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SYMBOLS

c viscous damping constant between mi
and mi-i

Fj forcing function on mn

fh0 nonlinear spring force between mass and
foundation; kx + Px3

f12 nonlinear spring force bitween m 2 and
min; k2x 2 + Th.xa2

ft mean value of the modified nonlinear
spring force for t < t < t,,+

h finite time increment; At

ki spring constant between mi and mi_1

mi ith mass

p o) /j -- a 2

r

Sn

S_ , - ,,i = F.+1 -- 2F,, + F,,-1
PI I S +, -2 t+

S2 _ ,, - S. +
1f Sni n iZ.~2n Z

t independent time variable

u scaled velocity -iko for one-degree-of-
freedom system

Un scaled velocity at t = ti for one-degree-
of-freedom system

ui scaled velocity i/•wi

(u j) n scaled velocity at t = tn

F,,+, - Fit

v scaled velocity y/lw for one-degree-of-
freedom system

vII scaled velocity at t = ti for one-degree-
of-freedom-system

vi scaled velocity ýji/oj

(vi). scaled velocity at t = t.

x relative displacement between mass and
foundation for one-degree-of-freedom
system

x,4 relative displacement between mass and
foundation at t = tit for one-degree-of-
freedom system

xi relative displacement between mi and
mi-1

(xi), relative displacement between mi and
mi-i at t = tn

y absolute displacement of mass in one-
degree-of-freedom system

yn absolute displacement of mass at t t.
for one-degree-of-freedom system

yi absolute displacement of mi

(yi). absolute displacement of mi at t = ti

z absolute foundation displacement

ai ci/2mitoi

Pli coefficient of nonlinear term of spring

2

Si delta term for the ith equation of motion

0 &h

(09 ki/mi

ii



A Numerical Method for the
Transient Response of Nonlinear Systems

G. J. O'HARA AND P. F. CUNNIFF

Structures Branch
Mechanics Division

Numerical integration equations are derived for determining the response of nonlinear systems
subjected to transient loads. The numerical method consists of approximating the nonlinear variables
and the forcing functions in the differential equations over a short interval of time by their mean
value, by a straight line, or by a parabola. This allows for Duhamel integral type solutions for the non-
linear terms. A step by step solution follows which uses an iteration method during each increment of
the solution. The sufficient condition for the convergence of the iteration method is presented for the
case of N numerical equations. A scaling law is presented which eliminates linear damping from the
equation of motion by a prescribed transformation. Example problems of a one-degree-of-freedom
system and a two-cdegree-of-freedom system are solved by the numerical integration equations and the
solutions are compared with response curves obtained from analog computers at NRL.

INTRODUCTION

This report deals primarily with approximate
numerical solutions of a single or a set of non-
autonomous second-order ordinary nonlinear dif-
ferential equations. While the class of problems
under consideration lie in the field of structural
dynamics, the proposed solutions are applicable
to many other physics and engineering fields.
The mathematical tools of ordinary nonlinear dif-
ferential equations are particularly useful when
dealing with autonomous solutions or with ap-
proximate steady-state solutions of these prob-
lems. However, they require considerable ingenu-
ity and insight to apply and are not suited for
the study of transient behavior. An attempt is
made in this report to present an easily under-
stood, yet powerful and precise, technique which
will allow most engineers to cope with the tran-
sient response of nonlinear systems.

Two previous NRL Reports (1,2) have dealt
with this problem, and this report pursues the
same general approach. Most approximate nu-
merical techniques fail to attack directly the non-
linear differential equations in their solutions.
Rather, they introduce Maclaurin or Taylor series
expansions of the functions as in the method of
Picard (3). The other general approach is to re-
place differential equations by equations of finite

NRL Problem R05-24B, Project WW 041. This is an interim report
on one phase of the problem; work is continuing.

Manuscript submitted December 11, 1962.

differences and to use these equations as an ap-
proximation to the differential equations. These
are good general purpose techniques. However,
they tend to be routine techniques which remove
the analyst from a clear understanding of the
manner in which the differential equations were
solved.

The numerical method presented uses only
those mathematical tools which are familiar to
most engineering graduates and are applied di-
rectly to the class of differential equations under
study. It should not be construed that this is a
crude technique and that the solutions will be
greatly in error or will have inherent instabilities
of large magnitude. The examples in this report
show the opposite to be true.

To those readers who are already familiar with
Refs. 1 and 2, this report is a direct application
of the principles explained therein. For those
persons who have not read them, however, it is
noted that this report is completely self-contained
and these references are not required reading.

BACKGROUND THEORY

The Linear Problem

It will be beneficial to review a numerical inte-
gration method (1) which is used to solve linear
single-degree-of-freedom problems before pro-
ceeding to the nonlinear ones. Consider the un-
damped linear oscillator shown in Fig. 1 subject
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Fig. I - Linear oscillator

NTy
F(t)

to an applied force F(t). Let y be the displace-
ment of the oscillator so that the differential
equation of motion is

my + ky = F(t) (1)

where the dots denote differentiation with respect
to time. If w2 = k/m, Eq. (1) becomes

S+ &)2 y F(t) (2)

m

The general solution of this equation is

Y = Yc + yp (3)

where Ye is the complementary solution and y,
is the particular solution. This property of linear
equations will be shown to have some value in the
approximate solution of noinlinear equations.

