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SHIP-TRACK MODELS BASED ON POISSON DISTRIBUTED
PORT-DEPARTURE TIMES

1. INTRODUCTION

A number of applications require a statistical description of the locations of ships in a region, e.g.,
ambient noise models and probability-based ship tracking algorithms. For many of these applications, it
suffices to specify the mean number of ships on a grid of elemental longitude-latitude areas. Such
descriptions, often referred to as shipping distributions, have been obtained from both direct
measurements of individual ship positions and from shipping models based on port-departure times and
routing data. A well-known example of the latter is the Historical Temporal Shipping (HITS) model [1,2].
This model specifies shipping distributions for different classes of commercial ships and different time
periods over a large portion of the world's oceans. The resolution of these shipping distributions, i.e., the
dimensions of the longitude-latitude grid, is 1° x 1'.

Many applications, however, require a description of the tracks of the individual ships over some time
interval (t, t, + T] rather than simply the mean number of ships in elemental areas. For some of these
applications, the duration of the required observation period T may exceed the time interval over which
many of the ships are within the region of interest. For these applications, the ship-track model must be
capable of introducing new ships into the region in a manner consistent with the underlying shipping
distribution.

The requirements of the ship-track model also depend on the types of ships that are relevant to the
application. For most commercial shipping, the ships simply transit from one port to another along routes
that constitute a more or less well-defined shipping lane. For this type of shipping, it may suffice to
provide simple smooth approximations to the actual routes traveled from the departure to the destination
port. On the other hand, shipping traffic such as fishing, recreational and military vessels can travel along
complicated routes as dictated by the specific mission of the vessel. For this type of shipping, more
complicated descriptions of the routes may be required. In either case, the accuracy requirements of the
ship tracks will depend on the specific application of the model.

This report presents two models, a deterministic and a stochastic model, each of which describe the
tracks of ships en route in a region during an arbitrary time interval (t,, t, + T]. Both models consist of a
track function that describes the tracks of the individual ships and a probability law on the total number of
ships en route during (to, t + T], the positions of those ships at the initial time to, and their nominal
speeds. The probability law is obtained under the assumption that the times at which the ships depart each
port are Poisson distributed with a time-varying departure rate and that the ship speeds and the routes that
the ships travel are statistically independent. Under this assumption, it is shown that the ship-track
parameters are distributed as a Poisson process with a time-dependent rate function. The rate function that
specifies this process differs for the two ship-track models.

The two ship-track models provide alternate descriptions of the ship's tracks. In the deterministic
model, the ship tracks are deterministic functions derived from a probability density on ship positions in
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manner analogous to that of the HITS model (see Ref. 2). As such, the individual ship tracks can neither
double back on themselves nor intersect any other ship tracks. This may be an acceptable constraint for
ship traffic that simply transits from one port to another, provided that detailed representations of the
individual tracks are not required. In the stochastic model, the ship tracks are obtained as realizations of a
Markov process without any constraints on the route crossings. Accordingly, this model is suitable for
shipping where the tracks are determined by operations more complicated than port-to-port transiting.
Furthermore, the stochastic nature of the tracks may be more realistic than the smooth track
approximations of the deterministic model.

This report is organized as follows: Sections 2 and 3 provide the background for the model
definitions. In Section 2, we present the definitions and assumptions that are used to describe the
kinematics of the shipping for each ordered pair of ports that support shipping in the region. Specifically,
for each port pair, we define the ship-track function in terms of a route function and a motion function. In
general, these functions depend on a track parameter that specifies the distance that the ship has traveled
at the initial time to, the specific route that the ship travels between the departure and the destination port
and the ships nominal speed along that route. To account for those ships that are not en route at time to,
but depart the port during the interval (to, to + T], we allow these parameters to take on "virtual" values.
In Section 3, we state the assumptions on the port-departure probability law and describe the probability
law on the track parameter that results from these assumptions. It is seen that the track-parameter
probability law can be viewed as the composition of two Poisson process, one representing the ships that
are present at time to and one representing the ships that enter the region in the interval (to, to + T].

The ship-track models themselves are described in Sections 4 and 5. For each of these models, we
first specify the route set probability law that forms the basis of the model. We then specify the track
function and the track-parameter probability law that results from the route set probability law. For both
models, the track parameter can be expressed in terms of the ship position at the initial time to and the
nominal speed. This leads to the notion of the shipping density from which the shipping distribution can
be derived by integrating over elemental areas. The derivations of these results are presented in
Appendixes A and B. For reference purposes we have also provided a definition of a multi-dimensional
Poisson process in Appendix A. In Appendix C, we present a simplified version of the deterministic
model. Finally, the results of the report are summarized in Section 6. An example of an ambient noise
model that draws on a deterministic ship-track model is described in Refs. 3 and 4. Reference 5 presents
an ambient noise application to the region around San Diego, California.

2. KINEMATICS

A realization of ship tracks must represent not only those ships that are present in the region during
the entire time interval of interest, but also those ships that either enter the region or exit the region during
that interval. The latter do so by either departing or arriving at a port or by crossing the boundary of the
region. Figure 1 illustrates this process. The region of interest is bounded by the coastline segments
indicated by the heavy black lines and by the dotted line segments across the access areas to the region.
The ports, labeled P1 through P9 , are classified as either "real ports" or "pseudo ports." The real ports are
those that are physically located within the region. The pseudo-ports, located along the access boundaries
of the region, represent the shipping from the aggregate of the ports located outside the region that
provide traffic to the region. The ports P6 and P9 are pseudo ports; the remaining ports are real ports.
The ship tracks are indicated by the line segments. The dots on the segments show the ship positions at
time to; the arrowheads show the positions at time to + T . The ship tracks fall into two groups, ships that
are en route at time to and ships that are in port at time to but depart the port during the interval
(to, to + T]. Ship tracks in the first group have a dot at the beginning of the track; ship tracks in the
second group do not have a dot at the beginning of the track. For tracks in the first group, there are a
number of possibilities: (a) the ship remains en route for the entire time interval (indicated by a track with
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both a dot and an arrowhead); (b) the ship arrives at a port during the time interval and remains there for
the rest of the time interval (indicated by a track with a dot but no arrowhead); (c) the ship arrives at a
port and then departs from that port during the time interval (indicated by the dashed track at P2 ); and (d)
the ship arrives at and then departs from more than one port during the interval. The same possibilities
exist for the ships that are at a port at the beginning of the time interval once those ships have departed the
port.

Fig. 1 - A possible set of ship tracks for a region

The ship-track model presented here does not describe the tracks of ships that pass through a port
during the time interval of interest. Instead, it represents such tracks as two tracks - one associated with
a ship that arrives at the port and remains there for the rest of the time interval and one associated with a
ship that is at the port at the beginning of the interval and then departs at some time during the interval.
Thus, the track of the ship passing through P2 in Fig. 1 is represented as the track of one ship that enters
P2 plus the track of another ship that departs from P2 . This approximation simplifies the model
considerably since it obviates the need to relate a ship's departure time to its arrival time. Furthermore, it
allows the shipping between any pair of ports to be considered separately from the shipping between any
other pair of ports. This approximation is reasonable if the duration of the time interval is short compared
to the mean time that ships spend in a port since, in this case, the number of tracks that pass through the
port in the time interval will be negligible. It is also be reasonable for longer time intervals if it is not
necessary to preserve the identity of the individual ships that pass through the ports.

As a result of the independent port-pair approximation, the regional shipping model can be obtained
as the composition of ship-track models for each ordered pair of ports (Pn, Pr) that support shipping

within the region. The first port in the port-pair is the departure port; the last port is the destination port.
We also include the port-pair (Pn, Pn) since for certain kinds of shipping (e.g., fishing and recreational)
the destination port and the departure port can be the same. Furthermore, we include both the port-pairs
(Pn, Pm) and (Pm,Pn)J, since the traffic from Pn to Pm is not necessarily the same as the traffic from Pm
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2to P%. Thus, if there are Np ports for the region, including pseudo ports, there are as many as Np port-

pair models for the regional model.

To describe the kinematics for an individual port pair, it is first necessary to specify the routes that the
ships travel and the motion of those ships along those routes. These quantities determine a ship-track
function that specifies the tracks of the individual ships during the period of interest.

2.1 The Route Function

The routes that the ships travel are specified by a route function that describes the set of all possible
routes from P, to Pm by associating each possible route with a route parameter w c £2 and expressing
that route as a function of the distance x measured along that route from the departure port. The route
function has the form

Rx', (x; o)) (Rx (x; o)),R (x;o)) , (1)

where RX (x; wo) and Rt (x; co) are the coordinate functions for the longitude coordinate k and the latitude
coordinate 4), respectively. For each value of the route parameter co, we denote the length of the route by
L(co) and assume that as x increases from 0 to L(o), the route function traces out the route co from P,
to P, as a continuous path in the set k c (- Tm] and 4) c (-T1/2,j/2). This set represents all positions on
the Earth, except for the north and the south poles, with the convention that negative values of k
correspond to longitudes east of the Greenwich meridian and negative values of 4) correspond to latitudes
south of the equator.

