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ABSTRACT

This report is primarily a review of Haar functions. The func-
tions are defined, and it is shown that they form an orthonormal
basis of L 2 [0, 1]. A basic property of Haar series is then proved
(the proof given is different from Haar's). This property states that
the Nth Haar-series approximation to a function f(x) C L 2 [0, 1] is
a step function of 2N steps, each of width 1/2N. The value of the
approximation on each step is the mean value of the function f(x) in
the interval covered by the step. This property is taken as the basis
for an investigation of the convergence properties of Haar series for
various classes of functions. Estimates of approximation accuracy are
derived. Haar-series convergence is compared with the convergence
of trigonometric Fourier series. The class of functions for which uni-
form convergence of Haar series can be proved is larger than that class
of functions whose trigonometric Fourier series is uniformly con-
vergent to the given function.
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CONVERGENCE PROPERTIES OF HAAR SERIES

1. INTRODUCTION

The importance in several branches of pure and applied mathematics of functions

which are elements of the space L 2 has led to the development of theories of various ortho-

gonal sequences which form bases of L 2 . Most well-known bases of L 2 are sequences of

continuous functions. This is related to the fact that such sequences usually comprise the

general solution of a certain differential equation.

However, there exist an infinite number of bases of L 2 which are sequences of dis-

continuous functions, as was pointed out by Walsh (1) when he introduced one such se-

quence, now known as Walsh functions. Walsh functions may be defined by taking linear

combinations of another discontinuous orthogonal sequence first introduced by the Hun-

garian mathematician Alfred Haar (2) in 1909. Haar functions have properties which may

make them convenient for application in a number of areas such as communications,

image coding, and pattern recognition (3). They are also an example of a generalized

Fourier series with convergence properties that are particularly straightforward and intui-

tive.

This report is primarily a review of Haar functions. Much of the material is available

elsewhere (2,4,5), although in most cases the presentation is different. The report is moti-

vated by the increasing interest in engineering applications of Walsh functions and their

relatives (3,6,7,8).

In his published work on the subject, Haar shows that these functions form an ortho-

normal basis of L 2 [0, 1] and proves that the Haar series expansion of a continuous func-

tion f(x) E L 2 [0, 1] is uniformly convergent to the function on this interval. He also ex-

tends these results to what is best described as a set of generalized Haar functions. Sec-

tion 2 of this report follows Haar's work in showing that Haar functions are an orthonor-

mal basis of L 2 [0, 1]. In Section 3 we show that the Haar series expansion of a continu-

ous function is uniformly convergent to that function. The proof is different from that

given by Haar. A new convergence estimate is given in Section 4. The convergence of

Haar series for discontinuous functions is investigated in Section 5; some of the results in

this section have been presented differently by Faber (4). In Section 6 the convergence

properties of Haar functions are compared with those of the more familiar trigonometric

Fourier series.

2. HAAR FUNCTIONS

The Haar orthonormal sequence is defined on [0, 1] and is composed of functions
labeled by two indices:

1
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The first Haar function is defined as

p0 (x) = 1, xC [0,1].

(1)

(2)

All other Haar functions pm are zero except on one of 2n-1 equal subintervals of [0, 1],
namely [(m - 1)/2n-1, m/2n-1]. In particular
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where in the last equation m = 2, 3, ... , 2n-1 - 1.

We note that the Haar functions form an unbounded sequence. The first few Haar

functions are shown in Fig. 1. The complexity of the definition reflects the careful

choice of the function value on each discontinuity, with choices made so that the con-

vergence properties to be derived later hold for all points on [0, 11.
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Fig. 1-The first eight Haar functions

Before continuing, we introduce some definitions that will be used throughout the
report.

DEFINITION. Let f, g G L 2 [0, 1]; then

(6)fi1g) = (gi f) f f (x)g(x) dx.
0

1.0

m---4:'

I

-v

;)

U
I.U
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Thus the projection of f onto any Haar function is given by (f nmn

DEFINITION. Let f e L 2 [0, 1]; then for m < 2n-1,

n-1 2 k-1 m

S'(x) =Co + Chk(x) + nn(x) (7)
k=1 2=1 j=1

is the (n, m) partial sum of the expansion of f in terms of Haar functions, where Ch =

(f 1,o); Sh'(x) is defined on [0, 1].

