare) has been split into
an eight-member set containing XNN (Index,
None), XEQ (Index, Equal), XGR (Index, Greater
than), XGE (Index, Greater than or Equal to),
XLS (Index, Less than), XLE (Index, Less than
or Equal to), XUE (Index, Unequal), and XUC
(Index, Unconditional). Thirdly, the regular
operation SHF (Shift) has been split into an eight-
member set containing DDA (Drop-Off, Double,
Arithmetic), DDL (Drop-Off, Double, Logical),
DSA (Drop-Oft, Single, Arithmetic), DSL (Drop-
Off, Single, Logical), EDA (End-Around, Double,
Arithmetic), EDL (End-Around, Double, Logical),
ESA (End-Around, Single, Arithmetic), and ESL
(End-Around, Single, Logical). Notice that these
shift quasi-regulars can be differentiated from
the remaining operation symbols by the fact that
none of the latter start with either a “D” or an

5. TRIADIC FORMS

The following syllables must be written as tri-
adic forms: (a) X-INDEX, (b) Iv-INDEX INCRE-
MENT, (c) F-FIELD DEFINITION, and (d) Ri-
REPEAT INCREMENT. This means that they
are to be treated as three successive address quan-
tities, some of which may be understood, in writing

NRL REPORT 5974 11

the address grouping. Such syllables are recog-
nizable by the assembly routine because of the
presence of leading slash characters. They must
have some one of the following forms:

/Q1/Q2/Q3
1Q1/Q2
Q1

where Q], Q2, and Q3 are address quantities.
When indexed, the address grouping for such
syllables must have some one of the following
forms:

1Q1/Q2/Q3/Q4/Q5/Q6
1Q1/Q2/Q3/Q4/Q5
1Q1/Q2/Q3/Q4

where Q4, Q5, and Q6 are address quantities de-
noting index registets, and QI, Q2, and Q3 are
as before. (All quantities Q = Q1, Q2, Q3, Q4, Q5,
Q6, used to fill triadic subfields must satisfy the
inequality 0 < Q =< 15.)

In short, all non-empty triadic subfields must
be preceded by the slash character. Moreover,
trailing triadic subfields may be left uncoded,
if no nonzero quantity is involved. However, any
blank triadic subfield which is followed by non-
blank triadic subfields must be coded either as
zero or vacuously. As an example, if in an un-
indexed syllable QI and Q3 are zero, whereas
Q2 is nonzero, then the address grouping may
have, among others, either one of the two triadic
forms:

10/Q2

or

/1Q2.

6. OPERATOR SYLLABLES

The operation symbols designating regular
D825 instructions all become lodged in the object
program image as operator syllables. Since quasi-
regular instructions map many-to-one into the
set of regular instructions, their operation sym-
bols also become lodged in the object program
image as operator syllables. On the other hand,
pseudo-instructions never are put into the object
program as operator syllables. They do, however,
often contribute one or more syllables of data.
On occasions, such syllables may act as operator
syllables. For an example of this, see the dis-
cussion of the SYL (Syllable) pseudo-instruction
in Part I, Section 10.

During the first pass, the assembly process de-
termines the first six binary digits of each operator
syllable from a table relating three-letter opera-
tion symbols to D825 octal order numbers. The
remaining six binary digits contain three 2-bit
address indicators which identify the possible
“addresses” of the instruction. For each particu-
lar type of operation symbol, the address group-
ings (if any) making up the remainder of the
NABUR word determine the contents of the
second half of the operator syllable.

O-Operator Syllable

1 1 1 | | 1 | |

: Ay Ap A3
ORDER NUMBER CODE | CcODE | CcODE

This determination rests on the information
in Table 2.

TABLE 2
Determination of Address Indicator Bits

Address Grouping Code Definition

STACK or NO {n 00 Step stack

REFERENCE |h 01 Hold stack

MEMORY {Ql 10 An unindexed address grouping

REFERENCE (Q1/Q2... 11 An indexed address grouping
(index quantities follow any
other quantities to which they
are applied).

AT ITLLUTIAMN

12 R. M.

7. INDEX SYLLABLES
X-Index Syllable
! L1 i 1 1 ! Lo

INDEX REGISTER INDEX REGISTER INDEX REGISTER
ADDRESS ADDRESS ADDRESS

Index syllables are expressed as triadic forms
(see Part 1, Section 5) and appear following the
quantity or quantities they modify, in contrast
to their ultimate position, as syllables, in the object
program. All quantities Q, designating index
registers, must satisfy the inequality 0 < Q =< 15.

The three 4-bit portions of the X-index syl-
lable, which correspond to the information given
at the right of the first slash in an indexed ad-
dress grouping, are filled directly if the index
registers are nonsymbolically stated. But if the
index registers are symbolically stated, these por-
tions are filled from the label table. Suggested
symbolic labels to be given index registers are
X1, X2, ... For example, an expression like

+ sam/1/x3
would mean “index the address corresponding

to sam by means of index register 1 and the index
register preassigned to or defined as x3.”

8. BASIC ADDRESS SYLLABLES
(MEMORY AND BRANCH)

M-Memory Address Syllable

SN SO (NN PR NN TS E M M|

Ip RELATIVE ADDRESS {a)

If a memory syllable refers to an indirect ad-
dress, the corresponding address grouping should
bear a “—" prefix; otherwise, it should bear a
“+” prefix (which may be understood). An un-
indexed memory syllable should be written as an
address grouping of the form:

+Al

where Al is a simple address quantity, Ql. As
one binary digit of the memory syllable is allotted

MASON AND I. G. FISHMAN

to the indirect-address bit, the quantity Ql has
to satisfy the inequality

0 =< Ql = 2047.

An indexed memory syllable must be written
as an address grouping A having some one of
the following forms:

Q1/Q2/Q3/Q4
Q1/Q2/Q3
Q1/Q2

where Q1, Q2, Q3, and Q4 are address quanti-
ties. Moreover, Q1 designates a relative address
and Q2, Q3, and Q4 designate index registers.
In all cases the indexing quantities follow the
basic quantities in an indexed situation. This has
been done for the programmer’s benefit, despite
the fact that the D825 object program has its syl-
lables stored the other way around. Nor should
it be overlooked that a hidden correction is applied
in each memory-syllable determination. The re-
sult put in the object program will be “Q1 minus
the contents of the BAR” or Ql—inbar.” The
programmer can override this at his own option
by including “inbar” explicitly within the quan-
tity. That is, he must write “QJl+inbar.”

It is often useful to be able to bring the nega-
tive value of inbar, the current contents of the
BAR, to an index register. At first glance the rules
of NABUR will not permit this. Still, it can be
done with only slight inconvenience by taking
Q1 to be “+0—inbar.”

B-Branch Address Syllable

1 | |] | 1 I | l 1
RELATIVE ADDRESS (a)

The branch-address syllable differs from the
memory syllable in that it does not have an in-
direct address bit position. The forms are the
same. Consequently, the value of Q1 may have
its maximum range, ie., 0 < Q] = 4095. Again,
note that a hidden correction is applied in each
branch-address syllable determination. The result
inserted in the object program will be “Ql minus
the contents of the BPR” or “Ql—inbpr.” The

NRL REPORT 5974 1%

programmer can cancel this by the device em-
ployed in the preceding paragraph. That is, he
must write “Ql+inbpr.”
9. SPECIAL-USE SYLLABLES
‘T-Thin-Film Address Syllable

! I ! 1 l 1 I 1
VAR. T.F. REGISTER ADDRESS

In the NABUR system, the D825 thin-film
registers follow their octal codes given in the 16-
bit T.F. Register Map on page C-2 and the 12-
bit T.F. Register Map on page C-3 of Ref. 2. The
programmer, accordingly, may write octal in-
tegers from “000,” (or simply “0,”) to “177,” to
refer to the thin-film registers. Alternatively, he
may write the corresponding decimal equivalents
“0” to “127” or use either the common names
already reserved in advance in the table of octal
correspondences (Table 1) or new names, defined
or preassigned by pseudo-instructions, such as
x1, x2, etc., for index registers. But he may not
number the limit registers in decimal, as shown on
page C-2, Ref. 2 (ie., “0” through “15”), because
this conflicts with the earlier sequence for index
registers. He could, of course, label the limit regis-
ters r0, ..., r15, and to these labels preassign or
define decimal values 16 through 31. Note how-
ever that decimal values “0” through “15” and
octal values “0” through “17” must be used when
designating limit registers in the Iv-Index Incre-
ment Variant Syllable.

The association of octal codes to the labels of
thin-film registers is complicated by a restriction
to key registers (marked by heavy dots in the T.F.
maps on pages C-2 and C-3 of Ref. 2) when an
entire 48-bit word is being referenced. Failure to
select a key register to head a multiregister store
(STW) or load (LTW) thin-film quasi-regular
instruction leads to an error statement, unless the
address quantity involved is indexed, and there-
fore of unverifiable correctness as far as the as-
sembler is concerned.

Iv-Index Increment Variant Syllable

|) 1 1 { |
INDEX REGISTER LIMIT REGISTER
ADDRESS ADDRESS

A 1 i
VARIANT

This syllable is used only with the XLC (Index
Limit Compare) instruction. Treatment of the
last two portions of the syllable has already been
described. The variant consists of a bit for “in-
crease” or “decrease” and three bits to determine
the branch condition.

The “+” or “—" prefixed to the Index Amount
Syllable leads to a “0” or “1” placed in the Index
Increment Variant Syllable. The XLC instruction
has been split into eight quasi-regular instruc-
tions, as shown in Appendix G, IX, and the par-
ticular one used will determine the contents of
the remaining three bits in the variant.

Ia-Index Increment Amount Syllable

| | | | 1 | | ’ | 1 |
AMOUNT OF INCREMENT

The programmer must prefix a “+” or “—”
character to the Ia syllable to indicate increment
and decrement, respectively. This will lead to
placement of a “0” or “1” in the proper binary
digit of the Iv-Index Variant Syllable. The value
of the Ia syllable quantity has the range 0 < Q <
4095.

S-Shift Syllable

|] I |] I 1 |]
VARIANT AMOUNT OF SHIFT

“__»

The programmer must prefix a “+” or “—
character to the shift syllable address grouping
to denote the direction of shifting. The interpre-
tation of this sign will agree with the conception
of a right shift as a multiplication by a negative
power of two (i.e., minus exponent implies use of
“—" prefix) and of a left shift as a multiplication
by a positive power of two (ie, plus exponent
implies use of “+” prefix). This convention cir-
cumvents a possible need for introducing four-
letter operation symbols.

The preﬁ'x will contribute one bit to the variant.
The shift syllable has been split into eight quasi-
regular operations, as described in Appendix C,
IX, and the use of one of these will determine
the contents of the remaining three variant bits.
The shift amount Q has the following range:

0<Q=6s.

AT IILLPUTIALA

14 R. M. MASON AND I. G. FISHMAN

Vt-Transmit Variant Syllable

[R R L1 | L1
] VARIANT

The variant in this syllable is contributed by
the program through translation of various re-
served labels (pu, mu, xu, pr, mr, xr) which ap-
pear in the associated address grouping. Mean-
ings are attached to these labels in Appendix C,
X.

L-Logical Machine Condition Syllable

| 1 1 l I 1 | I | | !
MACHINE CONDITION FLAGS

The lLogical Machine Condition syllable will be
treated as a SYL-type syllable.

F-Field Definition Syllable

| 1 | | 1 1
SHIFT AMOUNT FIELD LENGTH FIELD BEGINNING

This is a triadic syllable. The associated address
quantities must lie in the range 0 = Q = 7.