To account for ships that depart from P, after time to, we allow the distance traveled x to be

negative and define the route function by

Rx (x;o) =. - (2)

Rq (x;co) 4) w c

With this definition, route segments determined for negative values of x do not describe actual routes
since the coordinates (k., 4)) take values in the set •v = (-cc, -T) x Q2. We refer to this set as the virtual
ship coordinates and use it to implicitly determine the departure times of the ships that leave P, during
the time interval (to ,t, + T]. We refer to the set Tr = (-T, t] x (-T i/2, it /2) as the real ship coordinates
and to the union of both sets Te = Tv U Tr as the extended ship coordinates.

In the sequel, it is convenient to define the route function and the track function in an auxiliary
coordinate system and then map the results to the latitude-longitude system. The definition of the
auxiliary coordinates, which are denoted here by (0,7), is illustrated in Fig. 2. In this definition, it is
assumed that the route set is such that there is a "nominal route" con with the property that, for each point
(', 4') on won, there is a great circle arc through that point that is orthogonal to the nominal route and
that intersects every other route in the route set. The auxiliary coordinate 0 is defined as the distance
along the nominal route from the departure port to the point (k', 4)'). This distance increases from zero at
the departure port to Ln at the destination port, where Ln is the length of the nominal route expressed in
radians. The "cross-sectional coordinate" y is defined as the signed distance along the great circle arc
from the point (2., 4') on the nominal route con to the point (2", )") . This distance is taken to be positive
in the direction of the upper route envelope, denoted by en (0) in Fig. 2, and negative in the direction of
the lower route envelope el (0). For route segments that lie in the virtual coordinate set,
(k, 4) C 9v = (-cc, -t) xQ , we take 0 = 2 + it and y equal to a function of 4) that is specified below.
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upper route route (
envelope

/ x

f

VIRTUAL ROUTE
SEGMENT •nominal route

lower route cross-sectional
envelope cut at 0'

Fig. 2 - The auxiliary coordinate system

With the auxiliary coordinate system so defined, the longitude-latitude coordinates are related to the
auxiliary coordinates by a one-to-one transformation. Consequently, the route function Rk (x; co) can be
obtained by first determining this function in terms of the auxiliary coordinates (i.e., as the function
R0,7 (x; o)) and then using the coordinate transformation to express the results in the longitude-latitude
coordinate system. Reference 5 provides an example of a one-to-one transformation between the auxiliary
coordinates and the longitude-latitude coordinates for a particular choice of the nominal route.

In the deterministic model presented in Section 4, all of the routes in the route set "progress" from the
departure port to the destination port without "doubling back" on themselves. For this case, there can be
only one value of the cross-sectional coordinate y for each value of the nominal route coordinate 0.
Consequently, for each route co, the cross-sectional variable can be expressed as a function y = a(0,o),
so that the route co is traced out as the points (0, a(0, co)) as 0 increases from zero to Ln . Furthermore,
the distance traveled along the route is given by

) =2l1/2

Xa(0;"f I+ dO', (3)

which is an increasing function of the nominal route coordinate 0. It follows that 0 can be expressed as a
function of the distance traveled by the inverse function

O(x;o)= X - 1 (x;co) . (4)

With these definitions, the route function for progressive route sets is given by

Ro (x; co) =®0(x; co) = X -1 (x; co)
S. . . .. .(5)

R 7 (x; co) = a(0 (x; co),co)
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2.2 The Ship-Motion Function

The ship-motion function describes the distance traveled by a ship along a route as a function of the
elapsed time after its departure from the port. Since this motion depends on the nominal speed that the
ship travels and possibly on the specific route that the ship follows, we include these quantities as
parameters of the ship-motion function. Furthermore, we also allow the ship-motion function to depend
on absolute time to account for environmental effects (e.g., storms). With these conventions, the distance
traveled from the departure port at time t by a ship that departs at time z and then travels the route wo
with nominal speed v is represented by x = M(t z;t,wo, v). As defined, the ship-motion function takes
on distance values in the interval [0, L(wo)] as t varies from the departure time z to the arrival time at the
destination port 11. As with the route function, it is convenient to allow the distance traveled to take on
".virtual" values by extending the definition of the ship-motion function to the whole time axis. To this
end, we assume constant speed motion for t o [z,1i] and define an extended ship-motion function by

v(t -C) for t<,c

~ix(t-C;t,cO, v)= i(t-c;t,o),v) for t e[z,i] . (6)

( v(t-))+L(>o) for t>z

With this definition, the extended motion function fix(t -z;t, wo, v) is a monotonically increasing

function of elapsed time q = t -c. It follows that given any initial time to, there is a unique initial

distance xo obtained by setting q = qo = to - z in Eq. (5). Furthermore, given an initial distance xo , there

is a unique value of the initial elapsed time

qo (Xo, CO, V; to ):to - -C = fix' (Xo; to, CO, v), (7)

corresponding to xo . Consequently, it is always possible to express the distance traveled as a function of
the initial time to and the initial distance xo . To this end, we redefine the ship-motion function by

M(t -t o ;XCO, v)= ix(t-to + q(x,,V;to);t,,v) . (8)

Figure 3 shows an example of these definitions. In this figure, we have illustrated the ship-motion
function for two ships, each of which travels the same route co with the same nominal velocity v. The
first ship departs at time 'c1 and arrives at time 77,; the second departs at time z12 and arrives at time 112.

During the period when the second ship is in transit, a local storm causes it to reduce speed with the result
that its total transit time 112 -z- 2 is longer than the transit time for the first ship. Both ships are present
during the observation interval [to ,to + T]. The first ship is en route at the initial time to since
to c ('q1, T11). This ship has an elapsed time q(xo ,to; o, v) >_ 0 and a "real" initial distance xo c [0, L(wo)].
The second ship in not en route at the initial time since to 0 (-12,112). However, it is en route during the
observation interval since to + T E (z2,112). This ship has an elapsed time q(xo ,to; co, v) <0 and a
negative initial distance xo E- [vT, 0]. The first ship arrives at the destination port in the observation
interval; the second ship does not.
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x
Virtual

L, TIZ 12Z
LM• -"r19 t; Coy)

Real

o.,1 x°'l -/• ['M( t -,r29 t; Co),v

xo,2I /- t 2x to+T

Virtual

Fig. 3 - The ship-motion function

Note that in this example, the nominal speed parameter specifies a "characteristic" speed of the ship
rather than the actual speed made good. Other attributes of the ship relevant to a particular application of
the model (e.g., type of ship) can be included in the model by interpreting v as a vector parameter in the
subsequent development. Also note that the definition of the motion function does not preclude the
second ship from overtaking and passing the first ship. Strictly speaking, with the route function defined
by Eq. (1), this would amount to the second ship "passing through" the first ship if both ships were
traveling on the same route. However, with the specific route functions considered in this report, this is an
event of zero probability and is not considered further.

2.3 The Ship-Track Function

The ship-track function Gk,ý is obtained from the route function Rxt by using the ship-motion
function M to express the distance traveled by a ship as a function of the elapsed time and the ship
parameter. It follows from Eqs. (1) and (7) that the longitude coordinate function Gx and the latitude
coordinate function Gý of the ship-track function have the form

G k (t t,- ;x,o ,v) R (M (t - , 0,; , v); c)

G (t -t;x,o v) R (M (t t,-;x,,ov);c)

Note that only the route parameter component of the track parameter (x0 , co, v) is needed to identify the
particular route, whereas the complete track parameter is needed to specify the motion along that route.

A ship-track realization is obtained by specifying the number of ship tracks in the realization n and
the track parameters for those ships { (Xok, 4 ok, Vk); k = 1..., n } and then computing the track of each ship
using the track function. An example of a ship track realization is shown in Fig. 4. The routes that the
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ships travel are shown by the thin curves. The tracks of the ships along those routes for the time interval
[to, to + T] are indicated by the heavy lines on these curves. For the tracks along the routes col and Cw4 ,
the ships are en route during the whole time interval [to, to + T]. For the track along the route C03 , the
ship is en route at time to but it arrives at the destination port prior to to + T . Thus, for these three tracks,
the initial-distances are positive and the initial positions, indicated by large dots, lie in the set of real ship
coordinates. For the track along the route C02 , the ship departs from P, after time to. Therefore, the initial
distance for this track Xo2 is negative and the initial position lies in the set of virtual ship coordinates. At
time to, the ship starts at the initial distance Xo2 and moves along the route segment in the virtual ship
coordinates with constant speed v2 up to the departure time 'C2 = to -X02/v 2 . At this time, it actually
departs the port and travels along the route segment shown with its motion determined by
M(t -to;t,'X0 2 ,0) 2 ,v 2 ).

