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Recently, the author constructed a spin-wave theory of the Holstein-Primakoff type applicable to
exchange-coupled crystals with an arbitrary number of magnetic ions per primitive magnetic unit cell.
In the present report, a simple, explicit, and general procedure is given for finding a complete set of
normal spin-wave modes within the context of the above theory. A comparison of our procedure with
the corresponding one of Wallace reveals that the present method is considerably easier to apply than
his in practical computations involving an extensive class of complex exchange-coupled spin structures.

INTRODUCTION

In a recent paper (1), we developed a spin-wave
theory of the Holstein-Primakoff variety for
exchange-coupled solids with an arbitrary number
of magnetic ions per primitive magnetic unit cell.
The only condition on the spin ordering in that
theory was that the spins should point parallel
or antiparallel to a given direction, except for
the effect of spin-wave fluctuations. A procedure
for determining the spin-wave energies and the
corresponding normal modes was given in I,*
where the problem of determining these energies
was treated in detail for various cases of interest
and where the solution to the problem of de-
termining the normal modes in question was
presented schematically.

The main purpose of the present report is to
show that the formulation of the normal-mode
problem given in I and a line of attack inspired
by a classical procedure (2) of the theory of small
oscillations lead in an elegant and simple way to
an explicit general solution of this problem
which is quite convenient for practical computa-
tional work involving typical complex exchange-
coupled solids.

Recently, Wallace (3) has published a method
for determining the normal spin-wave modes of
exchange-coupled solids of the type considered

NRL Problem H02-22; Project RR-002-01-41-4908. This is a final
report on one phase of a continuing problem. Manuscripi submitted

October 15, 1963.
*Reference 1 is herein denoted ty 1, and, for example, Eq. (2.9)

thereof is quoted as (2.91).

tThose primarily interested in the practical aspects of this report,
may find it advisable to omit Appendixes A and B, as well as the discus-

sion in the paragraph containing Eq. (12), at least in an initial reading

of this report.
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in I. We shall compare our solution of this normal
mode problem with his in the two final paragraphs
of the main body of this report.t

DETERMINATION OF SPIN-WAVE
NORMAL MODES

It was established in I that the spin-wave
Hamiltonian (2.91) could be reduced to the
diagonal form (2.191), provided that for each
magnon wavenumber i one could find n X n
transformation matrices T. satisfying the equations

o-L.T. = TýIIK,

TKto-TK = (t),

T- K= TK*,

(1)

(2)

(3)

where the dagger and asterisk refer to the Hermi-
tian conjugate and complex conjugate, respective-
ly, of the matrices of interest. The n X n matrices
o-, w, ptK, and L. in Eqs. (1) and (2) have the fol-
lowing significance. We define u -- [o-,8,9], o-,
being 1 (-1) if the ath spin in a primitive unit cell
points "up" ("down") along the direction of
spin alignment. The matrix L., given by Eq. (2.61),
is Hermitian and can be made positive definite
(det [LK] > 0) for all K by an appropriate choice
of the anisotropy constants A. in Eq. (2.41). This
global positive definiteness property of LK should
be understood to hold henceforth. We define
/A-. - [wx,0&•s], where the ptK,o are the eigenvalues
of o-LK, these eigenvalues being real and nonzero
by a standard theorem of linear algebra (as given,
for example, by Ref. 4). We shall always suppose

I.,
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that the /LK,
0 

have been numbered in such a way
as to possess the continuity properties mentioned
in I and in Appendix A. Under this proviso, it
is shown in this appendix that the sign of .. ,0.

denoted by w., is independent of it and of the
At when the latter constants are chosen as indi-
cated above. We set &o -- [0in 813n].

Let tK be a nonsingular matrix satisfying the
eigenvalue equation

UrLKtK = tK/l1. (1')

Such matrices tK exist for each x by virtue of
the hermiticity and positive definiteness of LK
for all K. The last assertion follows from Theorem
B of Appendix B when one sets P = U- and Q = LK.
An equivalent theorem was established in a
different way in Sec. 4.082 of Ref. 2.

