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ABSTRACT

A mathematical model that can accommodate non-Gaussian
error distributions and correlation among contributors is derived
for application to nonlinear position estimation computers to be
used for HF-DF fixing. The assumption is that the physical situa-
tion is only mildly nonlinear, non-Gaussian, and nonindependent
so that quadratic truncation of the analytic functions involved is
sufficient.

Major improvement of confidence region reliability should
be achieved by using an F test, conditional generalized net var-
iance estimates, and multiple x2 -rejection of bearings. Further
minor improvements should result by using the derived non-
Gaussian and correlated model. A variable relationship between
confidence and area size is available. Implementation and testing
of these models is currently underway at NRL.

PROBLEM STATUS

This is an interim report; work on this problem is continuing.

AUTHORIZATION
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NONLINEAR, NON-GAUSSIAN, AND NONINDEPENDENT PARAMETER
ESTIMATION AND CONDITIONAL CONFIDENTIAL REGIONS

INTRODUCTION

Two major objectives in direction finding techniques are a best estimate of a posi-
tion location and an optimal confidence region containing it. Two major tasks in this
endeavor are the development of sophisticated radio interferometers (direction finders)
to obtain measurements (at different locations) of certain characteristics of the incoming
wave front (as bearing, great circle plane, direction) and the development of a mathe-
matical model to incorporate these measurements into an estimate of the position of the
emitter (usually assumed to be on the surface of the earth).

This second task has many aspects. This report is concerned only with the final
mathematical model and not with questions relating to the numerical calculation of cor-
relations, variance components, higher moments, ionospheric indicators, or other nec-
essary collateral parameters. That is, it is a suggested model for accommodating these
effects in obtaining position estimates (fixes).

BACKGROUND

The usual method assumes that each direction finder (station) error is independent
of the others and has a normal (Gaussian) density function

- e

where 'i is a known standard deviation and 7i is either the angular error at a station or
the direction line (plane) displacement. Under these assumptions, the net density function
is the product

n 2

n17f e n

i=1 (27T) n/2 170-
1=1

where i ranges through those stations that are able to obtain a measurement.

By iterative orthogonal transformations that rotate a model earth (radius 1), a linear
subspace (tangent plane) can be made to touch the earth at a north pole (0, 0, 1), which is
an estimate of the desired location. The underlying assumption for this approach is that
the earth is locally flat, and the mathematical advantage is that calculations on, and in
terms of, a plane are more efficient and that standard linear statistical tests can be
applied.

The situati6tl Tr a point (r, s, 1) near the current north pole is as shown in Fig. 1.
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Fig. 1 - Bearing geometry

The situation on the tangent plane is as shown in Fig. 2.

The [angular error]2 = i between the bearing to apoint which projects upto (r, , s)
and the observed bearing can be calculated in terms of r and s by

2 - 2 - h i2 2.
gpYq (sin yi) 2  aipq rP sq

9i p ,q
L aipq rP q = Qi(r,s)

p+qS 2

as shown in the present NRL model (1).

The approximation y!- sin y is a mathematical convenience since errors are small
enough to justify it, while the validity of the truncation of the analytic expansion to a quad-
ratic Qi(r, s) will be discussed later.

z

Fig. 2 - Tangent plane geometry
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Hence the net density is

e

1- 5Q(r, s)

( - f(r,s) =
(277)n/2 1 0-

i=1

where

Q(r s) = s)

and the classical solution (2) for the Best Point Estimate (fix) by the maximum likelihood
criteria as given by the system f r = 0, f s = 0 is a least squares minimization of Q(r, s).
The confidence region (search area) in the NRL model is then determined as a contour
(ellipse) on f(r, s) with (when normalized to a circle) a predetermined radius dependent
only on a constant probability (90% or 70%) of target inclusion (in the long run).

NONLINEAR CONFIDENCE REGIONS

We will use the "prior distribution" concept freely so that a domain space with
probability distributions defined on it can be visualized (Fig. 3). We shall also assume
that Q(r, s) represents normal assumptions even if nonnormal effects are included, i.e.,
that any nonnormal effects are now incorporated into the covariance elements of Q(r, s).

Sao

TANGENT PLANE

3PE AT (ro, 90)

Fig. 3 - Probability
volume

Confidence statements derived from the net density function f(r, s) can be dually
interpreted as coming from the exponent Q"(r", s') (Fig. 4), where

Q(r,s) = too + tlor + t 0 1 s + t 2 0r 2 + t02S2

Q'(r' s') = Q(r,s) = Q(r'+r 0 , s',+SO) = too + t 2 0 r' 2 + t2 + t 1r'sl

Duality

3
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PARABOLOID SHELL Q" (r ", s")

4-DENSITY FUNCTION f

Fig. 4 - Duality

Q"(r",s") Q'(r',s')

Q" ( root, s" ) = Q"(r", s")

= Q, r". + ps"
2(1+p)/2

= " ((420)x/

' --- pr1/2 = /'00 + +L2or" +zo2S

+lo+S ý' o + t2+ o

( )'/02"1'/2)= ZO+r'

Just as f(r, s) is monotone decreasing, Q"(r", s") is monotone increasing. Q"(O,O)=Lo00
which should be chi-square distributed with approximately n -2 degrees of freedom. (The
approximation is due to the nonlinearity of the model.) Hence

E(/tOO) = n- 2 •

Since this duality between exponents and functions exists, most discussion concerning the
search areas is more suitable in terms of Q"(r", s"), which has the chi-square distribu-
tion v~hen minimized.

