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A SYSTEMATIC APPROACH TO HIGHER-ORDER PARABOLIC  
PROPAGATION IN A WEAKLY RANGE-DEPENDENT DUCT 

 

1. INTRODUCTION 
 
 This work deals with a continuous wave (cw; i.e., monochromatic) wave field and focuses on its 
systematic separation in a ducting environment with weak range dependence into components that 
propagate in opposite directions along the duct via a hierarchy of uncoupled parabolic equations (PEs).  
Situations of this general type occur for electromagnetics in the atmosphere and acoustics in the ocean, 
when very accurate modeling is required for fields that propagate over long ranges through ducts whose 
range dependence is weak enough that no energy is backscattered.   
 
 To highlight the essentials with a minimum of complexity, the simplest nontrivial version of this 
problem is addressed: waves of vertical (z) displacement on a membrane stretched in the horizontal (x, y) 
plane.  Situations are considered in which the membrane's density has (i) a sufficiently strong maximum 
in the transverse (y) direction to produce ducting in the longitudinal (x) direction, but (ii) only a weak 
dependence on the longitudinal coordinate.  It is shown that a series of explicitly energy-conserving 
“pseudounitary” transformations can asymptotically decouple the Helmholtz equation order by order into 
PEs for left- and right-going ( x−  and x+ ) propagation.  Parallels are drawn both to the one-dimensional 
limit of this problem (waves on an inhomogeneous string [1, 2]), in which this splitting technique 
produces uncoupled ordinary differential equations (ODEs), and also to other more complex “virtually” 
one-dimensional cases (e.g., in acoustics and elasticity [3, 4]), in which the decoupled fields propagate via 
a hierarchy of parabolic partial differential equations (PDEs) of similar form to those obtained here.    
 
 It will be shown that after the mth transformation, the Helmholtz equation assumes the form  
 

 

( )

( ) ( ) ( ) ( ) ( ) ( )
1

( ) ( ) ( ) ( ) ( ) ( ) ( )

m

m m m m m m
m

m m m m m m

G

a d b ic
O

x r b ic a d r
ε +⎛ ⎞ ⎛ ⎞⎛ ⎞+ −∂

= +⎜ ⎟ ⎜ ⎟⎜ ⎟∂ + −⎝ ⎠ ⎝ ⎠⎝ ⎠
, (1) 

 
the ( ) ( ), ,m ma d…  terms of which contain a transverse differential operator ε  that is assumed to be small in 
a specified sense.  When the generator matrix ( )mG  is required, through mth order, to be diagonal 
( ( ) ( ) 0m mb c= =  so that ( )m  and ( )mr  are decoupled) as well as balanced ( ( ) 0ma = ) and symmetrized ( ( )md  
has the necessary symmetry so that left-right inversion of the problem simply swaps ( )m  and ( )mr ), this 
splits the Helmholtz field into left- and right-going components that obey ( ) ( ) ( )m m mx d∂ ∂ =  and 

( ) ( ) ( )m m mr x d r∂ ∂ = − , respectively.  Owing to the pseudounitarity of the transformations, the original energy 
is conserved at each order, m  and the two counterpropagating components separately transport their 
shares of the total.  The form of ( )md  that accomplishes this splitting is shown to be unique.  Through 
order 2m = , ( )md  contains nothing but the m leading terms of the formal Taylor series for 1 2i ε− + , with 

(1)d  being the “standard” PE operator [5].  Beginning at 3m = , however, a phenomenon originally noted 



2 Robert F. Gragg 
 
by Wurmser et al. [4] appears: ( )md  acquires additional mth-order, non-Taylor-series terms involving x 
derivatives of the refractive index. 
 

2. BACKGROUND 
 
 This section presents background information about the membrane concerning the dynamics in 
general, its state-space description, and ducted propagation. 
  

2.1 Membrane Dynamics 
 
 At rest, the membrane occupies the ( , )r x y=  plane at 0z = .  In the linear-response regime, any 
z displacement ( , )w r t  evolves according to the 2-D wave equationa 
 
 ( )2 0t r rw wρ τ∂ − ∂ ⋅∂ = , (2) 
 
with phase speed c τ ρ= , in which τ and ρ are the surface tension and mass density.  In our case, τ  
will be a constant but ρ may depend continuouslyb on r .  Energy conservation is embodied in 

0r tp e∂ ⋅ + ∂ = , in which ( ) ( )2 21 1
2 2t re w wρ τ= ∂ + ∂  is the energy density and ( )( )t rp w wτ= − ∂ ∂  is the 

energy flux. 
 
 For the cw case, with ( )( , ) i tw r t a r e ω−= , the complex amplitude obeys the 2-D Helmholtz equation 
 
  ( )2 0r r k a∂ ⋅∂ + = , (3) 
 
whose wave number k cω=  is, in general, a function of r .  Energy conservation reduces to 0r p∂ ⋅ = , in 
which  
 

  ( )* *

4 r r
ip a a a aωτ

= − ∂ − ∂  (4) 

 
is now the time-averaged energy flux. 
 
 We use the membrane's minimum density 0 min( )ρ ρ=  to define the reference values 

0 0 max( )c cτ ρ= = , 0 0 min( )k c kω= = , and 0 02 max( )kλ π λ= =  in terms of which the refractive index is 

0 0 0 0 1n c c k kλ λ ρ ρ= = = = ≥ .  For convenience, we also define ( )21
2 1 0n= − ≥ε , a function of x and y 

that vanishes identically if the membrane is completely uniform.   Finally, we rescale r  to 0k r , so that 
distances are measured out in reference wavelengths; however, for simplicity, we continue to designate 
this dimensionless position vector “ r ”.  Thus, Eqs. (3) and (4)  become 
 
                                                 
a Subscript notation is used for partial derivative operators; e.g., Q Qξ ξ∂ = ∂ ∂ . 
b In principle, a density ( , )x yρ  that is discontinuous across one or more lines ( )y h x=  could be handled by the 
present approach, provided that h  varied negligibly with x over the space of a wavelength; however, this would 
only further complicate the presentation.  The proper handling of situations with significant h  variability on the 
wavelength scale is surprisingly tricky [3].  For simplicity, density discontinuities of all types are explicitly avoided 
here. 
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 ( )1 2 0r r a∂ ⋅∂ + + =ε  (5) 
 
and 
 
 ( )* *

r rp i a a a aα= − ∂ − ∂  , (6) 
 
in which 2

0 0 ( 2)cα ρ ω=  is a constant.  We restrict our consideration to cases in which ( , )x yρ  has a 
pronounced maximum in the vicinity of 0y =  and tapers off to its global minimum at large y .  Thus, 

( , )c x y  has a minimum near 0y = , which we assume is strong enough to form a significant duct along the 
x  axis. 
 

2.2 Splitting the Helmholtz Equation 
 
 By defining the transverse differential operator  
 
 21

2 yε = + ∂ε  , (7) 
 
one can write Eq. (5) as 
 
 ( )2 1 2 0x aε⎡ ⎤∂ + + =⎣ ⎦ . (8) 
 
The operator 1 2ε+  is simply 2 2( , ) yn x y + ∂  so that, despite its altered appearance, this is still just the 
Helmholtz equation — an elliptic PDE.  It has long been recognized [5] that, when the environment has 
no x dependence at all (i.e., when ( )n n y=  so that the operators 2

x∂  and ε  commute), one can formally 
factor Eq. (8) into  
 
 ( ) ( )

left right

0x xd d a∂ − ∂ + = , (9) 

 
in which [6] 
 
 1 2d i ε= − +  (10) 
 
(Tappert’s Q operator [5]) with some suitable definition for the square root.  The left and right factors 
commute and should both produce solutions.  However, it is difficult to know how to extend this insight 
to x-dependent environments in a way that is both mathematically satisfactory and physically appropriate.  
Indeed, 
 

The construction, approximation, and understanding of the square-root Helmholtz operator 
have been major problems in wave propagation and scattering for, at least, the past fifty 
years in areas as diverse as acoustics, electromagnetics, optics, seismics, and pure, applied, 
and computational mathematics. [7, p.1637]  

 
The difficulty is related to the fact that d is a pseudodifferential operator [8].  Although considerable 
progress has been made towards mathematically rigorous results (Ref. 7 and citations therein), especially 
for particular special cases [9], the general theory is still under development.   
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 Rather than trying to contribute to those mathematical efforts, the present report attempts to shed 
some light on the matter through another approach, namely, adapting the technique of Foldy-Wouthuysen 
transformations, which has proven useful in a similar context in the quantum physics of atomic and 
subatomic systems.  In the interest of clarity, two points should be stressed at the outset.  Firstly, this is a 
method from mathematical physics that is, so to speak, more physics than mathematics.  To the best of the 
author’s knowledge, there has never been a thoroughgoing mathematical critique of the technique.  Its 
standing among physicists derives from its demonstrated capacity to generate results in agreement with 
experiment and its success at predicting effects that were subsequently confirmed in the laboratory.    
Secondly, though the technique arose in the world of quantum physics and is often described using the 
vocabulary of that field, there is actually nothing quantum mechanical about it at all.  It is simply a 
physically motivated technique for splitting an elliptical equation into a pair of uncoupled PEs under 
certain conditions.   
  