DEFINITION. Let f C L 2 [0, 1]; then

SN (x) CO + L C, ý (x) (8)N k1

k=1 2=1

is the Nth associated partial sum of f expanded in terms of Haar functions; SN (x) is de-
fined on [0, 1].

We note that

2N-1
SN(x) = SN (x)

and

m

Sm (x) = Sn-1l(x) + Cnkn(x)"

k=1

DEFINITION. The interval ((m - 1)/2n, m/2n) will be denoted by n.m

1 2 2n
We note that [0, 1] is subdivided into 2n equal parts labeled in, in i n and that

pk(x) is nonzero in the intervals i 2p-1 and i2p, i.e. in the interval i
k

DEFINITION. Let f E L 2 [0, 1] and 0 < a < b < 1; then

b(a,b) b- f (x) dx (9)
a

is the mean value of f in the interval (a, b). The notation

-f(im) = 2n =f 2 ff(x) dx (10)
I n
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will also be used.

DEFINITION. If x E [0, 1] satisfies for some k and M

kx 2M' (11)

where k = 0, 1, 2, ... , 2 M, then it is called a binary rational, in particular an Mth order

dyadic. If k is odd, x may be called an odd Mth order dyadic and similarly for k even.

If x does not satisfy Eq. (11) for any M, then it is called a binary irrational.

We note that any Mth-order dyadic is also an (M + P)th-order dyadic for any positive

integer P.

The last definition is motivated by the fact that every binary rational on [0, 1] is

a point of discontinuity of one or more Haar functions. These points are of special con-
cern in the convergence investigations to follow.

We now show that n is an orthonormal basis of L 2 [0, 1]. The Haar functions
are normalized to unity, since

(ýo m•m) = on,(x)P m(x) dx = 2n-1m

I'Pn f nnn(2n1 - 2in-1) = 1. (12)

Now, ýp0 is orthogonal to all other mn, since

°lPoIk2) fonm (x)dx = 0. (13)
0

Two different Haar functions with the same subscript are orthogonal, since
mX' k (4

n n(X) = 0, (14)

where m * k. For any two functions with different subscripts, either

0mWxO(x = 0, (15)

or
or 

ýPnm(x ) P (x ) = +_2(n-1)/2 ,P (x ),

where h > n. In the latter case,

(- ±2 (n-)12 JO+ dx = 0. (17)

0

5
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The Haar functions therefore compose an orthonormal sequence. That this sequence
is complete in L 2 [0, 1] can be proved by the following: if there exists no element
f E L2 [0, 1] which is orthogonal to all {fnm} and at the same time satisfies f =A 0, then
{fn'}is complete in L 2 [0, 1]. We assume that f is orthogonal to all pnm, i.e., (fie')= O,
and show that f = 0 necessarily.

Defining

F(x) f f(x') dx', (18)

0

we have

F(1) - F(O) = f f(x')dx' = (f P0) = 0. (19)
0

Hence, F(1) = F(0) = 0. Also'

(f~I =[F~)-F(0)] 
-F(l) - F-2)

2F 2 (20)

By induction,

F( 0 (21)

for k = O, 1, ... , 2n; n = 1, 2,.

Since F(x) is continuous and the binary rationals are dense in [0, 1], F(x) = 0 every-
where, and f(x) = F'(x) = 0 almost everywhere. This proves completeness of the Haar
orthonormal sequence in L 2 [0, 1].

As a consequence, by a general property of complete orthonormal sequences, every
element in L 2 [0, 1] has an expansion in terms of Haar functions by which it is approxi-
mated in the mean. That is, for every f e L 2 [0, 1], the sequence of partial sums Sin(x)
satisfies

nf-STnII - 0 as k = m + 2n-1 -. o, (22)

where

11gl (glg)12. (23)

6
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Furthermore

00 2 n-1

11f112 = C2 + (Ccm) 2  (24)

n=l m=l

(Parseval's formula).

3. CONVERGENCE OF HAAR SERIES FOR CONTINUOUS FUNCTIONS

Perhaps the most surprising property of Haar functions is, despite the fact that they
are discontinuous, for a certain class of functions in L 2 [0, 1] ,we can prove a much
stronger convergence than mean convergence, namely uniform convergence. In fact, as will
be discussed later, this class of functions is larger than that class of functions whose trigo-
nometric Fourier series is uniformly convergent to the given function.

