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Analytic Formulas for the Acoustic Pressure
Distribution Between a Spherical Transducer

and a Concentric Spherical Baffle

S. HANISH

Transducer Branch
Sound Division

A sphere having arbitrary distribution of normal velocity over its surface and surrounded (partially)

by a spherical baffle board radiates sound into infinite space. In the region between the radiating

sphere and the baffle board the resultant sound field consists of a set of incoming and outgoing waves

described by an appropriate set of spherical wave functions. These functions are adjusted to yield

a normal component of particle velocity distribution which matches the velocity distribution at the

surface of the sphere. In the region outside the baffle the sound field corresponds to outgoing waves

only. At the junction of the inner and outer regions over those portions of arc where no baffle exists

the condition of continuity requires that pressures and particle velocities agree as the boundary is

crossed. This requirement of continuity equates the infinite series of spherical wave functions in the

outer region to an infinite series of different spherical wave functions in the inner region. The result

is an infinite set of simultaneous equations in an infinite set of unknown expansion constants. Further

treatment of these constants varies with the acoustic properties of the baffle. Baffles are considered

which have surfaces of either zero pressure or zero normal components of particle velocity and the

corresponding sets of equations are derived. A brief discussion is also made of the case where the

baffle has an acoustic impedance which is neither zero nor infinite.

INTRODUCTION

When practical generators of sound are in-
stalled on ships, some portion of their surfaces
look directly into the adjacent ship hull. The prox-
imity of the hull alters the conditions of radiation
in complex ways. In this report the transducer-
hull system is idealized to the state of a radiating
sphere inside a concentric spherical baffle having
a shape that may be described by tesseral har-
monics (1). The problem is thus reduced to a
simple boundary value problem in three dimen-
sions, and the solution sought for is the distribu-
tion of pressure in the region between the trans-
ducer and the baffle, and in the region outside the
entire system. A similar problem of finding the
acoustic pressure distribution between a radiating
cylinder and a concentric baffle has been studied
in Ref. 2.

BOUNDARY VALUE PROBLEM
AND ITS SOLUTION

In the region outside the entire system (called
region II) the pressure distribution due to the

NRL Problem S02-07; Project RF 001-03-45-4052. This is an interim
report on one phase of the problem; work is continuing. Manuscript
submitted October 1, 1963.

generation of sound by the transducer may be
written in the form of a series of spherical wave
functions which satisfy the condition for outgoing
waves. If the time variable is expressed in com-
plex form by e-i t, the amplitude and phase of
acoustic pressure is given in spherical coordinates
(r, 0, 40) by the real part of

pI ( r, 0, (, t)0= [A,,h.(1)(kr) Ycm.(0,
m~n

+ Bnihn(')( kr) Ys,,,(0, 0) 1]e-it (1)

in which h,(1),(2) (kr) = j,,(kr) -t in,, (kr) = the
spherical Hankel function of the first and second
kind,

YCmn (0, 0) = cos m4)P,,m(cos 0),

Ysmn (0, 4)) = sin m(hPnm(cos 0),

Am,,, Bn,, are arbitrary constants to be deter-
mined by conditions at the inner boundary
of region II, i.e.,,at r = b.

At r = b, (i.e., at r slightly greater than b) .'
amplitude of acoustic pressure is made discon-
tinuous by the presence of the baffle. Initially the
hull baffle will be considered acoustically soft,
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acoustically hard, or alternately soft and hard as
in layers. Baffles having mechanical (complex)
impedances with phase angles that are neither 0
nor 90 degrees will not be studied in the first part
of this report. At r = b, then we suppose that

pii(b+,9O,4)=O, 01<0<0 2,etc.,

(h < 4) <4 )2, etc.,

, 0 elsewhere on "surface r =b+." (2)

This is the condition of a pressure release
baffle over portions of the surface r = b+. We now
desire to expand the function expressed by Eq.
(2) into a Fourier-type spherical harmonic series,
continuous everywhere, given by

pzi(b+, 0, 4)) - i Lm.(kb,)Yc.ni.(0, 4))
re,n=0

+ > Mmn(kb+)Ysm (n, (0).

m,n=0
(3a)

Multiplying the amplitudes of both sides of Eq.
(3a) by Ycpq sin 0 and integrating over 0 from 0

to 7T and over 4) from 0 to 27r we find that all
terms Lmn vanish unless p = m and q = n. For
particular inn, therefore, we have

H [1] =0,

= 1, elsewhere on the surface r = r0.