Interpretations

Ioo = Q"(o,o) = Q(ro, so) = Q(BPE) is a fundamental quantity in the fix model. Since
Q(ro, so) represents the sum of the normalized errors from n independent contributors,
it should be distributed as chi-square, i.e., as x 2(m), where m = n - 2 because two
parameters (ro, so) had to be estimated.

Writing

f(rs) = f.'(r" ,s"o) = -[eMOO/2 e-2°

-tco/2it is illustrative to call e~0 the "spread factor." Note that

4
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-,oo/2 * Bullseye

e l+ /oo 0 -0 or

2-station fix

Hence the quantity /oo should be interpreted on each fix as the "inherent spread" or as
the measure of bearing consistency. Since u00 is A2(n- 2) and E(0L 00 ) = n- 2, a reli-
ability statement is obtained for each case.

Configurations

Presently the NRL model outputs a rectangular search area (Fig. 5). Situations
arise when a circular search area is preferable. The optimal search area is the ellipse,
and listing the opposite ends of its axes appears as convenient as listing the corners for
the rectangle. The rectangle and circle are less efficient configurations because of the
greater area involved (on the average) for the same confidence statements.

CIRCLE

/ ELLIPSE

Fig. 5 - Confidence configurations BPE

These various configurations are all easily accessible in the
sizes. Moreover, a relationship between probability of inclusion
also available.

model as are the area
P and the area A is

Ellipse- After translation and rotation, we have

f(r,s) = f'(r'.,s M) = s' e-(9 0 0  "" 2 0  r"2 +AO 2 s "2

Let f = K, which determines an elliptical contour since f is monotone. Then

KC = e(00+/20 rN 
2

+02SN
2

)/2

describes the contour, and

2+ -2 - 2 tn 1-/ '0 /•02s = K-C - /00

is an ellipse, that is,

r 2 sK2

a + - 1a2 bý2

where

(2 tn 1 FL?0) 1/2
a 

LC- -¢20

( 1/1/2
(2 tn 1- - ý1OOb KCoo

FL0 2
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Note that the stipulations 1L20 > 0, FL0 2 > 0, 2 tn (1/KC) ? L 0oo > 0 are required. In this
plane,

A = -T ab

7 (2 n •-1 _ oo
KC~f j /100)

(/20 iL02) 1/2

in (earth radians) 2 . It may be noted that in the present NRL model, the 0- 2 are never
converted to radian measure, so the jL's are too large, i.e., are in units of (radian/
degree) 2 ; hence, they must be multiplied by (180 degrees/A radians) 2 to make them
dimensionless in the above expression.

Going to the ." plane,

P = 1 - ep2/2 (where PK is the radius in

-(2fn 1-- A )/2SI me KC

the " plane)

From the above equations we consolidate the Key Relation:

G--) =A7= (A20 t02)1/2

1 2 n 2 = r`o2 + P2 on locus.
KC 00 K

[A(1212 1/2 [
1'20 [ n" (Zi) ]. /

in terms of P or A, and

[A (k102)112] 1/2Li 1120/
= t2n 1± ) 1]1/2

in terms of P or A.

Rectangle - To get a Square of some
model 4 (S/2) 2 = 7rp

2 , from which
area in the plane, we have as in the NRL

(S) = (2)1/2

In terms of P and A,

(2 [ 1 [A 1/2 1/2
= (112011L02) J ( -iL) 1/2

Note that when we go back to the " plane,

/(S)2  A (p 2 0 1/ 02 ) 1/2

(1120)1/ (1102)1/

Hence

7T t
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Hence the rectangle has the same area as the ellipse that was contracted to the circle in
the ". plane, although this rectangle will give lower reliability of inclusion due to its
corners.

Circle - To get a circular search area for output, we look at the " plane and require
7Tab = 7Tr 2

, which gives

2 p 2  _ A 2 tn ( 1-- )

(0120 iL02) 1/2 7T (120 1102)1/2

Probability vs Area - From the Key Relation derived above, we see that if given P,

2-u tn ( 11P)

(120 Io02) 1/2

and if given A,

P 1 -,A(920 .0 2 ) 1/ 2/27
P = 1- eA2O0)

where A here is always the optimum search area configuration, namely, the ellipse. If
circular or rectangular output is desired, r and S/2 can be found from the above, but
the probability P will be lower in the above P vs A statement.

Hence the model provides a means of arriving at approximate area vs probability
statements for elliptical, rectangular, or circular search area configurations, but the
probability is overstated if the ellipse is not used.

Confidence Weaknesses

Statistical studies have revealed that instead of the programmed 90-percent confi-
dence level being attained, performance has been lower (3). Five explanations are now
examined.

