NRL Report 8432

Performance of Optimum and Suboptimum
Detectors for Spread Spectrum Waveforms

DonaLD G. WOODRING

Special Communications Branch
Communications Sciences Division

December 30, 1980

NAVAL RESEARCH LABORATORY
Washington, D.C.




SECURITY CLASSIFICATION OF THIS PAGE (When Data Enfered)

READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1.

REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT’'S CATALOG NUMBER

NRL Report 8432

. TITLE (and Subiitle)

5. TYPE OF REPORT & PERIOD COVERED

PERFORMANCE OF OPTIMUM AND SUBOPTIMUM Interim report on a continuing
NRL problem.

DETECTORS FOR SPREAD SPECTRUM WAVEFORMS TR ERTORMING ORG REFORT NUMBER

. AUTHOR(s)

8. CONTRACT OR GRANT NUMBER(=)

Donald G. Woodring

. PERFORMING QRGANIZATION NAME AND ADDRESS 0. PROGRAM ELEMENT, PROJECT, TASK
AREA B WORK UNIT NUMBERS
Naval Research Laboratory 62721IN; ZF21-222-001;
Washington, DC 20375 75-0203-0-0
1. CONTROLLING OFFICE NAME ANDO ADDRESS .12. REPORT DATE

Qffice of Naval Research December 30, 1980

) M1 UMBER OF PAGES
Arlington, VA 22217 56
MONITORING AGENCY NAME & ADDRESS(Il different from Controlling Olfice) 18. SECURITY CLASS. (of this report)
UNCLASSIFIED
15a. DECL ASSIFICATION/DOWNGRADING
SCHEDULE

. DISTRIBUTION STATEMENT (ol this Report)

Distribution Jmited to U.S. Government apencies only, test and evaluation; December 1980,
Other requests for this document must be referred to the Commanding Officer, Naval Research
Laboratory, Washington, DC 20375

. DISTRIBUTION STATEMENT (of the abatract sntered in Block 20, if differeni {rom Report)

. SUPPLEMENTARY NOTES

. KEY WORDS (Continue on reverse side {{ neceasary and ldentily by block number)

Optimum detectors Frequency-hopped waveforms
Filter bank combiner
Low probability of intercept

20.

ABSTRACT (Continus on roeverse side If necessary and identify dy block number)

The vulnerability of spread spectrum waveforms to unintended interception is examined. Opti-
mum and suboptimum intercept receivers are derived for a general class of frequency hop waveforms.
Alternative techniques for analyzing the performance of these detectors are presented along with
specific examples of calculations. In each case, these alternative techniques are shown to give equi-
valent results. The discussions are intended to provide some insight into the detection process.

pD ,FOHM Y473 EDITION OF % NOV 6515 DBSGLETE

JAN 73
S5/N 0102-014=6601

i SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)




CONTENTS

4 S D L U (0 1 OO T OO PR E VU PUR PP PP PP RSO 1
RADIOMETRIC DETECTOR PERFORMANCE ... 1
Performance Calculation by Gaussian ApproxXimation ... 2
An Aliernative Technigue for Performance Caloulation ... 3
OPTIMUM DETECTION OF SPREAD SPECTRUM SIGNALS ..., 6
Spread Signals with Unity Time-Bandwidth
PrOBUCLIS oo eeee e eeeeeee st eeaaarae e e rar et e et et —a e e e e et b e rr it a e r e 7
Spread Spectrum Signals with Time-Bandwidth
Products GTeatel thAT OIE ..v.ecevvreeesirseeeeerannn s aassaarssasassssiassaaanneesseebtssnnnnsresniiare 9
Alternative Techniques for Computing Performance .........oooeiiinnnnn i
PUlSEd WaVE OIIIS oovviere e eeee ettt et et aaassemmese e aeeeseabatt s aess b aaan e ee e e sesbbnsaeesasenrnenan 13
SUBOPTIMUM DETECTORS FOR SPREAD SPECTRUM SIGNALS ... 15
Filter Bank Combiner DEteCLOT ..ooiiiireiiii e eeee e ieirrrri s s aeeem e et e e eeras 15
Fractional Bandwidth DeteCtOrS ....ovivrvireeeieriineeieeeeerieaaarrrrt i as e e e nnnin s s anennrin s 18
REFE R EINCES oottt e e st rae e e e e e s it e e e e e e e e e e e b bttt s e nnr s e e eea e 21
APPENDIX A —Useful Detectability Calculation Curves ... 23
APPENDIX B— Detection Strategies and PerfOormance ..., 35
APPENDIX C—Filier Bank Combiner Detector Performance ... 43
APPENDIX D —Symbols and ACTONFITIS ..ovviiiiir e iias e 47

iii




PERFORMANCE OF OPTIMUM AND SUBOPTIMUM DETECTORS
FOR SPREAD SPECTRUM WAVEFORMS

INTRODUCTION

Signal detection offers an enemy the opportunity to gain information on platform existence, loca-
tion, identification, and perhaps message content, depending on the sophistication he employs. Conse-
quently, detection techniques are a key issue during waveform selection for covert communication sys-
tems. Selection must be based on an evaluation of detectability by postulated threats and tradeoffs
between detectability, system cost, and required threat investment. This report presents a variety of
techniques for evaluating waveform performance against several detection models.

The performance of a signal detector is best described by the carrier signal power-to-noise density
ratio required at the detector input for a specified probability of detection, Pp, and probability of false
alarm, Pry. Detection and false alarm probabilities can be specified independent of signal structure,
detector strategy, and implementation and are strictly a matter of operational doctrine. In general, the
level of the listener’s effort in responding to an alarm will determine the maximum number of false
alarms he can tolerate within a given time. On the other hand, the value he places upon detection of a
transmission or a transmitting plaiform will determine the maximum number of valid transmissions he
is willing to miss, and consequently the minimum percentage he can expect to detect. Once Pp, and
P, are specified, the performance of any signal against any detector postulated can be completely
described by the input signal power-to-noise density ratio required, (C/ N,,),.(,q_, to achieve these proba-
bilities. '

The determination of optimum detectors for signals with unknown parameters in Gaussian noise
is based upon the likelihood ratio criteria which are detailed in Appendix B and essentially follow from
Peterson [1]. This report outlines techniques utilized in the calculation of the performance of optimum
and suboptimum detectors for the general class of spread-spectrum signaling techniques. A more
detailed treatment of frequency-hopped signal detectability can be found in a separate report 2]

RADIOMETRIC DETECTOR PERFORMANCE

For an unknown signal in additive white Gaussian noise occupying a bandwidth ¥ and time inter-
val 7, the optimum detector is a simple energy detector (or radiometer) as shown in Fig. 1. The statis-
tics describing the output of such a device are well known [3]. With noise only at the input, the output
follows a chi-square density function with 2TW degrees of freedom. With a signal present, the output
has a noncentral chi-square density function with 27W degrees of freedom and a noncentrality parame-
ter, 2E/N,, where N, is the one-sided noise power density, and

C

N, T (1

£ _
N,

is the predetection energy-to-noise density ratio.