The hermiticity of LK, the reality of /11K,O and
Eq. (1') imply

(tKt-tK-•I)tK = IK (tK0-G) =t L~t-. (4)

Let EK - be the positive definite
diagonal matrix of spin-wave energies which
was introduced in I. The commutativity of /K

and tOtL~tK asserted by Eq. (4) is easily seen to
imply that tKtLKtK commutes with EK and therefore
also with EK 1. Combining this remark with Eq.
(4) and with the obvious equation

E = (0/1K, (5)

we conclude that tto-tK has the form

tK t-tK = wDK ,

where

D - Eý-(tiLt,) = (ttL~tK)EK-.

It is clear from Eq. (7) and the hermiticit)
LK that D. is Hermitian. DK is also positive defir
since Eq. (7) entails that det[DK] = Ldet[t
X det[LK]/det[EK] > 0, because tK is nonsing
and because LK and EK are positive definite.

From Eqs. (4) and (6), one finds

DKtt.K /1KDK

The commutativity of DK with /•K and the hbe
ticity and positive definiteness of DK imply

there exists a unitary matrix ZK having the proper-
ties

(9)ZKtDKZK = dK,

Z•- = /1KZKI,

where dK stands for the positive definite diagonal
matrix [dK, 0 5,].

Define

TK tKZKdK 1/2, (11)

where dK-1/2 - [dK,n t/28 0 R]. Then TK satisfies
Eq. (1) by virtue of Eqs. (1'), (10), and (11),
and TK obeys Eq. (2) because of Eqs. (5) and
(8) and the commutativity of ZK with w which
follows readily from (10).

Using the procedures just given, there is no
practical difficulty in finding matrices TK which,
outside of obeying Eqs. (1) and (2) for each K,
also fulfill Eq. (3) for every it. However, for the
sake of mathematical completeness, we shall
give an explicit procedure for solving Eqs. (1)
to (3) once the solution of Eqs. (1) and (2) is
known in "one half' of K space. We divide K

space into two parts, R, and R_ such that if

K E R+ then -K E R for each it. For example,

choose R, (R-) to be the set of all K such that
K, -- 0 (< 0), where x designates some fixed
direction in the crystal. Let TK be given by Eq.
(11) whenever iK E R,, so that TK obeys (1) and
(2) throughout R+. Define the matrices TK in R_
as follows in terms of the corresponding matrices
in R+:

(6) TK TK*1 KER
(12)

By virtue of this definition, Eq. (3) holds auto-
(7) matically for all K. It remains solely to show that

Eqs. (1) and (2) are obeyed by the present TK
of for every K E R_. That Eq. (1) is fulfilled in this

iite, sense results from the defining Eq. (12) coupled

K]12 with the facts that L-K = LK1 [Eq. (2.81)] and that
ular tiK = /AK [this equation is implied by Eq. (2.121)

and the reality of /1K]. The TK of interest satisfy
Eq. (2) for K E R_ because of Eq. (12) and the
reality of o- and oi.

(8) For purposes of comparison with Ref. 3, we
shall recapitulate succinctly the present method

*mi- for finding solutions TK of Eqs. (1) to (3), i.e., for
Lhat finding a complete set of normal spin-wave modes.

(10)
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In this recapitulation and in all other subsequent
remarks of this section, we shall only be concerned
with the nontrivial case or = I, i.e., with spin
structures in which some spins point "up" and
some "down." As is well known, no refined
methods are required to determine these normal
modes in the ferromagnetic case o-= I, even
when n > 1. Omitting the simple matter of satis-
fying Eq. (3), the present method involves two
steps: (a) one obtains the eigenvalues /1K,, and
determines a particular nonsingular solution of
Eq. (1); (b) one constructs the corresponding
matrix DK using Eq. (6), finds its eigenvalues dK,,

and determines a diagonalizing unitary matrix ZK
fulfilling Eqs. (9) and (10). Notice that, by suitably
permtiting the rows and columns of DK, this matrix
acquires a block structure in which the size of
the blocks is equal to the degeneracy of the /1Ka.

