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Design Considerations for Two-Dimensional
Symmetric Bootlace Lenses

M. L. KALES AND R. M. BROWN

Microwave Antennas and Components Branch
Electronics Division

It is generalIl known that a symmetrical bootlace lens having two pairs otf conjugate loci can be
designed. Additionally, thel-e is a bootlace lens, the R-2R, which focuses perfectly at infinitely many
points. It is shown in this report that the R-2R is unique: there are no other pertfect bootlace lenses,
and in fact, no others with more than two pairs of conjugate ofl-axis foci.

INTRODUCTION

Because many of the newer radar systems require true time-delay scanning antennas, there has
recently been appreciable interest in the bootlace lens,1'2,', 4 a variation of the metal-plate waveguide
lens. In one type of waveguide lens (Fig. 1), rays from the feed incident on the first lens contour C1
do not obey Snell's Law but are constrained to follow the path provided by the waveguide so that the
ray exits at the same distance from the lens axis as it enters (i.e., y2 = yi). The bootlace lens offers
another degree of freedom by using flexible waveguide (usually coaxial cable) as the delay path so that
y, need not equal Y2.

The usual waveguide lens has three independent parameters: the two lens contours C, and C 2
and the variation in index of refraction n(y). Ruze5 showed that for the waveguide lens lying in the
xy plane and symmetric about the x axis, there could be at most three focal points, namely, two con-
jugate off-axis points F, and Fi' and an on-axis point F0 (Fig. 2).

The flexible transmission lines of the bootlace lens provide an additional parameter which permits
the imposition of one more constraint. Gent 2 showed that the bootlace lens (Fig. 3) could have two
pairs of conjugate foci, F1, F1', and F2 , F2 '. Gent noticed that if the foci lay on a circle of radius R with
its center at the vertex of contour CI, then (a) all the path delays 2 are equal, (b) C 2 is a circle of radius
2R, and (c) Ct is a circle of radius R coincident with the circle on which the focal points lay. He rec-
ognized that his lens was equivalent to the R-2R lens 6 which is known to provide perfect focusing for
all points on the focal arc. It would be valuable to find other such perfect lenses, but unfortunately
the R-2R is unique. It is the purpose of this paper to show that there are no other perfect bootlace
lenses and, in fact, no others with more than two pairs of conjugate off-axis foci.

DERIVATION OF THE EQUATIONS OF THE LENS CONTOURS

Let Fj and Fi' (with i = 1,2,3) denote a pair of symmetrically placed focal points, pi and pi' are
the distances from Fi and Fi' to any point (x,y) on the first lens contour, w is the electrical length
of the line joining the point (x,y) of the first lens contour to the corresponding point (u,v) of the
second lens contour, and W the electrical length of the line joining the vertices of the two lens contours

NRI Problem R08-38; Project RAV 08R 005/6521/FOOt-02-02. This is an interim report; w(ork continues on other phases of the problem.
Martin sl ipt submitted Feb uary ' 11, 1964.
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Fig. 4 - Ray-tracing diagram for symmetric bootlace lens

(Fig. 4). Let (pi,a•) be the polar coordinates of the focal point Fi, and let /3 i denote the angle between
the lens axis and the normal to the phase front of the beam which emerges when the lens is energized
by a point source located at Fi. (Note that we do not assume, as has generally been done, that the direc-
tion of the radiated beam makes the same angle with the axis as (toes the focal radius.)

In order to reduce the considerable amount of detail in the treatment that follows, some mathe-
matical generality, which is not physically significant, will be sacrificed. Thus we shall exclude the
relation y - 0 or the relation v - 0, which correspond, individually, to the case where one of the lens
contours degenerates into a straight line segmentcalong the axis of symmetry. We shall also assume that
none of the focal points are on the axis of the lens and that, for the focal points F;, the angles ai are
in the second quadrant and the angles 6i are in the fourth quadrant.

The requirement that the path length from the focal point Fi to the emergent phase front is con-
stant yields the equation

Pi + w - u cos/3i - v sin3i = pi + w. (1)

The same requirement applied to the focal point F', together with the requirement of symmetry,
leads to the equation

pi' + w - u cos/3i + v sin/3i pi + w. (2)

From Eqs. (1) and (2) we get

In addition,

(pi) 2 
- (pi')2 = 4(pi - w + -w + u cos/38) v sinl3i.