For the case under study the complementary
solution is well known and the particular solu-
is a Duhamel integral (4). If v = 5/w, the general
solution of Eq. (2) is

y = yo cos &ot + v0 sin cot

+ F (T) sin &) (t - T) dT (4a)

and its scaled derivative v is

v = -yo sin &)t + vo cos wot

+ -I F(T) cos co(t - T) dT (4b)

where yo and v0 are the initial values at t = to = 0.
Usually the integrals of Eq. (4) cannot be eval-

uated for an arbitrary curve of F. If F is divided

into equal segments of time,* and represented in
some approximate manner for each increment, a
step by step approximate solution follows. It is
noted that Eq. (4) is true for all times during the
response of the oscillator. For example, suppose
y = yt and v = vl att ti. Now the time can be
redefined arbitrarily to start at zero for the next
increment with y, and vi being the initial condi-
tions. The Duhamel integrals are solved for this
next step, Y2 and V2 are found, and a repetition
of the process defines the next pair of points.
The process is self-perpetuating.

The problem in this direct attack upon the dif-
ferential equation of motion has resolved itself
into the solution of these integrals for a short
time increment. Since the forcing function may
be known only as a graphical function, as a dis-
continuous function, or as a complicated analytic
function, some methods of describing it over the
immediate range of integration is now discussed.

Approximate Methods of
Representing Functions

Three methods are presented for the approxi-
mate representation of a function over finite in-
crements of time At = h. Suppose a portion of an
arbitrary function F(t) is divided into equal seg-
ments of time.* Figure 2 shows the rectangular
step representation consisting of horizontal lines
drawn through the mean value of the function
over each increment h. Appendix A reviews two
common procedures for obtaining graphically the
mean value of a function for a given increment.
The equation of the function during each incre-
ment is

F(t) = F, - constant, t. < t < t,+, (5)

where F. is the mean value of F during the in-
crement.

The second method represents the curve by a
straight line through the end points across each
increment as shown in Fig. 3. The equation of the
function from tn to tn+t is

F(t) = F + S& (6)

where S. = Fn+1 - F,, and time begins at t,.

*Dividing F into equal segments of time is an unnecessary but con-
venient restriction since it makes calculations easier and computer pro-
gramming less cumbersome.
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F

At =h-

t
tn-I tn tn+i

Fig. 2 - Representation of a function by rectangular steps

The third method of approximating a function
across an increment is to pass a parabola through
three successive points. For example, Fig. 3 shows
three successive points on the curve, namely,
Fl-1, F,,, and F,+ 1 . The equation of the parabola
from t,, to t,,+1 passing through these three points

on the curve is

or

F(t) =r, + S,- + -

F th) F 2 2 h+

Fr(t) = F,, + S,, -t +- 2

where

n = Sn+l - Sn = F,+ 2 - 2F,,+1 + F,,

S2_ =S S,- n1 F.+, --2Fn + F,-1 (9)

and time again begins at t,. Note that S2 is not the
square of S. Equation (7a) is used to represent the
curve during the first increment of time, that is,
for n = 0. Equation (7b) is the expression used for
the remaining segments of the curve. Equation
(7a) is derived specially to avoid the nonexistent
term in S2_1 (that is, F-1) if Eq. (7b) were used for
the first increment.

For the case where two successive increments are
not equal, say h between F,,.- and F,, and h'
between F,, and F,,+I, Eq. (7b) is adjusted to read

(7a)

(8)

F

I _ _ I _ _ _ I I_ _ I _ t
tn-I tn tn+l

Fig. 3 - Representation of a function by straight lines

F(t) = F,

+ -(h')'-I +h [(h') 2 - h2]FV + h2Fn+ljt
±{(hh h')

+ [h'Fn-1 - (h + h')Fn + hF+lt I t2

L nit kn + n ) _J
. (10)

Solution Equations for the
Undamped Linear Oscillator

If the parabolic representation of a function
given by Eq. (7b) is substituted for F in Eqs. (4),

(7b) and the integrations performed and evaluated at
t = h, there results

Yn+l = yn cos 0 + Vn sin 0

+ (, - COS 6) - sin 6)

Vn+1 = -y. sin 0 + v. cos 0

+F~snOAS,,(1--cos O)
+ Fsin 06 0)

2 (_1 .1 + COS 0+ 2 sin 6)2k ý - -0 0 (lIb)

where 0 = &h. It is noted that for constant incre-
ments h, the trigonometric coefficients are calcu-
lated just once for the entire solution.
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Equations (11) are used for the straight line
representation of F by setting S2 equal to zero,
and for the rectangular step representation by
setting both S and S2 equal to zero. The equa-
tions for the latter case are

yn+1 = Yn COs 0 + v, sin 0

+ (1- cos 0)
(12a)

Vn+ i =-yn sin 0 + v. COs 0 + • sin 0. (12b)
k

Recall that F. is the mean value of the function
during each increment. For functions such as
F, which are explicit functions of time, it is recom-
mended to find the average value of F during the
time increment instead of employing the graphical
techniques outlined in Appendix A. The average
value of the function represented by a straight
line is

- F,, + F.+, (13)
2

while the average value for a parabolic represen-
tation is

F, = (--F-_, + 8Fn + 5Fn+,). (14)

Either Eq. (13) or (14) is then substituted for Fn
in Eqs. (12) and the numerical integral equations
solved in a step by step fashion.