PPm

VIRTUAL ROUTE
SEGMENT

Fig. 4 - Example of a ship track realization for a single port-pair

To determine individual track realizations, it is necessary to have a mechanism for determining the
track parameters for each realization. This is done in terms of the port parameter probability law defined
in the following section.

3. THE PORT-DEPARTURE AND TRACK-PARAMETER PROBABILITY LAWS

To an observer located at the departure port, the shipping is described by the sequence of parameters
{ (zCk,k 0,vk) }, where 'Ck is the departure time of the kth ship to leave the port, 'Ck is its route parameter,
and vk is its nominal speed. In this report, we assume that: (1) the ship departure times are described by a
Poisson process with a time-dependent rate function ýl (t) that represents the mean number of ship
departures per unit time; (2) the route that each ship travels and its speed are independent of its departure
time and independent of one another; (3) different ships select routes independently of one another and
each ship selects its route from the same probability density p (wo); and (4) the nominal speeds of all
ships are independent of one another and are described by the same probability density pv (v). The rate
function 1¾ (t) can be estimated from ship departure data; the ship speed density pv(v) can be
determined from the ships' register data given the identities of the departing ships. However, in general,
the route parameter probability density p (wo) cannot be determined independently of the probability law
describing the route set.

According to the Poisson departure time assumption, the number of ships leaving the port during the
time interval (to, to + T] is a Poisson random variable N, with a probability mass function given by

8
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Pr[N, = n] =exp f-M, (to, T)} M '(t°'T )n (10)
n!

where

M, (to, T) = t° 0+T ýtr(t).

0

is the mean number of ships to leave the port in the interval. Furthermore, given that there are n ship
departures during the interval, the ship departure times {I1k ; k = 1..., n I are independent and identically
distributed with common probability density.

Pr(j'k;toT)= }Orj'Uk)Mr(toT)-1 forwfke[t°,t°+T] (12)
Lo otherwise

Note that since the departure rate 1t¾(t) depends on time, the mean number of ships M1 (to,T), the
departure-time probability density P, (Uk ;to, T), and the probability mass function depend on the choice
of the time interval [to, to + T]. We allow for this time dependence to incorporate variations in the number
of ship departures with time of day, day of the week, etc. For homogeneous Poisson processes, the
departure rate is independent of time (itj(t) = ,0 ); hence, the mean number of ship departures is simply
Tgt1 and the departure times are uniformly distributed on the interval [to ,to + T] (i.e., pT('1k) = T-1 ).

It follows from the port-departure assumptions that the port-departure parameter (z, co, v) is described
by a multidimensional Poisson process that is specified by a rate function Pr,,v (t, co, v). Moreover, from
the definitions of Section 2, there is a one-to-one transformation between the port-departure parameter
(z, co, v) and the ship-track parameter (xo, ,o, v). It follows that the ship-track parameter is also distributed
as a multi-dimensional Poisson process that is specified by a rate function txo,O,v(Xo,o, v; to, T). The
specification and derivation of these rate functions is presented in Appendix B (see Eqs. (B 1), (B4), and
(B15)). The definition of a multidimensional Poisson process is presented in Appendix A.

The Poisson process on the ship-track parameters describes the number and the distribution of the
parameters for all ships present in the region during the interval [to, to + T]. As seen in Section 2, the
ships present in the region during this interval are those that are en route at time to and those that depart
during the half open interval (to, to + T]. The former have positive initial distances; the latter have
negative initial distances. Consequently, by restricting the track-parameter rate function
[txoO,v (xo,wo, v; to,T) to positive values of xo , we obtain a Poisson process that describes the ships that
are en route at time to. Similarly, by restricting tXomOv (xo, co, v; to, T) to negative values of xo , we obtain
a process describing the ships that depart during (to, to + T]. The total number of ships en route during
[to, to + T] is the Poisson process obtained as the composition of the two component processes. For each
of these processes, the number of ships is a Poisson random variable with a probability mass function
given by Eq. (10) and the track parameter for those ship are independent and identically distributed with a
probability density given by an equation analogous to Eq. (12). The mean number of ships is obtained as
an integral of tXo,,v (Xo0 co, V;t o ,T) over the appropriate volume. The definition of these processes and
explicit formulas for the relevant quantities are presented in the following sections.
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The track-parameter rate function •.o ,,,(x 0o,ov;t0 ,T) completes the model if the route set
probability density pco() and the route function of Eq. (1) are known. In a simple approximate model,
where the traffic is described in terms of, at most, a finite number of routes, the route function might be
described analytically in terms of great circle route segments and the weightings p,(w0) might also be
available. However, in the more realistic case, where there is a continuum of routes, the route function
and the route parameter density must be determined from data on the routes that the ships follow. In
principle, these data can be used to construct a probability law on the ensemble of routes from P, and
Pm. In general, such a probability law consists of the joint probability density on the coordinate positions
{ (X•(xl),(xl))'..... (v(Xn),(Xn )) } for all possible samples of the distances traveled {x1 <... < xn; n > 01.
To determine such a probability law requires more data than are usually available. Consequently, it is
necessary to introduce approximations and assumptions that allow the route functions to be defined in
terms of simplified probabilistic descriptions.

In the following section, we describe a "deterministic" model where the route functions are
determined from a probability density that can be estimated from any sample of ship coordinates,
regardless of whether those coordinates are organized into specific routes. In Section 5 we describe a
"stochastic" model which assumes that the ship routes are described by a Markov process.

4. A DETERMINISTIC ROUTE FUNCTION MODEL

In the ship-track model presented here, both the route function and the route parameter density are
determined from a probability density on the cross-sectional ship positions y conditioned on the nominal
route coordinate positions 0. This is done in such a way that each route is uniquely determined by any
point on that route. As a consequence, the Poisson process describing the distribution of ship-track
parameters can be expressed in terms of the initial coordinates of the ship at time to, rather than the initial
distance and the route parameter. This simplicity is obtained by limiting the route structure to progressive
route sets with the additional constraint that the individual routes can not intersect one another. To
describe the model, we first define the underlying probability densities. We then specify the route and the
track functions that are determined by these densities. Finally, we present the probability law on the track
parameter which results from these definitions and the assumptions of Section 3.

4.1 The Route Coordinate Probability Density

The route coordinate probability density describes the concentration of the 'y values of the routes as
they intersect the cut in the route set at 0. We denote this probability density by P710 (y;0), where 0
specifies the location of the cut, and refer to the corresponding cumulative probability distribution

7

Pi0(Y;O)= J p7 10 (y';0)dy' (13)

as the route coordinate distribution function. Figure 5 shows an example of a route coordinate density and
distribution function for a specific cut in the route set. In this example, the routes for the cut 0 = 00, are
concentrated near the lower envelope e1 (00). The route coordinate density at other cuts in the route set
need not be the same as the one shown. For example, the distribution of routes shown in the figure
suggests that the route coordinate density for the cut at 0 = 01 would reflect a more disburse
concentration of the routes closer to the center of the route envelopes. A method for estimating these
densities from ship route data can be found in Ref. 2 along with a number of examples.

10
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upper route route, co
envelope, eu(e)

nominal route

lower route route set density and
envelope, e1(e) distribution functions at e0

cross-sectional cuts
at e1 ande 0  pr 10( ; 0.

'pK. P7 o(y;e0o)

el(( e, (0()

Fig. 5 - Example of a route coordinate probability density

It is important to emphasize that the route coordinate densities, in themselves, do not specify the
routes that the ships travel since many different possible route functions can satisfy a given route
coordinate density.

4.2 The Route Function

For progressive routes, the route sets are specified by the cross-sectional function a(O,co) and the
route parameter probability density p,(co). For the deterministic model, we define these quantities in such
a way that the resulting set of routes is consistent with the route coordinate distribution function P71o (Y; 0).
To this end, we restrict co to the interval [0,1] and define the cross-sectional function a(O,co) as the
inverse of the route coordinate distribution. Specifically, for each o e [0,1], a(O, co) is the function
satisfying

Pi0 (a (0,co);0) = co . (14)

Clearly, a(0, co) is well defined since for each value of 0, P7,0 (y; 0) is an increasing function of y
taking values in the interval [0,1]; hence, for fixed 0, there is an inverse function P0 that maps

ow [0,1] to the set of all possible cross-sectional coordinate values y. For a fixedco, the y value
corresponding to the 0 value on the route co is the value given by this inverse function. For notational
convenience, we write

a(0,wo) =Py-(o;0) for 0>0. (15)

Figure 6 illustrates the definition of the cross-sectional function. As seen in the figure, the two route
envelopes are also routes in the route set. The lower route envelope e1 (0) corresponds to the route
parameter co = 0; the upper route envelope eu (0) corresponds to co = 1. For fixed 0, the cross-sectional
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function a(0,co) yields y values that increase over the interval [e1 (O),e 0 (O)] as co increases over the
interval [0,1]. For a fixed value of co, a(0,co) traces out the y values along the route Co as 0 increase
from 0 to L, . Note that the routes are defined so that no two can intersect one another. (If they could, Eq.
(13) would not be well-defined.) Also note that since the lower route envelope and the upper route
envelope are assumed to be distinct, the interval [e1 (0), e0 (0)] cannot degenerate to a single point even at
the departure port 0 =0 or at the destination port 0 =L.

lower route '

envelope, e 1(0)

nominal route

Fig. 6 - Definition of the cross-sectional route function and the route parameter

Equation (15) describes the segments of the routes that lie between the departure port and the
destination port. These route segments lie in the set of real ship coordinates 9Tr = [0, L] x [e1 (O),e 0 (0)].
For the route segments that describe the fictitious motion of the ships before they leave the port, we take
a(0, co) to be the inverse route distribution function evaluated at the departure port (i.e.,
a(0,o) =Pf0(co;0=0)) for 0<0. These route segments lie in the set of virtual ship coordinates
9T = (-oo,0) x [e1 (0), e0 (0)] and have y coordinates that are independent of 0.