Manuscript submitted May 28, 1980.
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Fig. 1 — Simple energy detector

Performance Calculation by Gaussian Approximation

For large TW products, the output statistics for the system in Fig. 1 may be assumed Gaussian
and the detector performance can be completely characterized by . Defined in Appendix B as the
square of the difference in the means of the output densities under noise and signal-plus-noise condi-
tions, &° is a measure of the postdetection or output signal-to-noise power ratio of the detector. For
the radiometer, this can be shown to yield 4]

=07 Pr) — O HPP = — —, = ---| ] {2a)
A o TW Mo e

or

l ] = QN (Py) - Q“(PD}L\/_ (2b)

where 07! is the inverse normal cumulative distribution funciion, (C/N,)eq 1s the carrier power-to-
noise density ratio required at the input to the intercept receiver for the specified Pp and Pry, and o is
the output signal-to-noise voffage ratio, a quantity which is directly proportional to the input C/N,. The
quantity o is plotted in Fig. A-1 as a function of Pr; and Pp, and its uiility is illustrated in Exampie 1.

EXAMPLE |

Consider a frequency-hopped signal with the foliowing characteristics:
T = message duration = 4 sec
and
W = spread bandwidth = 2 GHz.

The time-bandwidth product (TW) is large, so Eq. {2) may be used. For a performance
criteria of £, = 0.1 and Pys = 1075, the postdetection SNR, ¢2, is found from Fig. A-1:

d*= 10710 % — o (0.1]* = 10.84B.

Thus from Eq. (2)

= 48.9dB-Hz.

req.

£
No
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For small TW products the Gaussian approximation to the chi-square distribution will yield results
which are generally pessimistic in the predicted covertness of the waveform ( ie., the calculated
(C/N,)eq will be less than the true value). The difference between the C/N, computed from the chi-
square statistics and the Gaussian approximation is plotted in Fig. A-2 (as a function of TW) in terms
of a correction factor, %y, where

A (C/ Ny )1eq (assuming x -square statistics)
s (C/ N, )1 (assuming Gaussian statistics) -

Therefore, Eq. {2b) can be rewritten in the general case
C W _ _ W

[N =ﬂfwd-\/:T=7)TW{Q I(PFA)_Q I(PD)]-\/-_; (3)
0 Jreg.

The Gaussian approximation may then be corrected by merely adding the correction factor (in dB) to
the value of C/N, determined from Eq. (2) as shown in Example 2.

EXAMPLE 2

Consider the signal of Example 1, except that now we wish to compute the detectability of
a single hop or pulse. In this case,

T = Tp = pulse duration = 500 usec

and
W = Wp = pulse bandwidth = 2000 Hz.

The TW product is now one, and Eq. (3) must be used. Again, the postdetection SNR is
4%=10.8 dB {from Fig. A-1}.

The chi-square correction factor for TH = 1 is
W rw = 3.3dB (from Fig. A-2b).

Thus, for a single pulse, Eq. (3) vields

[NL]q — 41.7dB-Hz.

An Alternate Technique for Performance Calculation

An alternative technique for caleulating the performance of the radiometric energy detector is
based on sampling theory. A narrowband-limited process of duration T seconds can be represented by a
series of TW pairs of samples, each containing amplitude and phase information on the process during
the sampling period. These pairs of samiples are either the inphase and quadrature samples or envelope
and phase samples, and may be considered samples of a pulse with duration 7= 1/W. Thus, the
detection of the entire signal can be treated as the sequential detection of unit time-bandwidth product
pulses, followed by postdetection noncoherent combining of TW of these pulses. This model for the
radiometric detector is shown in Fig. 2.
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Fig. 2 — Noncoherent radiometric detection

This problem then reduces io the classic radar detection problem of a nonfluctvating, noncoherent
puise train of fixed length 7. The postdetection signai-to-noise ratio per puise, (S/N) ., is just the
input energy-io-noise density ratio divided by the number of pulses:

N puise

N,
It can be shown [3] that the noncoherent sum of TW pulses has a noncentral chi-square probability
density function with TW degrees of freedom and nonceatrality parameter 4, {TW), the RMS outpui
signal-to-noise ratic, where

L o
TW N, | W

2
§

A (TW) = TW (5)

pulse

Thus the performance can be computed directly from the incomplete Toronto function which is plotied
in Marcum {3].

A somewhat simpler approach, however, has been suggested by DiFrance and Rubin [4]. If
coherent addition of the TW samples is considered, the output statistics can be expressed in terms of
the more familiar Rayleigh and Rician density function for the noise-only and signal-plus-noise cases,
respectively. (These functions are special cases of the chi-square and noncentral chi-square functions
for two degrees of freedom.) Therefore, the performance can be computed for a speciied Pry and Pp:

Pey= f/( xe gy = =K1 {6a)
and
Pp= fx xe X T HN I, {x~/2d ) dx, {6b}

where K = +/21n{1/Pz,) is the detection threshold and 4, is the required ouiput SNR for the coherent
combining case. Note that
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d, = d {TW) for TW = 1.

The ROC curves determined from Eqs. (6a) and (6b) are plotted in Fig. A-3. It should be pointed out
that these curves can be obiained from the known signal ROC by adding the chi-sguare correction fac-
tornpy for TW =1, or

dx=7)}d=7)1[Qﬁl(Pﬁ,¢)— Qil(PDH- N

For the same specified performance, then, the required SNR for the coherent pulse irain will be
jess than that of the noncoherent case. This performance degradation is usually referred to as the
integration loss, or noncoherent combining loss (NCL), L;y where the subscript indicates the number
of pulses or samples being combined, and

d (TW)
™ = i {8
This function is plotted in Fig. A-4 as a function of TW, and with 4, as a parameter.
Thus, from Eqs. (4), (5), and (8),
dATW) = |- T = Lyyd (9)
X N, T STW Yy
so that the required input (C/N,) is
C 1
N, | T 1o
2 Jreq.

Example 3 illustrates the correspondence between Egs. (10) and (3).

It is interesting to compare the two techniques for determining the performance of the radiometric
detector as described in Eqs. (3) and (10). The noncoherent combining loss can be related to the chi-
square correction factor, n ry, by

Lyw= 2 TW. (11)

LA

Substituting the above expression for Lyy, and 7,4 for d, (Eq. (7)) in Eq. (10} yields
¢ =lT(md)n”" \/TW=WWd.,/%, (12)

NO req. K !

which is the same as Eq. {3). For large TW products, n r» approaches one and L; can be approximated
by

Ly == ———m;TW ~ Large (13

L
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EXAMPLE 3

The signal in Example 1 can be analyzed by use of Eq. (10}, The required pastdetection
SNR, d,, for a pulse of unknown phase is found from Fig. A-3:

d =174 dB for Py = 0.1, Py = 10°5,

Note that 42 = 10.8 dB and nrw = 3.3 dB so that from Eq. (7),
dx = dn,

and
8.7dB=54dB+ 3.3 dB.

The noncoherent combining foss, Ly, for TH = 8 x 10? is determined from Fig. A-4:
Lyw = 11.7 dB, for TW — 10? and d, = 8.7 dB.