We begin with a theorem that describes an important property of Haar expansions
which is the basis of their possible utility. This theorem states that the Nth associated
partial sum of a function expanded in terms of Haar functions has 2 N equal-length steps
and 2 N - 1 discontinuities between adjacent steps. The value of SN(X) on each of these
steps is simply the mean value of f(x) in the interval covered by the step. The value of
SN(x) at a discontinuity between adjacent steps is halfway between the two steps. As an
example, Fig. 2 shows six successive associated Haar approximations to the function

f(x) = lOOx 2e-lOx,

each superimposed on the function itself. The effect of additional terms is simple and

intuitive, unlike the effect of additional terms when the function is expanded as a trigo-
nometric Fourier series (or as a series in terms of other continuous bases of L 2 [0, 1]).

THEOREM 1. Let f(x) E L 2 [0, 1] be expanded as a Haar series, so that the Pth
associated partial sum is given by

P 2 n-1

Sp(x) = C0 + Cn 4x), (25)
n=l k=l

where Cn = Kfl4n). Then for any point in the interval (0, 1) that is not a Pth-order
dyadic,

Sp(x) = f -i ,i2), (26)

where m satisfies

x E ir1 . (27)

7
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Fig. 2--Six associated Haar partial sums in the expansion of f(x) = 1 00x2e-10Ox
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For Pth-order dyadics in (0, 1),

Sp W=x) n =
1 [ n - 1 4)+4

= (,ni) + T(il+i)]

where n = 1, 2, 3, ... , 2P - 1. Finally

Sp(O) = (0, -) = -(i )

Sp(l) = f(- 1
,1 = f(ip2 ).

n +
2P

(28)

(29)

(30)

Proof. We prove Eq. (26) first and then Eqs. (28) - (30). Both proofs are by induc-
tion.

For N = 0

So(x) = Co = ff(x) dx

0

S[0,1]. (31)

Assuming that the theorem is true for the Nth associated partial sum, we have

SN(x) =

where m satisfies x E im. If P =N + 1,

u=2P-1

Sp(x) = SN(X) + • C•(x).

u=-

(32)

(33)

For any particular value of x, only one term contributes to the summation in Eq. (33)
(see Fig. 1). In fact

Sp(x) = f(iN) + CpM1p (x), (34)

since x C i•m and isicex N ýPp is the only ýop that is nonzero in this interval. Now

9
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cpm = _fIýp)= (-)/
f(x) dx - f f(x) dx

iP2m

= 2 "(P+l)/2 f(i2m-1) - (12m)]

Substituting for Cp and ýpp in Eq. (34), we obtain

Sp(x) = [(iN) + - sgn(m, P, x) [f(im-1) -_ (ji2m

+1,

sgn(m, P, x) = -1,

0,

x C i2m-1

x e p.2m

2m - 1
X= 2P

-(i.) 1 4 ,.2m-1 -+ .2i)]f(N) 2 ýTI~N+j ) + f (iN+l)]

1 [T-(i2m-1) + (jp2m)]

we have

SP (X) = f(i )

when x e ip, where we have written v = 2m - 1. Likewise

S (x) = f(ip)

(38)

(39)

(40)

when x C ij, where we have written u = 2m. Theorem 1 is therefore proved for points
in (0, 1) that are not Pth-order dyadics.

All Pth-order dyadics in (0, 1) are points of discontinuity of Sp(x). For odd-Pth-order
dyadics, these discontinuities are occurring for the first time. That is, Sp_1 (k/2P) is not
discontinuous for k = 1, 3, 5, ... , 2P - 1. These points correspond to the case sgn(m, P, x)

= 0 in Eq. (36) since the Pth-order dyadic (m - 1)/ 2 P is not an Nth-order dyadic
(N = P - 1). From Eqs. (36) - (38) we have

where

(35)

(36)

Since

(37)

10
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2m - 1 f - m 1

S •-(ip2m-1) +2(ip2M)J. (41)

Thus Eq. (28) is satisfied at every new discontinuity (odd-Pth-order dyadic). Any higher
partial sum SR(x), for R > P, will also be discontinuous at these points, which then be-
come even-Rth-order dyadics. To continue our proof by induction, we assume that Eq.
(28) is still satisfied at these points, i.e.,