Pi = "/(x -pi 0os.) 2 + (y -p sin,,,) 2

(3)

(4)

pi' = V (x - pi coscei)2 + (y + pi sinai) 2 ,

Pi

3C

r

and
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from which
(pj)I - (pi')2  -4 y pi sinai. (5)

And since by hypothesis pi sinai =A 0, y t- 0, and v € 0, it follows from (3) and (5) that, for the ray paths

pi, pi' and pj, p1 (drawn from two pairs of conjugate foci,

pi sinai _ (pi - w + w + u cosl3,) sinfi =

pj sinaj (pi - w + w + u cosp6j) sin j,j 1,2,3; i # j). (6)

Since (6) must be true for all corresponding points of the two lens contours, it must be true in par-

ticular when the corresponding points are the two vertices, i.e., when u = 0 and w-- W = 0. Substituting
these values in (6) we get

sinai _ sinf3i
sinaj sinoja 

(7)

Thus we see that although the directions of the emerging beams need not be the same as the directions

of the focal radii, the corresponding directions are nevertheless constrained in accordance with (7).
For later use we will derive some additional relations. Substituting (7) into (6), we get the relation

(pi - p) (w - i) = u(pi cos/31 - pj cosf3i). (8)

Subtracting (2) from (1) gives
pi - pi' = 2v sinjli. (9)

Hence
Pi p' __ sinfi sinai

Pi - Pi sinJ3j sinai
or

pi - pi Pji (10)
sinai sinaj

From (5) we obtain

(pi) 2 - (pi,) 2  (pj)2 _ (pj,)2

pi sinai pj sinaj

Combining this result with (10) gives

pi + pi' Pa + Pf 11

pi Pj

Squaring (10) and (11) and rearranging terms gives

sin2aj{ (pi) 2 + (p,') 2} - sin 2ai{ (pj) 2 + (pj') 2 } = 2{ (sin 2aj) pip - (sin 2a i)ppj'}

and

pj2{ (p,)2 + (pi') 2 } - pi 2{ (pj)2 + (pj')2} = 2{--pj2 pip' + pi2pjpj'}.

Eliminating pjpj' from these two equations yields

(p 2 Sin 2
aj + pj2sin2ai){(p,)2 +(pi,')2} - 2p 2sin 2ai { (pj) 2 + (pj')2}

2 (pi
2
sin

2
a1 - pj

2
sin

2
ai) Pipi'.

4

(12)
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Substituting from (4) into the left side of (12) gives

(x 2 + y') {pi2sin•aj + pj 2
sin 2

ai - 2pi2 sin 2a•}
r'

"+ x{4pj (cosa•)pi2 (sin 2ai) 2pi(cosai ) (pi 2 sin 2
aj + pj2 sin 2a i) }

"+ Pi2 (P• 2sin 2aJ - pj2 sin 2 ai) (p,2sino2aj - pj 2sin 2ai)pi. (13)

By squaring both sides of (13), the equation of the first lens contour is obtained in a form free of radicals.
If we now let i = 1 and j= 2, Eq. (13) can be written as follows:

a 0 y 4 + (2aoX 2 + 2ax + a:3)y 2 + (aoX4 + 2ax 3 + a 2x 2 + a 4 x) = 0, (14)

where

ao = (p2, 2  - p12 ) (sin 2a 2  - sin 2a•1 )

a, = (picosal + p 2cosa 2) (p12sin 2a 2 + p 2
2sin 2al) - 2p 1P 2 (plcosa 2sin2ao + p 2cosa 1sin 2a 2)

a2 = 4pip2 (p2cosal - picosao) (p 1
2 sin 2 a 2 cosa 1 - p2

2sin 2accosa 2 ) + (p22 - p12 ) (p 1
2sin 2a 2 - p2

2sin 2a)

a:1 = (pi 2sin 2a., - p2.
2sin 2a,) (p2 2cos 2al - pl 2 cos 2a 2 )

a 4 = 2pp2 (pIcosCa2 - P2 coscel) (p12sin 2a 2 -- p 2
2sin 2a,) (15)

It is interesting to note that Eq. (14) for the first lens contour depends on the coordinates of the
foci, but not on the directions of the emerging beams.