For TW > 10°, the slope of the Lyy curves is~ TH, so that the additional loss for TH > 10°
is given by v TW/108°. Thus,

0
Liw = Lioo /% — 117 dB + 34.5 dB = 46.2 dB.

Finally, Eq. {18} yields {for T = 4 sec)

[-5,1] — _6dB-Hz+ 8.7 dB + 46.2 dB = 48.9 dB-Hz,
2 Jreq.

which is the same result obtained in Example 1.

and Eq. {13} becomes

c 4
[N" ]feq. 4 r (o

which gives a result identical to Eq. (2). Under the Gaussian assumption then, d in Eq. {2} is the ap-
proximation to the single-puise, postdetection, signal-io-noise voftage ratio and v TW is the approxima-
fion 1o L7y, the noncoherent combining loss.

OPTIMUM DETECTION OF SPREAD SPECTRUM SIGNALS

The wideband radiometer discussed in the previous section is optimum, in the maximum-
likelihood sense, for any signal whose only known characteristics are the total bandwidth W and dura-
tion T. This is true of waveforms employing frequency-hopping, direct sequence pseudo-noise (PN)
modulation, pulsed transmission, or combinations of these techniques to achieve a spread specirum sig-
nal of this bandwidth and duration. In praciice, however, many characieristics of the signal such as
hopping rate, modulation, insiantaneous bandwidih, and pulse duration, must be treated as known,
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while only secure generating functions, patterns, or codes remain completely unknown to the intercep-
tor. These known characteristics can be exploited by the interceptor in designing an optimum detector.

The optimum detector for spread spectrum waveforms is the likelihood ratio receiver which util-
izes the structure and statistics of ali known signal parameters. The derivation of a general likelihood
ratio detector for frequency-hopped, PN-spread, pulsed waveforms and their hybrids is given in Appen-
dix B.

Spread Signals with Unity Time-Bandwidth Products

Assume a frequency-hopped signal of duration T occupying a bandwidth W which consists of N,
puises of duration T, each occurring in one of A channels™ of bandwidth Wp, where

_.r
n NP
and
W i
We= —= —.
M T (15)

This signal has a THW product per pulse equal te one.

Although the optimum detector for this frequency-hopped signal can be defined (Fig. 3), the dis-
tribution function of the output statistic has not been determined and exact expressions for the perfor-
mance of the receiver cannot be obtained. However, for a large number of pulses (N,, > 100} the out-
put statistic of the equivalent log likelihood ratio detector can be assumed to have a Gaussian density
function in both the noise-only and the signal-plus-noise cases.

The performance of this detector can be approximated by the parameter d?, the postdetection
SNR, provided that the variances of the output statistics are approximately equal under noise-only and
signal-plus-noise inputs. This is found from Appendix B to be given by

1,428 ]} (a6

1+ 7, N
where, under the assumption of Gaussian statistics, the required postdetection SNR, d?, for the
specified Pp and Pr4 is given by Eq. (2) and can be found from Fig. A-1. The term S/N is the input
signal-to-noise power ratio in a singie radiometer bandwidth Wp, or equivalently, for T Wp =1, the
single pulse predetection signal energy-to-noise density ratio, E,/N,. Thus, the C/N, required to detect
can be computed by

d*=N,n A

<1 _ St w1l aHN,
[No]req. WPlN] We 5 LT+ Me D] (17

where £;7'( ) is the inverse of the modified Bessel function plotted in Fig. A-J.

Exampie 4 illustrates the performance of this detector for a simple frequency-hopping waveform,

*M is the number of radiometer channels required to cover the signal bandwidth and is not necessarily the number of signaling
channels or tones.
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EXAMPLE 4
Consider the frequency-hopped signal of Example 1, with a TW product per pulse equal to
one:
Wp = pulse bandwidth = ry = 2000 Hz,
Tp = pulse duratien = —r-l— = 500 usec,
H
T
N, = number of pulses (hops) = 7= 8000,
F
and

M = number of radiometer channels = *WH_/ = 108
P

The performance of the optimum detector for this signal is computed by using Eq. (17
and Fig. A-5 as follows:
£]
NO req.

I

¥
We -~ 171+ M = D]

4
2

2000 - % LML 4 1080015 — 1))

= 1000 - £, (1502)

= 39.7 dB-Hz.

This example illustrates the performance improvemeni for message detection, over 9 dB,
when the detector is optimized to the waveform.

Spread Spectrum Signals with Time-Bandwidth Products Greater than One

The optimum detector for direct sequence spread spectrum waveforms, such as straight PN modu-
fation, has been shown [3] to be a radiometer matched to the instantaneous spread bandwidth or the
PN rate, rpy, and the message duration 7. The performance of each radiometer was treated in the
preceding section for a time-bandwidth product equal to Tprpy.

The use of PN in conjunction with frequency-hopping and/or pulsed waveforms increases the
bandwidth of each pulse, or hop, to the PN rate, so that the time-bandwidth product of each pulse
becomes

HATPWP= Tpl"pN > 1.

The optimum detector in this case consists of a bank of radiometers with time-bandwidth product
of TpWp. The structure of this receiver is the same as that shown in Fig. 3 with the operation I,0)
replaced by the function K, { ) which is defined as
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Iv_; (NX)

W ZNﬁlr(N). as)

Kp{X A

The performance of this detector can be determined by the same methads used for the previous case of
the frequency-hopped, pulsed waveform, except that the time-bandwidth product is now
n = TpWp > 1. The postdetection SNR is given in Appendix B as

L 233 _ 1}} a9

at= Npln{l + =K, 1=
where again S/N is the predetection signal-to-noise power ratio {n the individual radiometer bandwidth

K
MUY N
Wp and is related to the input C/N, by

= Wp[_] {20}

Note that for TW =1,

By assuming Gaussian ouiput statistics and egual noise and signal-plus-noise variances, ihe reguired
postdetection SNR, ¢, for a specified P, and Pr, can be approximated by Eg. (2), or

dg"" [QH](PFA) - QWI(PD)]Q
and can be found from Fig. A-1. From Egs. (19} and (20}, the required C/N,, given by
<
N,

can be caiculated as shown in Example 5 by using the function {1/2) K7} ), plotted for convenience in
Fig. A-6.

W
2

Kl + M{edzm" ) (21)

Te4.

For large time-bandwidth products, a good approximation to the predeiection signal-to-noise

POWET 1atio is
= Kb G) = /—“}f") . @2

This approximation is guite accurate for S/N < 1/4 (—6 dB), which corresponds toe TW > 200 for the
range of values plotted in Fig. A-6. For this case, Eq. (21) can be written

2 W
L =i+ M - i [ 2 W > 200, 23
N"" req. T‘p
1t is interesting to note that for a continous wave {CW) spread spectrum signal (M = 1), Eq. (23)
reduces to
c d W _\/’W
= —= —: TW > 200, {(24)
Mol W N T T

10
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EXAMPLE 5

Consider a hybrid frequency hopping and pseudonoise modulation (FH-PN) signal which
has the following characteristics:

T = 4sec,
W =2GH:z,
ry = 25kHz,

tewy = PN chip rate = 200 kHz,

Ty = pulse duration = rL = 40usec,
H

and
Wp = pulse bandwidth = rpy = 200kHz.
For this case, Tp Wp = 8, and from Eq. (15),

Np = number of pulses = T
Tp

and

M = number of frequencies = ST
Wp

Since » is very large, the Gaussian approximation can be used and the required postdetection
SNR for P, = 107! and Ppy = 107 is

d*=10.8 dB.