 The starting point is the familiar observation [5] that, for small ε , the formal Taylor series 

21 2 1 2ε ε ε+ = + − +  yields physically reasonable results.  In an x-independent environment, when this 
series is truncated at 1st order, the left and right factors ( ) 0x d a∂ =∓  reduce to 21

2( (1 )) 0x yi a∂ ± + + ∂ =ε .  
With ixa e L−= =  and ixa r e R+= = , respectively, these become  
 

 

2

2

2

2

1
2

1 ,
2

L i L
x y

R i R
x y

⎛ ⎞∂ ∂
= − +⎜ ⎟∂ ∂⎝ ⎠

⎛ ⎞∂ ∂
= + +⎜ ⎟∂ ∂⎝ ⎠

ε

ε

 (11) 

 
the “standard” PE formulation for propagation to the left and right.  Since L  and R  are slowly varying 
modulations, this outcome is widely held to be valid to lowest order even for cases in which ε  has a 
gradual x dependence.  It seems intuitively reasonable that retaining more terms in the Taylor series might 
produce a similar but more accurate result.  Indeed, this is what happens, up to a point.  However, it turns 
out that if energy is to be scrupulously conserved, additional non-Taylor-series terms must be included 
beginning at the third order.  The Foldy-Wouthuysen approach followed below is a means of generating 
these necessary departures from the 1 2ε+  Taylor series for environments in which the x dependence is 
gradual in a specific sense.   
 

2.3 State-Space Description  
 
2.3.1 Initial Representation 
 
 In terms of the 2 1×  “state vector”  
 

 
a

u
a
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 , (12) 

 
composed of the membrane’s vertical displacement a and its longitudinal slope a a x= ∂ ∂ , the 2-D 
Helmholtz equation (Eq. (5)) assumes the form  
 
 xu Gu∂ = , (13) 
 
featuring the 2 2×  “generator” matrix 
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 1 2

0 1
(1 )

(1 ) 0
G iεσ ε σ

ε
⎛ ⎞

= = − + +⎜ ⎟− +⎝ ⎠
. (14) 

 
The second form expresses G  in terms of the Pauli matrices (Ref. 10, Ch. XIII, Sec. 9),  
 

 0 1 2 3

1 0 0 1 0 1 0
, , ,

0 1 1 0 0 0 1
i

i
σ σ σ σ

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 , (15) 

 
with the unit matrix 0σ  included.   
 
 The dynamics of the membrane have been expressed in terms of the 2 1×  “state vector” (Eq. (12)) and 
the 2 2×  “generator” matrix (Eq. (14)).  Beneath the superficial resemblance to the string problem [1, 2] 
lies a crucial difference: G  depends on the transverse coordinate y as well as the longitudinal coordinate 
x, and the ordinary function ε  has been replaced by the transverse differential operator ε .  Although the 
quotes will be dropped hereafter, this distinction should be kept in mind.   
 
 The analysis could begin at this point; however, since the eventual solution will emerge from a 
perturbation process that relies on ε  being “small” in some sense, it will be simpler first to shift to a 
representation in which the generator matrix becomes diagonal whenever ε  vanishes.  This is 
accomplished through the transformation Uu u= , in which  
 

 
1 11

2
U

i i
⎛ ⎞

= ⎜ ⎟−⎝ ⎠
, (16) 

 
is a unitary matrix.  
 
2.3.2 d’Alembert Representation 
 
 In this new “d’Alembert” representation, the state vector is   
 

 1
2

a ia
u

a ia r
+⎛ ⎞ ⎛ ⎞

= ≡⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠
, (17) 

 
and the Helmholtz equation retains the canonical form 
 
 xu Gu∂ =  (18) 
 
in terms of the transformed generator 
 

 3 2

(1 )
(1 )

(1 )
i i

G i
i i

ε ε
ε σ εσ

ε ε
− + −⎛ ⎞

= = − + +⎜ ⎟+⎝ ⎠
 . (19) 

 
The longitudinal and transverse components of the energy flux p  are  
 
 †

xp u Puα=  (20) 
 
and 
 
 †

yp u P uα ⊥= , (21) 
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in which the †  superscript indicates a complex-conjugated matrix transpose, i.e., † ( , )u r∗ ∗= , and P  and 
P⊥  are the 2 2×  matrix operators  
 
 3P σ= −  (22) 
 
and 
 
 ( ) ( )† 1

0 12y yP i σ σ⊥ = ∂ − ∂ + . (23) 
 
The †  superscript in Eq. (23) has a different meaning that will be addressed later.  In fact, †

y∂  is a 
transverse derivative operator that acts to the left; i.e., †

yv v y∂ = ∂ ∂ .   
 
 Superficially, Eq. (18) resembles a state-space formulation [11]; however, it is a PDE.  For a genuine 
state-space description, it would have to be replaced by an ODE.  That is exactly what happens when the 
problem is reduced to the “string” limit [1, 2]: the transverse (y) coordinate disappears from the picture, 
and the state vector evolves via an ODE that is simply Eq. (18) with the operator 21

2( , ) yx yε = + ∂ε  replaced 
by the function ( )xε .  Then, 3 2(1 ( )) ( )G i x xσ σ= − + +ε ε , is an ordinary numerical-valued generator 
matrix, and a well-defined propagator governs the system’s evolutionc in either direction along the x axis 
from any initial point 0x .  For the membrane, however, such a simple result is not really achievable in any 
exact sense because the evolution equation always remains an elliptic PDE in x and y.  A state-space 
description for the membrane can only apply in an approximate sense and only in environments in which 
there is no backscatter (or at most a kind of “virtual” backscatter [3]).  In the present work the original 
Helmholtz equation which, being an elliptic PDE, does not lend itself to solution by numerical marching 
methods, is “split” into a pair of parabolic PDEs to which marching methods can readily be applied.  
Naturally, this splitting cannot be achieved exactly.  How to do it in a systematic, physically motivated 
way is the crux of the matter.  

2.3.3 Asymptotic Ducted Propagation 
 
 For the membrane problem, we will be especially concerned with the total longitudinal energy flux,  
 
 ( ) ( , )dxp x p x y y

∞

−∞
= ∫ . (24) 

 
In Dirac’s bra/ket notation (Ref. 1, Ch. 1, Sec. 6), this can be written as  
 
 ( ) ( , ) ( , )p x u x P u xα= ⋅ ⋅ , (25) 
 
in terms of the inner product 
 
 †( , ) ( , ) ( , ) ( , )du x v x u x y v x y y

∞

−∞
⋅ ⋅ = ∫ , (26) 

 

                                                 
c When ε  vanishes identically for the string case, Eq. (17) supports solutions consisting of two waveforms (the 
d’Alembert modes) that propagate without distortion in the x+  and x−  senses.  This makes it a useful 
representation in which to begin analyzing the membrane when ε  is only weakly x dependent. 
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which involves both matrix multiplication and transverse integration.  The operator †

y∂ , as the notation 
suggests, is the adjoint of y∂  relative to this inner product.  The state vector ( , )u x y  satisfies 

x u G u∂ = .  Its dual-space adjoint ( , )u x y  satisfies †
x u u G∂ =  in terms of the adjoint operator 

† † †
3 2(1 )G i ε σ ε σ= + + + , where † 2†1

2 yε = + ∂ε .  Note that †
y y∂ = −∂  so that ( )†2 2

y y∂ = ∂ . Consequently, ε  is 
Hermitian: †ε ε= .  The operators representing the energy flux components are also Hermitian ( †P P=  
and †P P⊥ ⊥= ). 
 
 Integrating Eq. (25) by parts yields  
 

 ( )† †
0 12( ) ( , ) ( , ) d ( , ) ( , ) ( , )

y
yi

x y y
y

p x u x y u x y y u x y P u x y p x yα σ σ α
=∞∞

=∞

⊥ =−∞
−∞ =−∞

∂ = + = − = −∫  , (27) 

 
which is a statement about energy conservation: any energy not flowing longitudinally along the duct 
must be leaking away in the transverse direction.  We will restrict consideration to ducted fields — those 
that propagate paraxially without any leakage.   
  

3. FURTHER TRANSFORMATIONS 
 
 The essence of the present method is to apply a series of transformations that progressively 
diagonalizes the generator while strictly conserving the longitudinal energy flux.  In Section 3.1, such 
transformations are considered for a general x-dependent environment.  In Section 3.2, the analytic form 
is given for an x-independent environment. 
 
3.1 General Environment 
 
 The state-space description is analogousd to the evolution of a two-state quantum system via the 
Schrödinger equation, ti u H u∂ =  (in units for which 1= ). The analog Hamiltonian is H iG=  and x 
plays the role of time.   One may define the “matrix element” ( ) ( , ) ( , ) ( , )x u x x u xϕ Φ= ⋅ ⋅ ⋅  for an arbitrary 
operator ( , )x yΦ .  Then ϕ  obeys 
 
 †

x u G G uϕ Φ Φ Φ∂ = + + , (28)  
 
in which, as always, the dot denotes a longitudinal derivative, xξ ξ= ∂ ∂ .  In general, in order for ϕ  to be 
independent of x we would need to have † 0G GΦ Φ Φ+ + = .  When the operator Φ  lacks any intrinsic x 
dependence, i.e., when 0Φ = , that condition reduces to † 0G GΦ Φ+ = ; i.e., to †H HΦ Φ= .  Any such 
invariant is a constant of the motion.  (Per quantum-mechanical usage, this term is applied to both 
ϕ andΦ .)  In quantum mechanical problems, this always applies to the unit operator 0Φ σ=  so that the 
Hamiltonian is Hermitian ( †H H= ) and the normalization of the wave function is thus preserved 
( 2 constantuϕ = = ) during the system’s evolution in time.  Any transformation M u u=  to another 
representation is allowed, provided it is unitary, i.e., † 1M M −=  so that the Hamiltonian remains Hermitian 
after the transformation †H H= .  
 