C-Character Syllable

] 1] | | { I 1 1]
CHARACTER

The 6-bit character of the character syllable
is treated as a SYL-type syllable. The range of
the quantity Q is as follows:

0=Q =63

Ja-Subroutine Jump Address Syllable

RELATIVE ADDRESS

The subroutine jump address syllable will be
treated as a SYL-type syllable, except that once
more a useful, but concealed, correction is ap-
plied in each determination. The function of
this correction is to make more natural the use
of the machine’s abilities. The resulting Ja syl-
lable, inserted in the object program, will be “Q1
minus the contents of the SAR” or “Ql—insar.”
If it is ever necessary to do so, the programmer can
override this correction by writing “Ql-+insar.”

Ji-Subroutine Jump Increment Syllable

1 1 | 1] 1 |] | | 1
BAR INCREMENT

The subroutine jump increment syllable will
be treated as a SYL-type syllable. Its determina-
tion can be made relative to the BAR by writing
“Ql—inbar.”

Rc-Repeat Count Syllable

{ i 1 I | 1 1 I | | |
COUNT OF REPETITIONS

The repeat count syllable will treated as a SYL-
type syllable.

Ri-Repeat Increment Syllable

! | 1 | 1 1 I 1 |

Sp INCREMENT Sz INCREMENT S4 INCREMENT

The programmer should rely on Ref. 2 for
occasional use of the repeat instruction in order
that he may be able to conform to the machine-
language-instruction format. This syllable is proc-
essed as a triadic form.

10-1/0 Syllable

[R TN R S N B N !
VARIANT

The range of Q for the 1/O syllableis 0 < Q =< 3.

NRL REPORT 5974 15

Vs-Special Register and Computer
Interrupt Variant Syllable

| | | I]] |]] I
VARIANT

The range of Q for the special register and
computer interrupt variant syllable is 0 < Q < 7.

10. PSEUDO-INSTRUCTIONS

The following paragraphs describe pseudo-
instructions currently available to programmers
using the NABUR system. A pseudo-instruction
which will handle I/O Descriptors is under con-
sideration,

INT (Integer)

This pseudo-instruction is used to insert a
signed, 47- binary-digit integer as four succes-
sive syllables in the object program. The pro-
grammer must ensure that this integer arrives
in the object program as a single D825 word, if
so required. This always can be done by marking
the NABUR word containing the INT instruction
with a symbolic address. For clarity, since only
one address grouping is required, the program-
mer may allow the integer quantity to spill over
into more than one address-grouping field. And
he may use spaces in a free fashion unless he is
using a compound address quantity, for this would
terminate incorrectly at the first encountered
space. Although this operation was designed ex-
plicitly for signed and unsigned decimal or octal
integers in the range —24%7 to 2%, it is possible to
use a label instead of an integer or to use con-
catenation symbols to tack on additional address
units, such as labels.

EXAMPLES

(How to set the contents of “spot” equal to the
numerical address corresponding to “dot.”)

spot INT dot

(How to set up a second or higher-level 16-bit
absolute address with indirect or snag bits.)

INT 65535+indi
INT 65535+snag
INT 65535+snag+indi

FLO (Floating Point)

This pseudo-instruction converts the number
which follows the operation symbol into standard
D825 floating-point binary form. It requires all
three address groupings for its specification, so
the rule for spaces is not relaxed in this case, as it
was for INT. The FLO operation can handle only
signed or unsigned decimal numbers. The man-
tissa will be normalized, and any overflow or
underflow that occurs in the exponent will be
detected and considered an error. True zero
will be converted into standard D825 floating-
point-zero form (i.e., 7777 0000 0000 0000).

In the FLO pseudo-instruction, a number is
defined by the expression

A2 A3

(A1 X 10°*7) x 2
where Al, A2, and A3 refer to the three consec-
utive address groupings, reading from left to
right. The required form of these three distinctly
treated address groupings is as follows. The Al
form will contain (a) from 1 to 18 decimal charac-
ters, (b) a leading plus or minus, the plus being
optional, and (c) a decimal point, also optional,
but if missing assumed to be located at the imme-
diate right of the last digit. The form of A2 and
A3 will be that of any address quantity, such as
is allowed in the SYL pseudo-instruction.

SYL (Syllable)

This pseudo-instruction translates the quantity
in the first address grouping, Al, of a NABUR
word from source language into a twelve-digit
binary integer and places this result in the syllable
that is next to be filled in the object program.
Explaining this another way, it puts the syllable
in the position indicated by the Q-arrow. (See
Part II, Section 6.) The form of the data in a
SYL address grouping is identical to that found
in an ordinary, unindexed branch syllable address
grouping. In other words, it is an address quantity.

The SYL pseudo-instruction injects an arbitrary
syllable explicitly into the object program. For

fUTAMA

16 R. M. MASON AND I. G. FISHMAN

example, it is the only direct way to place a non-
zero NOP operator syllable (i.e., one having a 1
in some address indicator bit position) in the object
program. SYL also can be used to place a HLT
(Halt) operator syllable in the object program,
whose six address indicator bit positions contain
an identifying integer.

PRE (Preassign)

The table of octal correspondences may be
expanded by the source program in three separate
ways. (In the unlikely event that this table becomes
full, the assembly process will record an error
statement.) One way, described earlier, occurs
when a new symbolic address is encountered by
the assembly process sometime during the first
pass. The actual address, in octal, that corre-
sponds to the symbolic address so detected is a
function of the present position of the Q-arrow.
Occasionally, however, the programmer may wish
to preassign an octal address to a label. For
example, if a programmer using NABUR wishes
to utilize, with no further assembly, object tapes
occupying known positions in the D825 core
memory, he can preassign symbolic addresses to
correspond to their actual machine addresses.*
A particular label can be preassigned or assigned
only once during any assembly run; however, it
can be defined more than once, or even assigned
(or preassigned) a value initially, and then de-
fined to be some other value, later. Moreover,
several different labels can be given the same
value, either by preassignment, assignment,
definition, or some combination of these, if
required.

DEF (Define)

The DEF pseudo-instruction is another way in
which to introduce values into the table of octal
correspondences. (The remaining way is by
assigning a symbolic address to a NABUR word;
this is discussed elsewhere.) The DEF operation is
similar to the PRE operation. But with PRE, only
new labels can be entered into the table of octal

*In the NABUR system, preassignment is accomplished by a pseudo-
instruction that is treated in the same manner as any other NABUR
instruction, and consequently preassign tapes and source tapes arc
conceptually identical, or may even be made into one tape. Neverthe-
less. despite the fact that NABUR preassignments can be intermingled
with the steps of the source program, it is advisable to write all the
preassigns necessary for an assembly on one tape, to be read in before
the other tapes.

correspondences. Should there already be an entry
having the same spelling, the program will accept
the new value, but also will provide an error
statement. On the other hand, with DEF, it is
possible to give new octal values to symbolic
addresses or labels that have already been entered
in the table, provided only that they are unre-
served. So, in contrast to the PRE pseudo-instruc-
tion, the programmer may change the value corre-
sponding to any unreserved or semireserved label.
For example, he may change those values corre-
sponding to “inbar, inbpr, or insar” at points
where he expects the running program to reset
the BAR, BPR, or SAR registers. The same rules
for address groupings that hold for PRE also
apply to DEF. All labels will be stored in the
table of octal correspondences on the first pass;
any label which will not appear in this table at
the end of the first pass must necessarily be an
error. Define operations, but not preassigns or
assigns, are reiterated on the second pass.

Clearly, D825 programs must reset the BAR
at least once every 2048 words. The assembly
routine must be told what setting applies at
various points to compensate the values from
the table of octal correspondences.

RES (Reserve)

The reserve pseudo-instruction sets aside a
stated number of consecutive syllable positions
located next in the object program leaving them
with zero contents. Only one address grouping
is used, which contains an unindexed address
quantity of SYL form. This is acted upon by the
Adar subroutine to establish the number of
syllable positions that are supposed to be kept
vacant.

NOR (Normal Mode)

This pseudo-instruction requires no address
groupings for its specification. Its purpose is
to signal that further operation of the D825
program being assembled is to be in the normal
mode.

CON (Control Mode)

This pseudo-instruction is the reverse of
NOR. Its purpose is to signal that further opera-
tion of the D825 program being assembled is to be
in the control mode. It also requires no address

groupings.

NRL REPORT 5974 17

-
-
NABUR OPERATOR INSTRUCTION SHEET (6/11/62) Date e
RCC Problem Number: ' NRL Account Number
Problem Title Programmer
Assembly Telephone

1. Format: Hexadecimal, Infinite Column. Output: Line Printer. (LO 12Cl).
2. First Address in Object Program 0000000 . ____.

3. Source Program Tapes (Place on slow reader before heading):

Tape Check Cont. Tape Check Cont.

Label Sum P.B. Label Sum P.B.
) ST) "
(2) " (10) "
(3) "D "
(4) " 19) "
(5) " (18) "
(6) " (14) "
(7) " (15) "
(8) " (16) "

4. (RO 12C2). Stops at 1390 if no.errors.
5. If there are assembly errors: STOP or PROCEED.

6. If no assembly errors: Change output to: Line Printer and Paper Tape Punch.
Push Continue. :

7. Label output tape

8. Special Instructions:

Fig. 4 — NABUR operator instruction sheet

18 R. M. MASON AND I. G. FISHMAN

11. NABUR OPERATOR
INSTRUCTION SHEET

Figure 4 shows a NABUR Operator Instruction
Sheet. It is more or less self-explanatory. Notice
that “Format” is already specified. It will be
necessary for the programmer, however, to decide
upon the intended first address of the object
program in the D825 memory. This address
must be entered in the space provided on line 2.
It is possible to write as many as 16 source tape
labels on one sheet, along with the check sums
for these tapes. To write more than 16, simply
attach another sheet by stapling, and renumber
the appropriate lines of the secondsheet, starting
with (17), (18), and so on. Also, make a note under
line 8 (Special Instructions) telling the machine
operator to continue reading tapes in the order
indicated on the next sheet.

12. SOURCE TAPES

The steps followed in preparing NABUR
source tapes are similar to those followed for
NAR source tapes. Both kinds of tapes are read
into the NAREC and therefore must have a
related structure; namely, they must contain a
Heading of the standard form preceded by
heading recognition symbols, and the body of
the source program must be preceded and
followed by the standard NAREC prepare and end
routines, respectively. All characters in the body
of the source program, excluding tape feeds and
deletes, will enter the NAREC memory, including
all format characters (CR, tab, and space). Recog-
nition of format characters is an intrinsic part
of the assembly process.

But NABUR source tapes do differ from NAR
source tapes in many ways. For example, both a
title and other expository matter may be included
within the body of a NABUR tape by treating this
material as a commentary. Comments, it may be
recalled, (a) are preceded by a “CR tab” combina-
tion, (b) are typed, and (c) do not reappear as
part of the checking output. To obtain something,
called a remark, which does reappear, it is neces-
sary to place an “r space” combination immediately
after the tab following the last address grouping.

More than one source tape can be read into the
NAREC before starting the NABUR assembly
process; thus, for example, several subroutines
can be read in before or after the main program.
In this case, the object program will be assembled

from the component tapes in the consecutive
order of their readin. In the event of a faulty
readin, it will be possible for the machine operators -
to reread only the last source tape in an attempt to
obtain the required check sum. In planning
several tapes for the same assembly, remember
that a given symbolic address can be assigned .
only once, whether this be by assignment (writing
a label in the symbolic address field), or by pre-
assignment. The NABUR system will record an
error statement whenever this rule is violated.
The total number of characters permitted for
the subject data is 32,768; the total number of
words allowed for the object program is 4096.
Longer programs could be handled with some
minor changes to the assembly routine.

13. ERROR STATEMENTS

Considerable checking is built into the NABUR
system, and an appropriate error statement
(Table 3) is printed out whenever an error is
detected. Although no hard and fast rule is possi-
ble, it is usually the case that when a source
mistake is detected, an erroneous syllable will be
formed, partially correct, partially zero. Such
faulty syllables are not easily corrected by over-
punching, because the object tape is coded in
bioctal; nevertheless, they often can be corrected
at the D825 console.