Variance Estimation - This is always a cause of reliability failure in estimation
problems, so for some time NRL has been maintaining variance quality in a direction-
finding (d.f.) operation. A large sample of fixes from a randomized situation were first
processed using "questionable" variance estimates; and then, using true variances for
that sample, the cases were reprocessed. Although some improvement in all aspects of
the estimation was achieved, the inclusion percentage changed only from 74 to 76 percent,
indicating that the preliminary variance estimates were reasonably good and that the
problem was deeper.

Non-Gaussian Bearings - The possibility of non-Gaussian bearings was investigated
by a factor analysis, and non-Gaussian populations were found to be the rule rather than
the exception in direction finding when present equipment (4) was utilized. A mathemati-
cal way of compensating for these effects is derived later in this report. However, the
deviation from Gaussian distributions in the long run is small, and, at 90-percent confi-
dence levels, does not explain the large departure from the desired confidence level.

7
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Nonlinearity - The model is nonlinear due to the spherical earth setting and the
angular errors that are the concern of long range direction finding. When station-target
distances are approximately the same for all stations, the assumption of "parallel dis-
placement" of the bearing line is often made (5). This, along with a locally flat earth,
allows development of a linear model.

The NRL model does not make these linear assumptions at the beginning, but instead
assumes that quadratic truncation is sufficient for representing the model, and the tangent
plane thus determined becomes the basis for confidence region estimation (1). Hence the
locally flat earth is a common assumption and reasonably so for the region sizes in the
application, since confidence regions calculated on the sphere and on the plane coincide
up to the significance of the data (6).

It appears that the quadratic assumption is not as restrictive as the "parallel dis-
placement" assumption even though in many cases they are equivalent.

An extensive analysis (7) of general nonlinear regression (the d.f. model is a special
case) has led to the conclusion that in any reasonable d.f. application the nonlinearity is
negligible, and this enforces the intuitive arguments above. Hence it seems reasonable
to conclude that nonlinearity is not a major cause of confidence weakness. Two interest-
ing studies could be made in this regard to resolve the matter.

The obvious study for the NRL model would not be to truncate at the quadratic level
but instead to keep higher order terms (e.g., of the third and fourth degree). Then the
magnitude of these terms could be examined theoretically for the range of (r, s) encoun-
tered to see if this remainder really is insignificant. Alternatively, position estimates
could be made with the higher order polynomial and compared with the corresponding
quadratic estimates.

The other study would be less direct but more feasible. It can be noted that
/120 /'02 = Ivl - where IlvI is the determinant of the covariance matrix of (r,s) when
transformed to canonical form. If the model were indeed linear, we would have

I-20 •02 -• °-2,-,2 sin2 (Ok- of)
k<f?

where the latter value of Ivi-1 is derived in Daniels (5). But the sum above is the sum
of the, quick fix weights in the NRL model. It would be most interesting to compare these
two quantities which are both readily available in the NRL model for each computer-
processed d.f. case.

Wild Bearing Encroachment - All confidence reliability examinations to date have
been performed by analysis of the results of processing on the prototype computer which
has only a single normal bearing rejection scheme. Accordingly one-half of the wild
bearings were considered good bearings by the computer and therefore were incorporated
into the a priori estimates (BPE 2).

A special sample with no bearings in error by more than 15 degrees, i.e., not wild,
and fixes in error less than 300 miles (in other words, a sample of "good" cases from
"good" bearings) achieved an 88-percent confidence figure. Hence elimination of wild
bearings will be a major factor in maintaining confidence strength.

The following test is recommended as a general bearing rejection scheme (Fig. 6).
It is expected that it will be improved by tests currently underway, although the principal

8
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ENTER

LET ORIGINAL NUMBER OF SUBMITTED BEARINGS=n
LET k=O I

- -*4 4
[ESTMATE POSITION BY EACH OF ( n k) COMBINATIONS
LET X

2
(n-k): MINIMUM OF X 2(SUB-POSITION) ABOVE

NOI s XP(n-k)X 2(n-k)? I YES

r I

NO Is X
2 
(n)-X2 (n-k)> )AX,3

2
(n, k)?

LET k+ I -- k X

ACCEPT REDUCTION. RETAIN
CO -.AILMn ATIO-BAING COMBINATION

LET n-k----n
LET kItI

I Y V

REJECT OUTLIER? 7 No

LET l-k-e---n-k EXIT TO FINAL
POSITION AND
CONFIDENCE REGION
STATEMENTS.

Fig. 6 - Wild bearing rejection

ideas involved will probably survive. It is entirely possible that the BPE can be used in
the estimates for wild bearing rejection in place of the currently used quick fix which is
no longer as relatively "quick" as it was in the prior prototype. This is pleasing the-
oretically, since the bearing rejection scheme and the BPE are maximum likelihood
results of angular minimization, whereas the quick fix results from intersection distance
minimization (in the least squares sense). Then only one quick fix would be necessary to
converge the system to a local area, this being necessary because of slow BPE con-
vergence.