                                                 
d The analogy is to the wave motion itself, not to any quantum phenomena.  
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 For the membrane dynamics, the constant of the motion is instead PΦ =  and the Hamiltonian is 
consequently pseudo-Hermitian [4]: †H P P H= .  (Note that Eq. (27) explicitly restricts the pseudo-
Hermiticity of H to ducted fields.)  Any linear transformation M u u=  is allowed provided it is pseudo-
unitary, † 1M P P M −= , to ensure that p  retains its status as constant of the motion in the new 
representation.  The transformed equation and longitudinal energy flux are 
 
 x u G u∂ =   (29) 
 
and 
 p u P uα=  , (30) 
 
in terms of the transformed operators and 
 
 †P M P M=  (31) 
 
and 
 
 G RΛ= + , (32) 
 
in which 
 
 1M GMΛ −=  (33) 
 
and 
 
 1R M M−= − . (34) 
 
Without any loss of generality, we adopt the exponential form BM e−= , which is pseudounitary whenever 
iB  is pseudo-Hermitian; i.e., whenever 
 
 †

3 3 0B Bσ σ+ =  . (35) 
 
We proceed by seeking a form for B  that will produce a diagonal G .   
 
3.2 Longitudinally Invariant Environment 
 
 It is well known that when the environment is independent of x, this diagonalization can be done 
exactly [3]. The correct general form (produced by 1

12B ψσ= ) is 
 

 
1 1
2 21 1

0 12 2 1 1
2 2

cosh( ) sinh( )
cosh( ) sinh( )

sinh( ) cosh( )
M

ψ ψ
ψ σ ψ σ

ψ ψ
−⎛ ⎞

= − = ⎜ ⎟−⎝ ⎠
 , (36) 

 
in which the parameter ψ  does not depend on x.  For arbitrary ψ , (a) M  is independent of x  so that R  
vanishes and the transformed generator is simply G Λ= , and (b) the back-transformation to the initial 
representation, u UM u= , is given by  
 



A Systematic Approach to Higher-Order Parabolic Propagation 9 
 

 ( ) ( )
( ) ( )

1 1
2 2
1 1
2 2

exp exp1
exp exp2

UM
i i

ψ ψ
ψ ψ

⎛ ⎞− −
= ⎜ ⎟⎜ ⎟−⎝ ⎠

 . (37) 

 
For the particular value, 
 

 arctanh
1
εψ
ε

⎛ ⎞= ⎜ ⎟+⎝ ⎠
, (38) 

 
Eq. (36) produces the diagonal generator, 
 

 3

0
0
d

G d
d

σ
⎛ ⎞

= =⎜ ⎟−⎝ ⎠
, (39) 

 

in which 1 2d i ε= − + .  Since ( )1
2arctanh log 1 2

1
ε ε
ε

⎛ ⎞ = +⎜ ⎟+⎝ ⎠
, this also results in 

 

 ( ) ( )

( ) ( )

1 1
4 4

1 1
4 4

1 2 1 21
2 1 2 1 2

UM
i i

ε ε

ε ε

− −⎛ ⎞+ +⎜ ⎟= ⎜ ⎟⎜ ⎟− + +⎝ ⎠

 , (40) 

 
which leads directly to a membrane z-displacement of the form 

1
41

2
(1 2 ) ( )a rε −= + + .  When only one of 

the two modes is present — either  or r  alone — its amplitude is related to a  by the WKB factor 
1
41

2
(1 2 )ε −+ .   

  
 Although this diagonalization can no longer be done exactly when the environment is x-dependent, it 
can still be done approximately if that dependence is “weak” in the specific sense that 1( )n n nx Oε ε +∂ ∂ ∼ .  
During this process it is essential to remember that although the operator ε  certainly commutes with any 
expression of the form ( )f ε , it does not generally commute with other operators — notably its own 
longitudinal derivative, xε ε= ∂ ∂ .  Some preliminary results will be obtained in the following section.   
 

4. MATRIX REPRESENTATIONS 
 
 In Section 5, a series of pseudounitary transformations of the form BM e−=  will be devised to 
progressively modify the generator G RΛ= +  by preserving the diagonality of the Λ  term while 
progressively reducing the size of the nondiagonal term R .  The effects of these transformations are 
formulated in terms of the commutator [ ]B , which is defined by [ ] [ , ]B B B BΦ Φ Φ Φ≡ = −  for any operator 
Φ .  The whole development is based on the properties of a particular matrix representation for [ ]B .  That 
representation is introduced here in Section 4, with particular emphasis on two important situations.  
Cases in which the [ ]B  representation is block-diagonal are discussed in Section 4.1; block off-diagonal 
cases are treated in Section 4.2. 
 
 With BM e−= , Eq. (33) becomes 
 
 [ ]Be GΛ = , (41) 
 
in which the exponential corresponds to the usual series 
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 21
2

0

1
!

n
z

n

ze z z
n

∞

=

= = + + +∑  , (42) 

 
and Eq. (34) takes the form  
 
 ([ ])R E B B= , (43) 
 
in which ( ) ( 1)zE z e z= − ; i.e.,  
 

 
1

21 1
2 6

1

( ) 1
!

n

n

zE z z z
n

−∞

=

= = + + +∑  . (44) 

 
Although Eq. (41) is well known (Ref. 14, Ch. 3), Eq. (43) appears to be an original result.  (The series in 
Eq. (44) was not obtained by analytical proof.  It was postulated by induction from the first few terms and 
then verified for the first 100 terms using the Maple™ symbolic computation environment to handle the 
noncommutative algebra.) 
 
 Expressing Λ  and R  in the forms shown in Eqs. (41) and (43) suggests that it could be productive to 
treat state-space operators such as G, B , Λ , and R  as vectors in a larger “superspace” and to recast 
objects like [ ]B  in the role of operators on that space.  We will call such entities “supervectors” and 
“superoperators,” respectively.  (This parallels the usage in statistical mechanics, where the terms are 
applied, respectively, to the density operator and the Liouvillian in the Liouville equation [13].)  Since 
any state-space operator can be represented uniquely by a linear combination of the Pauli matrices, a 
convenient matrix representation for its supervector manifestation can be had by simply stacking its Pauli 
coefficients in a column matrix.  For example, state-space operators of the forms  
 

 0 1 2 3

0 1 2 3

G a b c d
B p q r s

σ σ σ σ
σ σ σ σ

= + + +
= + + +

, (45) 

 
(whose , ,a d  and , ,p s  coefficients may involve transverse differential operators) can be represented 
as supervectors by  
 

 ,

a p
d s

G B
b q
c r

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= =
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 . (46) 

 
The entries in the columns are arranged so that those associated with the diagonal Pauli matrices ( 0σ , 3σ ) 
and those associated with the off-diagonal ones ( 1σ , 2σ ) are grouped separately.  (They are separated by 
dotted lines in Eqs. (46) and (47).)  Corresponding to this representation for the supervector B, the matrix 
representing the superoperator [ ]B  is  
 

 

[ ] [ ] [ ] [ ]
[ ] [ ] { } { }

[ ]
[ ] { } [ ] { }
[ ] { } { } [ ]

p s q r
s p i r i q

B
q i r p i s
r i q i s p

⎛ ⎞
⎜ ⎟−⎜ ⎟=
⎜ ⎟−
⎜ ⎟

−⎝ ⎠

, (47) 
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in which the { }⋅  notation indicates an anticommutator: { } { , }W W W WΦ Φ Φ Φ≡ = + .  (The notation is a 
standard one in quantum optics [14].) 
 
 The supervector representations shown in Eq. (46) for G and B can be written somewhat more  
compactly as  
 

 ,
D P

G B
N Q

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, (48) 

 
in terms of separate “diagonal” (0, 3) and “nondiagonal” (1, 2) submatrices 
 

 
,

, .

a p
D P

d s

b q
N Q

c r

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (49) 

 
This can also be done with the superoperator representation in Eq. (47):  
 

 [ ]B
γ α
β δ

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

, (50) 

 
in which  
 

 

[ ] [ ] [ ] [ ]
,

[ ] [ ] { } { }

[ ] { } [ ] { }
, .

[ ] { } { } [ ]

p s q r
s p i r i q

q i r p i s
r i q i s p

γ α

β δ

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

−⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

 (51) 

 
Since , ,α δ  are 2 2×  matrices, they could also be written as linear combinations of the four Pauli 
matrices.  The “diagonal” ones in particular are simply  
 

 0 1

0 2

[ ] [ ]
[ ] { } .

p s
p s

γ σ σ
δ σ σ

= +
= +

 (52) 

 
 Thus far, we have allowed B to have a general form.  As noted, however, Eq. (35) must be imposed as 
a restriction to guarantee the pseudounitarity of Be− .   In terms of the , ,p s  coefficients in Eq. (45), this 
pseudounitarity condition reduces to a requirement for q and r to be Hermitian and p and s anti-
Hermitian; i.e., 
 
 † †,p p s s= − = −   (53) 
and 
 
 † †,q q r r= =  . (54) 
 
 In the remainder of this section, two special cases are treated.  In the first one, the matrix 
representation for [ ]B  is block-diagonal (i.e., α and β vanish).   In the other, it is block off-diagonal (i.e., γ 
and δ vanish).  In both of them, it will be convenient to take 0p =  (hence, P s= −  where T(0,1)− = ) so 
that we always have 1[ ]sγ σ=  and 2{ }sδ σ= . 
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4.1 Block-Diagonal [ ]B  
 
 In order to produce a block-diagonal representation for [ ]B , let 0q =  and 0r = , so that both α and β  
vanish: 
 

 
0

[ ]
0

B
γ

δ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

. 