TABLE 3
NABUR System Error Statements
Number Message
1 number or label too large
* 2 illegal op code
3 the iar cannot be loaded in normal mode
4 symbol table capacity exceeded
* 5 duplicate label
6 improper stack reference
7 missing operand
8 index identifier not previously defined
* 9 index assigned not between 0 and 15
*10 index improperly designated
11 improper amount syllable
12 xlc inst improper index or limit register
identifier
13 indirect branch
*14 improper octal number
15 improper character field definition
16 single shift amount greater than 47
17 improper shift specification

NRL REPORT 5974 19

TaBLE 3 (Continued)
NABUR System Error Statements

Number Message
18 double shift amount greater than 11
19 invalid numbering of an instruction
20 illegal input to octal digit function
21 halt used in control mode
*22 faulty symbolic address
23 illegal branch condition designated
24 label not previously defined
25 argument not previously defined
26 i-o instruction used in normal mode
27 missing bus designation
28 improper special register designation
29 Ist used in normal mode
30 improper value preassigned or defined
31 improper t.fr. key address
32 improper t.f.r. address
33 missing operator
34 concatenation element not previously
defined
35 repeat increment greater than 15
36 item vector exceeded
*37 label reserved
*38 improper number of spaces in specifi-
cation field
39 illegal character definition
40 improper indirect address
41 syllable greater than 4095
42 undefined base register label
43 improper number on tape record
44 relative address greater than 2047
*45 improper decimal number
46 argument not defined
*47 mistake in source line
*Most commonly seen.
Part IT

THE NABUR ROUTINE

1. NAME OF PROGRAM

NABUR - A NAREC Assembler for the Bur-
roughs D825 Modular Data-Processing Computer

2. CLASS
L1 Executive Routines, Assembly

02 Simulation andfor Interpretation of Other
Computers, Other

3. PURPOSE

a. To assemble an object program in Burroughs
D825 machine language from one or more pro-
grams written in NABUR source language.

b. To check for programming errors and print
out corresponding error statements wherever
appropriate.

c. To provide, in the event of an error-free
assembly, both a punched object tape that is
compatible with the requirements of the D825
input format and a dual-language hard copy
(or “checking output”) in which source lines and
object words appear collaterally.

4. LANGUAGE USED
NAR 1B and NAREC interpretive language

5. AUTHORS
R. M. Mason and 1. G. Fishman

6. FORMAL STATEMENT

When the NABUR program has been placed in
its working position in the NAREC, and a start
order executed, the program will clear portions
of the memory, reset certain parameters, and
almost immediately call for a keyboard insertion
by the NAREC machine operator of the intended
first address for the D825 object program to be
produced, ie, the octal integer written by the
‘programmer in the space provided on line 2 of
the NABUR Operator Instruction Sheet. The
machine operators will box this first address as a
right-justified hexadecimally coded octal integer
and push the transfer button, whereupon the
program will convert it to pure octal and store the
result in qadd, a working location in the NABUR
program. Next the program will call for the
source tapes to be read in, including format
characters but excluding delete and tape feed
codes, as a succession of 6-bit characters. The
heading is read in as well, and then printed
out, but not stored permanently. The (augmented)
check sum for each component source tape is
computed and recorded. After all source tapes for
the assembly have been read in, forming the sub-
ject data, a second start order will begin the
assembly process.

Consider Fig. 5. Upon readin, the material in
Fig. ba takes on the appearance shown in Fig. 5b.
After readin of all the source tapes to be assem-
bled, the NABUR program begins its first pass

-

ATIT ITH0TTALLN
[TR R foEnnr

20 R. M. MASON AND I. G. FISHMAN

through the subject data. In both the first and
second passes a subroutine called “Subject Deline-
ator” is employed to distinguish in memory the
current line of subject data to be examined. It
does not place this line in a detached situation.
In Fig. 5b a “P-arrow” applied successively at
points Py, Ps, P3, and P, denotes the first character
of each string to be considered. Also, a “Q-arrow”
might be defined that always points to the next
available syllable position in the object program.

A line of subject data is defined as a non-empty
string of characters other than carriage returns,
preceded by, but not including, one or more CR’s
on the left (open), and followed by one or more
CR’s, but including only the first (closed), on the
right. In Fig. 5b, the 18 characters at P,, namely
0 through CR, would comprise the first line of
subject data to be isolated by the Subject Delineator
subroutine. The NABUR program treats each
source line independently, using the character
handling and manipulating programs of the
CHAMP system. An examination of what would
happen with the most general form of line will
illustrate practically the whole approach. The
most general form of source line is:

X TABSYM* TAB OPSSPACE A1 SPACE A2 SPACE A3 TAB R* CR
where
X is a line designation
SYM is a symbolic address

OPS is a three-letter mnemonic operation symbol

Al, A2, and A3 are address groupings
' which may contain indexing

R is “r space remark”

* denotes that the starred element is optional.

The positions of tabs and spaces are critical in
identifying particular components of the source
line. In the first pass, only a framework of the
object program resulting from assembly is created.
The number of tabs per line must always total
three, and if this rule is broken, the assembly
process will record an error statement to that
effect on the first pass. The character substring
enclosed by the first two tabs is taken to be the
symbolic address. If there is no entry between
the first two tabs, the assembly program accepts
the fact that this line is not marked, and goes on.
If there is an entry, tests are made of the accepta-
bility of the symbolic address, following the rules
given earlier in this report (Part I, Section 3).

If acceptable, the symbolic address is next com-
pared with the entries in the table of octal cor-
respondences. If it does not duplicate any entry of
the table, whether it be reserved, semireserved,
or unreserved, it is entered along with the current
address of the object program, qadd. The presence
of a symbolic address on a line will reset qadd
to the left syllable position, starting a new line
if necessary. Should the symbolic address fail
any of the tests made on it, suitable error state-
ments will result, and usually, faulty syllables
can be expected to appear in the object program.

Next to be examined is the operation symbol.
It is always present in every line of subject data
containing a NABUR word and consists of three
letters—no more, no less—between the second tab
and the first space.

If the operator symbol is that of a regular or
quasi-regular machine instruction, a subroutine
called “Oper” is brought into play. First, this
subroutine recognizes the machine operation
involved and begins to fill the operator syllable by
inserting the corresponding order number. Then,
depending on the type of instruction, it searches
the subject data to find the accompanying address
groupings in the source line and sees whether the
required number of groupings is present, whether
the memory syllables are allowed to be stack
references, etc. This address indicator informa-
tion is “OR”ed into the operation syllable, by
means of a “Variant Bit” subroutine, called
“Vabi.” (Appendix B 'has block diagrams of the
“Oper” and “Vabi” subroutines.) Once the
operator syllable is filled, it is inserted into the
object frame. During the first pass, room that
will be required during the second pass for
non-operator syllables is filled in temporarily with
zeros to maintain the correct structure of the
object program. Pseudo-instructions are handled
differently from regular and quasi-regular
machine instructions. They do not contribute an
operator syllable. Some may transmit a signal as to
the mode of operation, normal or control; others
may generate matter that contributes one, or
four, syllables to the object program. Where the
pseudo-instruction does contribute syllables
(usually data) to the object program, sufhcient
zero syllables will be placed in the object structure
in the first pass.

It may be worthwhile to discuss how syllables are
stored in the object program. From one to four
syllables, once assembled, whether by the “Oper”
subroutine, by other subroutines in the second

NRL REPORT 5974 21

pass, or by generation of zeros, are placed in a 0 arcb stf bpr n
NABUR working location, called “gsyl”. Since 1 Itf n bar
four syllables comprise one 48-bit D825 computer 00 def inbpr arcb
word, there are 12 bits or four octal digits per 01 def inbar arcb
syllable. A subroutine called “Store Q” can be 2 Stw st n
.] 3 “ltw n +74,
invoked to store one, two, three, or four syllables 4 bad h
. . . . nn
from gsyl into the current position in the object 5 tFn 17
program, as indicated by the Q-arrow. The first 6 esl n +1’ n
syllable may be placed in any of the four possible ” brb n n arch?
positions it can occupy in a computer word. 8 archl trm n pu n
This is the extent of the first pass. Incidental 9 cls h arccl arcb3
checking has been taking place as to the validity 10 cgr h arec? arcb4
of the operation code, the correct number and 1 bmuhnn
kind of address groupings required for the partic- 12 bsu n arcc3 n
ular operation, and format in general, all with 13 dsa n+2n
corresponding error statements. After the first 14 bmuh hn
pass, the object frame for the preceding ex- 15 bsu arck5 h n
. : : . 16 bdv arck4 n n
ample (Fig. 5) would be as shown in Fig. 6
. . . . 17 bad n arck3 n
(remember that all digits are octal in the object
program). Fig. 5A — Passage of source text
Character number
1 2 3 4 5 6 7 8
Word number 1 CR 0« Py TAB a r c b TAB
2 s t f SPACE b p r SPACE
3 n TAB CR 1 P Tan TAB 1 t
4 f SPACE n SPACE b a r TAB
5[CR ol o TAB TAB d e f
6 | SPACE i n b p r SPACE a
P
7 r c b TAB CR 0« * 1 TAB
8 TAB | e f SPACE i n b
9 a r SPACE a r c b TAB
10 CR 2 TAB TAB s t w SPACE
11 s s r SPACE n TAB CR 3
12 TAB TAB) t w SPACE n SPACE
13 + 7 4 s TAB CR 4 TAB
14 TAB b a d SPACE h SPACE n
15 | SPACE n TAB CR 5 TAB TAB)
16 t f SPACE n SPACE 1 7 ,

Fig. 5B — Corresponding source tape image

Fig. 5 — Readin example

22

R. M. MASON AND I. G. FISHMAN
Character number
1 2 3 4 5 6 7 8

Word number 17 TAB CR 6 TAB TAB e s)

18 |SPACE n SPACE + 1 SPACE n TAB

19 CR 7 TAB TAB b r b SPACE

20 n SPACE n SPACE a r c b

21 2 TAB CR 8 TAB a r c

22 b 1 TAB t r m SPACE n

23 | SPACE p u SPACE n TAB CR 9

24 TAB TAB [1 s SPACE h SPACE

25 a r c c 1 SPACE a r

26 c b 3 TAB CR 1 0 TAB

27 TAB c g r SPACE h SPACE a

28 r c [2 SPACE a r ¢

29 b 4 TAB CR 1 1 TAB TAB

30 b m u SPACE h SPACE n SPACE

31 n TAB CR 1 2 TAB TAB b

32 s u SPACE n SPACE a r [

33 c 3 SPACE n TAB CR 1 3

34 TAB TAB d s a SPACE n SPACE

35 + 2 SPACE n TAB CR 1 4

36 TAB TAB b m u SPACE h SPACE

37 h SPACE n TAB CR 1 5 TAB

38 TAB b s u SPACE a r c

39 K 5 SPACE h SPACE n TAB CR

40 1 6 TAB TAB b d v SPACE

41 a r [K 4 SPACE n SPACE

42 n TAB CR 1 7 TAB TAB b

43 a d SPACE n SPACE a r c

44 K 3 SPACE n TAB CR

Fig. 5B (Continued) — Corresponding source tape image

Fig. 5 (Continued) — Readin example

NRL REPORT 5974 23

STF (BPR) LTF (BAR)
1540 0000 3010 0000
STW (SSR) LTW (+74)
1540 0000 3010 0000
BAD LTF (17, ESL
6520 3010 0000 3610
1) BRB (ARCB2)

0000 92602 0000 0000
TRM (PU) CLS (ARCCI)
3410 0000 7439 0000

(ARCB3) CGR (ARCC2) (ARCB4)
0000 7532 0000 0000
BMU BSU (ARCC3) DSA
6120 6410 0000 3610
+2) BMU BSU (ARCKS5)
0000 6124 6444 0000
BDV (ARCK4) BAD (ARCKS3)
6040 0000 6510 0000

Fig. 6 — Object frame

The first zero location remains to be filled in
during the second pass with the address of BPR
read from the label table. The n, denoting normal
stack reference, does not call for a syllable; but
rather, is coded in the appropriate address
indicator bits of the operator syllable. The assem-
bly routine automatically takes care of this conver-
sion for the programmer. After going through
all the source lines, the assembly routine enters its
midpass phase and prints out the contents of the
table of octal correspondences. Then it decides
whether or not to go on to the second pass. At
the time of printout, any errors considered to
be sufficiently damaging to the program as a whole
will result in setting a “whoa” flag. This flag
later will attempt to terminate the program at
midpass, after the assembly routine prints out
the table of octal correspondences followed by
five asterisks.