Presently AX13
2(n,k) 2 2 2(n) - )C12(n-k) is being tested. The choice of 83 and a can

be made large (e.g., for -3 = 0.5 we have A- 2(n,k) ! k independent of n) if we are willing
to sacrifice more good bearings in order to reject more bad bearings. (E.g., larger a
more k > 1 tests, which pertains to more than one wild bearing/case.)

Correlation Between Stations -Analysis of bearings (3) has shown that these corre-
lations are of the order of 0.1 for "nice" geometrical pairs of stations, but increase to
higher than 0.3 for stations located close together and looking in the same direction over
a one-hop distance. This corroborates the theory of at least a short term, ionospheric
gradient in a local "reflection zone." This also probably explains the different perform-
ance characteristics for different area classes as found on the factor analysis. A method
of implementing these measurements is developed later in this report.

ACCEPT AGGREGATE, PERFORM
OUTLIER TEST AS EITHER

(I) X
2
(n-k)-X 2

(n-k-I)> AX
2 

(n, k)?
OR

(2) NORMAL ma- REJECTION
OR

(3) OTHER
NOTE THAT (I) INVOLVES RE-ESTIMATION

of (n-_-It ) POSITION ESTIMATES, (2)
does not.
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New Criteria

Even in the most well-behaved cases with no wild bearings, no correlation, and
excellent variance estimates, performance was not up to the 90-percent programmed
level of confidence. Also, the criterion used was absolute. It is felt that in most d.f.
applications a conditional confidence region is desired: the following new criterion is
therefor recommended.

The present NRL model has been using a confidence ellipse on the " plane defined by

112 0 r 2 + S122 < 2 tn(l)

The right side of the above is also

G'( 1 = a'n~ a

so that an absolute probability statement is being applied in an acceptable fashion. If,
however, we assume that forming -i2/0. 2 from past variance estimates .2 only normal-
izes the various stations to a common (long run) variance of 0-

2 , then the standard Wilks-
Daly confidence region for our application becomes

/'20 r2 + A02 s2 <_ 2C,2 Fa(2, v)

where a2 is estimated with v degrees of freedom and E(c) = 1. Note that 2Fa(2,v) >,X 2 (2)
for any finite v, and hence the F region (determined by this F test) is always larger than
the )(2 region.

To obtain a conditional confidence statement, we consider estimating the generalized
net variance a2 for each case. The best estimate that can be derived from the case
itself is

"52 - /oo0
C n-2

so our conditional, unbiased, recommended confidence region becomes

/'20 r + I02 s2 < - F,(2, n- 2)
n-2

This appears especially appropriate since it has been observed (3) that confidence
declines as n decreases with the x2 (2) model, as would be expected. The search area
size is now given by

27T/1 00 F( 2, n - 2)
n -2 (/L20 402) 1/2

and P = 1- a will still yield P vs A statements by either consulting stored tables or
calculating directly the desired quantity from F,.

10
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NON-GAUSSIAN ESTIMATION

Extensive observation has shown that the populations encountered in direction-finding
are neither Gaussian nor erratic (4). Non-Gaussian effects are enhanced by an effective
separation of bearing classes, but even the parent populations are not Gaussian.

Separation of Populations

By noting several parameters, the parent population can be partitioned into classes,
whether this be done by components of variance or factor combinations. A complete
factor breakdown is not feasible because of the inherently large number of factors, but
partial analyses on limited parameters can be useful in analysis of variance. Some of
the more reliable parameters are bearing swing, local site conditions, and distance from
transmitter to receiver.

The implementation of automatic direction-finding (ADF) should provide a previously
unavailable source of information concerning the ionospheric status while the bearing
energy traverses its path. Other ionospheric measurements made simultaneously or
within a meaningful time frame will also augment population separation.

Large samples indicate, however, that the separated bearing classes deviate even
more from a Gaussian distribution. In particular, some are "steeper" than others with
the same variance. For example, a class of bearings from a favorable parameter com-
bination will have smaller variance and larger fourth cumulant (3).

Representation of Populations

The assumption of normal populations often is based upon three considerations: (a)
normal curves fit many experimentally obtained statistics adequately; (b) mathematical
derivations lead to the normal curve subject to only minor assumptions; and (c) it is
much more difficult to work with anything other than the normal distribution curve.

Our experimental data show that the distributions are not normal (3). The mathe-
matical assumptions in condition (b) can be weakened in our problem. The nonnormal
curve will be more difficult to work with according to condition (c), but high speed com-
puting devices should be able to handle the increased computations inherent in nonnormal
statistics with no appreciable loss of time if the following model is accepted.

Mathematical Justification - Let x be the random deviate (and for specific illustra-
tion x can be thought of as the bearing error at a given station). Assume

1. x = X 1+ . •. + n En, that is, the x deviation is a linear function of a very large
number of very small deviations, each due to a cause independent of all others.

2. s2i 2= 'E the variance.
j =1

3. The E i's are all of the same order of magnitude so that X2 S2 Ki/n = r(1)S2

From these assumptions and some analysis (8) it follows that

11
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p(x) + A3D3 + A4D4 + ASD5 + ...] 1/2

where Aj depends on the quantities sij and Xij and D is the differential operator. In a
great many instances, the Ai are all negligible. Then p(x) is the normal distribution
O(x).