Solution Equations for the
Viscously Damped Linear Oscillator

The method of solution for the undamped case
is also applicable to the viscously, damped sys-
tem. The equation of motion of an oscillator with
linear damping is

The form of the general solution for Eq. (16)
is given by Eq. (3) which, for this case, consists
of a combination of exponential, trigonometric,
and hyperbolic functions, and the solutions may
be found in Appendix B. The forcing function
is approximated as previously discussed and the
solution carried on precisely as in the undamped
case. For example, with a = 1 and the average or
mean value of the force used, the equations are

yn+1 = y.(1 + O)e-0 + v.Oe- 6

+- [I - (1 + 0}e-6]

V,+- =-yYnOe-0 + v,,(I - 0)e-6 + F, O_
k

Comments

"The solution of the linear problem leads to
several interesting observations.

1. A direct attack on the differential equation
is made.

2. The coefficients of the variable terms in the
numerical equations become cbnstants through-
out the solution when equal time intervals are
employed.

3. The solution makes use of the natural expan-
sion functions for the differential equations. That
is, they are of the form of trigonometric, hyper-
bolic, and exponential functions as they would be
in an analytical case.

NONLINEAR PROBLEM

Numerical Solution

Suppose an ordinary second-order differential
equation is reducible to the form

S+ H(y, ", t) = 0
my + c5 + ky = F(t).

If a = c/2m&o, Eq. (15) becomes

S+ 2awý + &)2 y - F(t)

m
where-- < a < •, and o> 0.

(15)
(17)

where H(y, j, t) may be a very complicated func-
tion. Since the function H contains a forcing func-
tion F, Eq. (17) becomes

(16)

(18)m

4
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where

H G -F

Let Eq. (18) be rewritten

• + 2aw5 + &)
2y = F

m

and let

so that

-[G - 2awoj - w2y]

o 2
5 = G - 2awoo - 0o2y

F
) + 2aooy + oJ2y =F _ &o28.

m

numerical integration equations for y and v are
obtained. Consider a simple oscillator with a cubic
hardening spring. The equation of motion is

mý + ky +IOy3 = F(t)

or

F(t)
m

where

a zzY3.

Use Eq. (7b) for the cubic term, obtaining

(1 9a)

If 8 were zero for all time, the equation would
be linear, and the solution has already been pre-
sented. For convenience let the damping term
a be zero in Eq. (19a). Then,

F
+ &-2y= = F- &)25. (19b)

m

The solution of this equation is similar to Eqs.
(4); that is,

y yocos 0+vo sin 0+ f'F(T)

sin o)(t -- T)dT - 6o 8(T) sin &o(t - T)dT

(20a)

v= -yo sin 0+ vo cos 0+ 1 F(T)foo
cos &o(t - T)dT- &o 8 (T) cos o)(t - T)dT.

(20b)

The solution of the linear problem for a given
arbitrary curve of F requires that F be partitioned
into finite increments of time and be approxi-
mated over each increment by one of several
representations. The same approach, using the
same increment h, is proposed to handle the inte-
grals in Eqs. (20) containing the nonlinear terms
in 6.

For example, each term in 8 might be approxi-
mated by the parabolic representation so that

6 [Yn + (yn+- - Y.)
k hz

+ (y+ 2y. + Y + t)2 (h2 -X (21)

Expand Eq. (21), substitute it into Eqs. (20) for
8, and integrate each term over the increment.
If the forcing function were also approximated
by the parabolic representation, the resulting
numerical integration equations are of the form
of Eqs. (11) with the additional terms yn-_, yn,
and Yn+l; that is,

yn+i = gi(Fn-1, Fn, Fn+i, yn-i, yn, Yn+i, vnjh)

(22a)

Vn+1 ý g2(Fn-1, Fn, Fn+l, yn-1, Yn, yn+a, vn,h).

(22b)

Everything is known on the right-hand side of
Eqs. (22) except yn+l. As a first trial this value may
be assumed, equal to Yn. Substitute this into the
right-hand side of Eq. (22a)_ to find yn+±. Use this
value for Yn+1 in the right-hand side of Eq. (22a)
to find a second value of Yn+i. Repeat this itera-
tion process until the succeeding values of yn+i
converge. Use the final value of Yn+l in Eq. (22b)
to find vn+i.

This method of solution could also be used if
instead of the parabolic representation the straight
line representation approximated the nonlinear
term. However, in either case a great deal of time
and effort is required if the analyst uses a desk

C

r'i
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calculator. Of course, the numerical equations
could be programmed for an electronic computer.
Everything which follows from this point is di-
rected toward desk calculator computations.