The second pass contributes the rest of the
syllables to the object program structure, does
extensive checking of the address groupings
themselves, and prints out a checking output

for each line as it is formed. The appearance of
this output will be described in detail later (see
Part 11, Section 8).

As in the first pass, each line of subject data is
considered independently, and again use is made
of the Subject Delineator subroutine. This time,
however, the operator syllable is passed over, and
direct attention is given to the address groupings
accompanying the operation symbol. Regular
machine operations are matched to a routing
table which sequences control through the differ-
ent types of action blocks needed to completely
specify syllables for the operation. For example,
the first line of subject data previously examined
uses operation STF. This STF corresponds to
octal order number “15,” which is added to a
constant to produce a jump address that sends
the control to a routing table. Control, under
the direction of this table, is then sent through the
memory syllable subroutine and returns to
“home.” In the third subject line of the same
example, the routing table for BRB will send con-
trol to the memory syllable subroutine, again to
the memory syllable subroutine, then to the
branch syllable subroutine, and finally to “home.”
Each action block will check for its particular needs
in the address grouping and will form the corre-
sponding object syllable and store it in the object
program. Special action blocks are written for
indexed syllables, triads, etc. Inside an address
grouping, address arithmetic is permitted for
certain syllables, notably the memory syllable.
The address units may be symbolic addresses, or
unsigned decimal or octal numbers, as long as
they conform to the rules of writing NABUR
language described in the first part of this report.
Newly constructed syllables are stored in the wait-
ing empty spaces in the object program. After
examining the line of subject data in question,
and after returning from the routing table
indicated by the operation, the NABUR system
produces a hine of checking output.

Moreover, in the second pass, lines containing
pseudo-instructions are processed somewhat
differently. In the case of CON (control mode),
NOR (normal mode), DEF (define), and PRE
(preassign), the appropriate action is taken, setting
addresses in the symbolic address table, or flags
to indicate mode, but no syllables are added to
the object program. In the case of RES (reserve),
the required number of syllables is again set equal
to zero.

ATTIToOUTANN

24 R. M. MASON AND 1. G.

In the case of FLO, INT, and SYL, the num-
ber of syllables entered into the object program
is four, four, or one, respectively. After each in-
sertion the corresponding line of checking output
is produced. Since they are pseudo-instructions,
FLO, INT, and SYL never directly contribute
operator syllables.

The above procedure is carried out for each
line of subject data. When all such lines have been
exhausted, another determination is made by the
program as to whether any error printouts have
occurred in the second pass. If at least one error
has been detected, the program will stop immedi-
ately. If no errors have been found, the program
will produce a D825 punched paper tape contain-
ing the bioctal object program. This will be re-
produced on the line printer also, but since the
characters punched are bioctal, and the line
printer is hexadecimal, it will be unintelligible,
and will serve only as notice that an output octal
tape has been produced.

7. OPERATOR INSTRUCTIONS

The NABUR Operator Instruction Sheet has
been discussed in Part I of this report. Current
operator instructions for loading the NABUR
program are posted in the NAREC machine
room.*

8. OUTPUT

The assembly routine starts printout (Fig. 7a)
by providing a heading for the output: three
carriage returns, followed by “NABUR D825
MODULAR DATA-PROCESSING SYSTEM
ASSEMBLY,” followed by four carriage returns.
Next, a heading “READIN INFORMATION”
is supplied, followed by two more carriage re-
turns. The assembly routine also furnishes two
types of information in connection with every
source tape read in. First the word “HEAD-
ING-” is printed and is immediately followed
by the heading of the source tape. This heading
can include the tape label, title, name of pro-
grammer, date, etc. If a particular source tape
has no heading, the word “NONE" will be printed.
The second type of information furnished is the
(augmented) check sum of the body of the source

*Copics of these directives are available to qualified persons upon
request. Address inquiries to Director, U. S, Naval Research Labora-
tory, Washington, D. C., 20390, Attention Code 4550.

FISHMAN

tape. This helps when a particular source tape
is required for subsequent assembly. If the check
sum has been entered on the NABUR operator
instruction sheet next to the tape label, accurate
readin of the source tape may be certified. The
above printout occurs before and during readin
of tapes. The only other printouts possible dur-
ing the first pass are error statements. They have
the same three-line form whether they occur
during the first or second pass, as follows.

XXXXXXXXXXXX
n mmmim
S5SSSSSSSSSSSSSSSSSSSSSSSSS

The x’s stand for the hexadecimal contents of
the location in the assembly program from which
the error message was generated; n stands for
the error tally, which is an ascending decimal
counter beginning with one; the m’s stand for
the error message itself; and the s’s stand for
the particular line in the source program in which
the error was detected.

Whether or not errors have been detected in
the first pass, the program goes into midpass
(Fig. 7b). At this time, the heading “SYMBOLIC
ADDRESSES USED” is printed out, followed by a
table. This table always begins with the reserved
addresses, starting at “snag” and ending with
“xr,” and the semireserved addresses, “inbar”
through “insar.” Next will follow, in order, the
labels found in the first pass. The printout of the
table of octal correspondences will have the form:

000000 ddaaaa

where the o's represent the 18-bit octal integer
associated with a label, and the a’s represent the
1-to-5 character label. Upon completion of this
printout, the assembly routine decides whether
or not to go on to the second pass. If at least one
error has been recorded in the first pass, the as-
sembler will print out five asterisks and come to
a stop. Otherwise, the assembler will start the
second pass (Fig. 7¢). First, the column headings
“ADDR,” “OBJECT SYLLABLES,” “LINE NO,”
“SYMBOL,” “OP,” “SOURCE LINE,” and “RE-
MARKS?” are printed to clarify the checking out-
put that will come a segment at a time after each
source line has been examined. (Recall that in

NRL REPORT 5974 25

the second pass, the nonoperator syllables are
placed in the object frame, which was constructed
during the first pass.)

The checking output has the following form:

nnnn mmmmmm | ssss ssss ssss ssss | kkkk aaaaa ops A1 A2 A3

where
nnnn stands for natural numbers generated
by the assembler to number the output lines
decimally in ascending order
mmmmm stands for the actual octal address
of the object line
ssss represents the object program syllables,
consisting of four octal digits each (if an octal
syllable does not apply, four dots are printed
instead)
luprights| enclose the four object syllables
kkkk stands for the line designation found
on the source tape
aaaaa represents the symbolic address or label
associated with the source line, if any
ops denotes the three-letter NABUR operation
symbol
Al, A2, and A3 stand for the associated ad-
dress groupings, which may-“or may not be
indexed, and may or may not all be present,
depending upon the particular instruction
used.
NABUR output is illustrated by the following
sample, Fig. 7, which has resulted from assembling
together four source tapes. (A portion of the
handwritten programming for the first source
tape is reproduced in Fig. 2. The complete typed
copy of this source tape appears as Fig. 3.) The
checking output is designed for programmer
convenience in studying the octal D825 machine-
language program that is assembled. To this end,
the output page has been divided more or less
down the middle, the left half applying to the
object program, and the right half, to the source
program. In theory, a line of source data should
correspond to a line of object data. In practice,
however, the source data may require several
lines to be printed within the limits of its column.
No new line of object data is provided until the
source line corresponding to the preceding line
of object data has been completely printed. Simi-
larly, no new source-line data are provided until
all the object line has been printed, within the
limits of its column. Since an instruction in the
D825 computer may require from one to seven
syllables, there is no actual instruction word, as

such. The format of the object-syllable field re-
lates the object line to the particular source line.
It is split into four syllable columns, each with
positions for four octal digits. Bona fide zero
syllables contain four octal zeros. Each pertinent
object syllable is printed out in its actual location
in the object tape. Therefore, it so happens that
if all the lines in the column headed “object syl-
lables” were compressed upward so that a line with
dots in a syllable position would be filled with
a following line’s syllable, all dots would dis-
appear, no object syllables would be lost, and a
true representation of the object tape would result.
The presence of an r in the remark indication
field of the NABUR programming sheet will cause
the following remark, and the r itself, to be typed
by the typist and to be printed out in the checking
output. The remark is printed out on a separate
line after all object material and corresponding
subject material for the particular line have been
printed. The only other type of printout which
may occur during generation of the checking
output is the error printout, which is described
earlier in this section. Should no errors be found
in second pass, the assembly program will provide
output in the form of both a punched paper tape
and line-printed material. The tape and hard
copy contain the assembled actual bioctal object
program for the D825 computer (Fig. 7d).

9. TAPE LABELS

Tapes with basic tape number 4825 are used;
current versions are available to the machine
operators.

10. ADDRESS INFORMATION

Not pertinent.

11. EXTERNAL WORKING MEMORY

Not applicable.

12. VERSATILITY

The system is self-contained and does not lend
itself to programmer changes.

13. REMARKS

The assembler at present requires about ten
seconds to process each source line.

AITITAAUTAMN

26 R. M. MASON AND I. G. FISHMAN

ACKNOWLEDGMENTS

The authors wish to thank Harold Ashby and
Frank Zurcher of the Burroughs Laboratories
at Paoli, Pennsylvania, authors of the Burroughs
220/D825 Modular Processor Assembler, for
permitting them to study this program thoroughly
before work on NABUR began. The authors
also appreciate the willingness of the Burroughs
staff to explain why certain features of their ap-
proach to the problem are imposed by the logical
design of the D825 and of its operating system,
i.e., the AOSP (1,3).

The authors would also like to acknowledge
the most cooperative help given by Alan B. Bligh,

Bruce Wald, and Alice Jo Campbell in setting up
the NABUR conventions.