Indications are that in direction-finding the distributions are not normal. Hence, to
describe a sample distribution, a function more general than the normal is appropriate.

The use of the above series is often disputed, especially since it sometimes diverges
or yields negative probabilities. On the other hand, if the given distribution appears as
a distorted normal curve, the above series can be used very nicely (compared to other
alternatives) for representation.

Assuming Ai Di = 0, where j > 5, analysis yields

p(x) =e-(XO 2 L H3 ( x 8 2)+ H4( )]

crsmin6A

where H3 and H4 are the Hermite polynomials, H3 (u) =u3 - 3u, and H4(u) =u4 - 6u 2 + 3. Note
that when the third and fourth moments are zero, p(x) = 95(x). The effect of p(x) is to
steepen or flatten and/or to skew the curve.

Representation for Estimation - Let y = bearing error at one station and p(y) = the
separated representation of the distribution of y for the present combination of factors.

Assume that there exists sufficient historical information to estimate the cumulants
1829 81, and the standard deviation o-; experiments in the last two years at NRL have
yielded some of this information, and automatic direction-finding and better ionospheric
sensors should improve these predictions. Hence we have the pertinent separated popu-
lation given by

S(y/cr) 2/ 2 L2 -1H + 32.()

In order to fit into the fixing process, the above expression needs to be put into a
form more suited to numerical analysis, and then expressed as a function of a locally
Euclidean 2-space, i.e., in terms of the tangent plane coordinates (r, s).

Expanding the polynomials, we have

e + 4 )3) y 3(- )2 ) 2-3

P(Y) -<1+y+ y 3 )+ y2  2 + y8+ jLL 24r46 4o-2/ 28

Write

p(y) = ¢p(y) [I + g(y)] -

12
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Since 1 + g(y) > 0, we can let 1 + g(y) = e g(y); then

gl(y) = 'n (1 + g(y)) = {n [(k + 1) + (g(y) - k)] = Efn [1 + (gy ]+t'n (1+k)I1 1 + k -L n(lk

where k = the portion of g(r,s) which does not depend on (r,s). So

e (Y/a.)
2
/2 gl(Y)p(y) =- e

-r 2~ -~- + : -- ()~ + en (1+k)

It will be shown that powers of y can be expressed approximately by polynomials of
degree 2 in rectangular coordinates r and s. Then

p(r, s) - 1 e[WOo +w r+w 10 s+w 1 rs+w20 r
2 +w0 2s2]

\ 7F - cr

S 1 ew(rs)

where several infinite series are truncated to yield a quadratic exponent, since r and s
can be made small and the coefficients can be constrained to bounded values. This func-
tion p(r, s) is more general than the normal distribution, yet reduces to a normal dis-
tribution when conditions are "normal."

The above populations lend themselves very nicely to multiple weighting of inputs.
A possible (partial) listing of contributing information is given in Fig. 7.

In the future more inputs will certainly develop as the ability to monitor ionospheric
conditions improves and as better descriptions of received energy (ADF + Wullenweber)
become available.

Estimation

Procedure for Best Position Estimate--We have Pi(y) = pi(r, s) for the ith con-
tributing station under a certain set of conditions for which we intend to truncate the
exponent to quadratic order. Then under the assumption of independence the net density
function becomes

n

f(rs) = 1'JPi(r,s)
1=1

-(1/2)[WO0+W1 0r+W 0 1 S+W1irs+W2 0 r2+W0 2 s2]
= Ke L
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FACTOR EMPIRICAL INFORMATION
E.G. SEE CGF FACTOR RESULTS IN REF.

CALIBRATION PROCEDURES
IONOSPHERIC REAL-TIME

MONITORING GRID

FACTOR WEIGHTING
DISTANCE
AREA CLASS
FREQUENCY REL TO MUF
OPERATOR JUDGMENT
ADF(2nd AND 4th MOMENTS)

IONOSPHERIC PREDICTIONS (NBS)
LOCAL STORMS

IONOSPHERIC REAL-TIME
MONITORING GRID

ADF FADE RATE
ADF NON-SYMMETRY (3rd MOMENT)

FACTOR WEIGHTING
AREA CLASS
OPERATOR JUDGMENT

THE ADF PEAKEDNESS (4th MOMENT)
THE ADF S/N
THE ADF AMOUNT OF "OUT LYING" AS

FUNCTION OF THRESHOLDING

(3) ESTIMATE 1stf ~ MOMENT

ESTIMATE 2nd

MOMENT r

ESTIMATE 3rd

MOMENT

ESTIMATE 4th

CUMUL ANT )

Fig. 7 - Moment estimation

where
Wpq = Wipq

To maximize f and to find the search area, one now proceeds as in the present NRL
model. Note that in general Wpq ý tpq, but under quadratic truncation their roles are
identical.