Hence DK is diagonal for any i such that all the

/K,,a are distinct. In the latter case, the problem
of finding dK and ZK is trivial once step (a) has been
effected. In cases of small degeneracy of the /1K,.,

say double or triple degeneracy, it should be clear
from our remark on the block structure of DK,
that step (b) involves only a modest amount of
labor. Most of the actual exchange-coupled spin
structures probably obey this low-degeneracy
condition. For example, the condition in question
is satisfied by the exchange-coupled models of
magnetite (A-B interactions) (see, for instance,
footnote 26, page 1948, of I) and YIG (a-a, d-d,
and a-d interactions), excluding possible accidental

degeneracy effects in the case of this last sub-
stance.*

In Wallace's approach (3), one has to (a') find
the eigenvalues of a matrix which he terms Lk.
(his k is our K and his Lk is unitarily equivalent to
our LK); (b') determine the corresponding eigen-
values and a corresponding diagonalizing unitary
matrix of a matrix which he denotes by R- [see
Eq. (25), Ref. 3]. Even when all the /1K, are distinct
for a given i, Lk and RA cannot in general be re-
duced to matrices having a simple block structure
by permutations of rows and columns. Hence,
the main advantage of our method over that in
Ref. 3 in the above low-degeneracy case is the fact
that the latter involves two lengthy diagonaliza-
tion procedures, while only one lengthy step,
namely (a), is required in our approach.

For either of the normal-mode methods under
discussion, cases of high degeneracy of the /1K,a

would in general necessitate the aid of an elec-
tronic computer to obtain detailed numerical
results. In a complex situation of this type, it is
probable that the method advocated in this report
would be simpler for coding purposes than that
of Ref. 3.

*The spin-wsave excitations of this model of YIG have been studied by

Douglass (5). Although Dougtiss' paper deals only with restricted re-
gions ofm space, one can deduce from it, by simple additionan reasoning,
that the low-'degeneracy condition mentioned in the text of this report
holds for all K, exception made of the above accidental degeneracy

phenomsnena.

I..
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APPENDIX A

In I, reasons of brevity precluded giving a com-
plete proof of the important fact that the sign of
/1K....for fixed a, is independent of K and of the
anisotropy constants Ap when LK is positive
definite for all K. We shall devote this appendix to
a detailed proof of this fact.*

Consider the Euclidean space R(n) composed of
the n-ples (A1, ... , A,,); i.e., consider the set of all
such n-ples provided with a Euclidean distance

function

[ I 1/2
d(P', P") [An' - An']

corresponding to the points P' = (Ar, .... A,,')
and P" = (A, .... A,,"). Let S be the subset of
points of R(n) such that L. is positive definite for
all K.

where LKO) is independent of the Ap.
Let (Al', .... A,,') and (A1 ", .... A,,") be two ele-

ments of R(n) and let LK' and LK" be the correspond-
ing matrices LK. Then Eq. (Al) implies

L"=LK'+ [ (ao"-An') 8ap]. (A2)

We now restrict (A,', .... A,,') to lie in S and
suppose that A'" >- A.' for a = 1 ... , n. Then the
matrix L.' is positive definite for all K, and the
K-independent matrix [(A," - A,')8,0i] is positive
semidefinite. Since Eq. (A2) asserts that LK is the
sum of the last two matrices, LK" is positive definite
for all i; i.e. (A", .... A,,") e S. Hence, we have
shown that if (A1', .... A,,') E S, then (A", .... A.")
E S if An" - Aa' for all a. This is easily seen to
imply that S is connected.*

Theorem A. For fixed a, sgn /1L,n is independent
of K and of the Ap, provided that (Al, ... , A,,) E S.

Lemma. S is a connected set.

Proof. From Eq. (2.61), one sees that

L, = LK1 °) + [A 08&g], (A1)

*From the mere equality of the signatures of AK, and o- when L. is

positiuc definite for all K, it is, of course, not obvious that sgn P-.

fuo given a, is independent of u and of the A4 when L, is of this type.