The recommended method of solution with a
desk calculator is to use the mean value or average
value of the variables in the 8 term during a given
finite increment. If this assumption is also ex-
tended to the forcing function, Eqs. (20) are inte-
grated to give

y,+I = y, COS 0 + v, sin 0

+--- (I -- cos 0) -- (I• -- cos 0) (23a)
k

Vn+l -yn sin 6 + v, cos 0

+ En sin 0 - &, sin 0. (23b)
k

For the oscillator with the cubic hardening spring,
the straight line averaging method yields

6n- (yn + yn+) (24)

while the parabolic averaging method yields

8n = y (--y,_, + 8y. + 5y,,+ 1)3. (25)
1728

Once again y.+, is the unknown on the right-
hand side of Eqs. (23) and the iteration process
is used for each step of the solution as previously
described.

The First Increment

Special treatment is necessary for the applica-
tion of the numerical integration equations at the
start of the solution. At the beginning of a problem
the initial conditions are always known so that
yo and v0 are established. Having selected a time
increment h, the first step of the solution depends
upon the type of averaging method to be used for
the nonlinear terms. In the case of the straight
line averaging method, the first trial value for

yl might be assumed; yi might be set equal to
yo, or a Maclaurin series might be used to approxi-
mate yi. In any event, the first trial value of yi is
substituted into the right-hand side of the nu-
merical integration equation to find a new value
of yl. The iteration procedure follows as previ-

ously mentioned. Of course, if 8 contains the
scaled velocity, the same approach is used to find
V1.

In the case of the parabolic averaging meth-
od, Eq. (25) shows the rear point y, 1, which must
be known before iterating to find y.,+. At the
start of a problem where n = 0, y-i does not exist.
It is suggested that the straight line average be
used for the first increment to establish yi. If
greater accuracy is desired, use the linear averag-
ing method for half an increment, that is, for
h12. Having established Y1/2 in this manner, the
parabolic averaging method is now used for
another half increment to find yi. The full in-
crement might then be used from this point
throughout the remainder of the solution.

Graphical Form of Nonlinear Components

Quite frequently the nonlinear characteristic
of a material in a system is determined from lab-
oratory experiments and is plotted as force ver-
sus displacement or velocity. It is sometimes pos-
sible to find an analytical expression for such a
curve. In the event this is not readily attainable,
a graphical technique for finding the mean value
of a function over an increment is used (see Ap-
pendix A).

For purposes of illustration consider Fig. 4a,
which shows the spring force for positive dis-
placements only. A line tangent to the curve at
the origin is drawn and is labeled the k-line. Fig-
ure 4b represents the spring force minus the
k-line as a function of displacement. This is the
curve from which the mean value of f is deter-
mined. Suppose an oscillator contains such a
spring. Equations (23) become

yn+l = yn cos 0 + vn sin 0

+ ( 1 -- cos 0) -- (f 1 -- cos 0) (26a)

Vn+1 = -yn sin 0 + Vn cos 0

+ - sin 0 --n sin 0
k k

(26b)

where Fn is the mean value of the forcing function
and f, is the mean value of the curve shown in Fig.
4b. At step n, Yn and vn are known, Fn is known
from the input curve, f. depends upon yn and the

6
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C

-

DISPLACEMENT

(a) Force displacement curve

DISPLACEMENT

(b) Adjusted force displacement curve

Fig. 4 - Spring force of a nonlinear spring. The k-line is tangent
to the curve at the origin.

unknown y,+i. As a first trial for finding y.+l,
find f for y. and use this for f.. Substitute into
Eq. (26a) to find a first trial of y.+i. Now find
f. between y. and yn+1 from Fig. 4b and substitute
this into Eq. (26a) to obtain a new value of yn-+l.
Repeat the process until succeeding values of
yn+i converge.

For certain curve shapes it might be advan-
tageous to draw two or more k-lines for certain
portions of a given curve. These k-lines would
provide a solution which follows more closely a

uj
nr
0Ua_

(D
z
0Y
U)

piecewise linear solution of the system by reduc-
ing the magnitude of the adjusted forces f. This 4j

means that a corresponding number of differen-
tial equations must be written for each region of
the curve where a k-line is drawn. Proper initial •
conditions and &)'s must be determined for each
numerical integration equation. An example
might be a material whose force-displacement
curve follows closely an ideal elastic-plastic re-
lationship.

Forcing Functions

Foundation motion of structures is an important
type of forcing function in the field of structural
dynamics. Such motion may be described as foun-
dation acceleration, velocity, or displacement. In
the case of foundation acceleration the differen-
tial equation of motion for a nonlinear oscillator
with a cubic hardening spring is

X + (.
2
X = -Z- y

2
X

3  (27)

where x is the relative displacement between the
mass and the foundation and Y is the foundation
acceleration. This equation is similar to Eq. (2),
with x replacing y and -Y replacing Frm. The
parabolic averaging method is recommended for
systems with a known curve for 2 This average
for Y is the same as Eq. (14) provided the F terms
are replaced by Y terms. Equations (11) may be
also used provided the following changes are
made:

F. -r , . F. Hn S. S,,F. -m , k - C02' k - (o2'

S2_1 Sý2

k 0)2 ,yn Xn, Vn = Un.