The definition of the cross-sectional function suffices to specify the route function R0 , (x; o). The 0
coordinate of R0 , (x;Co) is O(Xo;Co)=x- (x;co), where the distance traveled function X(0;co) is
determined from a(0,co) by Eq. (3). The y coordinate of RO, (x; o) is a(0(x;co),o). The track function
Go, (t-t o ; X0 ,co,v) is obtained from the route function using the motion function M(t -t o ;xo,CO, v) to
express the distance traveled as a function of time.

An important consequence of the definition of the cross-sectional function is that there is a one-to-one
transformation between the track parameter components (xo, o) and the initial coordinates (00, o). In

12
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particular, the initial coordinates are determined by 00 = O(xo; o) and yo = a(O(xo; w); w). The initial
distance and the route parameter are determined by

o=Po (o; ;0) = P,10 (Yo; 0) (16)

and

2-1/2

X0 =X0 (0~,yj)f ~r+K C9w01 i dO' .(17)
0

Equation (16) follows immediately from Eq. (14) by replacing a(0,wo) by yo. Equation (17) follows

from Eq. (3) by setting 0 = 00 and by substituting for co from Eq. (15). Note that by virtue of Eqs. (16)
and (17), the route function can be expressed in terms of the initial position and the motion function and
the track function can be expressed in terms of the initial position and the characteristic speed.
Consequently, the ship track realizations can be obtained from the track function by specifying the track
parameter sets { ( 0ok '7 ok, Vk ); k = 1..., n}. The interpretation of a ship track realization is the same as that

of Fig. 3 with xo and wo replaced by 00 and yo (i.e., the initial positions (the dots) are the points

(0o,7o) and the route parameter in the ship-motion function is determined from these points by Eq.
(16)). The probability law on the track parameters is described in the following subsection.

To conclude these definitions, we show that the cross-sectional function is consistent with the route
coordinate distribution function if the route parameter is uniformly distributed. To see this, we note
that PJ10(y;0) =Prob{y'c [el (0),y]} = Probly'c [el(0),a(0;ow)]}. But y'c[el(0),a(0;ow)] is equivalent

tow' G[0, so that Prob{y' e [el (0), a(0; wo)]} Prob{wo e [0,1P 10 (y;0)] which is the same as the

cumulative distribution of the route parameter evaluated at CO (y; 0). Thus, P7'0 (y; 0) = P,(P710 (y; 0)),

where P,(wo) is the route parameter cumulative distribution function determined from the route

parameter probability density p,(wo). This equality holds if and only if the route parameter is uniformly

distributed on [0,1], in which case P,(wo) w.

4.3 The Track-Parameter Process

The ship-track probability law describes the number and the distribution of the parameters of all the
ships present in the region during the interval [to, to +T]. For the deterministic model, this probability
law is obtained from the probability law of Section 3 through an invertible transformation that maps the
parameter (xo, o, v) to the parameter (0o 70, v). It is shown in Appendix B that this results in a Poisson
process with a rate function 4,7,v (00 o,ov;to,T) defined on the extended route set 9Te = v U r. As
noted in Section 3, this process can be represented as the composition of two Poisson processes, one that
describes the ships that are en route at time to and one that describes the ships that depart during
(to, to + T]. We refer to the former as the "en route" process and to the later as the "entry" process.

To define these processes, it suffices to specify their rate functions. The number of ships and the
probability density on the parameters for those ships are then given by Eqs. (10) and (12), where the mean
number of ships is obtained as an integral over the rate function. To compute this integral, it is convenient

13
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to define a shipping density 0,7 (0, o ; to) as the integral of the rate function with respect to ship speed.
The mean number of ships is then obtained as the integral of the shipping density with respect to the ship
coordinates. The shipping distribution is the integral of the shipping density over element areas. The
specific equations are as follows. The derivations of these equations are presented in Appendix B.

For the en route process, the only ships that are en route at time to are those that have real ship
coordinates. Consequently, the rate function is obtained by restricting 4,7,v (00 yo,v;to,T) to the real
ship coordinates Tr = [0,L] x [e, (O),eu (0)]. The rate function is given by

iFO7, (000 0, 0 Yo .; to1)

I tr t Iq v0,wCO vV to)v 0o( 0  c,w V; to) xP(0100 ~ ( 7 0; 0 0 ) C9 o ( 01 O P .p (v)

>9o o=oo7) JL0
As noted above, the shipping density for the ships that are en route at time to, ja0 7 (0o, 7o;to) is the

integral of the rate function with respect to ship speed;

,O0 7 (00 ,7o;to) JO 7 v (0Oo,7 o,V;to)dv; (0o,7o))9Gr. (19)

0

The mean number of ships with initial coordinates (k', 4') in any set Cr C T r is the integral of the

shipping density with respect to the ship coordinates over the set Cr ;

Mr (to;Cr)= f{r •0 7 (0',7';t)dO'd7' (20)

It follows from the definition of a Poisson process, that the number of ships en route at time to with

coordinates (0o, Yo) ( Cr (_ r, Nr (to; Cr), is a Poisson random variable with a probability mass

function given by Eq. (10) with MT replaced by Mr (to ; Cr). Furthermore, the track parameters for those

ships are independent and identically distributed with the common probability density function

Pr(Oo,7o,v;to;Cr)=,O,yV(Oo,v;to)Mr(to;Cr)-1 (0o,7o)c9r . (21)

The total number of ships en route at time to is determined from these equations by taking Cr = Tr

An interpretation of these equations is as follows. The first factor in Eq. (18) describes the mean

number of ships per-unit distance along the route determined by (00,yo). This factor incorporates the

temporal variations in the rate at which ships depart the port through the time dependence on the ship

departure rate gL. (t) and the motion of the ships along the route through its dependence on the departure

time function ;"° (Xo, w, V;to), and its first derivative. For the special case of constant speed motion,

;o0 (xo,cw,v;to)= xov 1, this factor simplifies to g1 (to -Xo(0 0 ,7o)v- 1)v . Thus, for constant speed
motion, a change in the rate at which ships depart the port simply propagates along the route with the

nominal ship speed.

The second factor in Eq. (18) describes how the ships are distributed across the routes. This factor is

equal to the route coordinate density weighted by the magnitude of a derivative that represents the rate of

14
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change in the distance traveled with respect to the nominal route distance. For most route sets, the routes
do not depart significantly from the nominal route so that this derivative is approximately unity and
hence, the second factor is approximately equal to the route coordinate density. For these "narrow" route
sets and for constant speed motion, the track-parameter rate function simplifies to

O,7,v,(00o,yo,V;to) = ý(to-X(Oo, 7 o)v-1) P71(Yo;0o)V-lp(v(); (Oo,Yo)eCr, (22)

and the shipping density becomes
00

,oie(00 ,yo;to)=PylO(7o;Oo)fit(to-Xo(Oo, 7 o)v-1)v-lpv(v)dv; (Oo,Yo)eC9r . (23)

0

Note that if in addition the departure rate is independent of time, j (z) , then the rate
function is 7 (0 0 1(o,yov;to,T) - It py(Yo;Oo)v 1 pv(v) and the shipping density is tO,7(0oyo;to)
gtTP713,0 (0; 00)o, where 03 is the mean value of the reciprocal speed, 3 = E[v I].

For the entry process, the only ships that depart in the interval (t, , t, + T] are those that have virtual
ship coordinates. Consequently, the rate function for the entry process is obtained by restricting

gv (0o0,1YOIv;to,T) to the virtual ship coordinates 91v (T) = [-vT,O] x [el (0 = 0),eu (0 = 0)]. The rate
function is given by

go0,7,v(00, Yo, V;to, T) =g•~r(to-_OoV-1)p710(Yo;Oo =O)v-lpv(V); (0o,yo)(=-ýv(T), (24)

and the shipping density is

go,7 (0 0°'Y;t°'T)= P~o(70 ;O0 =0) f gtr(to -Ov-1)v-lpv(v)dv; (0o,°Y)ev(T) " (25)

100l1T

Note that Eqs. (24) and (25) are the same as Eqs. (22) and (23), except that PI0 (7o ;00) is replaced
by p•,I (yo ;00 = 0) and the lower limit of the integral in Eq. (24) depends on both (k', 4') and the time

interval duration T. This is not surprising since, by the definition of the route function on the virtual
coordinates, the ships move at constant speed and the derivative of Xo (00 ;yo) is unity. Also note that for
the entry process, the rate function and the shipping density depend on the duration T of the interval
[to, to + T], as well as the initial time to; whereas, for the en route process, these parameters depend only
on to.