SR(jff) = [f(ik) + f-(ik+l)] (42)

for k = 2, 4, ... , 2R - 2. From the derivation of Eq. (41), we know that Eq. (42) also
holds for odd values of k. If T = R + 1,

2 T-1

ST(x) = SR(x) + CTýT(X), (43)

u=1

and at x = k/2R, two terms survive the summation, namely those containing the Haar func-k .k+1 h sfo q.()-()
tions which are nonzero over the intervals i and . Thus from Eqs. (3) - (5),

S2(T-3)2Ck 2 (T-3)!2Ct+l
ST -R S + T (44)

Now

C = 2 "-(T+1)/2 [f(i2k•) - f(i2k)], (45)

and

k+ fI k -T-1)/2 +1 2k+2C = - f(TT ) (46)

so that

[ T 1 (i2k+2)1  (47)

ST( ' ) = SR(~)+{[~~)- 2- h1--T

Substituting Eq. (42) and using Eq. (38), we finally obtain

S()= 1 _[T(i,) + (i2k+l (48)

or, writing v = 2k,

11
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vT~~ = [T~iv + T(iu1)] (49)

for v = 2, 4, ... , 2T - 2.

From the derivation of Eq. (41) we know that Eq. (49) also holds for odd v. This

completes the proof of Eq. (28) by induction. The remaining parts of Theorem 1, Eqs.
(29) and (30), should now be clear. Detailed proof is left to the reader.

The properties of SN described by Theorem 1 also hold for the partial sums Sm, for
which it is now easy to prove the following Theorem.

THEOREM 2. Let f(x) C L 2 [0, 1] be expanded as a Haar series, so that the (n, m)
partial sum is given by

n-1 2 v-1 m

SM(x) = Co + e L 4(x) + 2 c,•(x), (50)

uv1 k=1 k=1

where Ck = (f 1k) and 1 < m < 2n-1. Then for any point in the interval (0, m/2n-1 )

that is not an nth-order dyadic,

t n )) (51)

where k satisfies x e in For any point in the interval (m/2n-, 1) that is not an (n - 1)th-
order dyadic,

ST (x) T o(p,1 ), (52)

where p satisfies x C ip

For nth-order dyadics in (0, m/2n- 1 ),

SM(x) = SmMV) = [-(iv) + f(iv+1)], (53)

where v = 1, 2, 3, ... , 2m - 1. For (n - 1)th-order dyadics in (m/2n-1 , 1),

Stun(X) = S( )= f 1) + [(iu-1)], (54)

where w m+ 1, m + 2 ... ,2n-1 -1.

At the end points of [0, 11

Sn'(o) = T(in)

12

(55)



NRL REPORT 7470

and

Sm(1) = f(i1 ) (56)

Finally, at the dyadic x = m/2n-1,

___ = 1f(i2m) + f(i.+l (57)

By analogy with Theorem 1, Theorem 2 states that Sn(x) consists of 2m steps of

width 1/2n followed (at x = m/2n-1) by 2n-1 - m steps of width 1/2m-1. The value of

Sin(x) on each of these steps is simply the mean value of f(x) in the interval covered by

the step. The value at a discontinuity between adjacent steps is halfway between the two

steps.

Proof. We note that

m

Sm(x) = Sn-1 (x) + Ck M(x) (58a)

k=1

Sn Wx, x < 2n--

Sn1W > m (58b)
Sn~l~x, x >2n-1

Equations (51) - (56) then follow directly from Theorem 1. That Eq. (57) is also true can
be seen from the proof of Eq. (28). When x = m/2n-1, only one term survives the summa-

tion in Eq. (58a). This corresponds to Eq. (44) without the last term. We then obtain,

using Eq. (45),

S M m = S l + 4 i2 m 7 (nY2 m -1

s~(2n-) ( smn-i(#) + _1[[f(.2m) - -(.2i)

2n1 1 1

2 /(iu-1) + f(i-+7)1 I [T(i2m) - f(i2m1] (59)

which reduces to Eq. (57) through the use of Eq. (38).

Two important properties of Haar series follow directly from Theorem 1 or 2 and

are stated now as corollaries.

COROLLARY 1. Let f(x) C L2 [0, 1] be expanded as a Haar series in the form of Eq.