REFERENCES

—

. Anderson, J.P., Hoffman, S.A., Shifman,]., and Williams,
R.J., “D825 — A Multiple Computer System for Command
and Control,” pp. 86-96, in AFIPS Conferencé Proc., Vol.
22, 1962 Fall Joint Computer Conference, Spartan:Wash-
ington, D. C., 1962

2. “The Burroughs D825 Modular Data Processing System,

Programming Manual,” Burroughs Corporation, Contract
Nonr 3521(00)(x), Jan. 31, 1962

3. Thompson, R.N., and Wilkinson, J.A., “The D825 Auto-
matic Operating and Scheduling Program,” in AFIPS Con-

ference Proc., Vol. 23, 1963 Spring Joint Computer Con-

ference, Spartan:Baltimore, 1963

NRL REPORT 5974

NNNN ‘Problem number 3.?.6,
0000 Checked bBY ..o
INPUT 5001 DIRECTBR TABLE 18CNS. 3683-368C Py

INPIT 0001 @RDER 1INF VECT@R TABLiE 18CNS. 36F3~36fTius s

TRANSFER CANTR@Y T SYSTEM-START AT @RDER 1INE 0001

SYSTEM TAPE INPUT- HEADING-~
4875-0000 NABUR 1 RMAS@N/RS 8/11/62

FIRST WARD 0000- ED27 00 8019 61

1AST WBRD 091F- non0 00 0000 00

STANDARD CHECK SUM EA6C 6B 394A S8

AUGMENTED CHECK SUM EASC A4 2211 88

SYSTEM TAPE INPUT~ HFADING-=~
4825-0920 NARUR 1 FISHMAN/MM 12-5-62
1-8-632J : :
1-16-632J
1/1R/63MM
3-28-632J
FIRST WARD 0920- N93IF 42 0942 42
1AST WARD 0D78~- 95K6 40 00N0 00
STANDARD CHECK SUM SEE9 6F O03F8 AF
AUGMENTED CHECK SUM SEE9 DF 61DF AF
SYSTEM TAPE INPUT=- HFADING-=
N@NE
FIRST W@RD 0ODBO~- NDSE 42 OD9F 43
1AST WARD 1545- nann on 0000 00
STANDARD CHECK SuUM 532E DD 4D47 Do
AUGMENTED CHECK SUM 532F 85 9ED6 DO
NAREC INSTR. EXECUTEN RY SYSTEM 12C1 10

NNNN
anno

NABUR D=825 MADULAR DATA-PROCESSING SYSTEM ASSEMBLY

READIN INF@RMATIGN

HEADING-

4815 ARCSIN/ARCCAS SURRBUTINE CAMPBE11/2J 1=31-63
3=29-632J

CHECK SUM 5D39189957n9

HEADING-

4817 SIN SUBRQAUTIME CAMPBE11/MM 271763

Fig. 7A — Portion obtained during readin

Fig. 7 — Sample output (printout only). This figure represents the
concluding step for the example given in Figs. 2, 3, 5, and 6.

27

—
L

PRINTED BY TRE STANDARD REGISTEN COMPANY, U.5.A,

roau 801

TAMN

A1 1100

N
e 2}

R. M. MASON AND I. G. FISHMAN

3-4-632J
CHECK SUM 2FB23F3RESCY
HEADING-
4818 COSINE SUBRAUTINE CAMPBE11/8J P2»1=63
2/13/763MM
3=4-632J
CHECK SUM 96C5B9605144A

HEADING~- S4819 SOUARE RaAaT SUBRAUTINE CAMPBE11/2) 2/12/63RS

3~4-632J
CHECK SUM 2E9A18CN7AR2A
HEADING=

4820 BINARY T DECIMAY @UTPUT REUTINE CAMPBE11 2/1/763MM
3=12-632J

CHECK SUM 2B8302287522

Fig. 7A (Continued) —Portion obtained during readin

Fig. 7 (Continued) — Sample output (printout only). This figure represents the
concluding step for the example given in Figs. 2, 3, 5, and 6.

NNNN

0000

NRL REPORT 5974

SYMB@LIC ADDRESSES USED

400000
200000
00NN55
000054
000060
00NN63
000057
000114
000410
000124
000122
000074
000040
000064
000062
000044
000050
000123
000130
000100
000102
000047
000140
000144
000150
000154
000001
000002
00n003
000005
000006
000007
000000
000214
000214
000000
000000
000004
000N14
000N15
000021
000024
000031
000032
000033
000034
000035
000036
000037
00N040
000041
000042
000043
000044
000045
000046
000047
000050

SNAG
INDI
BAR
BPR
SAR
[AR
PCR
RTC
IPR
TFC
XIR
IDR
ISR
PDR
RCR
RPR
SSR
CCR
RIR
PSR1
PSR2
RPR1
STK1
STK2
STK3
STk4
PU -
MU

PR
MR
XR
INBAR
INBPR
INSAR
ARCB
ARCB1
ARCB2
ARCB3
ARCB4
ARCR1
ARCB6
ARCB7
AB71
AB72
AB73
ARCC1
ARCC?2
ARCC3
ARCKS
ARCK4
ARCK3
ARCK?2
ARCK1
ARKK?2
ARKK1
ARCC4

Fig. 7 (Continued) — Sample output (printout only). This figure represents the

Fig. 7B — Portion obtained at midpass

concluding step for the example given in Figs. 2, 3, 5, and 6.

PRINTED ¥V TRE STARDARE AEGISTER COMPANY, U.3.A.

N
©

TITrouUTANN

30

000051
000052
000053
000054
00n055
000061
000063
000066
000073
000074
000075
000103
000104
000105
000106
000107
000110
000111
000112
000113
000114
000115
000116
oont17
000120
oont24
ooni26
000127
00nN134
000135
000136
000140
000146
000147
000150
000151
000152
000153
000154
000155
000156
000157
0on160
00n161
000162
000163
000164
000167
000173
000176
000201
000202
000204
000205
00n206
onnao7
000210
non211
000212
00n213
000214
000221
000223
000230
000231

ARCCS
ARCKA
ARCKB
ARCCS6

'SINBG

SINB1
SINB2
SINB3
SINB4
SINB5
SINB6
SMU1LT
SHA1LF
SONE
SPART
SINK4
SINK3
SINK1
SINCY
SINC7
SINC5
SINC3
SINC1
SP1
C@BEG
CoB1
ceB2
CaB3
coB4
CeB5S
ceBé
ceB7
ceci
cecz2
cec3
ceca
Cacs
Cené
Coka
Cok2
Cako
C2K9
CoK?
CeKs
CeK3
Cex1
SQGBEG
SQR1
SGB2
SQ@B3
SQB4
SQ@B5
SQC1
sac2
SQK12
SOK11
SGK10
SOKK?2
SAKK1
SQKKO
BUTPR
2B@
2B1I
2B2
PB3

Fig. 7 (Continued) — Sample output (printout only). This figure represents the

R. M. MASON AND I. G. FISHMAN

Fig. 7B (Continued) —Portion obtained at midpass

concluding step for the example given in Figs. 2, 3, 5, and 6.

PRINTES BY THE ATANDARD RISIETEN CONFANY, U.S.4,

rorm 801

000236
000240
0on242
000250
000255
000257
000262
000270
00n271
000272
000273
000274
000275
000276
000277
000300
000301
000302
000303

284
2B5
2B
288
289
2810
pB11
P1IM
BONE
PERR
PFOUR
BTEN
2BYN
PSPCE
BCR
BMINS
PEND
owe
2wl

NRL REPORT 5974

Fig. 7B (Continued) — Portion obtained at midpass

Fig. 7 (Continued) — Sample output (printout only). This figure represents the

concluding step for the example given in Figs. 2, 3, 5, and 6.

STER CONPANY, ¥.8.4.

AITITLAUTAUN

32

NN 2D

20

11

12
13

3N

ADDR

nnoooo
000000
0n00o01
000001
0no001
000001
000002
000002
000002

000003
000003

000004

000005
000006

onoooe.

0nnoné

0nooo7
000007
000010
000010
000011
000011
000011

000012
000012
000013
000013

000015
0600015
000015

000016
000016

‘000017

000017
000020
000020
000020

000021
000022
onpoz22
000023
000023

000024
000025
000025
000026
000026
000026

0noo27
000027

R. M.

MASON AND I.

G. FISHMAN

MRJECT SYLLABLES LINE N@ SYMBAL AP SAURCE LINE REMARKS
(!0

11540 ND54 ..ee. ouus 1D ARCB STF BPR N :
lvese waes 3010 0055 |9 1TF N BAR ®
| 100 DEF INBPR ARCB g
i 101 DEF INBAR ARCSB H
1175640 1050 coee ooes 12 STW SSR N i)
leeue oess 3010 1074 |3 1TW N +74,
16520 s0se aoss ases |4 BAD H N N
l.... 3070 0017 ... {5 1TF N 17, T.
Feoae suoen soes 3610 16 ESL N #1 N
10201 veee oons ooae |
leees 2602 0014 ...y |7 BRB N N ARCE2 [)
leees vees se0s DOOO |8 ARMB1 TRM N PU N
134910 NONY veve woss |
Foeue vess 7432 0036 |9 C1S H ARCC1 ARCB3 o
10015 teue sesve aves |
leeo. 7532 0037 0021 |30 CGR H ARCC? ARCD4
16120 .ovs sess onee 111 BMU H N N (]
Feoos 6440 0040 ... 112 BSU N ARCC3 N
leevee wene oass 3610 113 DSA N ¢2 N
10102 veve wvss weas | ()
Feeos 6124 Live vees 114 BMU W H N
levde we.. 6444 0041 |15 BSU ARCKS H N
16040 N082 v..v. +ees 116 BDV ARCK4 N N o
feeve wuus 6510 0043 |17 BAD N ARCK3 N
16400 veve sess avee |18 BSU N N N
feseo. 6040 0044 ... |19 BDV ARCK2 N N o
[veee veae saes 6510 120 BAD N ARCK1 N
10045 vuivs sens onea |
Fovos K100 ouwe oaWe 121 BMU N N N ®
[vsee «ous 6510 0050 122 BAD N ARCC4 N
{2240 001 ..e. vea. 123 UCT ARCBS
leeee wus. 0000 0000 |24 ARCB2 XUC +1 //17,/0, ARCR1 o
11252 nont1 3760 0004 |
16124 ..v4 sens esee 125 ARCB3 BMU H H N
feeue 6444 0041 ... |26 BSU ARCK®S H N)
Feees vevs 20es 6040 |27 BDV ARCK4 N N
10042 .v.s weue woas |
fee.. 6510 0043 .,.. |28 BAD N ARCK3 N)
[esoes seee oaes. 6400 129 BSU N N N
16040 NNAE ,.vs oaes 130 8DV ARKK2 N N
leees vaue 6510 0047 |31 BAD N ARKKA N o
16100 tuus srse aesa 132 BMU N N N
lveo. 2240 0031 ... |33 UCT ARCBS
lesus waee o-ss 0000 |34 ARCB4 STF 17, N ®
11540 0047 wuive wnes |
leese ooss 3010 0037 |35 1TF N 37,
13030 1160 +sove 1200 |36 1TW H 160, ®
Fevee oewe 6440 0051 137 BSU ARCCS N N
11450 nON3 0000 |38 SRJ 3, 0,
feeee sans 2.0..0000 139 ARCR1 STF 37, N ®
(1540 0037 +.vs enes |
leees waes 3010 0017 |40 1TF N 17,
11540 1160 +o0e ooae |41 STW «160, N i®
Peves vaas 6110 0053 |42 BMU N ARCKB N :
16440 AN52 +.0s cous |43 BSU ARCKA N N K
Pesar weee 6100 ... |44 BMU N N N ‘®
feoee vove ouus 6440 |45 BSU ARCC& N N £
10054 tvvs sene esaa | s
leeas 1540 1074 ... |46 STW «74, N @
feeee seee oaoss 3010 147 1TW N SSR z
F1050 wuve ores ones | 3
Fig. 7C — Portion obtained during second pass — the checking output

Fig. 7 (Continued) — Sample output (printout only). This figure represents the
concluding step for the example given in Figs. 2, 3, 5, and 6.

50

51

52

000030
000031
0neo3?