Then the carrier-to-noise density ratio required for detection can be computed from Eq.
(21) and Fig. A-6:

C We dyYN
l—]\?]req = —;—Kmlzﬂ + M =}

_2x 105 %Kﬁ“l 10V — 1))
— 48.1 dB-Hz.

where Wp= Wand Tp = T, which is the same as in Eq. (2) for the wideband radiometer.
Alternative Techniques for Computing Performance

The performance of the optimum detector can also be computed using standard radar detection
curves. The individual radiometer channel outputs in the optimum detector are again modeled as the
noncoherent sum of 7p MW, sample pulses on each hop (Fig. 2}, each sample having a duration of
1/ Wp, and consequently a TW product of cone.

If on a given transmiited hop or pulse the signal is first assumed to be a single sample-pulse of
duration Tp and time bandwidth product one (W, = 1/7T,), the input SNR can be found from Eq. (17).

11
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1
2

1
djNP_

L+ Mte 13, (25}

where lS/ N)' and [E/ Ng] are the equivalent single sample-pulse predetection SNR and energy per
pulse-to-noise density ratio, respectively.

However, since the signal during the period Tp is actually composed of TpWp sample pulses, in
order to achieve the same performance as the single pulse case, the required input signal or carrier
power, S, must be increased over that predicted by Eq. {25) by an amount equal to the noncoherent
combining ioss for T W samples for an optimum detector.

Unfortunately, these losses are not readily computed, but a good approximation is 1o use the non-
coherent combining losses, Lry, given in Fig. A-4. There curves were computed for the square faw
detector of ¥ig. 1, which is a small-signal approximation to the optimum deiecior considered here.
Marcum {3] has shown that the maximum difference in performance between the square law and
optimum detectors is less than §.19 dB. Therefore, an approximate expression for the increased signal
power is

§ = S, LTW-

Therefore, as illustrated in Example 6,

EXAMPLE 6
Considering the signal structure and deteclion criterion used in Example 5, the (C/ N(,)m

can be calculated from Bq. {26) and Fig. A-4 after finding the input signal-to-noise ratio per
pulse from EBq. (25) and Fig. A-5:

sy _1, PN,
IN] 55 1+ Mlie 1)]

- %1;1(2.2) —097=—0.13 dB

and

€

Lry

cl - 1is
N, T, | N
req.

SN SR .
~ o 097 Ls

== 440 dB-Hz — 0.13dB + 4.2dB
== 43.1 dB-Hz.

As expected, this result is the same as that found in Exampie 5.

12
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S

1
Lyw = WP[_I

+
Grw

S

N

N 1

NG LTW= TP (26)

N

where (S/N) is determined from Eq. (25) and Ly is found from Fig. A-4 for TW = Tp Wp and the
single pulse SNR = (§/N)".°

Pulsed Waveforms

The waveforms treated thus far have all been assumed to be continuous wave (CW) signals.
Non-CW or pulsed signals, such as time shift keying (TSK), burst transmissions, and time hopped
(TH), are characterized by a transmission duty cycle, «, which is the ratio of the "on" time to the "off"
time during the message duration. For pulsed signals, the quantity of interest is usually the average
(C/ Na)mq which is related 1o the C/N,) for a single pulse by

C C
avg. peak

For the radiometer detector, the performance (C/No)req.’ as determined from Egs. (2), (3}, or

lgl _ [_9]
N” req. N" avg.
For either optimum or hop detectors, the performance is computed on a per-pulse basis so that

l 5 ] [ C l |
N, N, ’
req. peak

Equations (17), (21), and (26) can be used to compute the required peak C/N, if the parameter M is
considered to be the total number of orthogonal signals possible or if M is replaced by M/a {as derived
in Appendix B) and N, is the total number of pulses transmitted,

T
Tp

{10}, is the average value or

N =« . (28)

»

As shown in Example 7, the average C/N, is calculated for the optimum detector by
C _ C
[g] -] -
ave. req.

The choice of average or peak (C/N,) to describe detector performance is often a source of con-
siderable confusion. In general, the required peak (C/N,) for a pulsed waveform (o < 1) will be

*The aclua{ noncohlerem gain for the optimum detector, Gry, can be found by solving Egs. (26) and (21) for
Grw= K 'O k().

13
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EXAMPLE 7

The third type of signal 1o be analyzed is a hybrid FH/PN/TH waveform, which will be
characierized by a pulse duty cycle e. The specific example considered is a FH/PN signal with
m-ary TSK moduiation. In this case, the duty cycle & = I/m. The waveform parameters are as

follows
T'=4dgsec ry = 25kHz
W=2GHz Fpy = 2MHz
a = pulse duty cycle = —i~1-6-
For this example, Tp Wp = T;N = 30, since
H
1
Tp=— = 40 usec
Ty

WP = Fpy = 2 MHz.

The radiometer performance for the detection criterion of Example 1 is computed from Eq. (2)

cl _f<c} _
{ N ] - { < ] 489 dB-Hz,
2q. ave,

the same resuit as Exampie 1.

With these parameters, the (C/N, )., for the optimum detector from Eq. (21) and Fig.
A-bis

[—Q] — W, K+ M - )
req.

g

If,] = 2x 105 %Kg‘(} [+ 16000 (%6250 — 1))
0 Jreq,

= 56.2dB-Hz.

Finally, the (C/N,),,, is found from Eq. (29):
(CIN, Vg, = @ (C/N,)oq = 44.2dB-Hz.

higher than for a CW waveform with the same parameters. At the same time, the required average
{C/N,) for a pulsed waveform is lower than that required for the CW signal. Thus, a pulsed waveform
will resultl in either better or worse detector performance, depending on which measure is employved
{average or peak (C/N,) in characterizing this performance.

This apparent coniradiction is easily resolved when computing the vuinerability of a communica-
ijon signal to detection. Detector performance is only one facior in assessing this vuinerability. Edelt
{21 had proposed the ratio of the (C/N,) required to detect to the {(C/N,} required to communicate as
a measure of this vulnerability. With this measure, the problem of peak vs average (C/N,) is solved by
maintaining consistency between the communication and detector (C/N,). If the average (C/N,)
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required to detect is used, then the communication (C/N,) is given by (E,/N,)R, (energy per bit-to-
noise density ratio times the data rate). 1f the peak {C/N,) required to detect is desired, then the com-
munication (C/N,) must account for the duty factor, . In this case the communication (C/N,) is
given by (E»/N,) R, (1/). [t can be shown [2] that this ratio is reduced (signal is more vulnerable to
detection) by lowering the duty cycle. When computing detector performance, therefore, it is more
instructive to use average (C/N,), which will reflect this degradation since it includes the duty cycle, a.