When the foundation velocity is the prescribed
input, an interesting relationship is found for
the parabolic average of Y to be used in the nu-
merical solution of Eq. (27). Consider the para-
bolic representation for foundation velocity and
differentiate to find foundation acceleration:

S t $2- 1 t2-1 t
" -h+SnTt+ 2 (h" 2 h)

Sn +~ Sn _ t 2n_
h h2 2h~

LLI
z
_1

z
LI

0rJ

0IU_

(9
z

U)
or)
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The average acceleration during the increment is

" = h "dt S11
h

Zn 1 Zn

h

This is the approximate representation for the
foundation acceleration according to the theorem
of the mean of differential calculus.

If the foundation displacement is the prescribed
input, the differential equation of motion for the
nonlinear oscillator should be of the form

Y, + 2 y, = (o2z -- y 2 (y, - z) 3  (28)

where yj is the absolute displacement of the mass.
The parabolic average representation for z is
found for each increment from the given curve.

Step Changes in Input

The numerical integration equations are par-
ticularly applicable to problems in which step
changes occur in the input of the system. The
only restriction in the solution is to require that
a given increment terminate where the step change
occurs. Let the curve shown in Fig. 5 be a foun-
dation velocity of a nonlinear oscillator, and sup-
pose the increment h is selected for the solution.
After the fifth step of the solution, a new incre-
ment h' is used for the sixth increment in order
to arrive at the time when the step change in the
foundation velocity occurs. The size increment
h is then used throughout the remainder of the
solution.

z

Zit~h

1 2 3 4

Z 4 Z5 Z

For the sixth increment of the numerical inte-
gral solution, a new increment 0' = (wh' must
replace 0 = woh in the solution equations. Equa-
lion (10) must be used if the input is being ap-
p)roximated by the parabolic representation. In
so doing, the solution is found at step 6 for x 6
and U6 , where x6 is the relative displacement be-
tween the mass of the oscillator and the founda-
tion and u6 is the corresponding scaled relative
velocity. At this point the step change in foun-
dation velocity (scaled) must be added to u6 to
give u6 '. With x6 and ut' as the initial conditions
for step 7 of the solution, and using 0 in the solu-
tion equations, the input curve should be repre-
sented by the straight line method between points
6 and 7 instead of the parabolic method due to the
discontinuity at point 6. This completes the solu-
tion to step 7. The parabolic representation may
be used from this point to the end of the input
curve.

CONVERGENCE OF THE
ITERATION METHOD

One may wonder if an assumed variable could
not produce a diverging solution when substi-
tuted into the 6 term on the right-hand side of
the numerical equations for a given increment.
Scarborough (3b) has discussed the sufficient
conditions for convergence of one and two nu-
merical equations when the iteration process is
applied. An extension of the procedure follows
for a set of N numerical equations.

Consider the set of equations

Ei = Bi[,E, E2, ... , E.v], i = 1, 2, ... , N (29)

where Bi is a set of known functions in terms of
the E&s. The set of equations is satisfied by the
exact values of the set of roots Ei. As a first ap-
proximation to find a set of roots, try Eo0). Hence,
Eq. (29) gives

(30)

Substract Eq. (30) from (29) and apply the theorem
of the mean value for a function of N variables.
This givesh

0 t7 8 9 10

(31)
Fig. 5 - Step change in foundation velocity

1 N
S- E, (j -= E) B1

2.6

27

I

8

(r Ei1) = Bi [,e0), E(0)9 .... I E(V0)]
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where

Bij =

aB[°[E' + 0 (E. - Eo') E(.. + ( , - o)]
afj

0 <• •<1.

Add each equation of the set of equations as ex-
pressed in Eq. (31) and consider only the absolute
values. Thus,

N N N

IE - eý'I •< I I lej - E5°lIIB2,,I. (32)
i 1 i=1 j=

Let the maximum value of the terms {1B 1,11 +
+ IBN.,1I}, ... , {jB1,Ni + ... + IBNN} be a proper
fraction qj for all points in the region (El 0 ), Ei).

Then Eq. (32) becomes

N N

± E - eN , e - E°)1. (33)
2=1 i=1

This relation holds for the first approximation.
For succeeding approximations, similar relations
are obtained. That is,

N N

EI,- EN2I l, ,- -ý'I

N N

i-i E 2-- 1li(4

Multiply together all these inequalities as ex-
pressed in Eqs. (33) and (34) and divide through
by the common factors

N N N

1 i,- , E ( 12i _ 1- , -l)
i= Ei= -iEl

as desired by repeating the iteration process a
sufficient number of times. This means that the
errors IEi -- E'!b)I can be made as small as desired.
Therefore, the iteration process converges when
the N conditions

IB,,,l + B2,11 + ... + IBN,Ii < 1

IB,NI + IB2,NI + ... + IBN,NI < 1 (36)

are satisfied for all points in the neighborhood of
E(°).