000033
000033

000034
000034

000035
000035

000037
000040
000041
000042

000043
000044
000045
0n0046
000047
000050
000051
000052
000053
000054
000055
000055
000056
000056
000056
000056
000056
000057
000057
000057

000060
000060

000061
000061

000062
000062
000063
000063
000063

000064
000065
000065
000066
000066

000067
000067
000070
000070
000071

lease
12260
foona
1n4aan
[
13440
Poous
leeen
16440
{oaee
loooe
16540
Peseo
loees
11324
11662
1C400
11324
14052
|

13435
16312
10414
10624
11031
10622
t2000
12127
10256
11444
11540
leees
|

|

10200
looue
leese
13630
[
(IR
10201
foeas
losee
10300
| eous
leeas
10312
leone
[N
10300
leoen
Fooss
0502
| ooas
16440
I'O-o
17532
Jeea
10042
loees
Joeoes
16510

16510

alalele]
nna7

[alalale}
nong
nosS4

nns4

‘N474

n367
noro
6525
4a1n2

32n0

0162

6310
Nn3a4
4620
n773
0000
1630
4151
1766
0054

2602
0302
2240
6130
54n0
3410

7432
no3n
nozx1
5124
no32

0034

onoo
on32
0000
0400
0400

e

0400
6316
4746
0000

5632
6n62

on6s
1751
2013
3722
4an2é
4744
onoo
4511
5104
5212

3010

ono4
5400
0noé
0026
3610
0001
0027
2240
0020
3630

6040

NRL REPORT 5974

0000
0000
0000
0000
0000
0000
3255
1000
0000
1603
4515

6622
2156
1753
4334
3726
3343
0000
6426
4031
2212

‘0055

0300
3610
0000
3610
0201
3610
0011
0011
6110
0102

0033

ARCB6
ARCB?

AB71

AB72

AB73

ARCC1

ARCC2
ARCC3
ARCKS
ARCK4

ARCK3
ARCK2
ARCK1
ARKK?2
ARKK1
ARCC4
ARCCS
ARCKA
ARCKB
ARcCé
SINBG

SINB1

SINB2

SInNB3

ucT
SRR
TRM

SRR
BSu

SRR
BAD

SRR
INT

INT
INT
INT
INT

INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
STF
1TF
DEF
DEF
Ssu
BRB
SSD
Ds1
1XR
ES1

ucr
SSD

BMU
DS1

1XR
ES1
§$SD
TRM
Dsa

C1S
BSU
ucr
CGR
BMU

BMU
DSA
BAD
BDV
BAD

ARCB7/17,

N XU N

ARCCS N N
ARCCS N N

1324047463163255,

1662036747461000,
0400000000000NNN,
1324652556321603.
=0052410280624515%

34353200006%6622,
031201621751215%6,
04146310201347%3,
0624034437224334,
10314420402837%6,
0622077342443343,
2000000600000000,
2127163045116428,
0256415151044031,
1444176652122212,
BPR N

N BAR

INBPR SINBG

INBAR SINBG

N N SINB1
H-«2 N

N NN

N +1 N
SINB2

H SMULIT N
N «40 N

NN
*1 N

NPUN

N=2N

H SMAIF SINB3
SONE N N
SINB3

H SPART SINBS
N SP1 N

H HN
H *2 N
N SINK4 N
SINK3 N N
N SINKL N

Fig. 7C (Continued) — Portion obtained during second pass—the checking output

Fig. 7 (Continued) — Sample output (printout only). This figure represents the
concluding step for the example given in Figs. 2, 3, 5, and 6.

PAINTES BY THE STANBARD REGISTER CONPANY, ¥.5.A.

o
©o

_—
® 6 o o

0o
o

102
103
104
105
106

107
108
109
110
111
112
113
114

115
116
117
118
119

120
121
122
123
124
125
126

127
128
129
130
131
132

133
134

135
136

137
138
139
140
141
142
143
144
145

146
147
148
149
150
151
152

153
154

000071
000071
000072
000072
000072

000073
000073
000074
000074
000074
000075
000075
000075

000076
000076
000077
000077
000077

000100
000100
000101
000101
000101
000102
000102

000104
000105
000106
000107
000110
000111

000112
000113

oob114
000115

000116
000117
000120
000120
000121
000121
000121
000121
000121

000122
000122
000123
000123
000124
000124
000124

000125
000125

loees
loaee
13610
.'OUI
loous
12602
I'Il.
leees
10300
l'.l.
foaas
13610
|Ul00
l.l..
i0035
leose
I'.l'
16510
leons
leose
10040
l’.l.
looes
16100
loses
leeone
12240
leeas
10013
0400
11000
10060
13100
/1011
15173
|

10000
14002
|
0012
{4024
|
10014
13110
11540
leeas
]
|
{3410

Foaos
foooa
10004
loaes
(I
13630
[
10300
leaus
levos
1n44s
leaue

17512

0111
noy7?7
3440
0102
6510
no37
6100
3610
0016
3013
nono
00no
7107
7574
3551
N434

2346
3111

1464
5273

4417
3755
0054

nnni
0300

n512

6110
3630

noz7

6500

0200
0300
0003
6124
0036
6104
6510
0110
0000
3013
0000
0000
2072
2541
7137
7701

5735
4614

2573
6016

6651
2421

30410

0200
3610
2240
0026
0512

0016

. MASON

AND 1.

127
128
129
130
131
|
132
133
|34
138
136
137
138
139
|
|40
|41
j42
|43
|4a
|
|48
|46
147
|48
|49
150
|54
|
152
(L1}
154
158
156
157
|
158
159
)
160
:61

(=]

5. FISHMAN

SINB4

SINBS

SINBS

SMULT

SHALF
SoNE

SPART
SINK4
SINK3
SINK1

SINCS
SINC7

SINCS
SINC3

SINC1
9P
CoRrEG

can1

Cor2

BAD

BMU

DSA
Ssu
BRE

SSD
SRR
SSD
TRM
SRR
DSA
BMU
BMU

BaD
BMU
BAD
LIV
BAD

BMU
BAD
BMU
DSA
Ssu
ucT
INT

INT
INT
INT
INT
INT
INT

INT
INT

INT
INT

INT
INT
STF
1TF
DEF
DEF
TRM
ssu
BRB

S$sD
ESA
DSA
ucr
SSD
BMU
ESA

DSA
CGR

zZZTZ
+tZzT2Z

ZZTZZZX rXxz z
w x
-
x k4
Q
n
z z = E 4

ZzxZZ
w
-
z
(3]
-
z

SINB4
0013301330133013.,

0400000000000000,
100000000000000N0,
0060710720721%87%,
3100757425412840,
1011355471372633,
~11730434770178655

00002366573%51052,
~0002311146144287

0012146425731260,
~002458273601613n2

0014441786510101,
3110375924211n33,
BPR N

N BAR

INBPR COBEQ

INBAR CeBEQ

N PUN

N N CeB1
N +2 N

H =40 N
cee2

N C8C1 N
N =37 N

H =-10 N
N CeC2 Cebs

Fig. 7C (Continued) — Portion obtained during second pass—the checking output

Fig. 7 (Continued) — Sample output (printout only). This figure represents the
concluding step for the example given in Figs. 2, 3, 5, and 6.

—
o o

PRINTED BY THZ STANDARS REGISTIR CONPARY, ¥.5.A.

155
156
157

158
159
160
161
162

163
164
165
166
167

168
169
170
171
172
173
174
175

176
177

178
179
180
181

182
183
184
185
186
187
188
189

190
191
192
193
194
195
196
197

198
199

200
202

203
204

205
206
207

000126
000127
000127

000130
000130
000131
000131
000131

000132
000132
000133
000133
000133

000134
000134
000135
000135
000135
000136
000136
000136

000137
000137

000140
000141
000141
000141

000142
000142
000143
000143
000143
000144
000144
000144

000145
000145
000146
000147
000150
000151
000152
000153

000154
000155

000156
000157
000160

000161
000162

000163
000164
000164

Fig

leees
10031
[
leoua
16440
I'O-.
16124
(P
lonoe
10040
loeas
[
16104
Jooaa
Peeus
16510
Pauan
beoas
10110
leeas

10013
0001
10000
10002
10000
14000
|

10010
|4047
|

10037
10000
14002
|

1001.2
14024
|

0014
11540

n030
4120
nn34
6100
n105
no1s
3410
no32
2240
no27
6130
6104
6510
no43
na200
3013
o000
4000
60ono
noeo
5162

n727
3647

7777
2366
3111

1464
5273

4417
0054

ona20
6130
610

6510
0200
0300
0003
030

ono7
3610
0037
6510
0042
6100

2240
3013
0000
0000
0noo
0000
7467

5323
1053

7760
5735
4614

2573
6n26

6651

3010

NRL REPORT 5974

0300
3610
0033
6510
0034
0000
0400
0400
6440
0000
0112
6510
0041
6100
3610

0014
3013
0000
0000
0000
0001
0055

7527
7555

7573
1052
4267

1261
5317

0101

005%

114

WUHWHWWNONNN
2L, OO®N

[# N7
[+ RN]

W N =] ®

L OO OO OOy N
F S

Cor3

Con4

cens

cené

cen?

caca
cec?
cacs
con4
cocs
Caxé

coxé
coxe

cexo
Coxe
cox?

Cors
Cox3

Cox1
SQRES

SSD
CGR
DSA

BMU
BMU
BAD
BMU
BAD

BMU
BAD
DSA
Ssu
BRB

§SD
SRR
SS8D
TRM
SRR
iXR
8D
BSU

ucr
8Ssu

DSA
BMU
BMU
BAD

BMU
BAD
BMU
BAD
BMU
BAD
LIV
DSA

Ssu
ucT
INT
INT
INT
INY
INT
INT

INT
INT

INT
INT
INT

INT
INT

INT
STF
1TF

H CeC3 CeB?
N ¢41 N

N N
COK& N
ceK4 N
H N

cex2 N

NN
cexn N
«5 N

zZTZ ZZTZTIX

N CeBS

N XU N
N CeCS N
CeC4 N N

cens
CecC2 N N

+10 N
H N

COK9 N
cexK7y N

W N
CeKs N
W N
Cex3 N
N N
Cox1 N
N N

8 N

ZZTZTTTZTZTZZ ZXx 2

Ceb4
0013301330133013.,
0001000000000000,
0000400000000000,
0002000000000000,
i,
~0000%51627487005%

0010072733237827,
“0047354710837555

0037777777607873,
00002366%7381052,
~00023111468144287

0012146428731261,
=N024527360265317

0014441788%10101,
8PR N
N BAR

. 7C {Continued)— Portion obtained during second pass—the checking output

Fig. 7 (Continued) — Sample output (printout only). This figure represents the.
concluding step for the example given in Figs. 2, 3, 5, and 6.

—_—
o

PRINTES BY TRE STANBARD REGISTIR COMPARY, ¥.5.A.