SUBOPTIMUM DETECTORS FOR SPREAD SPECTRUM SIGNALS

The optimum detector structure described in the previous section suffers from two significant
shortcomings. The first is the complexity of the detector, particularly for TW products greater than
one, which may make the detector impractical to implement. The second and perhaps more trouble-
some problem is that performance cannot be expressed exactly; the performance measure, d, is based
upon two assumptions: the output statistics are Gaussian, and the variance of the output is equal under
both signal-plus-noise and noise-only hypotheses. In view of these considerations, a suboptimum ver-
sion of the optimum, multichannel receiver for frequency-hopped spread spectrum signals will be
examined for which the performance can be computed exactly, and which is more practical to imple-
ment.

Filter Bank Combiner Detector

This receiver, which is often referred to by DiFranco and Rubin [4] and Dillard [5] as a Binary
Moving Window (BMW) detector or a Fiiter Bank Combiner {FRC) with individual thresholds, is
shown in Fig. 4. Essentially, the receiver is again a bank of radiometers matched to the signal pulse,
one for each of the M possible channels or slots which the signal is expected to occupy. The output of
each radiometer on each hop is detected, and a decision is made in each channel. These decisions are
logically OR’d and summed over the signal duration. At the end of the signal duration, the sum is
compared to a threshold L, an integer number determined from the required Py and Pp.

It is not difficult to show that the optimum detector output after each hop or pulse is often dom-
inated for useful values of SNR by the output of the one channel containing the signal, due to the sin-
gle pulse postdetection weighting of the channel output. The suboptimum detector approximates this
performance characteristic by reducing the postdetection processing to a simple threshold decision on
each channel, which is equivalent to a binary weighing of the output. Thus, if the single-pulse SNR in
the channel containing the signal is sufficient to cause that channel output to exceed its threshold on a
particular hop, then the suboptimum detector output for that hop is wholly determined by the output of
that one channel.

The performance of the FBC detector is discussed in more detail by Edell [2]. Two thresholds
determine the Py, and Pp: the individual channe! thresholds, K;, and the integer threshold L. The
latter is a threshold on the number of hops or pulses for which at least one individual channel radiome-
ter threshold has been exceeded. The optimum value of this threshold cannot be found directly and is
determined from the inverse of the binomial distribution function by an iterative computation. For-
tunately, a threshold of L = 1 will yield results which are only about 1 to 2 dB high in required input
C/N,, but which can be computed directly.

The individual radiometer thresholds are identical for each channel and are determined from the
required Pry; and Py, where Pry; is the probability of false alarm for an individual radiometer on a sin-
gle hop or pulse, for the required message or signal Pr,, and Pp; is the probability of detection for an
individual radiometer on a single hop or pulse for the required message Pp.

15
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Fig. 4 — Filter bank combiner

For the message threshold of L = 1, the individual Pry; and Py, can be simply refated to the
required Pr4 and £p, and an exact expression is given in Appendix C. For reasonabie values of Pp and
P4, this can be expressed {for N, = 7' r; - o) as

&
Pryy = o Py Pry << 1

MN,
Fp  Pp
PD = — << 1; PFA}' << PD{- (30)
"TON,ON,

The C/N, required can be computed from the Pp,; and Pp; by any of the techaiques for determining
the performance of a radiometer detector. For the case considered here, Eq. {3) becomes

C W
IF" = rw dr=y / T:% TW = TpWp, (B0

where dy is the Gaussian approximation for the single channel, single pulse, postdetection, voltage
SNR, and

req.

dy = Q@ (Pry) — O (Pyp), {32}
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which can be found from Fig. A-1. The chi-square correction factor, n7w, is plotted in Fig. A-2. As
an alternative, one may utilize Eq. (10).

€], -
@ Vreg. P

where TW = TpWp, and d,, for a single pulse, is found from Fig. A-3. In this case, using Pgy, and
Pp;, the noncoherent combining loss, Lry, is found from Fig. A-4 for TW = Tp Wp and SNR = dXH.

Example 8 illustrates the performance calculation using both of these methods.

EXAMPLE §

For the signal in Example 1, recall (see Example 4)

Tp = 500 usec,

Wp = 2000 Hz,

N, = 80600,
and

M =108,

Therefore, from Eq. (30),
Pry

Pry= M—]Vp =125x%x 10718

and

P
Py = TD = 1.25 x 1075,

4

Utilizing Eq. (32},

dy= Q71 (125% 1071%) — 0=1 (1.25 x 107°) = 6.0dB  (from Fig. A-1), and for
TW =1, Fig. A-2; gives approximately

n=3.5dB
Therefore, Eq. {31) becomes

[NLl = 3.5dB + 6.0 dB + 33 dB-Hz = 42.5 dB-Hz.
2 }req.

Thus, the FBC for an L = 1 threshold performs 7 dB better than the radiometer and about 2
dB worse than the optimum detector {see Examples 1 and 4).

17
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For a pulsed waveform the false alarm and detection probabilities are given by Eq. (30}, which
uses the expression for N, given in Eq. (28). The C/N, computed is then the peak value, where (Eq.

(270
4] -JeLls
N, N, Nl =
ave, peak reqd.

Fractional Bandwidth Detectors

Optimum maximum-likelihood ratic (MLR) detectors for frequency-hopped waveforms utilize a
separate channel for each possible instantaneous hop f{requency, or frequency slot, within the total
spread bandwidth {see Fig. 3). The same is true of the filter bank combiner (FBC) receiver. For very
large spread bandwidths, the number of frequencies, and consequently the number of detector chan-
nels, can be enormous, and it may therefore be argued that the detector is impractical to implement.

" Optimunt’ Partial Band Detector

The suboptimum detectors of interest in this case are those that use only a fraction, f, of the total
spread bandwidth. Thus, the number of channels is reduced to fM, where M is the total number of
frequency slots to which the signal may hop.

it will often be the case that near-optimum performance can be achieved with a greatly reduced
number of channels by judicious choice of the fraction, f. This case has been analyzed by Niessen [6]
and is treated in Appendix B. Again, it is necessary 10 assume Gaussian output statistics when comput-
ing the performance for the Jog-likelihood ratio detector. This appproximation is valid for signais with a
larpe number of puises or hops.

For a train of N, pulses each with time-bandwidth product 7W, the performance of a maximum-
likelihood ratio detector which covers a fraction, f, of the bandwidth, W, is given by

K g] =14 ey,

N Ja

Thus

Mo e
N, 1+ o {ed 1)]. {34}

C 1, .
[ ] = Wp }"Krﬁf
req.

For a pulse waveform, ithe number of pulses, N,, is given by Eq. {28}, where a is the puise duty
cycie. Cajculation of the required peak C/N, can be accomplished with either of the technigues utitized
for the simpie energy deiector.