By adding (1) and (2) we find that

- o p(1 2p + "P (16)

Equations (8), (9), and (16) can now be solved for w - i, u, and v giving, respectively,

S- pi + pi' (picos'a3  - pjcos8i( 7
WW2pi cos -cjosp, (17a)

u ( Pi'-Pi')( Pi ofPj (17b)
U 1 2 pi ,lcos13 - cosf'i)

pi -piv 2 sinli" (17c)

If (14) is solved for y in terms of x and the result is substituted in (17), the lengths of the bootlaces
and the coordinates of the points on the second lens contour are then expressed in terms of x as a
parameter. (Note that by virtue of (11), the factor (pi + p/')/2pi which appears in (16) is independent
of the index i.)

Equations (14) and (17) show that the lens is uniquely determined when two pairs of off-axis focal
points are prescribed. Before continuing with the principal objective of this paper, it may be of in-
terest to consider the special case where one of the focal'pairs coalesces to a single focal point on the
axis of symmetry. Let the coordinates of this focal point be (pi,7T) and the coordinates of the other
focal point which lies in the second quadrant be (p2,a2). The system of four equations that we get
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from (1) and (2) by letting i =1 and 2 then reduces to a system of three equations. Since pi =pi' for a
focal point on the axis, it follows from (9) that sinfla = 0. The three equations for determining the
lens contoulr thus become

pI + W + U -p +

p2 + w - U cos/32 - v sinf83 = P2 + i (la)

p.2' + w - u cosfl2 + v sinf32 - P2 + i. (2a)

This system has an infinite number of solutions. However, subject to the requirements of symmetry,

either of the lens contours may be prescribed arbitrarily, and the other contour, together with the

connecting path lengths, may then be determined. Alternatively, the path differences w -" can be
prescribed as a function of one of the variables x, y2, u, or v 2 , and the two lens contours are then de-
termined. It is not immediately obvious that the solutions will satisfy the symmetry requirements.
That the symmetry requirements are met can be seen by noting that if the transformations:

x--> x, y ---- y, u--* u, V--->-v, w--w

are made, then p, --- pi, and P2 -- P2'. These transformations transform the system of Eqs. (la) and (2a)
into itself, and thus the symmetry requirements are satisfied.

DEMONSTRATION THAT THE R-2R BOOTLACE
LENS IS THE ONLY ONE HAVING THREE OR
MORE PAIRS OF OFF-AXIS FOCAL POINTS

We return now to the general case where none of the focal points lie on the axis of the lens. As
we have seen, the lens is uniquely determined when two pairs of' foci, together with the directions
of the emerging beams, are prescribed. We shall now show that if the lens possesses a third pair of

foci not on the axis, it must be the so-called R-2R lens.
If there exist three pairs of foci, any two pairs may be used to determine the lens. Thus two addi-

tional equations similar to (14) may be obtained for the first lens contour. These three equations,
including (14) which is repeated here for convenience, are:

a ()y4 + (2aox2 + 2alx + .a:)y2 + (aox 4 + 2a x3 + aix
2 + a 4x) = 0 (18a)

boy 4 + (2b(x2 + 2b~x + b:i)y 2 + (box 4 + 2b x3 + b 2X2 + b4x) = 0 (18b)

coy 4 + (2cOx2 + 2clx + C3 )y 2 + (cox 4 + 2cxa3 + c2 x 2 + c4x) =0. (18c)

The coefficients b, can be obtained by replacing the ak in Eq. (15) by b,., and changing the subscripts
I and 2 on the right to 2 and 3, respectively. Similarly, the ck can be defined by replacing aj, by c,,,
and changing the subscripts 1 and 2 to 3 and 1, respectively.

We now impose the requirement that Eqs. (18a), (18b), and (18c) define the same curve. We shall
show first that the leading coefficient in each of these equations is different from zero. Because of

the similarity of the equations, it will clearly suffice to show that ao = 0.
Since a 0 = (P22 - p12) (sin 2a,_ sin2'a ), it follows that a0 = 0 only if (a) p2 = p' or (b) sina 2 = sinai.

Suppose first that case (a) is valid, i.e., P2 =p I. Substituting this relation in (8) gives upI (cosfl,--cosfli) =0.

This is possible only if cosf82 = cos/31 or if u - 0. If cosfl2 = cosf1 , then sinfl,2 = sing,, and it then fol-
lows from (7) than sinal = sina 2 . This would require that the two distinct foci F , and F 2 be coincident.

On the other hand, suppose that u - 0. Then it follows from (8) that either w - w =- 0 or pi =P2 =P3.