Equations (24) and (25) determine the entry process. The mean number of the ships that depart in the
interval (to, to + T] with coordinates (00, yo) c Cv (- 9 Rv (T), MT (to, T; Cv), is obtained by integrating the
shipping density over the set Cv (_ ýRv (T). The probability mass function on the number of these ships
Ne(to,T;Cv) is given by Eq. (9) with M. replaced byMe(to,T;Cv). The probability density on the
parameters of these ships Pe,(Oo,o,v;to,T) is given by Eq. (11) with gji(tc/) replaced by

gto,y,v(Oo,Yo,V;to,T) and MT(to,T) replaced by Me(to,T: Cv).

Finally, the Poisson process describing the total number of ships in the interval NT (to,T) is the
composition of the en route and the entry processes. Thus, for the closed interval [to ,to + T], the total
number of ships is NT (to, T) = Nr (to) + Ne (to, T) , the mean number of ships is
MT (to, T) = Mr (to) + Me (to, T), and the track-parameter probability density is

PT (0oyo,7V;to,T) = oy,v (00Yo,7V;to,T) / MT (to,T) .
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The route set assumptions for the deterministic model impose potentially important restrictions on the
routes in the route set. In particular, the route set approximation can hold only if the routes have no
common points and only if individual routes do not have multiple points (i.e., the routes cannot intersect
one another and cannot cross over themselves). For those ships that simply transit from one port to
another, the approximation that results from these restrictions may be adequate for those applications that
are limited to port-to-port traffic and do not require precise descriptions of the tracks. There is, however,
shipping traffic which does more than simply transit from one port to another (e.g., fishing vessels,
recreational, and military). For applications where this traffic is important, the route set restrictions of the
deterministic model may not be acceptable.

5. A STOCHASTIC ROUTE FUNCTION MODEL

In general, a stochastic description of the ensemble of routes requires the joint probability density on
the coordinate positions {0(x 1 ,y1),...,O(xn,,yn)} for all possible samples of the distances traveled
{x1 <... < x,; n > 01. In this section, we present a stochastic model based on the assumption that the route
set probability law is Markov. We first specify the route set probability law, describe how the probability
law is used to generate the ship tracks in terms of the track parameter (0ot,o,v), and conclude by
presenting the rate function that specifies the Poisson probability law on the ship-track parameters.

5.1 The Route Set Probability Law

For a Markov process, the joint probability density is completely determined by the "first-order"
probability density and the probability density transition function. The first-order probability density
PO(x 1),y(x)(0,y;x) describes the coordinates of all routes in the route set that have a fixed value of the
distance traveled x. In general, this density depends on x (e.g., for small x the distribution of the ship
coordinates is concentrated near the departure port); as x increases, the distribution of the coordinates
migrates towards the destination port and become more diffuse. Note that at the departure port ( x = 0 ) the
nominal route coordinate 0 is zero, so that the first-order density has the form

P0(),70 (OY; X = 0) = PYd (Yd) 6 (0). (26)

In the following, we refer to Yd and PYa (Yd) as the departure cross-sectional coordinate and
probability density, respectively.

The transition probability density, denoted by PO(x),7(x)JO(x'),7(x') (O,y; 0', y', x,x'), is the probability

density on the coordinates at the distance x > x', (0(x),y(x)), given the values of the coordinates at the

distance x, (0(x') = 0', y(x') = y') . The first-order density for the coordinates at x is determined from the

first-order density of the coordinates at x' by

PO(x),7(x) (0,Y;x)= f PO(x),7(x)1o(x'),7(x')(O'Y;O" "x'x')PO(x')y(x') (O',y';x')dO'dy'. (27)
0' 7'

For the special case of x' = 0, the transition density can be written as

(28)
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where PO(x),7(x)jyd (0,7;0',Yd,X) is referred to here as the departure transition probability density.

Substituting from the last equation and Eq. (26) into Eq. (27) results in

PO(x),7(x) (0,7;x)= PO(x),7(x)l7d (O,7;7d ;x)Pd (7d )dyd" (29)

y

5.2 The Route Set Function

As with the deterministic model, the route and the track functions are specified in terms of the track
parameter (0o,yo,v). The set of real ship coordinates Tr and virtual ship coordinates 91, have the same
form as for the deterministic model, where the route envelopes are determined by the support of the first-
order probability densities. The definition of the route function is as follows.

For the real ship coordinates, the route function is determined recursively in terms of the transition
probability density. The process is as follows. At time to, the initial coordinates are specified by the track

parameter (0o,7ov). After a time 6t, the ship has traveled a distance 6x as determined by the ship-

motion function. The ship coordinates corresponding to this increment in the distance traveled are
distributed according to PO(xo+6x),y(xo+ax)O(xo),y(xo)(O,7;O',7',Xo + 6x, xo). An application of a random

number generator for this probability density yields specific values of the ship coordinates
(O(xo + 6x), y(xo + 6x)). The process is repeated to yield the sequence of ship coordinates corresponding

to the sequence of distances traveled determined from the sequence of time increments.

For the virtual coordinates, we take 7 = Yd and 0 = x in analogy with the deterministic model. At the

departure port ( x = 0 = 0 ), the ship coordinates are (0, Yd), so that the recursive process described above

is initiated with the transition density PO(x),y(x)1yd (0 ,7;Yd;X). As such the cross-sectional coordinate 7d

and the density Py7yd (Yd) correspond to the route parameter co and its density p (co).

5.3 The Track Parameters

The track parameter (00, 7o, v) is related to the track parameter (Xo , Yd, V) = (xo, co, v) by the first-
order probability density of Eq. (29). It follows from the probability law of Section 3 and the stochastic
transformation property of Appendix A, that the track parameter is described by a Poisson process (see
Appendix B). For the real ship coordinates, the rate function is given by

e0(o) L(yd)
"0o'7o'v(O°'7°'v;t°)= f f •tXo,7d,V(XoTd,V;to)PO(x),7(x)j Yd(Oo,7o;Xo,Td)dXod~d , (30)

el(o) 0

where
)) cgqo (Xo,Yd ;V;to).(1

txo,or,v(Xo, h, eV;to v lo -s h dd;iv;nto

For the virtual ship coordinates,

40o,,o,v(00,7yo,v; to, T) = p,,(YO ) PV(V) V-1 ýr( to-Oov-1), (Oo,7o)cg~v(T). (32)
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Note that the rate function tXo, 7Y,v(xo,7d,v;to) of Eq. (31) is the same as the first factor of Eq. (18)

with co replaced by Yd and Eq. (32) is the same as Eq. (24) with P710 (70 ;00 = 0) replaced by PYd (Yo).

The application of these equations to determine the shipping densities and the component probability laws
is the same as that described in the preceding section.

6. SUMMARY

This report has presented two models that describe the tracks of all ships en route in a region during
an arbitrary time interval [to, to + T]. Each of the models consists of the composition of port-pair models
for all pairs of ports, pseudo as well as real, that support shipping within the region. Each port-pair model
consists of a track function that describes the tracks of all ships present during [to,to + T] and a
probability law on the number of ships present in the interval, the initial positions of those ships, and their
nominal speeds.

The probability law on the track parameters is obtained under the assumptions that the times at which
the ships depart each port are distributed as a Poisson process with a time-varying departure rate and that
the ship speeds and the routes that the ship travel are statistically independent. Under these assumptions, it
is shown that the ship-track parameters are distributed as a space-time Poisson process with a time-
dependent rate function determined by the departure rate and the route coordinate density functions. This
process can be viewed as the composition of two Poisson processes, the "en route process" that describes
the ships that are en route at to and the "entry process" that describes the ships that depart during the
interval (to, to + T]. The en route process is defined on the set of real ship coordinates; the entry process
is defined on a set of virtual ship coordinates. The rate function of the en route process determines a
shipping density that represents the mean number of ships per unit area in the route set at time to. A
shipping distribution for the region is determined by integrating the shipping density over the resolution
cells in a longitude-latitude grid. For both models, the rate function specifying the Poisson process
depends on the port-departure rate function and the characteristic speed probability density. For the
deterministic model, the rate function also depends on the route coordinate probability density. For the
stochastic model, the rate function also depends on the transition probability density of the Markov
process.