Partia! Band Filter Bank Combiner

A filter bank combiner uitilizing a fraction, f, of the total number of frequencies, M, will have /M
channels. The formulas for computing the probability of detection and false alarm for the ndividual
channels given in Eq. (30} can be modified with the restrictions that /A 2 L and /N, 2 1

[43

INM

p
Pp, = —— Pp >> Pp,. (35)
J/) pr o FA

Py = Pryi Ppy << 1

18
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The first condition requires that the minimum detector bandwidth be at least as great as the instantane-
ous signal bandwidth. If this condition does not hold, the predicted (C/N,)., must be increased to
account for the lost signal energy outside the detector bandwidth. The second condition ensures that
the probability of detection in the individual channels on a per-hop basis, Pp;, is not required to be
greater than the probability of detection of the multichannel filter bank detector on a per-message basis.

The degradation in performance sacrificed by implementing a single channel detector is calculated
in Example 9 for both the optimum partial band and FBC detectors. The result of trading off system
simplicity (reducing the number of detector channels) for detection threshold, illustrated by Fig. 5,
emphasizes the small degradation in performance at a significant savings in cost. Thus, the argument
that the FBC detector is an unrealistic threat due to the large number of channels required in the full
band detector is an unreliable assumption. At least in the examples shown, the number of channels
can be reduced to a manageable size by restricting the total bandwidth covered whiie retaining a perfor-
mance advantage over the wideband radiometer.”
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Fig. 5 — Waveform detectabiiity as a function

of detector bandwidth

»
There is a lower limil to the fraction of the band that must be covered. It can be shown that the fraction, f, must satisfy

1 Ty

[z = .
N, T

This restriction is of concern therefore for long pulses (slow hops) and/or short message times.
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EXAMPLE 9

Considering the signal structure and detection criterion used in Example 7, the perfor-
mance of an optimum partial band and FBC detectors with a singie radiometer channet can be
caiculated from Egs. (343 and (31), respectively, with the use of Eqg. (35} {o determine pulse
deteciability criterion.

Using Eg. (34} with /= 1/ M, we calculate the performance of the optimum singie chan-
nel detector:

2 2
_C;] —we= Ll 2
0 Xreq. 2 Ies
=2 X 106_%_]{{3—0( [1 + 16 x 10526258 —_ 1)]

= 58.7 dB-Hz.

This is the peak C/N, required for detection, and the average is found by reducing this value
by the duty cycle:

C

N,

Thus the degradation that results {rom using a single channel instead of the 1000 chaanel
detector is 2.5 dB.

- al Af } — 467 dB-Hz.
ave. req.

G

To calculate the performance of a single channel (/4 = 1} filter bank combiner, the pro-
babilities of detection and false alarm per pulse must be established:

Pras = p3g s =y Fra = 107"
and
Pp 16!
=2 o 0 16x 1072

Poy N, = 625 6x 10
The required C/ N, for detection can be calculated from Eq. (31):

S I 2.2

N, - TW T,

— -] —11y _ ) —2 __gﬂ
—T)SD{Q ag'h Q (1.6 x 10 }]-‘f 40 % 10-°

=04 dB+ 6.5dB + 53.5 dB-Hz= 60.4 dB-Hz.

This equates to an average C/ N, of
C _ C _
(No -—a[Nol = 484 dR,
avg, e

which is only about 1.5 dB worse than the full-band FBC.
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USEFUL DETECTABILITY CALCULATION CURVES
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Appendix B
DETECTION STRATEGIES AND PERFORMANCE

The performance of signal detection schemes depends on the decision-making strategy that is
implemented. Although many strategies are available, maximum likelihood detection provides an
optimum means of determining a transmitted message on the basis of a received signal. Optimum in
this case means that the probability of doing this correctly is maximum. In this appendix, the likeli-
hood ratio and the detection performarice measure are derived for both known and unknown signals.

DETECTION OF KNOWN SIGNALS

Likelihood Ratio

For an exactly known signal, s(¢), in white Gaussian noise, Peterson [B1] gives the likelihood
ratio as

E(s)
N,

£, (x) = exp exp

S NETORD) ] i, (B-1)

where E(s) is the average signal energy, N,/2 is the noise power density per hertz, x(1) is the observ-
able signal-plus-noise, T is the observation interval, and s (1) is the exactly known signal.

In this case, the optimum receiver computes £ (x) and compares it to a threshold:

2. (x)=expl— J—E}éi)—] exp{%— f x(Dsdt] 2 K. {B-2a)

Equivalently, one can us¢ any monotonic function of the likelihood ratio. A convenient function in
this case is the natural logarithm, so that

10| = 2 [ xsa- £ 2 mk - K. (B-2b)

1
n N,

Since x(¢) is normally distributed, the logarithm of the likelihood ratio for the exactly known signal is
also normally distributed with mean m and variance 4.

It can be shown [B1] that the mean and variance of the likelihood ratio for noise only are given
by

2
%—+m

ENIL’S(X)] = exp

and

VARN{ES(x)] = exp[Z (& + m)] — exp [d2 +2m } (B-3)
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However, from the properties of the maximum likelihood ratio, it is known that

dZ
Epil(x)y=1=exp 5 tm

so that m = — d%/2. Therefore,

VAR Es(x)} = exp [2

2 2
a'—-é—— —1=exp(#) — L.

Solving for &°,

d@=1In

1+ VARN{BS(X)”. (8-4)

Performance Measure

The performance of the equivalent log likelihood ratio detector can be found exactly by using the
Gaussian density functions with variance 4 and means m, and m,., under noise-only and signai-plus-
noise cases, respectively. Thus, the probability of false alarm and the probability of detection are given
by

Pry = P[ESix) > K ] with noise only

@ —{x — m,)?
~Jy o exp[ o7 Idx {B-52)

and

P,=P [Bs(x) >K ] with signal-plus-ngise

(B-3b)

bt 1
= N ex
fK ~ 2 d? b 242

—{x - mﬁs)z]dm

By defining a function @ {the complement of the Gaussian distribution function with zero mean and
unit variance),

0ma—=f e da. (B-6)
Pry and Pp can be expressed
Pry = Q lf":g“%]
Py=0 [ K —dmn+s

Sofving for K’ and equating yields

[Q—1 (Prg) — O (PD)]Z _ W~ MV 2B (B-7)
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where
m, = — £
i1 N0 r
E
m, +—,
+ 5 NQ
and
2F
d2 = -2 m, = VO

Therefore, d* completely defines the performance of the log likelihood ratio detector for the known sig-
nal case,

DETECTION OF SIGNALS WITH UNKNOWN PARAMETERS

A more useful case than the known signal is the signal with unknown or random parameters with
known probability density functions. Consider a signal s{¢} which is expressed in terms of n random
variables,

s() = s s pso, 8.,

where the_s; are independent random variables. The likelihcod ratio for this signal can be expressed by
£.(x) = LI fh f‘ £o(xy 510 80+ 8,05 by o, dsidsy o ds,, (B-8)

where £, (x;5/.8,, ...,.5,) is the likelihood ratio for an exactly known signal with independent™ param-
eters §| = s, 82 = $3, ...,5, = 8, This equation is very convenient since it gives the likelihood ratio
for a general signal class with any number of random paramelers.

In the remainder of this appendix, detection of a general class of spread spectrum signals is con-
sidered. The likelihood ratio and performance measure for signals that employ frequency hopping, time
hopping, pseudonoise spreading or any combination of these techniques is derived for an optimal
partial-band detector. Also, the case of a full-band optimum detector for signals with a unity time-
bandwidth product is discussed.