 
As a result,  
 

 ( ) ( )
( )

0
[ ]

0
f

f B
f

γ
δ

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

, (55) 

 
for any analytic function f.  From the simple forms 1[ ]sγ σ=  and 2{ }sδ σ= , thene , 
 

 0 0

1 2

[ ] and { } for even 
[ ] and { } for odd .

m m m m

m m m m

s s m
s s m

γ σ δ σ
γ σ δ σ

= =
= =

 (56) 

 
Thus, by separating the even and odd powers of z, via even odd( ) ( ) ( )f z f z f z= + , one has 
 

 0 even 1 odd

0 even 2 odd

([ ]) ([ ]) 0
([ ])

0 ({ }) ({ })
f s f s

f B
f s f s

σ σ
σ σ

+⎛ ⎞
= ⎜ ⎟+⎝ ⎠

. (57) 

 
In particular, for the function exp( )z  in Eq. (41), we have evenexp ( ) cosh( )z z=  and oddexp ( ) sinh( )z z= , so 
that 
 

 ( ) ( ) ( )
( ) ( )

0 1

0 2

cosh [ ] sinh [ ] 0
exp [ ]

0 cosh { } sinh { }
s s

B
s s

σ σ
σ σ

⎛ + ⎞
= ⎜ ⎟+⎝ ⎠

 (58) 

 
and for the function ( )E z  in  Eq. (43), we have even ( ) sinh( ) ( )E z z z C z= ≡  and 

odd ( ) (cosh( ) 1) ( )E z z z S z= − ≡ , so that 
 

 ( ) 0 1

0 2

([ ]) ([ ]) 0
[ ]

0 ({ }) ({ })
C s S s

E B
C s S s

σ σ
σ σ

+⎛ ⎞
= ⎜ ⎟+⎝ ⎠

. (59) 

 
Further, in terms of  
 

 
1 0 0

, , 0
0 1 0
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

+ = − = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

, (60) 

 
the diagonal and off-diagonal blocks of the B supervector in Eq. (48) are, respectively, P s= −  and 

0Q = , so that  
 

                                                 
e This follows from the Pauli matrices’ idempotent property 2

0jσ σ= ; i.e., from the fact that they are all square roots 
of the identity matrix 0σ . 
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0

s
B

⎛ − ⎞
= ⎜ ⎟
⎝ ⎠

. (61) 

 
Consequently, the diagonal and off-diagonal blocks of the transformed generator  
 

 D
G

N
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 

 are  
 
 ( ) ( )0 1cosh([ ]) sinh([ ]) ([ ]) ([ ])D s s D C s S s sσ σ= + + − + +  (62) 
 
and 
 
 ( )0 2cosh({ }) sinh({ })N s s Nσ σ= + . (63) 
 
The only surviving requirement for pseudounitarity is †s s= − . 
 

4.2 Block Off-Diagonal [ ]B  
 
 To produce a block off-diagonal [ ]B  representation, let 0=s  instead.  Since we already have 0p = , 
that means that γ and δ vanish, leaving  
   

  
0

[ ]
0

B
α

β
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, (64) 

 
as well as 0P =  and Q q r= + + − .  Thus, the surviving pseudounitarity condition is as shown in Eq.  
(54).Though this case is more complicated than the block-diagonal one, the block off-diagonal nature of 
[ ]B  is enough to reduce the diagonal and nondiagonal parts of G  to 
 

 
0

( )
(2 )! 2 1 2 2

n

n

QD D N
n n n

αβ α∞

=

⎛ ⎞⎛ ⎞
= + +⎜ ⎟⎜ ⎟⎜ ⎟+ +⎝ ⎠⎝ ⎠
∑  (65) 

 
and 
 

 ( )
0

( ) 1
(2 )! 2 1

n

n
N N D Q

n n
βα β

∞

=

⎛ ⎞= + +⎜ ⎟+⎝ ⎠
∑ . (66) 

 
The matrices α, β make these more difficult to deal with than the matrices in Eqs. (62) and (63); however, 
Eqs. (65) and (66) do prove useful elsewhere in the report.   
 
 In the following section, a series of pseudounitary transformations will be applied to the state-space 
formulation of the problem for a ducting environment.  Transformations with block off-diagonal [ ]B  
representations will be used to diagonalize the generator.  Those with block-diagonal [ ]B  representations 
will be used, when required, to balance it.  Two representational forms have been devised for the 
generator: 
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 0 3 1 2

1st form
2nd form

( ) ( )
D

G a d b c
N

σ σ σ σ
⎛ ⎞

= + + + = ⎜ ⎟
⎝ ⎠

 , 

 
the first form corresponding to its role as an operator on state-space, the second to its role as a vector in 
the superspace.   “Diagonalizing” G  means making 0b c= =  (i.e., 0N = ), and “balancing” it means 
also making 0a =  (i.e., D ∝ − ).  The result of this effort will be a systematic hierarchy of increasingly 
higher-order PEs.   
 

5. TRANSFORMING THE GENERATOR 
 
 In this section, pseudounitary transformations are applied to reexpress the state-space equation, Eq. 
(18) in a series of physically equivalent representations.  These will be indexed by a superscript m , with 

( )mZ  denoting a quantity Z in the mth representation.  The fundamental assumption is that 1n n nxε ε +∂ ∂ ∼ .  
Under this assumption, the approximation to ( )mZ  that contains only contributions through mth order will 
be denoted [ ]mZ .  (Hence, ( ) [ ] 1( )m m mZ Z O ε += + .)  The transformations are designed so that in the mth 
representation, the mth-order approximate state-space generator, [ ]mG , ends up diagonal and balanced.  
This splits the mth-order dynamics into a pair of uncoupled PEs for left- and right-going wave propagation 
along the duct.  We will follow this procedure through 4m = , laying out the results here and consigning 
the full details to the appendix.   
 

5.1 Order 0=m  
 
 The process begins in the d’Alembert representation (Section. 2.3.2), which we denote by 0m = .  The 
equation of motion,  
 
 (0) (0) (0)

x u G u∂ = , (67) 
 
has a generator (0)G , whose supervector representation has diagonal and nondiagonal parts 

(0) (1 )D i ε= − + −  and (0)N ε= − .  Through 0th order, this generator is already diagonal and balanced,  
 

 
(0)

(0)

0 ( )

1 2 ( )

N O

iD O

ε

ε ε

= +
,

= + − +
                    (68)  

 
so that the 0th-order wave field consists of left- and right-going modes that propagate via a pair of PEs that 
are coupled only at 1st order, 
 

 

(0)
[0] (0)

(0)
[0] (0)

( )
d

x O
r d r
x

ε

⎫∂
= + ⎪⎪∂ +⎬

∂ ⎪= − ⎪∂ ⎭

, (69) 

 
with 
   
 [0] 1id = . (70) 
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5.2 Order 1=m  
 
 Next we attempt to construct a pseudounitary transformation 
 
 (0) (1) (0)M u u= , (71) 
 
to the Bremmer ( 1m = ) representation [2], in which the equation of motion,  
 
 (1) (1) (1)

x u G u∂ = , (72) 
 
has a generator (1)G , whose 1st–order form [1]G  is diagonal and balanced.  The exponential form 

(0) (0)exp( )M B= −  is successful at this, provided that the (0)[ ]B  representation is block off-diagonal with 
(0)Q ε∼ .  In summary,  

 

 
(0) (0)

1
(0) 1

2

B q
q

σ
ε

=
=

 (73) 

 
yields  
 

 
(1) 2

(1) 2

0 ( )

1 2 ( ) .