Consider Eqs. (23), which pertain to an incre-
ment of time h for a single-degree-of-freedom
system. All terms on the right-hand side of the
equations are constants except &. Suppose &
is a function of displacement y and scaled ve-
locity u. Equations (23) are of the form of Eq.
(29) where

El Y Yn+l, E2 = Un+i

B l=y, cos 0 + V sin 0

+-F (1 - cos 0) - &(1 - cos 0)

B 2 =-y, sin 0 + v,, cos 0

+- sin 06- 8sin 0.
k

According to Eq. (36) the iteration process on the
&'s converge in the nth step of the solution pro-
vided that

(1- cos0) + sin 0 < 1

(1-cos0) a & + sin 0 -& <1

I -a~~l I Vn+j

in the neighborhood of [y-(), v(),].

so that,

N N

=I - 1-

A SCALING LAW
(35)

Since qt is a proper function, the right-hand
member of this inequality may be taken as small

Consider the equation of motion for a single-
degree-of-freedom system:

? + 2aO.j + &-j
2
y = -&)25 (37)

9
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-Azy

(a) System

200O

0-

S150-
zz

- 100-

S 50
0

00028 00140 0.0350
TIME t (SEC)

(b) Foundation input

(c) Response x vs t obtained from the numerical method and
from an analog computer

Fig. 6 - Input and numerical solution of a nonlinear single-degree-of-freedom
system with viscous damping

where 5 = 8 (y, 5, t). Substitute the transformation

y = A e-act (38)

into Eq. (37). This gives

A+ p2 A = -(t) 2 Ae e -t (39)

A,,, = A. cos ph + A, sin ph
P

---- , eaw(tn+tn+l)/2 (1 - cos ph)

A"' =+ -A, sin ph + cos ph

p p

n- A ea''(tn+tn+ )/2 sin ph.

where p2 = o02 (1 - a 2 ) and A = A(A, A, t).

Equation (39) can be solved graphically (2) or
numerically and, using the transformation of
Eq. (38), the response of the original system is

found. For the case where the mean or average
value of the terms in the A expression are used,
the numerical integration equations for Eq. (39)
are

EXAMPLES

Example 1

Figure 6a shows the single-degree-of-freedom
system subjected to a transient foundation velocity
shown in Fig. 6b. The equation of motion is

-1.0 "

(40a)

(40b)

10
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S+ 2+awi + oj2x=-- 2 , a <_1

where 8 = f6x 3/k + ]/wz. Since a desk calculator
is used to find the response x of the system, the
mean value of the terms in the 8 expression is
used. For this case a < 1, so that the equations
from Appendix B for Case II apply. By replacing
F/m by -&) 2 8 in Eq. (BI), the numerical integra-
tion equations are

Xn+l = xn e-a (cos ph + a sin ph)

e

+ Un -- sin ph
r

- & [1--e-a (cos ph + sin ph)] (41a)r

Un+i = -- x r- sin ph
r

+Un e-6 cosph-- asinph e-- sin ph.
r r

(41b)

The values of the parameters are

m = 0.10 lb-sec 2/in. C = 2.4 lb-sec/in.

k = 1440 lb/in. /3 = 720 lb/in.3

A time increment h = 0.0028 sec is selected so
that 0 = 360 owh/27r = 19.25 degrees. Referring
to Fig. 6b it is noted that twelve steps of this in-
crement arrive at t = 0.0336 sec and that the thir-
teenth step requires an h' = 0.0014 sec to com-
plete the input of the system. The solution of
the free vibrations from this point is based upon
h = 0.0028 sec.

Since the foundation velocity is the known in-
put, while the 8 expression calls for the founda-
tion acceleration, the latter is approximated over
each short increment by the parabolic average
method. That is,

• n+1 in
Zn - h

The parabolic averaging method is used for the
x3 term in the 8 expression. Upon substituting
the values of the parameters into Eqs. (41) for
h = 0.0028 sec, there results

Xn+1 = 0.945311 x. + 0.318880 Un

- 0.054689 &

tl+, = -0.318880 xn + 0.881534 u.

- 0.318880 & (41b')

where

8n- =Zn+1 - Zn
40.320

+ 0.000289 (--xn + 8 x, + 5 xn+1) 3 .(41c')

The straight line averaging method is used
for the first increment of the solution since x-1
does not exist. Table 1 shows the arrangement
for solving the equations and presents the data
for n = 0, 1, and 2. Although all numbers are
carried to six decimal places, the iteration of the
variable x was carried to four decimal places.
This generally required four trials in each step.
The results of the numerical method are plotted
in comparison with the response curve obtained
from an analog computer at NRL as shown in
Fig. 6c.

Example 2

Figure 7a shows a two-degree-of-freedom sys-
tem subjected to a transient foundation accelera-
tion shown in Fig. 7b. There are two cubic harden-
ing springs in the system with the following
force-displacement relationships:

f"o kix1 + 1/3,x, f21 = k 2x 2 + P32Z2.

The equations of motion are

Z'+ 2a 1w1 . 11 + W02XI = -- ,.281

X2 + 2a2w02t2 + -- 02 = _(02

(42a)

(42b)

where

6 x3 2 C2l k2  c2 z
I - - X2 _ X2 - 2 -

82= m- x2 (+ k2 m +2 x 2X- 2ml2

2 22
(41a')

11 ¢
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The numerical integration equations for Eqs.
(42) are the same as in Example 1 with the addi-
tional requirement that the proper subscripts be
used. The values of the parameters are

mi = 0.40 lb-sec 2/in. m2 = 0.10 lb-sec 2/in.

k, = 8000 lb/in.