Consider a signal which consists of a train of N, frequency-hopped pulses of duration 7 occurring
on the average every T, with a bandwidth W), such that the message may occupy a total bandwidth W,,.
1n addition, the observable signal space in the frequency domain is assumed to consist of a fraction f of
the total signaling bandwidth W,,. For a frequency-hopped signal, this is equivalent to observing /M
out of M possible signal frequencies. On any given hop, the probability that the transmitted signal is
within the observation space is /. If the signal is outside this space, the observed waveform can be
represented as a signal with amplitude ¢ = 0 and otherwise, amplitude ¢ = 4. Thus, in general, the
agbserved signal can be expressed by

() =5, (a8, 1) =a; cos (wyt +0,),
where the kth pulse occurs during the random time slot defined by

k—DT,+(n,—Dr<i<k-—DT,+n;r,

*Independence is not necessary but is convenicnt since the joint density functions are often unwieldy.
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where
He = {1, 2, TQ/T}

is one of T,/7 time sfots, w, can be any one of fM frequencies, and g is a random variable that can
take the values 0 or A. The density functions for these random variables can be defined by:

pn,)=1/T, = a= duty cycie

__bL
p{gk)_ 277
play) = fforg,=A
=1—Ffora,=0

I
P(_@ki.fi.t)=f_MfDT£{&=A

forag, = 0.

T a-M f)M

Likelihood Ratio

Following the work of Peterson IB1l, the receiver for this signal is shown in Fig. B-1 and the
likelihood ratio for a single pulse. £, {x), can be expressed by

£ {x)= f as, p,) f dn, plng) f da, pla,)
f daiy p (cuk!a,‘.}ﬁ Axsay, m, w8,

= a‘6 i /{t fM'g {x, A4, 1, ©p, Qk)

0
i=1 i=1

— fiM ]
+(1— /) B (x5 0, ng, g, 04
igt M= oa™ 00 e @ ]

_ e $: ¥ 0, 0+ = 1) (B-9)

r*{ fe=1

In this last expression, £ {x) is the likelihood ratio for a single channel of the detector based on an
observation of durationa T, = 7.

Within each channel of the detector, the likelihood ratio can be expressed in terms of the proba-

bility density functions for noise-only and signai-plus-noise cases:
(x)
L 0x) = Ps+nt%7
: o, tx)

For this general class of signals, within each channel the density functions can be expressed by

{N—1)/2
l ] exp[— #’g Iv  JNBx

4x

Pisalx) = Ng
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xN— 1 e~xy'2
X e B-10
Prx) 28T (W) (B-10)

where N is the TW product (v W}, and 8 is the peak carrier-to-noise ratio in the radiometer bandwidth

_2c
A= N, W,
The likelihood ratio can then be expressed by
2NN o= NB/2 Iy WNBx)
Ly lx) = TBLEE 'y N (B-10

The likelihood ratio for the entire signal, a train of N, pulses, can be expressed by taking the pro-
duct of the likelihood ratios for the pulses:

2(x)= fizm) - IN‘i [% § gt 4 (1 —f)]. (B-12)
k=1

k=1 =1 =1

Performance Measure

The performance of the likelthood ratio detector is measured by the parameter ¢ which is given by
Peterson [B1] for the exactly known signal as

d*=1nl1 + VAR R0}, (B-13)

where the variance is taken under the noise-only condition. This measure is valid if the logarithm of
the likelinood ratio has a normal probability density function, as is the case for the known signal
receiver.

When the density is not normal, 4 will approximate the performance of the likelihood receiver
whenever the log of the likelihood ratio has a limiting distribution function which is Gaussian due to
the centrai limit theorem, and the variances are approximately equal under both noise and signal plus
noise. For the case considered here, from Eq. (B-12),

N [+3
Ingix) = i In —% ﬁf E By e) + (1 — f)], (B-14)
i=1 =t

k=1

where the logarithm of the product has been expressed as the sum of logarithms of each term. Since
each term in the outermost summation is an independent random variable (signal and noise are
independent from hap to hop), the central limit theorem can be applied and the distribution function
tends to Gaussian as N, becomes large. From the properties of the likelihood ratio

VARy R(x) = Ey PG — 1, (B-15)

Eq. (B-13) becomes
d* = nEy 200} (B-16)

40




NRL REPORT 8432

Substituting the expression for £(x) given in Eq. (B-12), we can reduce the resulting equation to
@ =N, n {1+ % VAR W, (0}, (B-17)
where use has been made of the fact that the inner terms, £ (x}, in Eq. (B-12) are statistically

independent and identically distributed random variables. Thus, it remains only to find the variance of
£, (x) from the definition of expected value:

Eyidi ()} = fﬂ,—;‘l (x) p,(x)dx (B-18)
By substituting Eqs. (B-10) and (B-11), the integral can be written in standard form
Nl
R Y 2 . _ «
Ex lﬂ,,--A (x)] = Wl I(N)e ™ fo e Iy [2VH(NY? M, (B-19)

which is solved by Bateman [B2]. From Eq. (B-15), the variance becomes

N-1

VARN{E{’,A] = Niﬁ F(N) [N_l (Nﬁ) - I, {B-ZO)
which can be substituted into Eq. {(B-17} to yield

2 _ Ja _2C ) )

d ]\{{J ln‘l + M K’rw[ No WP] 1] ], (B 21)

where
5 N-L
1(;\,!(')’)é IN—] (N'}’) [W‘; F(N) (B-22)

This expression can now be solved for the required input carrier-to-noise density :?tio as a function of
d?, the specified output SNR,

K

c_ "
N, 2

1+ ﬂf (N 1)|, (B-23)

o

where K '( ) denotes the inverse function.

A special case results when the time-bandwidth product for the radiometers is unity. The result
obtained when this constraint is imposed is found directly from Egs. (B-21) and (B-23). With an addi-
tional assumption of full band detection (f = 1} and a full duty-cycle waveform (o = 1), the carrier-
to-noise density simplifies to the following, familiar expression:

N AU N
Sow, g LMD, (B-24)

2]
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Appendix C
PERFORMANCE OF THE FILTER BANK COMBINER DETECTOR

Analysis of the performance of the detector shown in Fig. 4 is straightforward. For the /th
radiometer channel, the parameters shown in Fig. C-1 are defined as follows:

Zz
=]

Zj

w M
N
}
A
f

RADIOMETER TN g ,®

—

Fig. C-1 — ith channel of FBC

r,, = output of ith radiometer on j th hop

K = individual radiometer threshold

Z; = union of all radiometer decisions on the j th hop
Oy K Vi
l; otherwise

Z = sum of Z; over N, hop

L = filter bank combiner detector threshold.

Thus, the probability of detection, Pp, and false alarm, Pr,, can be defined as
PD = PROB (Z 2 LiH;m) (C-l)
Pry = Pros (Z 2 LIHy),

where H,, represents the hypothesis that a message was transmitted during the observation time, and
Hy,,, the hypothesis that no message was fransmitted. Since Z =% Z,, these probabilities can be

obtained from the binomial distribution

Nl Pz, =1 Pz = 0™ (c-2)

N,
P(Z>L)=73%
j=L

where N. = T/ Tyop, the number of hop periods in a message.