For both models, the track function is determined from a route function and a ship-motion function.
In the deterministic model, the route function is determined from the route coordinate probability
densities in such a way that each route is uniquely determined from any point on that route. As a
consequence, the model is limited to route sets where each route "progresses" from the departure port to
the destination port without doubling back on itself and no two routes can cross one another. The route
coordinate probability density can be estimated from any sample of ship coordinates, regardless of
whether those coordinates are organized into specific routes.

In the stochastic model, the ship tracks are obtained as realizations of the Markov process on the ship
route coordinates. The process is recursive. Starting from an initial position, a distance traveled is
determined from the motion function for a specific time increment; the ship coordinates are then
determined from the initial ship coordinates and the distance traveled using the transition probability
density of the Markov process. The process is repeated to determine new coordinates by replacing the
initial ship coordinates with the current ship coordinates. In the stochastic model, there are no inherent
constraints on the route crossings as in the deterministic model. Furthermore, ship location data used to
estimate the Markov process transition probability density must necessarily be organized into routes.

Ship location data that is not organized into routes cannot be used to estimate the Markov process.
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Appendix A
TRANSFORMATIONS OF POISSON PROCESSES

In this Appendix, we define a multidimensional, nonhomogeneous, Poisson process and derive two
transformation properties that are used in the development of the probability law on the track parameter.
The first of these properties applies for deterministic, invertible transformations; the second applies for
stochastic transformations.

Al. THE POISSON PROCESS

Points {zk e Z} are distributed as a Poisson process if, for any two disjoint subsets of Z, C1 and C2 ,

the number of points in C1 and C2 are statistically independent Poisson random variables Nz [C1 ] and

Nz [C2 ]. The probability mass function for the number of points in a set C c_ Z is given by

Pr{Nz[C] =n} =exp{-M[C]} M [Cln (AI)

where

Mz[C]= J gz(z)dz (A2)
C

is the mean number of points in C and ptz (z) is the rate function for the process. The Poisson process

has the property that if there are n points in the set C, then the positions of those points { Zl; k = I _ n}

are independent, identically distributed random variables with common probability density,

PzlN[c]=n (Zk) = ftz (Zk )Mz [C] -1 (A3)

Clearly, to specify a nonhomogeneous Poisson process, it suffices to specify its rate function. In the
special case where the rate is independent of z, the Poisson process is said to be homogeneous. In this

case, Mz[C]= tzxVolume[C] and pzJNz[C]=n(Zk)= Volume[C]-1. In the one-dimensional case,

where Z is the time axis and C is a time interval, C =[to,to +T], Eqs. (A1), (A2), and (A3) take the

form of Eqs. (10), (11), and (12) in the text.

For later reference we note that the characteristic function of a Poisson process,

CNz[C] (u) E~exp{iuNz[C]}] , is given by

CNz[C] (u) = exp{Mz [C](exp{iu} - 1)} (A4)
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and that a stochastic process is a Poisson process if its characteristic function has the form of Eq. (4) in
the text.

A2. DETERMINISTIC TRANSFORMATION PROPERTY

Let the points in the space Z be distributed as a Poisson process with density function wz (z) and let

g (z;q) be an invertible transformation from Z to a space Z' for each value of the parameter q. Denote

the inverse of this transformation by g -1 (z';q). Then the transformation g induces a Poisson process on

Z' with a rate function given by

ýtz' (Z') = ýtz ( g-l (z';q))J (z';q) (A5)

where J (z';q) is the Jacobian of the transformation.

The proof of the transformation property is as follows. Let B - Z be any set and let

Aq = z; z = g-1 (z';q), z' B} ( Z be the pre-image of B under the transformation g. Let N' be the

number of points in the set B. We show that B is a Poisson random variable with mean

Mz, f ýtzz'(z') dz' '(A6)

B

Where cz, (z') is given by Eq. (5). It suffices to show that the characteristic function of N',

CN'(u)= E[exp{iuN'z}], can be written in the form of Eq. (4) in the text. To this end, we note that N'

can be written in the form

N'= Z IAq (Zk) (A7)
k

where

I{ Zk if z GAq
{O otherwise

is the indicator function of the set Aq. Substituting from Eq. (A7) into the definition of the characteristic

function yields

CN'(U)= E exp iu: lAq (Zk)}j" (A8)

22



Ship-Track Models Based on Poisson-Distributed Port-Departure Times 23

Expanding the expected value operator in Eq. (A8) yields

CN'(U) = Z:EI, -IIN.,= x tj IAq (Zk)}Pr{ýNz =n(A9)

where Pr{Nz = n} is given by Eq. (Al). Since the points {Zk; k = 1... n} are conditionally independent

and identically distributed with the probability density of Eq. (A3), the expected value operator inside the
summation of Eq. (A9) can be written as

.E N =n exp 1iU I: 1,(ZkJ E knepz1 . -Zlz l--ZnINz n!1 exPuAq (Zk)}

= Ezl .... ZnINz=nlexp iuIAq(Zk)}J - (A10)
k=1

(EzknINz=neexp{iUAq (Zk )}])n.

The expected value in the last equality on the right-hand side of Eq. (AlO) can be written as

EzknINz=n lexp {iuIAq (Zk )j} = Pr {AZq Nz = n} exp {iu} + (l- Pr {Aq =n}) (All)

= Pr {AqjNZ =n}(exp{iu} l)-+ l.

Substituting Eq. (A11) into the last equation in Eq. (A 10) and the result into Eq. (A9) yields

CN'(U) = (Pr{AqJNz =n}(exp{iu} l)+l)nexp{M}Mn
n

=exp{-M}exp{(Pr{AqjNz =n}(exp{iu} -1)+ I)M}

or, equivalently,

CN(u)= exp{MPr{AqjNz =n}(exp{iu} l)}, (A12)

where M is given by Eq. (A2) with A identified with Aq. Using Eq. (A3) to write

Pr{AqINZ=n}: f "z(Z)dz (A13)
M
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and substituting into the right-hand side of Eq. (A 12) yields

CN()-exp rJ tz(z)]dz(exp~iu}I (A14

Equation (A14) indicates that N' is a Poisson process with mean

Mz'= f tz (z) dz. (A15)

Aq

Making the change of variables in the integral determined by the transformation g yields

Mz' f ýt g(g-1l(z'; q)) J(z'; q) dz' '(A16)

B

as was to be shown.

A3. STOCHASTIC TRANSFORMATION PROPERTY

Let the points in the space Z be distributed as a Poisson process with density function Iz (Z).

Assume that given any sequence of points {zk e Z; k = 1,... nn}, there is a sequence of random variables

{k z Z';k= ,....,n} that are statistically independent and identically distributed with a common

probability density pz'lz (zk'; Zk), i.e.,

n
Pzj. z... zZl . zn (Z' .... Zn;Z1 .... Zn) VT Pz'Iz(Zk';zk) • (A17)

k=1

Then the points in the space Z' are distributed as a Poisson process with a density Iz' (z') given by

ýIzf (z')= f Pzflz (z'; z)ýtz (z)dz " (118)

z

The proof of the transformation property is as follows. Let B C Z' be any set and let N' be the number
of points in the set B. We show that N' is a Poisson random variable with mean

Mzf f Viz'(z')dz', (A19)
B

where iz,(z') is given by Eq. (A18). It suffices to show that the characteristic function ofN',

CN' (u)= E[exp{iuNj }], can be written in the form of Eq. (A4) with the mean given by Eqs. (A18) and

(A 19). To proceed, note that a point z' is in the set B if there is a point z e Z that maps into the point z'.
Thus, the random variable N' can be written in the form
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N'= IZxB(Zk;Zk ) , (A20)
k

where

IZXB(Zk;Zk) {I if z eZ andz'cB

is the indicator function of the set Z x B. But Eq. (20) is of the same form as Eq. (A7) with IA, (Zk)

replaced by IZxB (Zk;zk'). Thus, proceeding in direct analogy to Eqs. (A8) through (A12), we obtain

CN' (U)= exp{M Pr {Zx BINz = n}(exp{iu}- 1)}, (A21)

where M is given by Eq. (A2) with A identified with Z. Now,

Pr{ZxBNz=n} j= Pr{BjzeZ,Nz=n}PzjNz=n(z)dz= f PZNz=n(z)dz' 'J(Z)dz , (A22)
Z Z B

where we have used Eq. (A3) and the fact that
Pr{Bjz eZ,N n} PIN =n(Z)d'" (A23)

B

Substituting from Eq. (A22) into Eq. (A21), we obtain Eq. (A4) with i'z (z) given by Eq. (A19), as

was to be shown.
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Appendix B
DERIVATION OF THE TRACK-PARAMETER PROBABILITY LAWS

In this Appendix, we derive the probability law on the track parameter (Ooo, V) for both the

deterministic and the stochastic models. The probability law on the track parameter (2o,ýoV) is

determined from the probability law on the track parameter (0o ,yo ,v) and the invertible transformation

relating these parameters. To obtain these results, we first derive the probability law on the parameter
(xo, o, v) and then use the transformation properties of Appendix A. Note that it suffices to present these

derivations for the single port-pair model since the shipping between different port-pairs is assumed to be
statistically independent. We conclude this Appendix with the formal definition of the shipping
distribution.