Approximations and Expansions - Values for h and g2 were derived previously (1).
From the expression

g2 z 1 2- + r
2

( 1-x
2

) + s 2 (1-y 2 ) - 2rsxy - 2rxz - 2syz

we find

-= (1 Z2)" 2 [1 + r 2 (1-x 2 ) + s 2 (1-y 2 ) - 2(rsxy+ rxz+syz)l

(1 - z2)

"(1-z2)/2{1 - (I)( 11 ) [r2(l-x2) + s 2 (1-y 2 ) - 2(rsxy+rxz+syz)]

(Continued)

14
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(3 (- I x22 + s41Y2 2 + 4(rsxy+ rxz+ syz) 2

8 ( - z
2 )

2 ) -4(1

+ 2r2 s2( 1- x2)( 1- y2) - 4( rsxy + rxz + syz) r2( 1- x2) - 4( rsxy + rxz + syz) s2( - y2)

{ +
F xz lyzF YF3xyz21r (1-z----- + s (l z2 + rs xy + (1 2

Y2) + 3y2z2X2) z2 )2z2 + 3X2 z 2) 2 2(1- z2r 20 
+ S2 12(1- z2 20

{ 1z ) (1 2)xz S(yz)+
xy(1 +•2z2)]
L (- z 2 )2

+ r 2 [x2( 1 +2z 2 ) - ( -z2)] + 12 [y2(1+2z2) - (1-z2)l1
L 2(1-z2) 2 L 2(1- z2)2 J

Since
ar + bs+ch

h = where A = a 2 + b2 + c 2 , and y = h

A1/2g

y = hg- (1- z 2 )-1/2 h+hr (l z2 + hs yz + L (1+ 2Z2)
rsLX (1 -Z2)j2

+ c r 2 [x2(1+2z2)-(1-z2)] + c
A L/2 2(1 - z2) 2 j I/2

{[C]i + r + a + ] + s [b + ý-CYZ]

+ rs [b

+ r2 La

xz + ayz + Cxy (1_+ 2z2).
( - z 2) ( I1 - Z 2) ( I -z 2) 2 _

xz
(1- z2)

+ s2 b yz
L1- z2)

2( 1 - z2) 2+ C yx2(1+ 2Z2) - I-Z2))

+ c(Y 
2 (1 -2 2 Z 2 ) ) ]

y 2 calculated directly is y 2 = a 0 0 + a 0or + alos + allrs + a 2 0 r 2 + a0 2s
2, that is,

(1- /2

15

1}

Sz2)A-
1 /2y =( -A-W/2

= ( 1- z2 )" A/2

2 ( 1 - z 2) 2. .
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+ r 2 [ac(1-z
2 ) +

IA( I - z2)2

+ rs 2 z2)3 lab(1-

+ r 2  21 3 [a2-

+ s2 [ z)3 1 S2(1

XZC2]] +

z2) 2 + (2bcxz

s 2 2 [bc(1- z2) + yzc2

2a + z2) + 2

+ 2acyz + c2 xy)(1 z 2) + 4c2xyz21]

z2)2 + (4acxz + c 2 x 2 - c 2 )(1-z 2 )

z2)2 c2y2+(4bcyz+

+ 4c 2 x 2z 2]]

c 2 )(l1-z 2 ) +4c2y2z2]]}

Write y = boo + blor + bols + bllrs + b 2 0 r 2 + b 0 2 s 2 , where

A1/2(I - z2) 1/2

b a(1-z
2 ) + cxz

10 1/2(1_ z 2 )3/2

b(1- z 2 ) + cyz

A1/2(1- z2) 3/2

b0 2 =

bxz(1-z 2
) + ayz(1-z

2
) + cxy(l+ 2z

2
)

AI/2(1 - z 2 ) 5/2

2axz( 1 - z2) + C [x2( 1 + 2z2) - ( 1 - z2)]
2A1/

2 (1- z
2 ) 5/2

2byz(1- z2) + c[y2(1+ 2z 2
) - (1- z2)]

2A
1 / 2 (1- z 2) s/2

y3= C + C1 0 r + c 0 1 s + c 1 1 rs + c 2 0 r
2 

+ C02s2

y4 = do0 + d 1 or + dols + dllrs + d 2 0 r 2 + d 0 2 s 2

where

Coo - a 0 0 b 0 0

CIO = al 0 boo + a0 0 b 0

C0 1 = a 0 1 b 0 0 + a00b01

16
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e = allbo0 + alOb 0 1 + a0 1 b 1 0 + a0 0 b 1 1

C 2 0 = a 2 0 bo0 + alob 1 0 + a0 0 b 2 0

C0 2 = a 0 2 bo0 + a 0 lb 0 1 + a00 b 0 2

and where

2
d0 0 =a 00

d = 2a 1 o a0 0

d = 2a 0 l a00

d 1l = 2(alla 0 0 + al 0 a 0 1 )

2

d = a 0 + 2a a 0 020 10 20 0

2d2= a0 1 + 2a 0 2 a0 0 •

Hence we now have expressions for y, y 2 I y 3 , and y 4 in terms of apq and bpq, which
are themselves calculated from the previously calculated a, b, c, x, y, z, where (x,y, z)
denotes a station position. The a, b, c were originally calculated from (x, y, z) and the
unique corresponding point (x', y', z') for each bearing and hemisphere.