Note that u, v correspond to 0, 4) respectively.
By application of similar methods to the odd
spherical harmonics we find

Mn- 1 fi A, ,h,(1)(kb,) T11[A1m
N~~nm Lv, nl

+ j Bhe(1)(kb+) TssL[0 M'
U'r,7 V]

(3e)

The pressure in region II which meets a pressure
discontinuity requirement at r = b+ thus becomes

pit(b+, 6, 4), t) = • e-
m,?n

[

-wt {Yct....(N , 4O )INc nW

A,i' ()( ,T41,M

+ Birehet)(kb+)Tsc [Ou ,mu
a. 7-, nljI

_____ 1 B•,/h MI (kb+)Tss I ,
L1A 5h((1)(kb+)Tee Ns 4)) Bh ) (kb,) ]Non I t v nJ N~t" ,

+ Baeh,(')(kb+)Ts, or,' :1
,T, IT, n

(3b)

with

Ni.nm zff (Yamn ) 2 sinududv, a=cors
(3c)

and

T 1 T,6, r]-= f f H[1]YaoYtKe, sin u dudv

(3d)

where H [1] is the unit function on the surface
r = ro, i.e.,

+ j Ae,eh,(t)(kb+) Tsc[ ,I
a,7 [,, nl1]1 (4)

This formula is valid for all 0 and all 4) at r = b+.
The normal component of particle velocity in

region II (= VnI) is deduced directly to be

1 Opl'
VII(r, 0, 4)) =-ikpc Or

= 1- [ E Arnhni")'(kr)Yeninikpe .,

+ B.nh.l()'(kr) Ysm.]

2

U, < U < U2, etc., v, < V < V2, etc.,

(5a)

(5b)
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where the prime mark indicates the ordinary
derivative with respect to r.

In region I between the baffle and the trans-
ducer the acoustic pressure satisfies the conditions
of standing waves. We can write

pi(r, 9, 4, t) = e-i-t [Cmihi(')(kr)
mi ,n

+ Dmihit(2)(kr)]Yc.%(9, 4))

+ e-ilt E [Ei.thn(1)(kr)
mi ,n

+ Fm.hi( 2 )(kr)lYsitn(, 4)).
(6a)

The normal component of particle velocity in
region I thus becomes

V1 (v, 9, 4, t) =ikpc [Cinh"(')'(kr)
mn

+ D.ihnt(2 )'(kr)]Ycmi(O, 4)

+ -e [E'nnhn(1)'(kr)
ikpc .m,n

+ F.ithit(2)'(kr)]Ysin(0, 4)). (6b)

At the surface of the transducer (i.e., at r = a)
we specify a complex velocity such that

V,(a, 9, 4, t) = U(O, 0)e-i't (7a)

The velocity U(O, 4) can be discontinuous. Using
the orthogonality conditions of Yi,., and Ye..
once more we see that

Dminhn(2)'(ka) =--Ci.h,t')'(ka) + ' ikpc (7b)

where

Urn," = U f ( u, v) Ym, (.u, v) sin u dudv,

p = Cos S.

p,(r, , 4), t) = (k)
m,n I

[UCm ikpc -CCmnhit)'(ka)+ [NciM hn (2)' (ka) hn (2)(kr)

X Ycm.i(0, )e ie"

"+ Eh(I) (kr)

m'n[

-Nus.- ikpc" -- Em~hn"()'(ka)]
+ -o' ,~n hn() k )-h,,(2)(kr)

+J

± N_~

X Ysm.(0, 0)e -"'i (8a)

and

V, (v, 0, 0) 1 ap

ikpc Or"
(8b)

When r = b (i.e., at r slightly less than b) we re-
quire that the velocity V,(b , 0, 4)) have a discon-
tinuity such that

V, (b-,0,) O, 0i <O<02, etc.,4), <4)<(h2,etc.,

# 0, elsewhere on the surface r= b.

(9a)

Note that the pressure discontinuity at r = b+ and
the velocity discontinuity at r = b coincide in
angular distribution.