N O

iD O

ε

ε ε

= +

= + − +
 (74) 

 
Thus the 1st-order wave field consists of left- and right-going modes that propagate via a pair of PEs that 
are coupled only at 2nd order,   
 

 

(1)
[1] (1)

2
(1)

[1] (1)

( )
d

x O
r d r
x

ε

⎫∂
= + ⎪⎪∂ +⎬

∂ ⎪= − ⎪∂ ⎭

. (75) 

 
The operator on the right-hand side is given by 
 
 [1] 1id ε= + . (76) 
 

5.3 Order 2=m  
 
 We continue the process, trying to construct a pseudounitary transformation  
 
 (1) (2) (1)M u u=  (77) 
 
to an 2m =  representation, in which the equation of motion,  
 
 (2) (2) (2)

x u G u∂ = , (78) 
 
has a generator (2)G  that is diagonal and balanced through 2nd order.  The usual form (1) (1)exp( )M B= −  
works again, provided the (1)[ ]B  representation is block off-diagonal and (1) (1) 21

2 (2)2Q i Nσ ε= ∼ .  In that case,  
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(1) (1) (1)
1 2

(1) 21
2

(1) 1
4

B q r
q
r

σ σ
ε
ε

= +
= −
= −

 (79) 

 
produces 
 

 
(2) 3

(2) 3

0 ( )

1 2 ( )

N O

iD O

ε

ε ε

= +

= + − +
, (80) 

 
so that the 2nd-order wave field consists of left- and right-going modes that propagate via a pair of PEs  
 

 

(2)
[2] (2)

3
(2)

[2] (2)

( )
d

x O
r d r
x

ε

⎫∂
= + ⎪⎪∂ +⎬

∂ ⎪= − ⎪∂ ⎭

, (81) 

 
which are coupled only at 3rd order.  The operator is  
 

 [2] 211
2

id ε ε= + − . (82) 

 

5.4 Order 3=m  
 
 We attempt to use the same procedure to construct a pseudounitary transformation  
 
 (2) (3) (2)M u u=  (83) 
 
to an 3m =  representation, in which the equation of motion is  
 
 (3) (3) (3)

x u G u∂ =  (84) 
 
and the generator’s 3rd-order approximation [3]G  is both diagonal and balanced.  This time, however, the 
familiar form (2) (2)exp( )M B= −  with the block off-diagonal (2)[ ]B  representation and (2) 3Q ε∼ , i.e., 
 

 

(2) (2) (2)
1 2

(2) 32 1
3 8

(2) 3
8 { , }

B q r
q
r

σ σ
ε ε
ε ε

= +
= −
=

 (85) 

 
does not succeed completely.   Instead, it produces an intermediate 3rd-order representation 

(3) (2) (2)exp( )u B u= , in which the equation of motion,   
 
 (3) (3) (3)

x u G u∂ = , (86) 
 
has a generator (3)G  that, through 3rd order, is diagonal but not balanced:  
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(3) 4

(3) 41
8

imbalance

0 ( )

1 2 [ , ] ( ) .

N O

iD i O

ε

ε ε ε ε

= +

= + − + + +  (87) 

 
Balance can be provided, however, by a second exponential transformation (2) (3) (3)exp( )B u u− = , in 

which the (2)[ ]B  representation is block-diagonal with (2) 2P ε∼ , i.e., 
 

 
(2) (2)

3
(2) 1

8 .
B s
s i

σ
ε

=
=

 (88) 

 
The result is the anticipated equation of motion with a generator (3)G  that has 
 

 ( )
(3) 4

(3) 41
8

0 ( )

1 2 ( ) .

N O

iD O

ε

ε ε ε

= +

= + − − +
 (89) 

 
Since the 3rd-order approximation [3]G  is both diagonal and balanced, the 3rd-order wave field consists of 
left- and right-going modes that propagate via a pair of PEs coupled only at 4th order,   
 

 

(3)
[3] (3)

4
(3)

[3] (3)

( )
d

x O
r d r
x

ε

⎫∂
= + ⎪⎪∂ +⎬

∂ ⎪= − ⎪∂ ⎭

. (90) 

 
The operator is given by 
   

 [3] 2 31 1 11
2 2 8

id ε ε ε ε= + − + − . (91) 

 
Note that 3m =  is the first order at which [ ]mid  contains a term (boxed) that does not originate in the 
Taylor series for 1 2ε+ . The overall transformation from the 2m =  representation is 

(2) (2) (2)exp( ) exp( )M B B= − − . 
   

5.5 Order 4=m  
 
 We now attempt to extend the process to 4th order, seeking a pseudounitary transformation,  
 
 (3) (4) (3)M u u= , (92) 
 
to an 4m =  representation, in which the equation of motion is   
 
 (4) (4) (4)

x u G u∂ =  (93) 
 
and [4]G  is diagonal and balanced.  Once again, the exponential form (3) (3)exp( )M B= −  with block off-
diagonal (3)[ ]B  and (3) 4Q ε∼ , i.e., 
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(3) (3) (3)
1 2

(3) 4 231
4 8

(3) 219 11 1
32 16 16

{ , }
{ , }

B q r
q
r

σ σ
ε ε ε ε

ε ε εεε ε

= +
= − + +
= − − +

 (94) 

 
is not completely successful.   Instead, it produces an intermediate 4th-order representation 

(4) (3) (3)exp( )u B u= , in which the equation of motion,   
 
 (4) (4) (4)

x u G u∂ = , (95) 
 
has a generator (4)G  that, through 4th order, is diagonal but not balanced: 
 

 ( )( )
(4) 5

(4) 2 2 51 1
8 16

imbalance

0 ( )

1 2 [ , ] ( ) .

N O

iD i O

ε

ε ε ε ε ε ε

= +

= + − + − − + +  (96) 

 
However, balance can again be restored by a second transformation (4) (3) (4)exp( )u B u= , in which the 

(3)[ ]B  representation is block-diagonal and (3) 3P ε∼ , i.e., and 
 

 
(3) (3)

3
(3) 1

16 { , } .
B s
s i

σ
ε ε

=
= −

 (97) 

 
The result is the anticipated equation of motion with a generator (4)G  that has 
 

 ( )
(4) 5

(4) 2 531 1
8 4 16

0 ( )

1 2 { , } ( ) .

N O

iD O

ε

ε ε ε ε ε ε

= +

= + − + + − +
               (98) 

 
Since [4]G  is diagonal and balanced, the 4th-order wave field consists of left- and right-going modes that 
propagate via a pair of PEs coupled only at 5th order, 
 

 

(4)
[4] (4)

5
(4)

[4] (4)

( )
d

x O
r d r
x

ε

⎫∂
= + ⎪⎪∂ +⎬

∂ ⎪= − ⎪∂ ⎭

.        (99)  

 
The operator is given by 
 

 [4] 2 3 4 21 1 1 5 1 31 { , }
2 2 8 8 4 16

id ε ε ε ε ε ε ε ε= + − + − − + +  . (100) 

 
At this order, [ ]mid  has two contributions that are not associated with the Taylor series for 1 2ε+ : the 
boxed 3rd-order term from [3]id  and a new 4th-order contribution (double boxed).  Equation (100) agrees 
with Eq. (51) of Ref. 4 and Eq. (4.12) of Ref. 3.  The overall transformation from the 3m =  representation 
is (3) (3) (3)exp( )exp( )M B B= − − .   
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6. SUMMARY AND DISCUSSION 
 
 Single-frequency “drumhead” vibrations on an infinite membrane have been considered for the 
situation in which the membrane’s density ( , )x yρ  has only a weak dependence on x (the longitudinal 
coordinate) but a strong enough transverse maximum at 0y ≈  to form a duct along the x axis.  For this 
case, strictly energy-conserving transformations ( )mM  have been devised that convert the Helmholtz 
equation (in dimensionless scaled x, y coordinates) into the form 
 

 ( ) [ ] ( ) 1( )    for    0 4m m m mu G u O m
x

ε +∂
= + ≤ ≤

∂
 , (101) 

 
in which the 2 2×  generator matrix [ ]mG  — a function of the transverse differential operator 21

2 yε = + ∂ε , 
with ( )21

2( , ) ( , ) 1 0x y n x y= − ≥ε  — is diagonal.  To mth order, Eq. (101) decouples into a pair of separate 
PEs for longitudinal propagation without backscatter in either direction along the duct.  The essential 
assumption is the smallness condition 1m m mxε ε +∂ ∂ ∼ .   
 
 The m th representation is related to the 0th (d’Alembert) one through ( ) ( ) (0)m mW u u= , in which ( )mW  
is the cumulative transformation, ( ) (0) (1) ( 1)m mW M M M −= .  The d’Alembert representation is related to 
the original representation composed of the membrane’s displacement a  and longitudinal slope a  by 

(0)U u u= , in which U  is a constant unitary matrix, as shown in Eq. (16).  The state vectors in the 

original, d’Alembert, and mth representations are: 
a

u
a
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

,
(0)

(0)
(0)u

r
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, and 
( )

( )
( )

m
m

mu
r
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

. 

 
 To obtain the ducted wave field propagating in either direction to order m : 
(1) Specify displacement-and-slope initial values 0( , )u x y  at some longitudinal starting point 0x . 
(2) Convert these to initial values in the mth representation via  
 
 ( ) 1[ ] ( )

0 0 0( , ) ( , ) ( , )m mUW x y u x y u x y
−

= . (102) 
 
(3) Solve the mth-order equation of motion to the left or right, i.e., either 
 

 
( )

[ ] ( ) ( )
0 0

( , ) ( , ) ( , )     for          given    ( , )
m

m m mx y d x y x y x x x y
x

∂
= + <

∂
 (103) 

 
or 

 

 
( )

[ ] ( ) ( )
0 0

( , ) ( , ) ( , )    for          given    ( , )
m

m m mr x y d x y r x y x x r x y
x

∂
= − >

∂
 . (104) 

 
(4) Return to the original displacement-and-slope representation 
 
 [ ] ( )( , ) ( , ) ( , )m mu x y UW x y u x y=  .    (105) 
 
 The correct form of the operator [ ]mid  for 4m ≤  is obtained by truncating 
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 2 5

Taylor
3rd 4th

1 1 31 2 { , } ( )
8 4 16

id Oε ε ε ε ε ε= + − + + +  (106) 

 
at order m.  Besides the terms of the formal Taylor expansion for the square root, this contains the 
additional 3rd- and 4th-order terms that are the principal result of this work.  The effects of the x  
dependence of ( , )x yρ  accumulate during step (3), and for accuracy in higher-order propagation over long 
ranges, the non-Taylor-series terms are necessary.   
 