We proceed to find a satisfactory expression for p(y) = p(r, s). In order to be able
to find a unique maximum for each iterative set of [r, s] axes, we always truncate at the
quadratic level as we did above. We now have

y = y(r,s)

y = y 2 ( r,s)

y = y 3(r,s)

y4= y 4(r,s).

Let g(y) = g(r,s) = A0 0 + Alor + Aois + A lrs + A2 0r 2 + A0 2s 2, where

A00  
2 - 3

240-4
-0 603 C0 0

(3-/32)
+ 4o-2 a 0 0 + 2 bO

/82 - 3
+ 8

and

_d (3-/82)
dpq 6cr3 Cpq 4 42 pq

2cr- 
bpq,

17

Apq - 8-3

24o-4 p,q : 0O.
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Then

gl(r, s) = tn 1 + + r AO J + tn (1 +AO)

11 ~ ~ 11 o 0

F[g(r,s) - A0 0

1 + Aoo

(g(r,s) - Aoo0 ) 2 + +

2(1 + Aoo) 2 ..

2 1 r2 (1 + Aoo) (gA-0 )2( 1 +A Aoo 2L - r0 + A0 1 s 2 + 2Alo A 0 1lrs + tn (1+Aoo)

- [Bi 0 r + B0 1 s + Bl 1 rs + B20 r2 + B0 2 s2] + "tn (1+ AOO)

Hence

p(r,s) 1 eW(rs)

where

w(r,s) = woo + wlor + w0 1 s + wlrs + w 2 0 r2 + w02 s2.

Consolidating now,

w( r, s) y2 + g(y)20-2

[ao0 + aror aols + allrs + a 2 0 r 2 + a02s
2 1

+ Blor + Bois + Bllrs + B2 0 r 2 + BO2s2

20-21+ r AI° al° ] +
( 1 + Aoo) 20-2 [ A0 1  aOl1

L( 1 + Ao) 20-2J

+ Al AloAo I a,,
L(+ AoO) (1+ Aoo) 2  2ocr2

A2 2 1
+ r A2 0  A10  _ 2 01 + Aoo) 2(1 + AoO) 2 2,0r2_]

2
Ao 1

2( 1 + Aoo) 2

(Continued)

tn (1 + A0 0 )

1 + Aoo)

= I tn

a2o-
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w(r,s) = ,n (1+A 0 0 ) - +(1 + A0 1) 2 2 r2 r(1 +Aoo) (2A1 60 2 - a 1 0 (l + A0 0 ))

+ s (1+ 0Aoo)(2Ao 1 cr2-ao 1(l+Ao0 )] + rs [2A1 10.2(1+Aoo)-20.2A10 A0 1 - a( oo)

+ r2 2A2 60.2(1+Aoo) - 0.2A 2 - a 2 0(2+AO)]

+ s 2 [2Ao 2 0.2(1+Ao0 ) - a 2A01 - ao 2 (l+A)2]

Now expressing everything in terms of apq and bpql which in turn are expressed in
more. fundamental symbols,

A /12 - 3
A00 =ý,

Aoo - 24cr4

A01 o 32- 3
24o-

4

A = 82- 3

24cr4

af-
a00 60r

a(3- /82) 1bb +12 
- 3

00b00 40-2 00 2cr 00 8

6cr3
-- (a 1 0 b 0 0 + a 0 0 b 1 0 )+2T0 ) (3--42)(2a l oa00) - 6, 3 ( ao_--------l•) 4 o-2

(2a 0 1 a0 0 ) -
6cr38 (a 0 1 b 0 0 + a0 0 b 0 1 ) + 4cr2

alO + ba-10+ 10

a 01 + bo
2c-

(2)(allaO0 + aloa 0 1 ) - l(ab0 + a1 0 b0 1 + abo+ ao 0 b1 l

+(3 -182) +VI)-
4c- 2

1 1 20 1 1

A20  8 2 4cr4

A02= 2 - 324a4

AO 2 32

240-4

2 i(a 1 0 + 2a 2 0 a 0 0 ) - 6cr3 (a 20 b0 0

(2 _ aa )-V'( o(a 0 1 + 2a 0 2 a 0 0 )--6cr (a 0 2 b 0 0

+ al 0 bl 0 + a 0 0 b 2 0 ) +

+ a 0 1 b 0 1 + a 0 0 b 0 2 ) +

(3 -)82)
40-2

(3-13
2)

4o-2

a 2 0 + 2
a 20+ 20-

a 02 + F)81b0
20---•b0

The procedure following rotation to a new coordinate system would then be to calculate
coefficients from

, I

a, = ziyi - ziyi

b. x.z. - xiz

C. = yiXi - yiXi

to determine the powers of (1 - zi), to find A-i and A , and calculate the alpq as before.
Now at this time the b1  would also be calculated. From the aipq, bipq, 8i2l výil, and

ti A
1

pq are calculated. Then the Wipq are calculated and then summing over n, the

19
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w ' t are arrived at. Then, as before, by letting Wpq =ymelds t~e BPE: tpq, the previous procedure

1
r0 = t- (tlltO - 2t 0 2t 1 o)

1
so = 1 (tlltjO - 2t 20 t 0o)

where t - 4t 20 t0 2 - t 2

NONINDEPENDENT CONTRIBUTORS

Representation of Correlation

Suppose we have (from measurement, for an approximate "area class") a total cor-
relation matrix

P = (Pij)

where i, j are for all stations.