P3, = 7000 lb/in. 3

Cl = 12 lb-sec/in.

k 2 = 2500 lb/in.

/32 = 2000 lb/in. 3

C2 = 3 lb-sec/in.3

A time increment h = 0.002 sec is selected so
that 01 = 360 owih/27r = 16.21 degrees and 02 =

360 o2 h/27r = 18.12 degrees. The parabolic av-
eraging method is used for the variables in the
6 expressions (including the input, Fig. 7b). Upon
substituting the values of the parameters into
the numerical integration equations, there results

(xI),1+1 0.961066 (xi),, + 0.270884 (ui),,

- 0.038934 (8S),,

-0.270884 (xi),, + 0.903603 u,),

- 0.270884 (8i),

where

(8),, = 0. 8 7 5 0 0 0 X_ -0.059293 ii 2 - 0.312500 x2

z
- 0.250000 P2 + 20,00- 0

and

(x2),,+l = 0.951391 (x2)1, + 0.301839 (U2)11

- 0. 048609 (&2),,

(U2),±+1 =--0.301839 (X2),, + 0.894121 (U2),,

- 0.301839 (&2),,

where

(&),, 0.250000 _X2 + i23 + 0.047434 il2

- 0.169706 •i, - 0.800000 X1 - 0.700000 i3.

The bars above the variables in the 8 expres-
sions represent parabolic average values (luring
the increment n to n + 1. The convergence of
the variables of the iteration method was carried
to four decimal places. This generally required
five trials in each step. The numerical results
are plotted against the response curves obtained
from an analog computer at NRL and are shown
in Figs. 7c and 7d.

CONCLUSIONS

A numerical integration method has been pre-
sented which is easily understood and provides
a good solution for the transient response of non-
linear systems. Generally the smaller the increment
selected for h, the greater the accuracy obtained
in the response solution. Experience has shown
that angular increments 0 = 360 wh/27T between
15 and 30 degrees for single-degree-of-freedom
systems are generally acceptable while for two-
degree-of-freedom systems O's should range be-
tween 10 and 20 degrees. The two examples in
this report used these ranges of values for 0
and the reader can see the difference between the
analog computer response and the numerical
results.

While the examples used herein are mechanical
models of structures subjected to foundation
motion, the numerical method is applicable for
finding the transient response of a set of non-
linear nonautonomous differential equations for
other types of physical systems.
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APPENDIX A
MEAN VALUE DETERMINATION OF A FUNCTION

There are two common graphical methods for
finding the mean value of the function shown
in Fig. Al for the increment At = h. The first
method is to draw a line in an arbitrary direc-
tion by eye such that the sum of the enclosed areas
between the curve and the straight line is zero.
The mean value of the function is the distance
from the abscissa axis to the straight line at the
middle of the interval. For example, line cd in
Fig. Al is such a line and the point f on the line
determines the mean value F.

The second method consists of drawing the line
ab which connects the end points of the curve
segment. At the middle of the segment measure
the distance between the curve and the line, that
is, eg. Measure off 2/3 of this distance above (or
below) point g to establish the mean value at point
f This second method is accurate if the curve is
any part of a quadratic parabola.

F

d

h

Fig.A1 - Determination of the mean value of a function F(t)
for the i'ncrement h

APPENDIX B
NUMERICAL INTEGRATION EQUATIONS

FOR LINEARLY DAMPED SYSTEMS

Numerical integration equations are presented
for the differential equation

F
S+ 2awco + (0

2 y = -

m (B 1)

where -o < a < xg o > 0. The region of a is
broken into seven cases as follows:

Case I: a=0

Case 1: 0 < a <1

Case III: a = 1

The applied force is represented by the para-
bolic method, so that

t $2-i(t2 h
Fo = Fi +S+i+t (B 1) .

For foundation motion Eq. (B 1) becomes

x + 2awi + (o
2x = - j. (B2)

By means of similarity between Eqs. (BI) and
(B12), it is only necessary to change the follow-
ing in the numerical integration equations for
applied forces to obtain those for foundation
motion. Let

Case IV: a > 1 Yn = Xn, Vn = Un, Fn = -mzn ,

Case V: -1 <a <0

Case VI: a =--1

Case VII: a < -1.

Fn y, S, Sn S2_ S-

k i T' k 029 k - 2

If the input is given by the foundation velocity,
which is represented by the parabolic method,

15 •
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the derivative of i gives the foundation accelera-
tion as

z +- 2 (h-- 1

h 2 Qh)j

where

Sn= in+1 - in

Sn-1 = in+1 - 2 in + in-1.

Equations (B1) and (B2) are solved for each of
the seven cases.

CASE 1: a = 0

Input - Applied Force
or Foundation Acceleration

Yn+1 = Yn cos 0 + Vn sin 0 + L" (1 - cos 0)

+S(1 sin 0) +n [sin 0 2(1 -cos 0]k 2k -S 02

Vn+1 = -yn sin 0 + Vn cos 0

+ -p sin 0 + S-tl os)

-S-' (.1 Cos 0 2sin 0).