 On the other hand, the effects of the end-point transformations (from the initial representation and 
back to it in steps 2 and 4) do not accumulate.  With that being the case, a reasonable approach for 
computing [ ] ( , )mUW x y  is to assume local x-invariance at the end points of the propagation; i.e., to 
calculate it as if ( )n n y= , as was actually the case in Section 3.2. This simply means using the WKB form 

Eq. (40) and obtaining ( ) 1[ ]
0( , )mUW x y

−
 and [ ] ( , )mUW x y , by truncating the Taylor expansions of  

 

 

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 1
4 41

1 1
4 4

1 1
4 4

1 1
4 4

1 2 1 21
2 1 2 1 2

1 2 1 21
2 1 2 1 2

i
UW

i

UW
i i

ε ε

ε ε

ε ε

ε ε

−
−

−

− −

⎛ ⎞+ +⎜ ⎟= ⎜ ⎟⎜ ⎟+ − +⎝ ⎠
⎛ ⎞+ +⎜ ⎟= ⎜ ⎟⎜ ⎟− + +⎝ ⎠

 (107) 

 
at the appropriate order. 
 
 This overall procedure rests on two basic ideas: 
(1) using the Foldy-Wouthuysen method of strictly energy-conserving transformations with the 

assumption 1n n
xε ε +∂ ∼  to obtain the unique form of the mth-order decoupled PEs, and  

(2) taking the environment to be locally longitudinally invariant at the beginning and end of the 
propagation so as to exploit the WKB form for the endpoint transformations.   

 
 The first was conceived by Wurmser et al. [4] who implemented it in an ocean acoustics application 
involving a nearly range-invariant, ducting environment.  The second seems to have originated with the 
late F. D. Tappert [15, 5] who suggested that propagation in such situations be done by first extracting a 
WKB factor at the source, then propagating the remaining auxiliary field (the carrier of the down-range 
energy flux) to the receiver, and finally including the WKB factor for the receiver.  The results obtained 
here agree with corresponding outcomes in Refs. 3 and 4, where such a procedure is followed in different 
physical contexts.   
 
 In general, a numerical algorithm that models the higher-order ( 2m > ) parabolic propagation 
equation under the assumption that [ ]mid  is simply the truncated Taylor series for 1 2ε+ , will need 
reprogramming in order to incorporate the effects of the non-Taylor-series terms in Eq. (106).  The 
exception is order 3m = , where the first and largest of these terms appears.  At this order, Eq. (106) 
yields [3] 2 31 1 1

2 2 8(1 )id ε ε ε ε= + − + − .  However, since n nxε∂ ∂  is simply n nx∂ ∂ε , the final term reduces to 
1
8− ε , which is not a transverse differential operator but an ordinary function of x and y.  The 3rd-order 

operator is thus ( )[3] 2 31 1 1
2 2 81id ε ε ε= + − + − ε .  Since 21

2 yε = + ∂ε , the same result can be produced from the 
Taylor-series form [3] 2 31 1

2 21id ε ε ε= + − +  by making the replacement 1
8→ −ε ε ε  (and dropping 4th- and 

higher-order terms).   This can be implemented by simply reusing the Taylor-series numerical algorithm 
with the actual density ( , )x yρ  replaced by 2 21

8( , ) ( , )x y x y xρ ρ− ∂ ∂ .   



A Systematic Approach to Higher-Order Parabolic Propagation 21 
 
 This work has presented a detailed analysis of one-way ducted wave propagation for the specific case 
of a vibrating membrane.  The objective in writing it has not been to satisfy any perceived groundswell of 
community interest in vibrating membranes (even the author could not deceive himself that far) but rather 
to present a full account of a widely applicable solution method in an uncluttered context, with no more 
complexity than absolutely necessary, so that the essentials would stand out vividly.  This method is 
applicable in atmospheric electromagnetics, optics, ocean acoustics, and other wave-motion disciplines, in 
which very accurate modeling is required for fields that propagate over long ranges through ducts whose 
range dependence is weak enough that no energy is backscattered. 
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Appendix 
 

DETAILS OF THE TRANSFORMATIONS 
 

A1. INTRODUCTION 
 
 In this appendix, details of the derivations of the transformation operators ( )mM  cited in the body of 
the article (Eqs. (73), (79), (85), (88), (94), and (97)) are presented.  An expanded notation is used.  For 
any quantity Z that can be expressed as 0 1 2Z Z Z Z= + + + , with k

kZ ε∼ , the following type of notation 
is applied to various portions of the series: 
 

 
(0 3)

(0) (1 3) ( )

0 1 2 3

k

Z

k

Z Z Z

Z Z Z Z Z Z
∞

= + + + + + +  . 

 
The subscripts on the terms indicate the ranges of ε-orders that they contain.  It should be carefully noted 
that these order subscripts are “applied last.”  For example, the symbol ( )

(1)
mΦ  represents ( )( )

(1)

mΦ , the 

order-ε term in the series for ( )mΦ  — not ( )
(1)

m xΦ∂ ∂ .  Likewise, 2
(2)Z  means ( )2 2 2

0 2 1 2 0(2)
Z Z Z Z Z Z ε= + + ∼  

— not ( )2 2 4
(2) 2Z Z ε= ∼ .   

 
 For the mth step, the objective is to find a pseudounitary transformation ( )mM  that will diagonalize and 
balance the transformed generator ( ) ( ) ( )m m mG D N= +  through order mε .  In the above notation, this means 
a transformation that produces ( )

(0 ) 0m
mN =  and ( )

(0 )
m

mD ∝ − .  It will turn out that not only do such 
transformations exist at each order, but they are actually unique.   
 
 Two types of pseudounitary transformations are applied to carry the generator from one 
representation to the next.  With a block off-diagonal transformation, G  arises from G through Eqs. (65) 
and (66), which intermix G’s diagonal and off-diagonal components.  With a block-diagonal 
transformation, the connection is provided by Eqs. (62) and (63), which keep diagonal and off-diagonal 
components separate.  The Taylor Series for the four functions that appear in Eqs. (62) and (63) are 
 

 

2 41 1
2 4!

3 51 1
3! 5!

2 41 1
3! 5!

3 51 1 1
2 4! 6!

cosh( ) 1
sinh( )

( ) 1
( ) .

z z z
z z z z

C z z z
S z z z z

= + + +
= + + +
= + + +
= + + +

 

 
 After each transformation, it will be found that the dynamics follow the canonical decoupled form 
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( , ) ( , ) ( , )

( , ) ( , ) ( , ) ,

x y d x y x y
x

r x y d x y r x y
x

∂
= −

∂
∂

= +
∂

  

 
to the appropriate order of approximation, in which ( , )d x y  is the sum of two parts.  The first is simply a 
polynomial function ( ( , ))T x yε , the truncated formal Taylor series for 1 2 ( , )x yε+ .  The second part is 
the non-Taylor-series terms.  Their details emerge from the following paragraphs; however, there is a 
symmetry-related restriction on their structure that is clear at this point.  A typical form for such a non-
Taylor-series term is  
 

 ( , )( , ) ( , )
MK L

J N
K

x yx y x y
x

εε ε
⎛ ⎞∂
⎜ ⎟∂⎝ ⎠

, 

 
in which , , , ,J K L M N  are nonnegative integers.   Thus, 
 

 
( )

{ }

typical

( , ) ( ( , )) ( , ) ( , ) ( , ) ( , )

( , ) same ( , ) ,

MJ K L K Nx y T x y A x y x y x x y x y
x

r x y r x y
x

ε ε ε ε
⎧ ⎫∂ ⎪ ⎪= − + ∂ ∂⎨ ⎬∂ ⎪ ⎪⎩ ⎭

∂
= +

∂

 

 
where A  is some constant.  For simplicity, this includes only a single typical non-Taylor-series term.  It 
would be trivial to extend the present argument to the general case.  If the environment is reflected in the 
longitudinal direction through ( , ) ( , )x y x y−ε ε , this becomes 
 
   

 
And if the direction of the x axis is reversed ( x x− ), this becomes  
 

 
( )

{ }

typical

( , ) ( ( , )) ( 1) ( , ) ( , ) ( , ) ( , )

( , ) same ( , ) .

MKM J K L K Nx y T x y A x y x y x x y x y
x

r x y r x y
x

ε ε ε ε
⎧ ⎫∂ − ⎪ ⎪= + + − ∂ ∂ −⎨ ⎬∂ ⎪ ⎪⎩ ⎭

∂ −
= − −

∂

 

 
Left-right symmetry demands that ( , ) ( , )x y r x y− =  and ( , ) ( , )r x y x y− = .  For this, the ε  exponents 

, ,J L N  are immaterial, but it is essential that the product K M×  be an even integer.  Thus, for example, 
the non-Taylor-series part might include such terms as 2 2xε∂ ∂ , 2( )xε∂ ∂ , and 2 2xε ε∂ ∂ , in which 

2K M× = ; however, it could not contain  terms like 2 xε∂ ∂  or 3 xε∂ ∂  because they have 1K M× = . 
 
 With this symmetry in mind, we proceed to derive the transformation operators ( )mM  for 0,1, 2,3m = . 
 