Thus, Py and Pg, are given by

N
4 N . .
Py=3 || Pz =1t P(Z =01 Hy,) (C-3)
=L
Ne | a7 N
Pry = ,2 7| P(Z, = UiHy) P(Z; = OlHou) ™ /.
=L
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For a pulsed waveform with duty cycle « and an FBC that has Ny radiometers matched to the
pulse bandwidth Wp which cover a fraction f of the total spread bandwidth W,

_ N Wp
-

S (C-43

On any given hop period there is a probability {1 — o) that a pulse is not transmitted during the obser-
vation time, and a probability (1 — ) that the hop frequency is outside the bandwidth of the FBC.
Thus, the presence or absence of a pulse within the radiometer during a message transmission must be
accounted for. This is accomplished by defining the following hypotheses which apply to each hop
observation interval.

H), = pulse present within FBC bandwidth during hop period;
Hy, = pulse absent during hop period.

For the j th hop period, therefore, the probabilities in Eq. C-3 must be expanded,

PAZ; =01 H,,) = PXZ; = OV Hy) PCH T H ) + P(Z; = 0\ Hy) P(Hy, ) Hy,,)

PAZ, = Ot Hyp) = P(Z, = 01 Hy,,) P(Hy ) Hy,) + P(Z, = 01 Hy,) P(Hy, 1 Hy,,) {C-5)
and

P(Z;=1iH,,)=1-P(Z,=01H,)

P(Z;= U Hy,) = 1— P{Z, = 0i Hp,). (C-6)

I

The dependent probabilities are determined as follows:

P, Hyyd = P (a pulse is present within the FBC bandwidth given that a message was
transmitted)

= P {a pulse transmitted during hop observation period) - P (hop frequency within
FBC bandwidih
a f {C-7}
P{Hy,  H,,} = P {pulse not present given message transmitted)
P (pulse not transmitted during observation period + P (pulse transmitted but
hop frequency outside of FBC bandwidth)
(l1—a)+tall—pF

=1l—af. (C-8)
P(H ;1 Hy,) = P {pulse present given no message transmitted) .9
= D c-9
P(Hg,) Hy,,) = P (no pulse present given no message transmitted) )
= 1, {C-10

From the definition of Z;, P (Zj = 0) is the probability that no radiometers exceeded threshold on the
J th hop periad. For the Hy, hypothesis,

P{Z;, =01 Hg) = Plry; < K fori=1,2, ... Ng given that no signal energy is present)
Ng
= ‘HS P(f‘u < K{Hﬂh)
(=

Since outpuis are independent from hep to hop,

P(Z, = DL Hy,) = Pley < K1 Hy)™®, €11
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In the H,, case,

P(Z;= 0LH,) = P(!Uk for i = 1,2, ... Ny given that a pulse is present
in one and only one individual radiometer)
N1
= P(f“,-j < K'H],!,} ‘Hl P(J"U < KJH[};,)

= Ply< K1HY) [Pl < KIHU,,)]N"‘”. (C-12)

The performance of the individual radiometers can be described by the required Fp; and Pryy
where
Py, is the probability of delection of an individual radiometer on a single hop or pulse for the
required filter bank message Fp,
P4 is the probability of false alarm for an individual radiometer on a single hop or pulse, for the
required filter bank message Pry:

and
PD,:P(I‘,—J->K|H1,,)=1—-P(rU<K|H“,) (C'13)
PFA[=P(f',:j>K[H0h) = i'_ P(.",-J;<K|'H0h).

Substituting Eq. C-13 in Egs. C-11 and C-12 yields
P(.Zj = 0l me) =(1- PFA[)NR

and
P(Z,= 0V Hy) = (1= Pyy) (1 = Pl (C-14)
Combining Eq. C-14 with Egs. C-7 through C-10 in Eq. C-5
P(ZJ, = (] H]”,) = (]. - PDI) (]. - PfA[)NR_] af + (1 - PF/”)NR (1 - af) (C—lS)

P(ZJ = O'Hﬂm) = (I — PFAI)NR

Equations C-6, C-15, and C-3 now relate Pp; and Pry to Pp and Pry. Solving Eq. C- 3 for Pry and
Pp;, however, involves the inverse of the binomial distribution and must be done iteratively to deter-
mine the optimum value of the threshold L. For L = 1, Eq. C-3 reduces to

Py=1-P(Z,= 01 H,)" (C-16)
PFA =1i- P(ZJI = OiHOm)N{‘

Substituting Fq. C-15 and soiving for Pp; and Pr,y yields
PFA! = ] (1 - P[:

Py = Pmll ] [ ]— L= )" = Py M,
«f

)V (C-17)
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These equations can be simplified by using the approximation

{1—X%=1—- NY NY << 1.

Apph'ed to Eg. C-17, this approximation yields
Pry

= — = _a.__
Pry N Ng Pry I N, fM]
and
Py 1
= T, _PD[fNP ’

where o N, = Np and N, = /M.
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BMW
C/N,
(CIN v,

(C/Nz;)peuk
(C/Na)req,

CW
d
d, (TW)

d

XH
E/N,
Ep/N,,
s
FBC
FH
Grw
I )
')
K
K, ()

K1)
L

Appendix D
SYMBOLS AND ACRONYMS

Binary Moving Window (type of detector)
Carrier power-to-noise density ratio

Time average of C/N, required

1o meet detection criterion

Instantaneous maximum C/N, required

to meet detection criterion

Either (C/N,) ., of (C/N,) e

depending upon detection strategy

Continuous wave

Qutput signal-to-noise volrage ratio assuming Gaussian statistics
d for detector with TW product

greater than 1 and chi-square

statistics (d, = d, (1))

d, for a single hop (TW = 1)

Predetection signal energy-to-noise density ratio
E/ Ny per single pulse

Fraction of total spread bandwidth

Filter Bank Combiner (type of detector)
Frequency hopped

Noncoherent processing gain

Modified bessel function of order zero

Inverse function of [( }

Detector channel threshold

Detector channel weighting factor for channels
having non-unity TW products (n = TW)
Inverse function of K,( )

Detection threshold, number of channeis or puises summed
Noncoherent integration loss; NCL

Number of radiometer channels required to cover the signal bandwidth
Maximum likelihood ratio (type of detection)
Number of pulses per message

Time-bandwidth product, TW

Noncoherent combining loss

Probability of detection per message

Pr, on a single hop or pulse

Probability of false alarm per message period
Pr4 on a single hop or pulse period

Pseudo noise

Inverse function of the normal probability distribution
Signal hopping rate

PN rate

Root mean square

Receiver operating characteristics

Input signal-to-noise power ratio
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(S/N) puise
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S/ N for a single pulse

Signal-to-noise ratio

Message period

Pulse duration

Time hopped

Time shift keyed

Total signal bandwidth

Single pulse bandwidth

Transmission duty cycle during a message

Chi-square correction factor to Gaussian approximation,
a function of ROC and TW
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