35

0
(o]

208
209
210
211
212

213
214

215

216
217
218
219
220
221
222
223
224
225
226

227
228
229
230
231
232
233
234
235

236
237
238

239

240
241
242
243
244
245
246
247
248
249
250
251

252

253
254

255
256

257
258

R. M. MASON AND I. G. FISHMAN
000165 | too DEF INBPR SOBEQ
000165 | 101 DEF INBAR SOBEG
000165 12000 vuove seos oeos |2 CiA N
000165 l.... 3030 0017 {3 1TF W 17,
000165 .o seve ooes 7606 |4 CEQ N M SoB4
10015 ceve wene sosns |
000166 {.... 3430 0001 |5 TRM N PU N
000166 ... ou.s +... 0000 |6 8081 CGR H SQC1 8082
17532 no20 0007 |
000167 1eeee weve oose 7432 |7 CiS W SQC2? sQes
10021 A016 v woes |
000170 l+s.. 4.0 3610 0502 |8 DSA N -2 N
000171 16511 0022 sees |9 BAD N 8OGK12 M
000171 l.ev. o... 6040 0023 |10 BDV SOK11 N N
000172 16440 0024 |11 BSU SGK10 N N
000172 leees oo.. 2240 0012 |12 UCT SQB3
000173 13610 0502 ..ev eoes 113 sQm2 DSA N =2 N
000173 l.eee ou.. 6511 0025 |14 BAD N SGKK2 M
000174 16040 0026 «.v+ oeos |15 BDV SOKK1 N N
000174 l.ev. 4... 6440 0027 |16 BSU SOKKO N N
000175 13610 N101 «.ve veos |17 DSA N +¢ N
00017% t+ee. ... ONOO 0000 |18 SQR3 SSD
10300 vene ouus oaes |
000176 ..., 6001 ..0s sou. |19 BDV N N H
000176 l.ss. ov.. 3610 0501 120 DSA N -1, N
000177 10300 suve suse oass |21 SSD
000177 l++.. 3640 0501 |22 DSA N =1, N
000177 leeve vass o.s. 6504 |23 BAD N H N
000200 0300 cuvvs ases sooe |24 S8D
000200 |.e.. 6004o.. |25 BOV N W N
000200 lesss sess 6500 ... |26 BAD N N N
000200 f+eus wees +... 0000 |27 SOR4 DSA N =0,/17, N
13614 0017 0500 |
000201 leoves wuse eose 0400 {28 SRR
000202 13610 0102 ..ee coes |29 SORS DSA N +2 N
000202 t.... 1252 0001 |30 XUC +t1 /717,70, SOBY
13760 Q003 +s.ve weos |
0N0203 leess +... 0000 0000 |31 sQec1 INT 2000000000000000,
12000 00no 0060 0000 |
000205 11000 NONO 0000 0000 132 sQr?2 INT 1000000000000000,
000206 11044 4445 3605 7615 |33 80k12 INT 104444483605%7615.,
000207 10665 0713 0071 7361 |34 SOK11 INT 066%071300717364,
000210 13453 4760 4417 3463 |35 S0k10 INT 3453678044173463,
000211 12111 1132 7413 7432 |36 80KK2 INT 2111111274137432,
000212 11152 1267 5656 6320 |37 SOKK1 INT 1152126756%66320,
000213 |2422 1203 2322 3372 |38 SQKKO INT 2422120323223372,
000214 12000 ...v eses oses 10 BUTPR Ci1A N
000214 | 100 DEF INBPR aUTPR
000214 | 101 DEF INBAR aUTPR
000214 |.... 3030 1014 |1 1TW H 14,
000214 lesee sees oase 3010 |2 1TF N 13,
10013 ..ue sueen e |
000215 |.... 3070 ONL7 0054 |3 1TF 811M/17, 35,
10035 vove aeee aees |
000216 |.... 3010 0034 ,... |4 1TF N 34,
000216 l.vve ooee ... 3010 |5 1TF N 33,
J0033 vove eves soes |
000217 l.... 3030 0032 |6 1TF H 32,
000217 l.oeur seve wesa 7416 |7 CiS N GERR/17, eB8
10017 n0%6 0005 ..es |
000220 1seee esse sses 0100 I8 H1T
0002231 13574 nn17 0061 0017 |9 28n ‘TRS @BYN/17, 8WR/17,
10066 +oee voee e |
Fig. 7C (Continued) — Portion obtained during second pass —the checking output
Fig. 7 (Continued) — Sample output (printout only). This figure represents the

concluding step for the example given in Figs. 2, 3, 5, and 6.

—
o

PRINTED 5T TNT SYARDARD REGISTIR COMPANY, U.3.4.

® 6 6 6 6 o6 o ¢ & o o o o o ©o o o ¢ o

25¢9
260

261
262

263
264
265
264
267

268

269
270
271
272

273

274

275
276

277
278
279
2R0
281
282

283
284

28RS
2R6

287
288
2R9
290
291

292
293

294
29%

296

ono222
000222

000223
000223

000224
000225
0np226
000227,
onpe27

0n0230

000232
000233
000234
000234
noo235
000237
000237
000237
000240
000241
000242
000243
000244
000245

000246
000246

000247
000250

000251
000252
000253
000253
000254

000256
000256

000257
000257

000260

leoos
leenn
2000
leeen
leaes
10017
foaes
10014
lesen
10014
faeas
12240
leoo
13560
ISP
14077
10420
fewas
In401
l".t
13010
(I
13740
Foan,
j1252
ln2oon
[N
bowas
16114
lveus
10015
Faooe
11540
leeun
te252
[
11714
leous
10057
fFoaae
11673
Foeus
lewss
10011
losen
14077
10420
leeas
10401
foeee
13010
lvens
13740
Foaas
11252
12240
leass
12000
lesas
leea,
10017
leese

10017

2240

3010
noss
nono

3560
001%
n047
7047
7047
2735
n015
0022
nons
3410
n017
n0n0
1124
no34
An4s
no31
noe3

LRI

3540
7017
7017
2735
6015
0041
00n1
non7
3010
no%7

0063

0007
1010
0031
0201
0017
0000
oneéa
0067
0067
0022
1252
0000
1231
0001
0060
0000
1252
1252
3070
1252
2000

0017
0né7
0oné7
0N41
1252
0000
2231
0000

0013
0011

NRIL

0000
3070
3670
2602
0062
0000
0000
0015
1252
2000
0001
0000
0026
0000
2240
0000
0001
0001
0017
0001
3010
0062
0015
1292
2000
0001
0000
0034
0000
3070

3560

REPORT 5974

oGO W
BNNO

= 3 0

|47
!

UCT o8B!
28y CiA N

1TW N 10,
ITF @eNE/17, 33,

ES1 0+INBAR/14, i, N

BREB N N aB?2
TRS @SPCE/17, N
UCT @83

282 TRS @MINS/17, N

283 AIF ewi/16./17, /1,71
Awi/16,/717, '

XiE 401, /715,715, nR
CiA N
1TF N 15,
XUc 1, /716,70, @884
2B4 XGR 1, //11.,/11, o84
SSu
TRM N PU N
28% BMU N OTEN/17, N
UCT on3
08¢ STWw TFC N
X18 1, /712,712, [L1]
XGE 1, /714,714, 8R4
1TF AFBUR/17, 3%,
XGE 1, /713,713, @BIN

CiA N
17F N 134,

TRS @SPCE/17, N
28a AIF awi1/16,/17, /1.1
2uw1/16,/717,

X1E 401, //1%,/1%, o8

CiA N

1TF N 189,

XUC 1, /716,70, 8R®
289 X18 1, //11,711, @88

UCT eBI

2810 Ci1A N

1TF N 13,
1TF eFBUR/Y7, 114,

‘TRS @CR/17, N

Fig. 7C (Continued) — Portion obtained during sccond pass—the checking output

Fig. 7 Y(Cominued) ~ Sample output (printout only). This figure represents the
concluding step for the example given in Figs. 2, 3, 5, and 6.

—_—
o

PRIATES BY YRR STANBARD REGISTER COMPANT, §.3.4.

37

B

77T 110 eUINAUA

38

297
298
299

300
301
3In2

303
304
305
306
307
308
3ng

310
311
312
343

314
345

NNNN

000261
000262
000262

000264
000265
000266

000267
000270
000271
000272
000273
000274
000275

000276
000277
000300
000301

000302
000303

leesvs voee 2240
13560 0017 0063
losve snee wene
17017 0067 0015
17017 0067 ..
leese oaes 1252
12735 0046
leese veoss 1252
10340 7564
lesee sees 3574
i0065 7017 0ONné7
leeee voee oane
0000 nONO 0000
10000 0onno 0NO0O
|0000 noro 0NOO
{0000 nonpo ONOO
{0000 0000 0NOO
15353 4545 4545
|

10000 nONG 0NOO
10000 00NO ONOO
10000 00NO 0000
14444 4444 4444

|
{0000 NONO 0NOC
0000 0000 0000

0034
4077
0420
0401
0001
6017
0100
3407
0001
0017
0004
0012
5353

0060
0053
0040
4444

0000
0000

|48
|49
150

12705715,

|
151
111
152
|
153
117,
|54
|55
i56
157
158
159
160
s
161
162
163
164
|
165
166

. MASON AND 1. G. FISHMAN

UCT eBS
#8411 TRS @CR/17, N
AIF OwW1/718,/%7, /1./1
OW1/16:/17,
X1E 401, //1%,/71%, 08
XNN 1, /716,70, O,

TRS BEND/17, BW1/16,/

H1T
211M INT 3407,
20NE INT 1,

PERR INT 17,
BFaUR INT 4,
@TFN INT 12,
2BYN INT =1353454545455353

eSpPCE INT 60,

2CR INT 53,

BMINS INT 40,

@END INT «0444444444444444
.LT) INT 0,

oW INT 0,

Fig. 7C (Continued) —Portion obtained during second pass—the checking output

Fig. 7 (Continued) — Sample output (printout only). This figurc represents the
concluding step for the example given in Figs. 2, 3, 5, and 6.

—_—
o

NRL REPORT 5974

PUYBH"P(H/BHHG ! OBHVEH<TE<ICHTQAEP+AFILOWH(EHT<L4WS)#(tHIWO(31H
LIH/2(94JTF* LAW3Iw(IHWA(, tHIL2(IP(VBHFBE|aW(1/BP(FAHVP(IeLHIW(JILWEP
(HOBHH/2*VA CHO W(' 1(' -4 QIZA"ZROK:,H ~-4158AZQ(J)<*R

PCNA!Y2a+TRV 1S IIHO=VIN4p3F22CHO,0(6F6N2MA.3B201728

IW&<S) (913VYJ+2+P(1BH"<6< PEBR<'EHCT2(NDLBSEHBSTEHCTACHTEH <D
A7IW(B2(1+AG0LH.LAEBT<IHA®(B!HCILEHT | <6<vE aACHR EHT<L4LBDIHEL IWFL tH(L!
HILEHTH<2(Z-8"B=8~ HedMOGP+9+G5)5(H|D #2F 68 A CETXIYNDHIC<O|,] . KelW
S+ (4JA82-<13VY TTOHFM"41HBP (1BH"CHT <A< AFH<EB>+2 (NALHEEN
EB>+++720+AB0EHT-LNLABINCL tHDLIHEEHT><6<P8 ACHO 'HAQW(92(MW(7EMT+L4LBF?
HOL tHIL tHOLIH?UEHTH<2(]=8-8~8-T(<T(ROK®HM7 (347 (tEtH[+"Fzase2A3YANH
(<91, T . KeIWS2+L(4JA#6TVIZVY TTP(1BH"DBBVYNPCHT-AOMOALBEH> <! |20 (3W (42
(+EH>< ! |S#(6W(TEHTTACTEH>TOEH>T! B+ 1EIV> EHT<+JTF2BOHH} S
E>XPNIM=2ALC(K#3VCI11||4Q-0A)J+KSS)042+a328G0RAHIAH~BUV 'DAHCAHBARAGEVS>TH
QVI.VY2(MOBHHHBUVTOEUT<T6<ID#VR2(PD*VW(SUVKP AUVK+J T7D208HP+JTF(2+JT+06¢
CHTLIV#2(PP([4+JT2J4+JTVI,BUVHO+UTZAR08HIDSVRISUVKP OUVKeJ T7D)O0BHP+JTF(
Y+JT29C2(MOBH=BUVH [D¥VI2(CDaV)I{2UVKP OUVK+J T7D,+JTB(+WDAVIUVKTEMTV &1 ¢

[Eal (33333333
MMMMMMM

MMMMMMMM
NNNN

Fig. 7D — Portion obtained at conclusion of assembly

Fig. 7 (Continued) — Sample output (printout only). This figure represents the
concluding step for the example given in Figs. 2, 3, 5, and 6.