BI. THE TRACK-PARAMETER PROBABILITY LAW FOR (xo,o,v)

The probability law on the track parameter (xoo, v) is determined from the probability law on the

track parameter (t,o, v) and the transformation defined in the text. To derive this probability law, we

first show that the points {(c,o, v)} are Poisson distributed and then use the transformation property of

Eq. (A5) in Appendix A to show that the points {(Xoco, v)} are Poisson distributed and to obtain an

expression for their rate function.

To this end, let Z be the set of points {z = (-c,,v); -ce c oc), [0,1], v > 0}. By assumption, the

route parameters { Ok } and the ship speeds {vk } are statistically independent and identically distributed

and the departure times {'Ck } are distributed as a Poisson process with rate function ji, (t). Consequently,

the points z e Z are distributed as a Poisson process with rate function

jiz(Z) =i ('0p,(0)pV(V). (B 1)

Next, define the space Z' to be the sets of points {z'= (xo,o, v)}. The probability law on Z' is

obtained from the transformation property with the transformation g (z, q) of Eq. (A5) determined from

Eqs. (6) and (7) in the text and the identity mappings on 0 and v. Specifically, g (z,q) is determined by

X0 = MX(to -C;o 0), )1(132)

where the initial time to in Eq. (B2) is the parameter q of the transformation g(.,q). The inverse

transformation g-1 (z', q) is determined by

"= to -qo(xoo, V;to) (B3)
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The Jacobian of the transformation is
j ( Xo~o, V~t ) = < (X ,° '0' V; t°°

J(X0,, lv;t0 )9X

Applying the transformation property, we conclude that the points {z'= (xo,co,v) e Z'} are Poisson

distributed with rate function given by

ýLXo,Oo,v (xo,o), v; to,T ) = Xo,,O,v (xo,o), v; to,T ) Po ( °)Pv (v) ,(134)

where

4b,,vt( x0 Tto ,o, V;to)) c 0°(x°', 'v t°), for0<xo <L(o)

°T (to XoV-1)v 1-I for-vT<xo <0

B2. THE TRACK PARAMETER PROBABILITY LAW: DETERMINISTIC MODEL

The probability law on the track parameter (0o, yoV) is determined from the probability law on the

track parameter (xo, o, v) and the transformations defined in the text. To derive this probability law,

define the spaces Z' and Z" to be the sets of points {z'= (Xo co,v)} and {z" = (00 , yo,v)} , respectively.

The transformation from Z' to Z" is obtained from Eqs. (4) and (15) in the text with x replaced by xo;

00 = O(Xo,0o)

Yo = P-1(136)710 (: ) P 0 (;(Xo'co))).(6

The inverse transformation is given by Eqs. (16) and (17) in the text:

Co = P710 (Yo;Oo0 )

X0 = X0 (00,oY) X (00, =P(o;Oo) 
(

The Jacobian of the transformation is

J (xo'co, V; to) Cp9o 0 o O o 0p Co1 o7 O oc9X70(70;0 0) C9X0(00 y0o)

C00o C7 0

To evaluate the Jacobian, we expand the determinant and then use the chain rule to evaluate the

partial derivatives of Xo (0o7,yo), where cm is given by Eq. (13) in the text. Finally, we use Eq. (B7) to

obtain

oX, V(00 ,1Yo
J (x0 o, V; to) P(yo;00) 0 B8
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It follows from the transformation property of Appendix A, Eqs. (B4) and (B5), and the fact that co is

uniformiy distributed, that the points {z"= (0o,yoY,v) e Z"} are Poisson distributed with the rate function

given by Eq. (18) in the text. Furthermore, since the points z" are distributed as a Poisson process, the
initial ship positions (0 ,1o ) are distributed as a Poisson process with rate function given by Eq. (19).

Equation (20) in the text follows from the general equation for the mean number of points in a set (Eq.
(Al) in Appendix A) with the rate function given by Eq. (19) in the text. Eq. (21) in the text follows from
Eq. (A3) in Appendix A.

To obtain the probability law for the virtual ship coordinates, we note that (a) these ships travel with
constant speed motion; (b) Xo (0 ,yo) =00, and p(yo;O0 ) =P((o;0= 0); and (c) the condition

"z c (to,to + T) is equivalent to the condition xo =00 c[-vT,0). The results follow using the same logic

as that used to obtain the probability law on the real ship coordinates.

B3. THE TRACK-PARAMETER PROBABILITY LAW: STOCHASTIC MODEL

The probability law for the stochastic model is determined from the probability law on (xo, co, v) and

the stochastic transformation property of Eq. (A18). This follows from the fact that the track parameter
for the stochastic model is just (xo,o,v) with co replaced by Ydo" Thus, (xo,Yd,v) is Poisson-

distributed with rate function given by Eqs. (B4) and (B5) with co replaced by Yd° and p, (co) replaced

by PYd (yo) . To apply the Stochastic Transformation property, note that the probability density in Eq.

(A18) is the transition probability density of Eq. (29) in the text. Substitution into Eq. (A18) completes
the derivation.

B4. THE SHIPPING DISTRIBUTION FUNCTION

The shipping distribution represents the mean number of ships in each resolution cell determined by a
rectangular grid defined in the (k, ) coordinate system. The formal definition of this function is as

follows. Let T''= {(4i,)j)} be the rectangular grid of points determined by i =kc + A(i -1); i =... I

and ýPj= P+A4(j-1);i= ,...,Js, where AX and A4 are the longitude and latitude spacings,

respectively, and kc and qPc are the coordinates of the southwest corner of the region. Further, let

c(xk,' 1) ~k i-A,ki+ Ai+xLj M,4ýj +ŽP (139)

be the resolution cell corresponding to the point ( , and let C'(x ) be the pre-image of that

resolution cell in the auxiliary coordinates obtained under the transformation between the longitude-

latitude and the auxiliary coordinates. Finally, let Dnm (ki, ýaj) be the shipping distribution for the single

port pair PJm ( kij). Then it follows from Eq. (B 11) that Dnm ( i, 1j) is given by

Dnm. (x Aki' ) = cki [tm(0o ,Y0 ;t0 )dO0 dyo . (B310)

The shipping distribution for the total region follows from the fact that an aggregate of independent
Poisson processes is itself a Poisson process with a rate function and shipping density given by the sum of
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the rate functions and the shipping densities of the component processes. Thus, the shipping density for
the region is given by

Np

I lto,1;n,m(0o'Yo;to
n•,m=l

and, hence, the shipping distribution for the region is given by

Np

D(kj,4 1 I)
n,m 1

(B 11)

(B 12)

N0, (0oVo; to )



Appendix C
A SIMPLIFIED DETERMINISTIC MODEL

As seen in the text, the probability law on the track parameter for the deterministic model is
considerably simplified by assuming constant speed motion and by approximating c3x/0 0o by unity. In
this Appendix, we describe further simplifications in the model obtained by making four additional
assumptions. The first states that the departure rate is independent of time (i.e., g, (t)= jQ ). This

assumption is often necessitated by practical considerations, since the available departure-time data may
be sufficient to estimate the time-averaged departure rate but not its time dependence. The second
assumption states that the route coordinate probability density p.10 (y; 0) has the same form for all cuts in

the route set. This assumption results in a simplified track function. The third assumption provides a
simple approximation for the shipping distribution and the track-parameter probability density for a
sufficiently fine grid resolution grid. Finally, the fourth assumption states that the route set itself can be
approximated as a sequence of simple route sets, where the nominal route for each is a segment of a great
circle arc. This assumption results in simple expressions for the transformation between the auxiliary
coordinates and the longitude-latitude coordinates.

C I. CONSTANT DEPARTURE-RATE PROBABILITY LAW

The simplified track-parameter probability law for the real ship coordinates is obtained by
substituting lt, for the time-dependent departure rate in the expressions for the track-parameter rate
function and the shipping density (Eqs. (22) and (23) in the text) and then substituting the results into the
expression for the mean (Eq. (20 in the text)) and the track-parameter probability density (Eq. (211 in the
text)). The shipping density becomes

o7(00, y0)=P 710 (y0 ;00)o 3 (C1)

where

00

f J v- pV(v)dv (C2)
0

is the mean reciprocal ship speed. Furthermore, the mean number of ships with initial positions in a set
Cr =[01,02]×[Y 1,Y2 ] becomes

02

Mr(Cr)= - [j? 1o;O)] dO (C3)

01

Note that the mean of all ships that are en route at time to is simplyMr (Tr ) t=•L. Finally, the track-

parameter probability density becomes

pe(Oo, Yo,V;Cr) iCv(v) pq (y 0o;o 0 )/L , (C4)
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where

P V= p5v)-V(V) (C5)

According to this probability density, the 0, coordinate is uniformly distributed on the interval [0, L]

and, given 00, the y, coordinate has the probability density Pyl0 (yo;0o). The ship speed has the

probability density fv (v) and is statistically independent of the ship positions.