If w -- i - 0, then by adding (1) and (2) we find that, for i = 1 and 2, pI +p,' '2p o, andp 2 +p.2'= 2 p,-=

6
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2pi. The first of these equations represents an ellipse with foci at F 1, F,', and the second represents
an ellipse with foci at F2 , F2'. However, since each of these equations also represents the first lens con-
tour, both equations must represent the same ellipse. Therefore the focal pair Fh, Fi' must coincide
with the focal pair F2, F 2', which is again a contradiction. If u - 0 but w- ýI 0, then P1 = P2 =p and,
consequently, a 0 = 0 and b0 = 0. From (18a) and (18b) we then obtain

2 -(2alx3 + a2x 2 + a 4x) -(2blx3 + bzx 2 + b4x)2 aix + a3 2b6x+b' (19)

Since the foci F1, F2, and F. are all distinct, and P1 P2 = P3, it follows that no two of the angles al,
a.,, and a:, can be equal. Hence a:, - 0 and b;1 # 0. It follows then from (19) that a 4/a;1 = b4/b3. Upon
substituting the defining relations for a:,, a 4 , b:h, and b4 and using the fact that p, = P2 = P:, the last
equation reduces to

2p, 2p,

cosa 2 + COSal cosa:, + cosa,2"

Hence cosa1 = cosa, or a, = a;3, which leads to the contradiction that F1 = F 3. Thus we see, finally,
that the initial assumption that Pi = P2 leads to a contradiction.

Suppose next that case (b) is valid, i.e., sina1 = sina 2. From (7) it follows that 81 = f2. If we sub-
stitute this result in (1) for the case where i = 1 and 2 and subtract the two resulting equations, we
find that p2 - P -- P I. It is clear from Fig. 4 that if F, and F 2 lie on the same ray through 0 (as
they must if a, = a 2 ), then the preceding relation can be satisfied only by points on this ray. Such a
solution for the first lens coItour is unacceptable since it violates the symmetry requirement. We have
thus shown that cases (a) and (b) are not valid, and hence a 0 # 0. For future reference we note that
(7) and the fact that sincai # sinae imply that cos/,8 # cos/3; (i # j).

In passing, it might be interesting to note that the preceding discussion has shown that if there
are more than two pairs of focal points, the focal radii cannot be equal. On the other hand, the proof
that two foci cannot lie on the same focal ray is valid even if there are only two pairs of foci.

We return now to the set of Eqs. (18). Since the leading coefficients are not zero, each of the equa-
tions has two solutions for y2 as a function of x. Since each equation of the set must determine the
same lens contour, any two of the equations must have at least one common solution. Suppose first
that two of the equations have only one solution in common. There is clearly no loss of generality
if we assume that the two equations are (18a) and (18b). If we eliminate y4 from these two equations,
we find for the common solution

y2 - 2(a,bo - aob,)x 3 + (a2bo - aob 2.)x
2 + (a 4bo- aob 4 )x

(aob, - abo)x + (aob:1 - a:ib0 )

Thus we see that y 2 is a rational function of x. On the other hand, solving (18a) for y 2 we get

y2 . -(2aox 2 + 2 aix + a:3) -t/4(a 1 2 + aoa:- aoa 2 )x2 + 4(a~a - aoa4 )x ± a:1
2

Since y2 must be rational in x and, moreover, y = 0 when x = 0, we see from the last equation that the
solution must have the form

y2 =_x 2 + kx, where k # 0.

Substituting this solution in (18a) gives

(aok 2 + 2ak + a2 - a:u3 )x
2 + (ka:3 + a4 )x = 0.
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Hence
ka:- + a 4 - 0.

Similarly,
kb 3 + b4 = 0 (20)

kc 3 + c4 = 0.

These relations between the coefficients result from the hypothesis that any two of the set of Eqs. (18)

have just one solution in common. If this is not the case, then all three of the Eqs. (18) must have both

solutions in common. In this case, the coefficients in any one of the equations differ from those in anv

other by a constant factor. Hence, constants k,, k 2, and k3 exist such that

b:; = kia:,, b,4 = kia 4

c 3 = k2a:t, c 4 = ka 4  (20')

c:j = k:,bi, c 4 = k:b 4 .