vaa

PRIBTED SY YNE STANSARD RUSISTER COMPANY,

01

Y T

-

AT ITLOUTIANN

40

00
01
02
03
04
05
06
07

10
11
12
13
14
15
16
17

20
21
22
23
24
25
26
27

30
31
32
33
34
35
36
37

R. M. MASON AND I. G. FISHMAN

Appendix A

NUMERICAL LISTING OF BURROUGHS D825 INSTRUCTIONS

NOP
HLT
SSU
SSD
SRR
IRR
RVS

RPT
BRC
XLC

SR]
STF
TIO

CLA
SER
UCT

LCM
CBF
BRB

LTF
LSR
CSE

TR
TRS
SHF

No Operation
Halt

Step Stack Up
Step Stack Down
Subroutine Return
Interrupt Return
Reverse Stack

Repeat
Branch on Condition
Index Limit Compare

Subroutine Jump
Store Thin Film
Trdnsmit to Input/Output

Clear
Store External Requests
Unconditional Transfer

Logical COMPLEMENT
Convert Binary to Floating Point
Branch on Bit

Load Thin Film
Load Special Register
Character Search

Transmit Modified
Transmit

Shift

40
41
42
43
44
45
46
47

50
51
52
53
54
55
56
57

60
61
62
63
64
65
66
67

70
71
72
73
74
75
76
77

AIF

SAF
BSF

BAF
LOF
LXF
LCF
LAF

CLF
CGF
CEF

LXR
LOR
LAN

BDV
BMU
FDV
FMU
BSU
BAD
FSU
FAD

ACL
ACG
ACE

CLS
CGR

CEQ

Adjust and Insert, Field

Strip and Adjust, Field

Binary Subtract, Field

Binary Add, Field

Logical OR, Field

Logical EXCLUSIVE OR, Field
Logical COMPLEMENT, Field
Logical AND, Field

Compare Less, Field
Compare Greater, Field
Compare Equal, Field

Logical EXCLUSIVE OR
Logical OR
Logical AND

Binary Divide
Binary Multiply
Floating Divide
Floating Multiply
Binary Subtract
Binary Add
Floating Subtract
Floating Add

Alphanumeric Compare Less
Alphanumeric Compare Greater
Alphanumeric Compare Equal

Compare Less
Compare Greater
Compare Equal

NRL REPORT 5974

Appendix B
BLOCK DIAGRAMS OF KEY SUBROUTINES

41

AITITrAUTIAUN

NRL REPORT 5974

STORE Q SUBROUTINE

ENTER ENTER

43

ENTER ENTER
stlq st2q st3q stdq
Prepare to Prepare to Prepare to Prepare to
move one move two move three move four
syllable syllables syllables syllables
stor
Store specified
number of
syllables in
object program
sto5
Add one
this complete to object
line number
(qadd)

sto6

Erase

Q syllable

Exit

STORE NOP SUBROUTINE

to a first
syllable?

sno

Does Enter

Q-arrow point “gt1q”
to a fourth Subroutine

syllable ?

Q Does int Enter
-arrow poin “ »
to a third st2q

syllable 2 Subroutine

swn2

swn3 Does

Q-arrow point
to a second
svllable ?

Enter
“st3q”
Subroutine

G. FISHMAN

R. M. MASON AND 1.

44

uonjonzysul £q ataEnAs ®

paxinbax sajqeids
H 013z Jo Iaqminu woay 2IGETIAS

gado S[QRIIEA 91018 xoyexado 21038

aurynoaqng JUPN0IANG
31 JUBlIBA J03EDTPUL
Jajug X3pu L3uF ado
L Mou
& (w) adky paatnbax
aunnoaans 1o Burdnos3 10}e01pUT 82IPPE
&1 10 Uy §83IPPE PITY} ary
JTayug 51
aunoIqng aurnoIqng
[ELLIELS Y J03BITPUY dado
Jauyg Xapuy 133ug

L mou
painbax
§I07ED1PUT B83.1ppE

ary

2(m) °dfy
30 Burdnoad
S83IppE PuUoIes

81

aupnoIqng
4 30 U,
1ajug

aURNOIqNS
103BDTPUL
xapu] I9WT

aupnoIang
g wepes
aa3ug

LMou

aupnoIqng ¢ (W) adky paxmbais
g0 u, jo 3urdnoas 8J0182IpUY SS3IPPE,
oy g83JPPE P} a1y

81

aupjnoIqng
W JUeIIEA
Taud

3NILAOYENS NOILvY3dO

Jaqunu 19pI0
0} 81qe) 3uipooap
uopesado gaIeag

. wgiNg Iedo

45

NRL REPORT 5974

=
=
[
o
=

a1qeIlAs O pue
uotjewroyuy ndut
30 wns [eatdoy
waog

bdno

HILNIT

3NILNOYENS O dnd

01

$3q J103edIput
$S21ppE INEW

11

ur

Trut

1

JuaISIE)g 012
pI0daYy

Use[s
paty aaey v
s90Q

Lusers
puodes ey y
s3oQ

L uses
Buipes] sary v
saoq

FA'EL CIETN Y
JO Japuremras
s90Qq

EEERGIIEN 57

3INILNOYENS HOLVIIANI X3aNI

19VA

uonisod
331 our
®yep Jndut yiyg

Tqea

sunnoaqug aﬂwﬂﬂwa
dn, 1
Wﬁc% £q uonyemaoyur
s g8y

& PIOM)TRY
ot ur
ejep Jndur
81

gqea

gqea taea

YA INF

3NILNOHENS 118 LNVIYVA

10
sHq J0yEOTPUT
SS2IppE OyeW

&ty
19308JEYD ISIL]
SI

00
S31q J03E21PWY
S$S3.Ippe ONEW

& Uy
I930RIEYD 511}

aunnoIqng
I0}E21pUL XapUL
Jaug

qu

A AL
sIaj0BIRYD AuBW
#0H

JUDUI}E}S 101X

pIooay <

geyu

HIINT

INILNOYENS ,H ¥0 N,

46

Step past
sign

Is

ADAR

address

R. M. MASON

adj2

adar ENTER

Insert possible
correction into

AND I. G. FISHMAN

ADDRESS ARITHMETIC SUBROUTINE

Make long
answer signed
magnitude number

+

Lo " Lo|

remain?
yes
adaj’
Make short
Make long
Make both answer a signed answer a comple -
ad;f'glsastillexnx:nt long and short m:gr:ivtude n:xgx:ber me"';:d number
answers zero : (. -L.)
ilze E.‘ (Za Lo
T -
Exit
Is yes Set program
leading character flip-flop to
“mr zero
ada7
Set program Step past
flip-flop to sign
one

Set program

Enter
Comma

flip-fiop to
zero

nte:
Symbolic Address
Subroutine

Subroutine

Enter
Test Symbolic
Subroutine

1s
program flip-flop
zero?

Would
(Z_ + number) Form new
Sverflow?

o

Make value
zero. Record
error statement

Enter exit
Decimal Number
Subroutine

Record

Form new

error statement

Convert number
from decimal
to binary

Exit

NRL REPORT 5974 © 47 i

COMMA SUBROUTINE DECIMAL NUMBER SUBROUTINE

ENTER ENTER
adec

com

adeb

Are
all digits
decimal ?

Is com0

terminal character -
“« ng Exit 2
,7

Record
error statement

ade2

(Exit2)

coc

Record
error statement.
Replace faulty
number by zero

Are
all digits
octal?

oc63
Convert number coml’
from six-bit character _,@D
to three-bit octal
representation
TEST SYMBOLIC SUBROUTINE SYMBOLIC ADDRESS SUBROUTINE
ENTER ENTER
asym
Is , sam7
there at aso
least one non- Make i
st one o number ——e(" Bt)
zero

Are
there five or
less characters ?

Record Make number sam6
error statement equal to octal

correspondence

48 R. M. MASON AND I. G. FISHMAN

Appendix C
SUMMARY OF NABUR RULES

I. NABUR WORDS

A NABUR word contains one and only one
NABUR instruction, which may be regular,
quasi-regular, or pseudo-, depending upon the
requirements of the source program. It consists
of a three-letter operation symbol and three ad-
dress groupings, the last one, two, or three of
which are to be omitted if not required to specify
the operation.

II. LABELS

A. A “label” is a string of five or less strictly
alphanumeric characters containing some letter
other than “l,” eg., “b2b5,” “d,” “alpha,” “wl,”
“111tl,” etc.

B. Operator syllables of instructions to be exe-
cuted just after jumps must occupy the left-most
syllable position of a computer word. This can
be brought about by assigning a symbolic address
to such NABUR words.

II11. ADDRESSES

A. Contents of address syllables are determined
from address quantities by the action of the Adar
subroutine. NABUR subtracts the appropriate
base register (BAR, BPR, or SAR) settings (found
in “inbar,” “inbpr,” or “insar,” respectively, as
a result of “defines” by the programmer) from
the M-, B-, and Ja-syllables respectively.

B. The automatic subtraction of the appro-
priate base register setting can be compensated
for by adding either inbar, inbpr, or insar to the
quantity in question, for example “Ql+inbar.”

IV. SYMBOLS

A. The slash, “/”, must precede all index quan-
tities, which when utilized must follow all other
address quantities within the grouping. For ex-
ample, Q1/Q2/Q3/Q4, wherc QI is a memory
address quantity, and Q2, Q3, and Q4 are quan-
tities designating index registers.

9

B. The comma “,”, coming at the end of a string
of figures all less than or equal to 7, denotes an
octal integer.

C. A space must separate address groupings;
no space or tab is permitted within an address
grouping.

D. A space must follow an operation symbdl.
V. THIN-FILM DESIGNATIONS

A. The letter “n” means “normally step operand
stack.”
B. The letter “h” means “hold operand stack.”

VI. THIN-FILM REGISTERS

A. Thin-film registers may be denoted by the
octal codes given to them in the maps on pages
C-2 and C-3 of Ref. 2. They also may be denoted
by the decimal equivalents of these octal codes,
by their common names as stated in the maps,
or by new labels defined by the programmer.
Limit registers require a reduction of their codes,
modulo sixteen, in writing the Iv-syllable. This
must be done beforehand by the programmer.

B. Regular instructions STF and LTF are used
for single thin-film registers. If a group is re-
quired, quasi-regular instructions STW and LTW
are used, and care must be taken to start the group
with a key code.

VII. INDIRECT ADDRESSING

A. Indirect addressing is accomplished within
memory syllables by prefixing a “+,” sometimes
understood, or a “~” to the address grouping.

B. Indirect addressing is accomplished within
second or higher level, 16-bit absolute addresses
in some computer word, say “spot,” in the pro-
gram, by using the INT pseudo-instruction with
the reserved label “indi,” as suggested in this ex-
ample: “spot INT 65535+indi.”

VIII. SNAG BIT

The snag bit of a second or higher level, 16-
bit absolute address in some computer word,

NRL REPORT 5974 49
say “spot,” in the program, is set by using the XUE “unequal”
INT pseudo-instruction with the reserved label XUC “unconditional”

“snag” as suggested in this example:
X. TRANSMIT MODIFIERS

spot INT 65545-+indi+snag The reserved labels “pu, mu, xu, pr, mr, and

xr” are interpreted with the following key:
p “transmit plus”
IX. QUASI-REGULAR INSTRUCTIONS m “transmit minus”
x ‘“transmit with changed sign”
r ‘“transmit rounded”
u “transmit unrounded”

A. Thin Film:
STW “store thin word”
LTW “load thin word”
B. Shifts

DDA “drop-off, double, arithmetic” XI. SOURCE PROGRAM MESSAGES

DDL “drop-off, double, logical” .
DSA “drop-off, single, arithmetic” Type . Typed on Reappears in
. p-oli, single, ant) Message ldentification Source Checking
DSL drop-off, single, logical g Tape? Output?
EDA “end-around, double, arithmetic”
EDL “end-around, double, logical” REMARK “r”inremark yes yes
ESA “end-around, single, arithmetic” indication
ESL “end-around, single, logical” field
C. Index Limit C :

naex “1m1 ”Ompare COMMENT New line yes no
XNN none beginning
XEQ “equal” with “CR tab”
XGR “greater than”
XGE “greater than or equal” ASIDE “Blank” in no no
XLS “less than” remark indi-

XLE “less than or equal” cation field

AITITLocUTIALN