For the virtual ship coordinates, there is no appreciable simplification in the shipping density other

than that obtained by replacing g (to -0ov-1) by g, in Eqs. (24) and (25) in the text. However, for sets

of the form Cv = [-cc,0] x [y1,Y2 ], the mean number of ships simplifies to'

Me (T;Cv) = TLj[P70 (Y2;0o =-0)- P710 (Y1i;0 o = 0)" (C6)

Note that the mean number of all ships that depart in the interval is simply M, (T; T)v gjaT, as

expected since, by assumption, the departure times are Poisson distributed with rate 'rn. Finally, the

track-parameter probability density for the ships that depart in the interval (to ,to + T] becomes

Pd(0O0 ,Y'v;t°) {t(v)-lpv(v)pV7 O(Y°;O =O)/L oe for 0°•[-Tv'0] (C7)
0o otherwise

According to this probability density, the yo coordinate has the probability density P710 (Yo ;0o = 0)

and is independent of both the 00 coordinate and the ship speed. The 00 coordinate and the ship speed

are statistically independent with the 00 coordinate uniformly distributed on the interval [-vT,0). The

ship speed has the density pv (v), rather than fv (v).

Equations (C3) through (C7) specify the track-parameter probability law in the simplified model. For
those ships en route at time to, the probability that there are n ships is given by Eq. (10) in the text using
the mean of Eq. (C3) and the track parameters for those ships are independent and identically distributed
with the common probability density of Eq. (C4). For those ships that depart during the interval
(tot 0 +T], the probability that there are n ships is also given by Eq. (10) using the mean of Eq. (C6),

and the track parameters for those ships are independent and identically distributed with the common
probability density of Eq. (C7).

Specific ship track realizations can be obtained using the track function with specific realization of
the track parameter obtained from the probability law of Eqs. (C3) through (C6). In particular, for those
ships en route at time to, a Poisson random number generator can be used to determine an integer n that

represents the number of ships en route at time to. Then, for each of these n ships, random number
generators for the three probability densities of (C4) can be used to determine the corresponding track
parameters. A similar procedure can be used for the ships that depart in the interval (to, o + T]. An

alternate procedure for generating track-parameter realizations is obtained under the fine resolution
assumption described below.

1 The integral in the expression for the mean is evaluated by interchanging the order of integration.
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Finally, the shipping density of Eq. (CI) determines the shipping distribution for the longitude-

latitude grid of interest. For fine-resolution grids, where the cell size is small with respect to the variation

in the shipping density, the shipping distribution is approximately given by Eq. (C 18).

C2. THE INVARIANT ROUTE COORDINATE PROBABILITY DENSITY

The invariant route coordinate density assumption states that P710 (yo ;00 ) has the same form for all

values of 00. This is equivalent to the assumption that there is a "normalized" cross-sectional variable ý

and a probability density po0 (), such that, for each 00, the probability density Pyle(7o;0o) is

determined from po (7) by the transformation

y=Ae(Oo)0 +ea(0o); for [- 1,1] , (C8)

where

Ae (eu(Oo) el(Oo))/2; ea =(eu(Oo)+el(Oo))/2. (C9)

Under this assumption, the components of the track function are given by 2

G0 (t -to;0o;o;v) =0(t -to) =V(t -to)+0 0

G 7( t _ to; o0 ; Yo; V) = [(Yo _ ea (0Oo )) e(00 )_l I Ae(O(t-_to )) +ea(O(t_ to)) . (CIO)

Note that this track function is independent of the form of the route coordinate density function.

To establish Eq. (C10), we note that it follows from the transformation of Eq. (C8) that the route set

density and the route set distribution function are given by

P710('Y;00) P0 y -ea (0) tea (0)_1ea_ (0) A (Cl11)

weo(7;Oo) Poi yea (0)

where po (7) and Po (7) are the probability density and the distribution function for the normalized

cross-sectional variable, respectively. Furthermore, it follows from the second equation of Eq. (C11) and

the definition of the cross-sectional route function in the text that, for each route co, we must have

[(1--ea (0))/Ae(0)] = Po-1 (o) (C12)

where To-1 is the inverse of the distribution function To. Now, Eq. (C12) must hold for all points on the

route, including the initial point (00 ,1o ) . Thus, we also have

[( y-ea (0o))/Ae(0o )]= Po-1 (o). (C13)

Comparing these last two equations yields

2 To obtain this result, it is necessary to identify x with 0. Although this follows from the assumption that

aXI / 0o = 1, it is clearly an approximation for any nondegenerate route set.
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S= (Yo - ea (0, )) (Ae (0)/Ae(0, )) + ea (0).- (C 14)

To obtain the track function, we identify x with 0 and use the assumption of constant speed motion
to write

0(t-to);V(t-to)+ 0o. (C15)

Equation (C10) follows immediately from Eqs. (C14) and (C 15).

We conclude this subsection by noting that the track function of Eq. (C10) can be further simplified
by taking the lower route envelope to be the negative of the upper route envelope, i.e.,

el (0) =-eu (0) =-e(0). For this case, ea (0) 0 and Ae(0)= e(0) so that y component of the track

function of Eq. (C 10) becomes

G 7 (t -to;0;Y;V) y =[yo/e(0 )]Ae(0(t t)). (C16)

A particularly useful choice for the normalized probability density p0 (7) is the beta density

modified to span the interval [- 1,1], i.e.,

217 (a•) F (03)( (

The route coordinate probability density used for the San Diego ship track example in Ref. 5 is the

Beta density for a = 3 = 2. The route envelope e(0) was taken to be a segment of a sinusoid with an

amplitude that depends on the length of the route [6].

C3. THE FINE RESOLUTION ASSUMPTION

We assume that the resolution cells C ( ki,ýj) in the grid P are sufficiently small that the shipping

density is approximately constant over each resolution cell and equal to its value in the center of the
resolution cell. Under this assumption, the port-pair shipping distribution is approximately given by

D(kj,4 1 ) = 4,7(0(Xi,41)F(Xi,4 1 ))A(p1 ) , (C 18)

where A(ýj) is the area of the resolution cell C{( i, 1j) and O (i,4j ) and F( i,4j1 ) are the

coordinate functions in the mapping from the latitude-longitude coordinates to the auxiliary coordinates.
Substituting for the shipping density from Eq. (C l) into Eq. (C18) yields

D(ji,ýj) )= ýtlPT[0 (F (vi, •j);O (vi, •j ))A(oj ). (C19)

For small resolution cells, A(4j) is approximately given by

A(aj) )= Re2 cos (j)AkAý (C20)

where Re is the radius of the Earth.

To obtain an alternate means of generating the ship-track parameters, we derive the probability
density on the track parameter given that the ship is in the resolution cell. This probability density is given
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by the rate function divided by the mean number of ships in the cell. Under the fine resolution

assumption, the mean Mr (to ; C) is given by Eq. (C 18) and the rate function is constant in the resolution

cell with the value determined by replacing 00 and yo by 0 (xi, ) and F (xi, lv respectively. Thus,

we have

For the simplified model shipping density of Eq. (CI), this probability density becomes

P ( iý,~ ) V(V) (C22)

where /v (v) is given by Eq. (C5).

According to Eq. (C22), given that a ship is in the resolution cell, its position in that cell is uniformly

distributed and its speed is independent of its position and has the probability density /v (v). Thus, under

the fine resolution approximation, the ship track realizations can also be generated by first using a Poisson
random number generator with the mean given by Eq. (C6) to determine the number of ships in the
resolution cell and then using uniform random number generators for the probability densities of Eq.
(C22) to generate the track parameters.

C4. COMPOUND ROUTE APPROXIMATION

The transformation between the auxiliary coordinates and the longitude-latitude coordinates has a
particularly simple form in the special case where the nominal route is the great circle arc connecting the
departure port with the destination port. However, for many port-pairs, it is not possible to choose the
nominal route to be a great circle arc since the routes must bend to avoid land masses. For these port-
pairs, the nominal route can be approximated as a sequence of great circle arcs connected at their
endpoints (see Fig. CI). For each of these great circle arcs, the routes can be described in the auxiliary
coordinates using a route function defined for the great circle arc and the simple coordinate
transformation can be used to map those routes to the longitude-latitude coordinates. These "simple"
route sets can then be joined together to form the complete route set between the departure port with the
destination port. A method for connecting simple route sets to form a "compound route set" is described
in Springer et al.3 along with the coordinate transformations for the great circle nominal routes.

3 P. Scrimger, R. Heitmeyer, and P. Boulon, "A Computer Model of Merchant Shipping in the Mediterranean Sea,"
SACLANT Undersea Research Center Report, SR-164, La Spezia, Italy, SACLANT Undersea Research Center,
1990.
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Fig. Cl - An example of a compound route set formed from two simple route sets