 

( )

{ }

typical

( , ) ( ( , )) ( , ) ( , ) ( , ) ( , )

( , ) same ( , ) .

MJ K L K Nx y T x y A x y x y x x y x y
x

r x y r x y
x

ε ε ε ε
⎧ ⎫∂ ⎪ ⎪= − − + − ∂ − ∂ −⎨ ⎬∂ ⎪ ⎪⎩ ⎭

∂
= +

∂
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A2. ORDER 0=m  
 
 The process begins in the d’Alembert representation as shown in Eq. (19), where the superoperator 
representation of the generator (0)G  is composed of (0) (1 )D i ε= − + −  and (0)N ε= − .  Thus, 
 
 (0) (0) (0)

(0) (1)  D D D= +  (A.1) 
 
and 
    
 (0) (0)

(1)N N= , (A.2) 
 
in which 
 

 

(0)
(0)

(0)
(1)

(0)
(1) .

D i
D i
N

ε
ε

= − −
= − −
= −

               (A.3) 

 
A3. ORDER 1=m  
 
 For the first step, to the Bremmer representation [1], we look for an operator (0)Q  ε∼  to produce a 
transformation (0) (0) (1):Q G G→  that achieves the desired degree of diagonalization, (1)

(0 1) 0N = .  Since 
(0) (0)

(1)Q Q= , it follows that (0) (0)
(1)α α= , (0) (0)

(1)β β= , and (0) (0)
(2)Q Q= .  Thus, Eqs. (65) and (66) with (0)G G=  

and (1)G G=  yield 
 

 

( )
( )

( )

(1) (0) (0) (0) (0)1
(0 4) (0 1) (1) (1) (2)2

(0) (0) (0) (0) (0)1 1
(1) (1) (0 1) (1) (1)2 3

2(0) (0) (0)1
(1) (1) (0)4!

D D N Q

D N

D

α

α β α

α β

= + +

+ +

+

                 (A.4) 

 
and 
 

 ( )( )
(1) (0) (0) (0) (0)
(0 4) (1) (1) (0 1) (2)

(0) (0) (0) (0) (0) (0)1 1
(1) (1) (1) (1) (0 1) (2)2 3 .

N N D Q

N D Q

β

β α β

= + +

+ + +
                  (A.5) 

 
The subscripts facilitate grouping the terms by order: 
 

 
( )
( )

( )

(1) (0)
(0 1) (0 1)

(1) (0) (0) (0) (0)1
(2) (1) (1) (1) (0)2

(1) (0) (0) (0) (0)1
(3) (1) (2) (1) (1)2

(1) (0) (0) (0) (0) (0) (0)1 1
(4) (1) (1) (1) (1) (1) (0)6 4

D D

D N D

D Q D

D N D

α β

α β

α β α β

=

= +

= +

= +

                 (A.6)  

 
and 
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( )
( )

(1)
(0)
(1) (0) (0) (0)
(1) (1) (1) (0)
(1) (0) (0) (0)
(2) (1) (1) (2)

(1) (0) (0) (0) (0) (0)1 1
(3) (1) (1) (1) (1) (0)2 3

(1) (0) (0) (0) (0) (0)1
(4) (1) (1) (1) (1) (2)6

0

.

N
N N D
N D Q

N N D

N D Q

β
β

β α β

β α β

=
= +
= +

= +

= +

                 (A.7) 

 
The requirement for diagonalization through order ε  is that (1)

(1) 0N = ; i.e., 
 

 
(0) (0)

(0) (0)

0 0 0[ ] { }
0[ ] { }

q i r
ir i qε

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟−−⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

.                 (A.8) 

 
This is equivalent to (0){ }1q ε=  and (0){ }1 0r = .  Since { }1 2φ φ=  for any φ , the outcome is simply  
 
 (0) (0)1

2 , 0q rε= =  .                                (A.9) 
 
Because †ε ε=  for ducted fields, the pseudounitarity conditions in Eq. (54) are satisfied at this stage.  
Thus, 
 

 
1

(0) (0)2 1
2 (1)2 20

iQ N
ε

ε σ
⎛ ⎞

= = + =⎜ ⎟
⎝ ⎠

 .               (A.10) 

 
As a result,  
 

 
1 11

(0) (0) (0)2 22

2 2

[ ] 0 [ ] 0
, ,

0 { } 0 { }0 i iQ
ε εε

α β
ε ε

⎛ ⎞ ⎛ ⎞⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ −⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 . (A.11) 

 
(This is where ε  first appears.)  As expected, (0) 2Q ε∼ , while (0) (0),α β ε∼ ; i.e., (0) (0)

(2)Q Q= , (0) (0)
(1)α α= , 

and (0) (0)
(1)β β= .  Equations (A.10) and (A.11) provide matrix representations for Eqs. (A.6) and (A.7). 

Those terms not already obtained are 
 

 

1
(1) (1) (1)8
(2) (3) (4) 42 3

82 2

11
(1) (1) (1) 482
(2) (3) (4)3 42 1 1

3 6

00 [ , ]
, ,

0 [ ,[ , ]]
, , .

ii iD D D

N N N

ε ε
εε ε

ε ε εε
ε εε

⎛ ⎞ ⎛ ⎞⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ −⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞⎛ ⎞
= = = ⎜ ⎟⎜ ⎟⎜ ⎟ −−⎝ ⎠ ⎝ ⎠ ⎝ ⎠

  (A.12) 

 

A4. ORDER 2=m  
 
 For the second step, we look for an operator (1) 2Q ε∼  to produce a transformation (1) (1) (2):Q G G→  
that diagonalizes the generator through 2nd order, (2)

(0 2) 0N = .  Since (1) (1)
(2)Q Q= , it follows that (1) (1)

(2)α α= , 
(1) (1)

(2)β β= , and (1) (1)
(3)Q Q= .  Thus, Eqs. (65) and (66), with (1)G G=  and (2)G G= , yield 

 

 
( ) ( )

( ) ( ) ( )

2 1 (1) (1) (1) (1) (1)1
(0 4) (0 4) (2) (2) (2) (2) (0)2

2 1 1(1) (1)
(0 4) (2) (0 2) (2 4) (3) .

D D N D

N D N Q

α α β

β

= + +

= + +
   (A.13) 
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Consequently,  
 

 

( )

(2) (1) (0)
(0 1) (0 1) (0 1)
(2) (1)
(2 3) (2 3)

(2) (1) (1) (1) (1) (1)1
(4) (4) (2) (2) (2) (0)2

D D D
D D

D D N Dα β

= =
=

= + +

 (A.14) 

 
and 
 

 

(2) (1)
(0 1) (0 1)

(2) (1) (1) (1)
(2) (2) (2) (0)
(2) (1) (1) (1) (1)
(3) (3) (2) (1) (3)
(2) (1) (1) (1)
(4) (4) (2) (2)

0N N
N N D
N N D Q
N N D

β
β
β

= =
= +
= + +
= +

 .  (A.15) 

 
The requirement for diagonalization through order 2ε  is that (2)

(2) 0N = .  In the matrix representation, this 
means 
 

 
(1) (1)1

2
2 (1) (1)

0 0[ ] { }
0[ ] { }

q i r
ir i q

ε
ε

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟−− − ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

,   (A.16) 

 
and the solution is  
 
 (1) 2 (1)1 1

2 4,q rε ε= − = − .   (A.17) 
 
(Since ε = ε  is just an ordinary function, the pseudounitarity conditions are satisfied.)  Thus, 
 

 
21

(1) 2 (1)21 1
2 (2)2 4 21

4

iQ N
ε

ε ε σ
ε

⎛ ⎞−
= − + − − = =⎜ ⎟

−⎝ ⎠
.   (A.18) 

 
Furthermore, 
 

 
2 21 1 1 1

(1) (1) (1)2 2 4 2 4
2 21 1

4 4 2 4 2

{ , } [ ] [ ] [ ] { }
, ,

{ } { } [ ] { }

i

i i i
Q

ε ε ε ε ε ε
α β

ε ε ε ε ε
⎛ ⎞ ⎛ ⎞−⎛ ⎞ − − − −

= = =⎜ ⎟ ⎜ ⎟⎜ ⎟− − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠
.   (A.19) 

 
Equations (A.18) and (A.19) produce the matrix representatives for the quantities in Eqs. (A.14) and 
(A.15).  Those not already obtained are 
 

 

21
(2) 4
(4) 4 25

8 8

3
(2) 4
(3) 34 1

3 4

21 1
(2) 48 8
(4) 42

3

[ , ]

{ , }

[ ,[ , ]] { , }
.

i i
D

N

N

ε ε
ε ε

ε ε
ε ε

ε ε ε ε ε
ε

⎛ ⎞−
= ⎜ ⎟⎜ ⎟+⎝ ⎠

−⎛ ⎞
= ⎜ ⎟−⎝ ⎠
⎛ ⎞+

= ⎜ ⎟⎜ ⎟−⎝ ⎠

   (A.20) 
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A.5 ORDER 3=m  
 
 For the third step, we look for an operator (2) 3Q ε∼  to produce a transformation (2) (2) (3):Q G G→  that 
diagonalizes the generator through 3rd order, (3)

(0 3) 0N = .  Since (2) (2)
(3)Q Q= , it follows that (2) (2)

(3)α α= , 
(2) (2)

(3)β β= , and (2) (2)
(4)Q Q= .  Thus, Eqs. (65) and (66) with (2)G G=  and (3)G G=  yield 

 

 
(3) (2)
(0 4) (0 4)
(3) (2) (2) (2) (2)
(0 4) (3 4) (3) (0 1) (4) .