As in the earlier case of pressure pii(b+, 9, 4))
we desire to expand the function expressed by Eq.
(9a) into a Fourier-type spherical harmonic series
which is continuous everywhere. We write

V(b_, 0O,4)) = j R,,,,,(kb )Yc,,,i(, 4)
'7t ,1t

The pressure and particle velocity in region I
therefore reduce to the following formulas:

+ • Sin.(kb_)Ys,,,,(. 4)).
it,n

11 3

(7c)
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Application of the procedures utilized above
finally lead up to the equation

V ,( b-, 0, 0) = i- k niC (1) Yc (I Yi

V Ib,94) ikp mNci

h[Uc'i)'(k b

h,(2)1ikP] ~() (kb) }TC4"' 21

usýkp c Eirh,r(i)l(ka)1

N h,(2 )1 (ka) ] h,2)'(kb-)j

1sT IYnmit

+1 1 Y41I ,,/[ '(b-

+U cikpc _ C,,h ,h' 1'(ka) b

+ - NcýA' h h(2)'(ka) Jhk(2)'(kb- )I1

X TSfC 21PnI

+ 1ý Eoh,('(1)' (kb--)

-Us, -ikpc_ E ,,h ,( ka)

+ ETh(2)' (ka) h

x T4r, n _1) (9b)

We now let b, -- b- - b; i.e., the baffle is consid-

ered a mathematical surface. At the boundary

r b between regions I and II there must be

continuity of acoustic pressure and particle veloc-

ity in the unbaffled region. We require therefore

that the following boundary conditions be satisfied:

p0(b, 0, P) =pi (b, 0, 0))

V, (b, 0, 0) = V,, (b, 0, O)l

in the
unbaffled
region.

(1Oa)

(lOb)

It is convenient at this point to define the fol-
lowing entities:

Lx(kr) =h),(1)(kr)- h),(2),(ka) h )(2) (kr)

L,'(kr) dLx (kr)
L' ( kr) -- (dr

C~x (kr) =C~xLx (kr)

CE,' (kr) = CExLx'(kr)

E,,\(kr) = E.,L,\( kr)

EKx' (kr) = E~xLx' (kr)

U ____ hx(2)(kr)
UCxK (kr) = NX (ikpc) h-t 2) (ka)

dugxi'(kr)U~x ( kr) dr

Ax(kr) =Axhxt)(kr), B,,x(kr) = B~xhx(l)(kr)

dAx,\ dB•x
A,,\'(kr) = dr, Bx'(kr) - dr

The pressure requirement may be fulfilled by

extracting from Eqs. (4) and (8a) all entities

corresponding to particular Ycm.. and Ys,... We

thus obtain for the coefficients of Ye...

C.1 (kb) Nit LMjjitTcLVti]

+ yBUTV'(j, 211 -(k ( l1a)

4
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For the coefficients of Y,•,,, we obtain

,Ns,- B-Ts v,n I

+ •]A,,Tsc,° m0-,M Use, (kb). (lI b)
S, I T, n

The particle velocity requirement may be ful-
filled by extracting from Eqs. (5b) and (9b) all
similar corresponding entities. We thus obtain
for the coefficients of Yc,,,,

A15.ý'(kb) ~ C,ý(kb) + UciA'i'(kb)] .TCcL , n2I
/•,v I Nc,-//

+ Ea,~'(kb) + UsiTa(kb)] T5C[II 7 nI I Nc,m-

(12a)

For the coefficients of Ysmit we obtain

Bmii'(kb)= C (,~'(kb) +lUcvW'i(kb))TSlPA19 n

+ (E,,'(kb) +UJSr'(kb)) TSS IT, (n

The set of four equations (I la), ( l1b), (12a), and
(12b) are simultaneous in the four unknowns Ami,
B7.. ,. Cmi, and Emit. In any physical application
this set has a unique solution. Hence the pressure
distribution in regions I and II can be obtained.