Input - Foundation Velocity

Xn+l=xn cos O+Un sin 0o-- n(1 -C 0)

_S, (.1 +2cos 0 sin 0)

Sn sin 0
Un+i =--X sin 0 + Un cos 0 -

woo

S•- (1-cos 0 sin 0'
tok 02 20 )"

CASE II: 0 < a < 1 (Let r =- VI-- &!)

Input - Applied Force or
Foundation Acceleration

Yn"+ - yn e-O (cos rO + a sin rO)
sin rO

+ vn e-ae sinrO
r

+ nI - e- aoCos rO+ asin rO)

ki IorO)

L0 sin rO-1

-- (1--2a2) e- 0  srn

+ f 4a-[2(1-4a 2) _2a
+2k 1- [ 02 0]

(1 - e--O cos rO)

S[1 - 2a 2  2a(3- 4a 2)+ -0 + 02a(

eao sin rO
r I

°sinrO ( a
vn+,I-yne- + v,,e-0 cos rO - sin rO

r r

+ sF sin rO

k r

+÷- (1 - e-00 cos rO ae--a sin rO)

S~1 f2 -~ (1enaocor
+ 2• +2- - 1l)(- cos r0

[2 (1 - 2a•2 ) a] e-sin rO}

Input - Foundation Velocity

a.• sin rO
Xn+i=Xne-n ( Cos rO÷ sin rO )+-une-1 r-

r r

S-n (I e-a cOs rO a e-ao sin rOr

a)k 0 rO I

S._1 G-(1÷-2a)(1- e- cos r)0

+[2a (I -2a2)] e-0 sin rO

16
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Un+ _--xn e oO sin rO +uc- cos rO-- asin rO
r r )

-S eO Sinr0 S2 [.1-- -a0cos rO
w rO co L 02

--(a+1)e-lrosin rO]

CASE III: a = 1

Input - Applied Force or

Foundation Acceleration

yn+ yn(I + O) e-1 + vnO e-e

"Fn [1-(1+0) e-0]+-i- [

+k 00v+i--yn- [(1+ e°)--(1 -- ~~0-
+ n 6 -)2 -

2k 0

Input - Foundation Velocity

xn+ = x(1+O)e-0 + u-Oe-

Sn(1e -e- o)+ e-0o) e-o

+S- 2k - l _ 0 2 )(1e-0)+e-0t + ")

X+1X(l÷_ O)e-0+ nq

u,+=--xnOe- +u(1- )e-0_.eo

cto
SU - [1 - -(e-n(1 1) e 9]

CASE IV: a > 1 (Let q = V--1)

Input - Applied Force or

Foundation Acceleration

Yn.+ = yn e•a (cosh qO + a sinh qO)q

+ vn e-a° sinh qO
q

+-L [1-- e-8 (cosh qO + a sinh qO)]

+ -[1- -_ (1-- e--0 cosh qO)

- (1 - 2a 2 )e- a sinh gO

_S2_ 4a') 2a

2k t- 02

(1- e- cosh qO)

+ [1 -2a
2 + 2a(3 -4a

2)]

eaO sinh qO}
q

vn+1 -y,, e-ao sinh qO
q

"+ vn e-no (cosh qO - sinh qO)
q

"F . en o sinh qO
k q

+ S (1 - e-°O costl qO ae- osinhqO)

+ ý 2-(l+-4)(-1--e- 'cosh qO)

2k 0 02 1

[2(1 - 2a 2) a]

eaO sinh qO1q I-

I-,
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Input - Foundation Velocity

Xn+l = x,, e-o (cosh qO + a• sinh qO)q

+ ut, e -ao sinh qO
q

S, (I - e- O cosh qO

S2 :

ae-ao sinh q
qO

(1_2a_)(1--e-Oa coshqO2 qO)

+ a~ (1 -2a 2)

e _a sinh qO1
qO f

u,11+ -xI, e -o sinh qO
q

/ a
+ u,, e-ý° (cosh qO -- sinh qO)q I

,,l eao sinh qO
(0 qO

2 [1 e-• cosh qO

-(a0+1) e- sinh qO]•
0 2 qO J

CASE V: -1 < a < 0

Use the equations for Case II but replace a by-a.

CASE VI (continued)

S-,ý [6 # 2 0] "

+ i-- (1- eB) +2 (1 + 2e0) -eO

v -+i -y,,Oe + v,(1 + 0)eO

F Sn/i -e 0  )+-'£n Oeo + --n - + e°)

+ S [ (1 4

Input - Foundation Velocity

x+ (l - O)e° + u,,Oe°

S2+ 

- e e)
-C0 [0 (1 0)(1 06

-- I~-) ee]

S0

n-1 [1 2 -e + ( 1)e]
CASE VI: a = -1

Input - Applied Force or
Foundation Acceleration

Yn+i = yn(1 - O)e" + vnOe"

+if-'[1- (1- O)e0]
kf

CASE VII: a < -1

Use the equations for Case IV but replace a by-a.
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