This signature property is entirtel algebi aic, while the said1 pi operty of

sgn /-c. is of an analytical character. We regret the "onfusing passage on

p. 1943 of I, ftom which one would gathet the erroneous impression

that we established the equality of the signatures of •, and t- bh conti-

nuity arguments. It may be of interest to present Our original proof of

this equality. If L. has the aboue glohal positive definiteness property,

Sylvester's theorem of inectia tells us that the signaitires of L.i 2ULU12

and c- are tcfe same, because then tihe "positive square root" L,'I uf L,, is

nonsingular. But since the matrices AB and BA have the same eigcn-

values (see the second paragraph of the proof of Theorem A iu] this

itappendix), %,e conclude that the eigenvalues A,_ of uLK are the same aus
the eigenvalues of L.11o-L.121. Hence, the signature of fcA_ is the same as

tftia of a. This fa( t is also proved in Ref. 3. Noitice that in that referene,

it is imcp lic itly assu med, not proved, that sgn/c,,, is itidcepecenet of K and

of the Ac under the present hypotheses.

Proof. As usual, we regard K space as a three-
dimensional Euclidean space, which will be called
K. Since K is (trivially) connected and since the
connectivity of S follows from the lemma just
proved, we see that the product space K X S is
connected (see, for example, Ref. 6).

Now /1K,n is a real-valued, nonvanishing, and
jointly continuous function of K and of all the Ap
on K x S.t Hence, by a well-known theorem [see
Theorem (3.19.8), page 66, Ref. 6] of real-
variable theory, the sign of /1,,,, for fixed a,
is the same throughout K X S, which completes
our proof.

*For n - 2, this connectedness property is readily verified graphically.

tMore precisely, for given a, 1A, is a jointly continuous function cf
the 3 + n variables K-, K

1
, K,, AI, ... , A,,, where K-, Ky, K, are the compo-

nents if x with respect to an arbitrary Cartesian system. It is hardly
necessary to state the continuity is understood here in the familiar sense

of classical analysis.
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APPENDIX B

In this appendix, we prove a theorem equivalent
to the "theorem of the separation of the roots,"
established by analytical procedures in Ref. 3.
Our proof is both simple and purely algebraic.

Theorem B. Let P and Q be n X n Hermitian
matrices and let Q be positive definite. Let X.
be the ath eigenvalue of PQ. Then there exists a
nonsingular matrix X satisfying

(PQ)X XX, (B1)

where X [-a-ag].

Proof. Define the matrix

Ba - PQ - XaI, (B2)

where I is the n X n unit matrix. It is well known
from elementary linear algebra that a necessary
and sufficient condition for the existence of a
nonsingular matrix X obeying Eq. (BI) is that
Ba have rank n - ma for each a, where ma is the
multiplicity of the eigenvalue Xa. We proceed to
prove that Ba has this rank.

Set

Ha -_ Q112BaQ-'12 = Q112PQ-112 -a•I, (B3)

where Q 112 is the Hermitian nonsingular matrix
which is the "positive square root" of Q, and
where Q-1/2 is the inverse of Q112. The matrix
Q112pQ112 is obviously Hermitian and its eigen-

values are the same as the eigenvalues Xa of PQ.
To prove this last statement, one writes Qt12PQ1/2 =

Q1/2. (pQt/ 2) and PQ = (pQ1/2).Qt/2 and invokes the
theorem that AB and BA have the same eigen-
values for arbitrary n X n matrices A and B (see,
for example, Ref. 7). But, if H is any n X n Her-
mitian matrix and pa is its ath eigenvalue, the
rank of H - pa is equal to n minus the multiplicity
of pa, since the hermiticity of H entails that the
maximum number of linearly independent eigen-
vectors belonging to pa is equal to this multiplicity.
Hence, the hermiticity of Q112PQI12 and the fact
that its eigenvalues are the Xa implies that Ha in
Eq. (B3) has rank n - ma for each a.

Since Ha is obtained from Ba by pre- and post-
multiplication with the nonsingular matrices Q112

and Q-1/2, respectively, the ranks of Ha and Ba
are identical, which completes our proof.
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