PARTICULAR CASES

A general solution of Eqs. (lIa), (lIb), (12a),
and (12b) seems impractical. The first simplifica-
tion that may be made in these equations is to
set m = 0. The baffle will then be rotationally sym-
metrical. Figures la and lb shows sketches of
types of baffles in which m X 0 and m = 0 respec-

Fig. la--Baffles for which m # 0

Fig. lb- Baffles for which m = 0

tively. We will consider in this report only those
cases for which in = 0. A first consequence of this
selection is that Bm, = Emit = Tsc= Tss= Ysm, = 0.
Hence the set of equations that require solution
reduces to

Co,,(kb) =Al0 TC [0:0] L i/ (13a)

and

0,0

Ao0 ,'(kb) ~ C,,'(kb) + UCV l0(kb)] NCC[,0 n] 13b)

Substituting Eq. (13b) into (13a) we obtain

Con (kb) - h (kb) j[Co0Lq'(kb)

IU&k) NCV0NCn0

- Uc,.(kb)j1//L,.(kb). (14)

B=BAFFLE
T=TRANSDUCER

5

)
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Further manipulation yields

Coll - ± Coq iqn =,,, n =
q=O

S. HANISH

The phase ft of the pressure field will be given by

(1 5a)

in which

EIm,,Yco,,
tan f- '

E RelYco'
11

(16b)

h,(')'(ka) 1 ht')(kb) TccOi, ]Tccrq, ][hq1)'(kfb) - hq1 )' ( kb~l ) ] v1(b ±T ,nCC[OqO P0
h,) (2 ) h j h,()' (kb) Nc,°0Nc,°

-- [h(,(kb)-hn'()'(ka) hn(2,(kb)
hn (2)' (ka) I)k~

(15b)

Uerhr(2)'(kb)ikpc ih,)(kb) TCCv n]Tcc~rv] Ucrhv( 2)(kb)ikpc

ATo Nc2r)hr 11'(ka) ý-ý___ (kb) Ncn°Ncv° Nc°,"h",(2)' (ka) . (15c)
j" -= r hn(l, (kb) hn(i,' )(ka) hL(2)'(kb)(I

[It'() h,,(2)'(ka) "i '--)

Equations (15) in the unknowns Col, are infinite

in number and complex. A practical procedure

for evaluating these unknowns is to consider

finite number of equations ranging from sub-

script n = a to subscript n = b, these limits de-

pending in turn upon the values of q which make

the largest contributions to the coefficients aq,.

To obtain the first n coefficients (= Co,,) it is clear

that some number of coefficients N greater than

n must be solved for. By increasing N in steps

one can determine the successive values of the

first n coefficients and test these for convergence.

The real and imaginary parts of the first n

coefficients (Co,,) of Eq. (I5a) are solved separately.

From these are obtained the complex coefficients

A0o, by means of Eq. (13b). When these coefficients

are obtained they are substituted into the infinite

series given by Eqs. (5) and (8a) to yield the pres-

sure distribution in regions II and I respectively.

For either regions I or II let Re,, be the real part

of the nth term in the series, and Int,, be the

imaginary part. Then the magnitude of pressure

IPI is

IPI - [(YReyCot2+ (iiiYco, 2]
1 2 (1 6a)

The complex pressure P at any point will then be

P= Jp] eIOn -'t).

In region II when the field point is in the far field

we may write

A0,,= -IA0,lei-ol

h,,(') (kr) --- ei[kr - r(n + 1)/2]

p11 -+ I kr

X,, = kr-- 7r(n + 1)/2 + ao,,.