These relations imply that all two-rowed minors of the matrix

a4 b4 C 4

are zero. Hence, constants m, and M 2 , not both zero, exist such that

mia:1 + m 2 a 4 - 0

mib 3 + m 2 b 4 - 0

IlC3 -+- m2c 4  0.

If we assume that m2 # 0 and let M = mI/m 2 , then the preceding equations become

ma:, + a4 0

mb 3 + b4  0 (20")

mc 3 + c4 -0.

(We note that since k in Eq. (20) is not zero, it is clear that if the assumption n2. # 0 is replaced by the

assumption m, = 0, the relations obtained remain valid if we interchange the subscripts 3 and 4 and
replace k by k 1. It will be apparent that this results in a trivial modification to the remainder of the
discussion.)

Equations (20) and (20") show that whether the equations of the set (18) have one or two solutions
in common, the same relationships among the coefficients a:3 , a 4, etc. are obtained. If we now sub-

stitute the defining relations for these coefficients in (20), we obtain the set of equations

(p, 2sin 2a 2 - p 2
2 sin 2a,) (p 'OSO 2 - P2COSOa) [k(picosa 2 + p2(,osa•,) - 2 p]P2] = 0 (2 1a)

(p2,2si n2a: -- p:,2sin 2a._,) (p2,0sa- p 13cosa 2.) [k(p2,cosa:3 + p:ýcosa 2 ) - 2p 2p:3 = 0 (21b)

(p:, 2sin 2a, - p, 2sin2 •a:1) (p:,coso, - pjcosa:j) [k(p:jcosa, + pcosa:j) - 2p:ýpi] = 0.

8

(2 1c)
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We shall now show that
cosa 2  cOsa 2  (22) i

Pi P2 P3

This means that all of the factors lying in the second column of the set of Equations (21) must be zero.
Since only one factor in each equation needs be zero, it is possible to satisfy the system of equations
by letting various combinations of the factors be zero. Suppose, first of all that, two of the factors in
the first column are zero. Then the remaining factors in the first column must also be zero. Hence
we have

p, 2sin 2 a 2 -- p2
2 sin 2 a, = 0 (23a)

p2.
2sin 2a:, - p:, 2sin 2a 2 = 0 (23b)

pa 2sin 2ac - pl 2sin 2a:ý = 0. (23c)

With the aid of (13) the first of these equations leads to the following equation for the first lens contour:

~2 +2 (2plcosal 2P 2 
2 in 2a -- 4p 2cosa 2 p12sin 2 a 1 )x2 (p 2

2sin 2a, - p, 2sin 2a,)

2p1p2(p2cosal - plcosa 2 )X

(P2,2 
- p1 2

)

2
pip2(p 2 

2
COS 2

al - p 1
2 cOS 2

a 2 )X

(P 2 COSa 1 + picosa,2 ) (P2
2 

- p1
2

)

2p1P2(P. 2  
pl 2 -- P 2

2sin 2a, + pi 2
sin 2

a 2 )x

(P 2 Cosa 1 + picosa 2) (P2
2 

- p1
2

)

cosal 2x cosa 2  (24a)

Pi P2

Similarly, (13) and (23b) lead to the equation

2x(2b

x2 + y2 = cosa 2  cosa (24b)

P2 Pa

Equating the right-hand members of (24a) and (24b) we find that

paCOSai = picosa:. (25)

Squaring (25) and combining the result with (23c) we find that P3 
2  P i 2, a result which has previously

been shown to be impossible.
Thus we see that, at most, one of the factors in the first column of the system of Eqs. (21) can be

zero. If so, there is clearly no loss in generality in assuming that it is the first factor in (21a), i.e., that
(23a) is valid. It follows that either the second factor of (21b) or (21c) is zero, or that the third factor
of both (21b) and (2 1c) is zero. Let us assume the latter to be true. Then

k(p 2cosa:3 + pacosa 2) - 2p 2p3 = 0 (26b)

k(pacosao + picosa2 ) - 2 pIP3 0 0. (26c)
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[Equation (26a) is not written yet. When it is referred to in the pages that follow, it will he of the same

formn as (261)) and (26c).] Eliminating k between these two equations leads to the result

pic (Sa 2  P p2(1)sa 1 .

Squaring both sides and combining with (23a) leads to the contradictory result that p, = P2.