D D
N N D Qβ

=
= + +

   (A.21) 

 
Gathering terms of the same order, one finds that all the “D” terms are the same as for 2m =  while the 
“N” terms are  
 

 

(3) (2)
(0 2) (0 2)

(3) (2) (2) (2)
(3) (3) (3) (0)
(3) (2) (2) (2) (2)
(4) (4) (3) (1) (4)

0

.

N N
N N D
N N D Q

β
β

= =
= +
= + +

  (A.22) 

 
The requirement for diagonalization through order 3ε  is that (3)

(3) 0N = .  From the matrix representation, 
one obtains 
 
 (2) 3 (2) 23 32 1

3 8 8 8, { , }q r xε ε ε ε ε= − = = ∂ ∂  .   (A.23) 
 
(This satisfies the pseudounitarity condition.)  Thus, 
 

 ( )
32 1

(2) 3 (2)3 832 1
2 (3)3 8 8 23

8

{ , }
{ , }

iQ N
ε ε

ε ε ε ε σ
ε ε

⎛ ⎞−
= − + + − = =⎜ ⎟⎜ ⎟

⎝ ⎠
.   (A.24) 

 
Consequently,  
                                                       

 

3 3 32 1
(2) 3 8

2 2 23
8

3 232 1
(2) 3 8 8

2 33 2 1
8 3 8

3 232 1
(2) 3 8 8

2 33 2 1
8 3 8

[ ] [ ]
{ } { }

[ ] { }
.

[ ] { }

x x
Q

x

x
i x i

i x
x i

ε ε
ε

ε ε ε
α

ε ε ε

ε ε ε
β

ε ε ε

⎛ ⎞∂ ∂ − ∂ ∂
= ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
⎛ ⎞− ∂ ∂

= ⎜ ⎟⎜ ⎟− ∂ ∂ −⎝ ⎠
⎛ ⎞− ∂ ∂

= ⎜ ⎟⎜ ⎟∂ ∂ − −⎝ ⎠

   (A.25) 

 
These produce the matrix representations for the terms of Eq. (A.22).  The only one lacking is 
 

 
2 2 3 3 331 1 2 1

(3) 48 8 8 3 8
(4) 4 2 2 231

8 8

[ ,[ , ]] { , } { , }
2 { , }

x x x
N

x
ε ε ε ε ε ε ε ε ε

ε ε ε ε
⎛ ⎞+ + ∂ ∂ + ∂ ∂ − ∂ ∂

= ⎜ ⎟⎜ ⎟− + + ∂ ∂⎝ ⎠
.  (A.26) 

 
In summary, 
 

 ( )( )
21 1

8 4
(3)
(0 4) 21

8(0 4)

[ , ] [ , ]

.1 2
D

i

ε ε ε ε

ε ε

⎛ ⎞−
⎜ ⎟= ⎜ ⎟− + −⎜ ⎟
⎝ ⎠

  (A.27) 
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Although the generator is diagonal through 3rd order, ( (3)

(0 3) 0N = ), this time it is not balanced:  
 

 ( )
1
8(3)

(0 3)

(0 3)

[ , ]
.

1 2
D

i

ε ε

ε

⎛ ⎞
⎜ ⎟= ∝ −
− +⎜ ⎟
⎝ ⎠

  (A.28) 

 
Balance is achieved with a block-diagonal transformation, (2) (3) (3):P G G→ .  The only workable option is 

2s ε∼ .  (It is a straightforward though tedious matter to check that all other options, ns ε∼   with 2n ≠  
fail.) With that, Eqs. (62) and (63) yield  
 

 
(3) (3) (3)
(0 4) (3 4) (1 2)

(3) (3)
(0 4) (0 4)

[ ]

.

a a s d

d d s

= +

= +
   (A.29) 

 
To produce (3)

(0 3) 0a = , we need (3) (3)
(3) (1)[ ] 0a s d+ = ; i.e., 1

8 [ , ] [ , ] 0s iε ε ε+ − = .  From the general 2nd-order form 
2s θε ϕε= + , we find that 8iϕ = .  However, θ  is not determined by the balance requirement (because 2ε  

commutes with ε ).  Thus, 2 1
8s iθε ε= + , which yields (3) 23

(0 4) 16 [ , ]a ε ε= −  and 

( )(3) 2 21 1
(0 4) 8 8(0 4)

1 2d i i x iε ε θ ε ε= − + + + ∂ ∂ + .  Since the left-right symmetry requirement excludes terms 

of the form 2 xε∂ ∂ , we must have 0θ = .  In summary, 
 

 
2 2 2 3 3 331 1 2 1

(3) 848 8 8 3
(0 4) 4 2 2 231

8 8

[ ] { } { }
2 { }

x x x
N

x
ε ε ε ε ε ε ε ε

ε ε ε ε
⎛ ⎞+ + ∂ ∂ + ∂ ∂ − ∂ ∂

= ⎜ ⎟⎜ ⎟− + + ∂ ∂⎝ ⎠
    (A.30) 

 
and 
 

 ( )
23

16(3)
(0 4) 21 1

8 8(0 4)

[ , ]

1 2
D

i i i

ε ε

ε ε ε

⎛ ⎞−
⎜ ⎟=
⎜ ⎟− + + +
⎝ ⎠

 .  (A.31) 

 
Through 3rd order, the transformed generator remains diagonal ( (3)

(0 3) 0N = ) and is now also balanced: 
 
 ( )( )(3) 1

(0 3) 8(0 3)
1 2D i iε ε= − + + −   (A.32) 

 
though, for the first time, contributions appear in it that do not belong to the Taylor series for 1 2ε+ .  
 
A6. ORDER 4=m  
 
 The fourth step begins with a block off-diagonal transformation, (3) (3) (4):Q G G→ , in which it is 
assumed that (3) 4Q ε∼ .  Since (3) (3)

(4)Q Q= , we have (3) (3)
(4)α α= , (3) (3)

(4)β β= , and (3) (3)
(5)Q Q= .  With 3m =  in 

Eqs. (65) and (66) (with (3)G G=  and (4)G G= ), the 0n >  terms and those containing (3)Q  contribute 
nothing through 4th order, so the result is simply  
 

 

(4) (3)
(0 4) (0 4)
(4) (3) (3) (3)
(0 4) (4) (4) (0)

(3) (3) (0)
(4) (4) (0) .

D D
N N D

N D
β
β

=
= +
= +

   (A.33) 
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The requirement for producing (4)

(0 4) 0N =  is simply (3) (3)
(4) (4)N iβ= − ; i.e., 

  

 
( )

( )

(3) 4 2 2 231 1
2 8 8

(3) 2 2 3 3 331 1 1 2 1
2 48 8 8 3 8

2 { , }

[ ,[ , ]] { , } { , }

q x

r x x x

ε ε ε ε

ε ε ε ε ε ε ε ε ε

= − + + ∂ ∂

= − + + ∂ ∂ + ∂ ∂ − ∂ ∂
, (A.34) 

 
which reduces to (3) (3)

2 (4)2
iQ Nσ= . This satisfies the pseudounitarity condition, and, it would provide matrix 

representations for any remaining terms in Eq. (A.33); however, all of them are already represented.  At 
this stage, the generator is diagonalized through 4th order ( (4)

(0 4) 0N = ); however, it is still unbalanced 
 

 ( ) ( )
21

16(4)
(0 4) 2

8(0 4)

[ , ]

1 2 iD
i

ε ε

ε ε ε

⎛ ⎞−
⎜ ⎟= ∝ −
⎜ ⎟− + + +
⎝ ⎠

 .  A.35) 

 
Balance is restored with a block-diagonal transformation, (3) (4) (4):P G G→ .  The form that does this is 

3s ε∼ .  (As with the previous case, other options ns ε∼  with 3n ≠  lead to no solution.)  With 3s ε∼ , Eqs. 
(62) and (63) yield 
 

 
(4) (4) (4)
(0 4) (3 4) (1)

(4) (4)
(0 4) (0 4)

[ ]

.

a a s d

d d s

= +

= +
 (A.36) 

 
The requirement for (4)

(0 4) 0a =  is simply (4) (4)
(4) (1)[ ] 0a s d+ = ; i.e., 23

16 [ , ] [ , ]isε ε ε= .  From the general 3rd-order 
form 3is χε ηεε ψεε θε= + + + , we find that θ  must vanish and that 3 16ψ η= = , although χ  remains 
undetermined (because 3[ , ] 0ε ε = ).  Thus, 3 3

16 { , }is χε ε ε= +  and 3 23 3
8 16 { , }is xχ ε ε ε ε= ∂ ∂ + + .  However, 

left-right symmetry requires 0χ =  to eliminate the 3 xε∂ ∂  term.  Thus, through 4th order, the transformed 
generator remains diagonal ( (4)

(0 4) 0N = ) and is also balanced: 
 
 ( )( )(4) 2 31 1

(0 4) 8 4 16(0 4)
1 2 { , }D i i i iε ε ε ε ε= − + + − − − .   (A.37) 

 
The contributions that do not belong to the Taylor series for 1 2ε+  include the 3rd-order one that persists 
from the previous step and a pair of new 4th-order terms. 