(17a)

(17b)

The far field pressure distribution P(4), 0) thus
reduces to

(//Ao,AYco,, cos X AY o, sin ll 2

O"Yc(I cos11) o

(17c)

I
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ALTERNATIVE BOUNDARY CONDITIONS

For the case of a spherical baffle which is acous-
tically hard on the outer boundary the boundary
requirements that the acoustic pressure and
particle velocity be continuous across that portion
of the boundary where there is no baffle lead to
the following four simultaneous equations:

II.Tcc~v, n J
Amit(kb) IE[C,, (kb) +-- Uc.€ "J NM

+ I [E,, + U,-iTSC]N•, ] (I 8a)
0"I , mIN [i,m  (8a

Bm.( n(kb) kb)+UcA]
M~Nn'

+D[Ei,,(kb) +Us,- (kb)] N .m (18b)

a~'T

C "n'(kb) = A,,' T c , bt,,

,-b A 7' ,T scIT, n 2]

+• Bi(kb) N ' Us",m'(kb).
s'nS (18d)

For pressure fields which have no variation of
magnitude or phase in the coordinate 4) (i.e.,
rotationally symmetric fields) we can set m = 0,
and reduce the above set of four equations to the
following two equations:

Ao. (kb)= 2t-C-(kb)+Uo(kb c
VL Ncn° (19a)

T c
Con,'(kb) To'cc [ro0 -U.olk)Nc, (1 9b)

Upon substituting Eq. (19a) in Eq. (19b) we obtain
a formula for the constants Con:

C0 (k ) ' { k) •[CoqLq(kb)Con(kb) h ,0 h(kb) Y I

+Ucq°( kb) JTcc q v v,!u n]

- Uc,,O'(kb)J /L,'(kb). (20)

This formula should be compared to the solution
given by Eq. (14) in which the roles of pressure
and particle velocity are interchanged.

BAFFLES WITH FINITE
ACOUSTIC IMPEDANCE

Baffles with finite acoustic impedances were
excluded from the first part of this report. Bound-
ary value problems involving these baffles are
computable, in principle, by the same methods
which were applied in detail above (2). For ex-
ample we may suppose that a specific pressure
distribution P. is fixed over the baffle in region I,
and a specific velocity distribution V,/ is fixed over
the baffle in region I. In place of Eqs. (10a) and
(10b) we may write the following boundary con-
ditions for the inside and outside of the mathe-
matical surface r = b:

(21a)

V,(b, 9, 4)) = Vi(b, 0, 4)) + V•(b, O, 4)). (21b)

In these equations we have applied the principle
of superposition. The pressure pu(b, 0, 4)) cor-
responds to a finite pressure in region II at r = b
for the boundary where no baffle exists. Elsewhere
on the surface r = b the value of p, is zero. Now
we can specify Px(b, 0, 4)) to have a value zero in
region I at r = b for the boundary where no baffle
exists (i.e., just at the boundary where pl, is not

7

p, (b, 0, 49) -= pil(b, 0, 49) + P.,(b, 0, 40)
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zero) and to have a fixed distribution elsewhere,
i.e., over the baffle.

The analytic representation of P., which is con-

formable to the problem may be derived by ex-

panding P.,. in a Fourier-type series of tesseral

harmonics over the sphere r = b. Now the pres-

sure P, may be expressed as the product of the

velocity Vl(b, 9, 4)) and the specific acoustic im-

pedance pc. In this event the expansion of P,

will involve the same expansion constants as V1.

If however P,.(b, 9, 4)) is known and fixed, the

expansion constants can be computed, and the

total expression P.,.(b, 9, 4)) will enter Eq. (21a)

as a constant. Similar remarks can be deduced for

V,,(b, 0, 4)) in Eq. (21b).

NOTES ON THE NUMERICAL
COMPUTATION OF EQ. (15a)

From the experience of other authors (3) it

seems likely that the inversion of a 100 by 100

matrix will be required to achieve reasonable con-

vergence for the solutions of Eq. (15a). Using

moderate-speed electronic digital computers we

estimate that approximately 6 hours will be re-
quired to find a reasonably complete pressure

distribution in the region between the spherical

transducer and the rotationally symmetric con-

centric baffle. For the case of unsymmetric baf-

fles (i.e., In 4= 0) the time required for solution of

n modes will increase at least (2n + 1)-fold. It thus

appears that the calculation of all but the simplest

sphere-and-baffle combination is not feasible at

the present time.
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