We thus conclude that at least one of the second factors in (21b) or (21c) must he zero. Without

loss of generality we may assume, then that

P2,cosa• -- p:icosa 2 = 0. (27)

If this relation is substituted in the formulas for the coefficients in (181)), the following expressions

for the coefficients are obtained:

b- =OS22  a ((-os 2  
C()S2 a

2 
)

2
; b -= P22 (COS

2
aO, -- (()S20a2)2;C()S20a2 I (()S:3a2

b2 = 24 (os2a 1 : - cos 2a2)2; b:3 = 0; b 4 = 0.
o' S40Ce2

If we substitute these exl)ressions for the coeffic(ients in (18b) and then solve, we find that the equation

of the first lens contour is

x2 + y2 x (28)

Comparing this equation with (24a), which follows from the assumption that (23a) is valid, we see

that
2 cosa 2 COsa I _ ( osa•.

P2 Pi P2

01-
cosa 2  Cosa]

P2 p1

Comhining this result with (27) gives the relation (22), which we wish to prove.

Finally, let us assutme that none of the factors in the first (olhnmn of the set of E(qs. (21) is zerto. If two

of the fa(tors in the second column of this set are zerio, then (22) follows directly. Suppose then that,

at most, one of the factors in the second column of the set is zero. Then at least two of fhe factors in

the third Cohlmm are zero. If all three fac tors are zero, designate as (26a) the equation obtained by

equating the third factor of (21a) to zero. As we have already seen, eliminating k between (261)) and

(26c) leads to the relation

pl(:osa 2 = P,(osa,. (29)

Similarly, eliminating k between (26a) and (261)) leads to the relation

P IcOsa:3 = P:jC(Oa I.

Together, the preceding two equations lead directly to (22), the desired result.

If only two of the fac tors of the last column of the system of EoIs. (21) are zero, we may then, with-

out loss of generality, assume that E(qs. (261)) and (26c) are satisfied. Then (29) will also he satisfied.
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In discussing the system of Eqs. (18) earlier, two cases were considered. In the first case, it was assumed
that one pair of equations, regarded as quadratic in y

2
, had just one solution in common. For the other

case it was assumed that all three equations had two solutions in common. On the basis of the first
assumption it was shown that the equation of the first lens contour took the form

x 2 + y
2 = kx. (30)

A review of the derivation of the set of Eqs. (21) shows that, in this case, the constant k appearing
in the preceding equation and the constant k appearing in Eqs. (21) are the same. From (26b) we find
that

cosa*2 cosa:i 31

P2

Substituting this value of k in (30) we get

2x (2
x2 + y2 = cosa 2  (32)

P2 PS3

In precisely the same way that Eqs. (27) and (18b) led to Eq. (28), so Eqs. (29) and (18a) lead to Eq. (28).
Comparing (28) and (32) we see that

COSa 2  COSC 3

P2 P3

Combining this last result with (29) we obtain (22) once again.
Finally we assume that all of the equations of the set (18) have two solutions in common. If (29)

is substituted in the formula for a 4, we see that a 4 = 0. From (20'), then, it follows that b4 = 0, or what
is the same thing,

2
02P:3 (p2Cosa 3 - pacosa 2 ) (p.2 2sin 2

oa: -- pa1sin 2
a 2 ) = 0.

The last factor in this equation appears in the first column in the set (21) and, therefore, cannot be
Zero b-, hy1 )Ihesis. Hence

P2COsa:3 - P3COSCa2 ý 0.

This equation combined with (29) again yields (22).
We have seen that in order for Eqs. (I8a), (18b), and (I 8c) to have a common solution, it is neces-

sary that Eqs. (21) be satisfied. We have now exhausted all possible ways of satisfying Eqs. (21) for-
malls, and have seen that in each case either a contradiction is obtained or (22) is satisfied. Hence
we conclude that a common solution to (18a), (18b), and (18c) is possible only if (22) is true.

Now let -11d be the common value of (cosai)/pi in (22). Then from (22) it follows that each
of the focal points with polar coordinates (pi,ai) lies on the circle

p = -d cosa. (33)

We have seen that (27), which is included in (22), leads to (28), namely,

X2 + y
2 = x

cosa2
92
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Combining this result with (33) gives

x 2 + y2 + dx= 0. (34)

Since Eqs. (33) and (34) both represent the same circle, we conclude that if a symmetric bootlace

lens has three or more pairs of focal points not on the axis, these focal points must lie on a circle which

is also the first lens contour. These results are consistent with the R-2R bootlace lens design. Since

the second lens contour is uniquely determined when the first is given, the solution would be complete
were it not for the fact that, by hypothesis, the directions of the incident and emergent beams are

not required to be the same, as they are in the R-2R case. We are now in a position to prove that these

directions must be the same, and that, therefore, the R-2R lens provides the only solution.