From this we can find a partial correlation matrix

R = (rij)

where

-P.j

ri3 IPP 2 2

and where Pi j is the pi j cofactor.

From this we can form the net density function (assume
porarily) of correlated stations:

normal contributors tem-

Yi)

f*(r, s) - e2 L
+ < j 2i c -

(277)n/2 17cIr IR 1/2
i =1

where Ri. is the r cofactor and where yi is the error at the ith station. The errors
Yj can alf be expresjsed in terms of (r, s) coordinates on a tangent plane and be approx-
imated to quadratic order:

y = boo + b 1 0 r + bo0 s + blrs + b 2 0 r 2 + bo2s2

y2 + a 10 r + a 0 1 s + a 1 1 rs + a 20r
2

+ a02s2

20
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Correlated Estimation

Procedure for BPE - In terms of our previous f(r, s) where the bearings were not
correlated, we have

- 1 nIRI +

f*(r,s) = f(r,s) e

Sn ( y , -2 + . . y
i<j

which reduces to f(r, s) when the correlation vanishes. The expression for f*(r, s)
assumes that the station distributions are all normal. With no theoretical justification
whatever it is suggested that in the following discussion we also allow f(r, s) to repre-
sent the nonnormal distributions described previously, since they are departures from
Gaussian representations and their product f(r, s) is represented by the usual quadratic
exponent Q(r, s).

Write f*(r, s) = f(r, s) e- 1/ 2 Q*(r,s), where Q*(r, s) is the quadratic exponent derived
from the expression above in which yi(r, s) and yj(r, s) are substituted. More precisely,
let

= i b i i r2 bi 2
Yi = 10r + b0 s + b' s + 2 r+

00 10 01 11 2 0 0 2 s

Then

b bi 1 000)ryiyj 00b00 b bo 10 b0 ooo 1 r

+(bolboo + bolbo0,)s+ b01 00 01 00

+ (bobJ +bjb 1  + b'b + bjb rs
00 11 00 11 10 01 10 01

+ 11ibj b00bll + blobol r2lo01r

/(bi J i Ji ) 2+ b + b 2 0 b 0 0 + b2 0 b00 r

+ 0b 1 b0 1  b02b00  020 s2

and for convenience write

Y Yi = b oo+ b' or + b is + b irs + b iJr
2  + b 02j s22

Then Q*(r,s) = Voo + vlor + vols + V11rs + v 2 0 r
2

+ v 0 2 s 2 , where

V00 tnIRI +

"V10 L

(Rii- IRI) + 2

a210 (Rii- IRI) + 2
0-c2 i<j

r ij
Rij 

0- 
.i<j

iiblo'
Ri j 0-o:7-.

21
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and similarly, when p and q are not both zero,

1 v' apqpq
I -apq (R.- IR)+R .

pi = j2 -i<J ,

Hence we have the expression

-Q*(r, s)/2
f*(r,s) = f(r,s) e

- [Q(r, s)÷Q*(r, s)]/2
= ce-

where

1
C=

(27T)n/ 2  17 cr
i=1

Now let

Q**(rs) = Q(r,s) + Q*(rs)

W EWpqrPsq + EvpqrPsq

- EVpqrPsq

where vpq = Vpq + Wpq. Note that when conditions are "normal" vpq : Vpq + t that
when conditions are "independent" Vpq = Wpq, and that when conditions are botI "normal"
and "independent,"

Vpq = tpq

This illustrates how all of these mathematical derivations have been motivated by: (a)
reducing to the usual form in usual circumstances, and (b) keeping quadratic regression
available, and hence unique best estimates for points and plane regions.

After finding the final iterative best point estimate for (ro, So), then translating to
that point and rotating away the cross term, we still have for the approximate search
area calculations

Q"(r".,s") := /oo + /- 2 0 r" 2 + /102sv2

and we are reasonably justified in using the same confidence region criteria that we would
use for the uncorrelated case. The effect of these correlations will be to widen the search
area at right angles to the correlated observation paths, and to slightly increase the ex-
pected area size.

Weighting for Quick Fix - The quick fix intersection weights would now become

sin 2 ( 0 
- 0j)

cr2 cra2 (1- r?Sji i )

22
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The angular weighting recently introduced (6) is geometrical, whereas the correlation
weighting is ionospheric. Although presumably well correlated, these weighting effects
should be independently applied.

CONCLUSIONS

Major improvement of reliability of confidence regions and point estimation should
be achieved by using the unbiased F test, conditional generalized net variance estimates,
and multiple X2 -rejection of bearings. Minor improvements should result from intro-
duction of non-Gaussian effects and correlations between contributors; these effects will
be more pronounced when lower confidence statements are desired. A variable relation-
ship between confidence and search area size is available.
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