Returning to the set of Eqs. (17) we recall that the factor [1 - (pi + pi')/2pi] is independent of

the index i. Furthermore, because of the way the bootlace lens is constru(ted, each point (u,v) on

the second lens contour corresponds to just one point (x,y) on the first contour. Hence the coordi-

nate u depends only on (x,y) and not on the indices i and j of the pair of foci used in determining

the lens contours. If we substitute Pi = -d cosai in (17b), we find that

cosa - cosac = pi + Pi

cosfli- cosI3j [ 1 2 pi (

Since the right side of (35) is independent of both i and j, we may equate the left side to a constant

K, independent of i and j. It at the same time we let j - 1, we get

cosai - cosai. K # 0 (36)
cos/3- cos531

or
cosai = K cosf3i + cosat - K cos/31. (37)

From Eq. (7) it follows that there is a constant M such that

sinai = M sinf3i. (38)

Squaring (37) and (38) and combining the results leads to the equation

(K2 - M 2 ) cos 2
P, + 2K(cosai - K cospi) cosf8i + (cosa -- K cosfli) 2 + M 2 - 1 0. (39)

If we rewrite (39) in the form

a cos 2fl, + b cos/3j + c = 0 (i = 1,2,3), (40)

we see that we have a system of three linear homogeneous equations in the quantities a, b, and c.

If the determinant of the coefficients is different from zero, then a, b, and c must all be zero. The

determinant of the coefficients is the well-known Vandermoncle determinant

c)s
2

831 cos/p1  1

cos 2 
J62 csO51 I = fj (cos3i - cos'8j) # 0.

i<j

cos 2f':3 cosl3:i 1

It was show n earlier that cos)/3 sIs j if i 3 j.

12
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Hence

K
2 - M2 = 0

2K (cosal - K cosf3I) = 0

(cosa1 - K COSf61 ) 2 + M 2 
- 1 = 0. (41)

Since K # 0, it follows that M 2 
= 1. Substituting this result in (38) and recalling that ai is in the second

quadrant and f8i is in the fourth, we get

sinai = -sin/3i (42a)
and therefore

cosai = -cos/3i. (42b)

Thus we see that the incident and transmitted beams are in the same direction.
For the sake of completeness we show that the second lens contour is the second circle of the

R-2R system. Substituting (42b) into (35) and (42a) into (17c) we find that

(u + d) = d (pi + pi') 2 cosai (43a)

and

(pi -- (43b)
2 sinai

Squaring the last two equations and adding we get

(u + d) 2 + V2 (p,) 2 + (p,' )2 + 2 pip,' (sin 2ai - cos 2ai) (pi)2 + (p,') 2 - 2pip,'cos 2 ai
4 sin 2 aicos 2a, 4 sin 2aicos 2ai (44)

Referring to Fig. 5 we see that

(p,)2 + (p,') 2 - 2pipi'cos2ai = (2h) 2 = (2d cosaisinai) 2 . (45)

YI

Fig. 5 - Diagram for case where first lens contour
is an arc of a circle on which the foci lie
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Substituting (45) in (44) we get the equation of the circle

(U-+ d)
2
+ +v

2 
= d

2

which we recognize as the second lens contour of the R-2R system with 2R = d. Finally (1 7a) and (22)
yield the result

w = w. (46)

In other words, the path lengths joining corresponding points of the two lens contours are all equal.

CONCLUSION

It is well known that the two-dimensional symmetric bootlace lens, commonly referred lto as the

R-2R lens, has the property that perfect focusing can be achieved for infinitely many positions of
the point source. This report shows that it is the only such lens having this property; inrdeed, that
it is the only one for which perfect focusing can be achieved for three or more pairs of focal points
not on the axis of the lens.

In the course of this demonstration, equations were obtained for the lens contours determined
by two pairs of off-axis focal points. It was seen that the directions of the emerging beam could be
different from those of the focal radii of the sources, provided the constraint given by Eq. (7) was
satisfied. Finally, it was also shown that infinitely many lenses are possible for which a pair of conjugate
off-axis focal points and a single on-axis focal point are prescribed.