(50). Then in any subinterval (k/2n, v/2n) E [0, 1], where k, v = 0, 1, 2, 3, ... , 2m,

2m + 2, 2m + 4, ... , 2n and k < v, the convergence behavior of Sm(x) and of all higher

13
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partial sums is related only to the behavior of f(x) within the same subinterval. For large
n the convergence behavior at any point depends only on f(x) in the neighborhood of that
point.

COROLLARY 2. Let f(x) C L 2 [0, 1] be expanded as a Haar series in the form of Eq.
(50). If f(x) = C, a constant, within the subinterval (k/2n, v/2n) C [0, 1], where k, v =
0, 1, 2, ... , 2m, 2m + 2, 2m + 4, ... , 2n and k < v, then the partial sum Sm(x) satisfies
Snm(x) = f(x) = C within this subinterval, as do all higher partial sums.

THEOREM 3. Let f(x) C L2 [0, 1] be continuous over the interval [0, 1]. Then the
sequence of Haar partial sums (Eq. (7) is uniformly convergent to f(x).

Proof. We first prove that Theorem 3 holds for the sequence of associated partial
sums (Eq. (8)). We must show that for any e > 0, there exists an integer M such that
ISN(X) - f(x)I < e for all x C [0, 1] whenever N > M. For points that are not Nth-order
dyadics, we have from Theorem 1 for x E n

SN(x) = f(iN) = f(t), (60)

where m is some point in i7. The last step in Eq. (60) is by the mean-value theorem for
integrals. Thus for x C in

ISN(X) - f(x)I = If(Q) - f(x)l. (61)

Since f(x) is continuous over [0, 1], it is uniformly continuous, so that for every E > 0
there exists a 6 > 0 such that

If(y) - f(x)I < e (62)

whenever

ly- xI < 6. (63)

Let us choose a fixed integer M such that 1 /2 M < 6. Then for any x C ik we have

I < W <-.

Therefore

kk
If(:) - f(x)l = ISM(X) -f(x)l < e (65)

for x C . This inequality holds for all non-Mth-order dyadics in [0, 1] as well as, by
virtue of Eqs. (29) and (30), for the two end points. For interior Mth-order dyadics, we
consider the point xk = k/2M. Defining, for positive a,

f(x+) -- lim f(x + a•)
Qý0

14
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and

f(x-) =- lim f(x- a),

ISM(iO) - f(xk-)l < E

ISM(iM+) - f(xk+)I < C.

I k - (Xk_) + k+1 . -k+l
ISM(iM) f(xk-) +SMiM ) - f(xk+)l < 2e,

and since f is continuous,

1jSM(iM) + SM(iM) - f(xp) ISM(Xk) - f(Xk)I < E,

where we have used Eq. (28). We have therefore shown that for every c > 0,

an integer M such that

ISM(X) - f(x)l < E

(69)

(70)

(71)

there exists

(72)

for all x G [0, 1]. That this holds for all N > M can be seen by going back to Eq. (64)

and noting that for x C i.m, IN - xl 1 / 2 M < 5 also. The steps leading to Eq. (72)

therefore follow for N > M.

Uniform convergence of the associated partial sums implies uniform convergence of

the general partial sums, since (Eqs. (57) and (58))

Snx),

in (X) = Sn-(X),

I [Sn (X-) + S,-1 (x+),

m
2n-1

m

x•2n-1

m
x= -

(73)

We state explicitly the following corollary

COROLLARY 3. Let f(x) C L2 [0, 1] be continuous over the interval [0, 1]. Then

the sequence of associated Haar partial sums (Eq. (8)) is uniformly convergent to f(x).

we have

and

(67)

Thus

(68)

15
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Recalling Theorem 2 and Corollary 1, we also have another corollary.

COROLLARY 4. Let f(x) C L 2 [0, 1] be continuous over the subinterval (a, b). Then
the sequences of Haar partial sums and associated Haar partial sums are uniformly con-
vergent to f(x) in (a, b).

4. A CONVERGENCE ESTIMATE

The rather simple expansion property described by Theorems 1 and 2 and shown in
Fig. 2 suggests that simple convergence estimates can be found. One such estimate is
given in the next Theorem.

THEOREM 4. Let f(x) C L 2 [0, 1] be continuous in the interval i m with a first deriva-
tive f'(x) that is bounded and exists everywhere in iN. Then

ISN(X) - f(x)I < 2y (74)

for x C im, where •(i) = sup If'(x)I, i a subinterval of [0, 1].xci

Proof. By the mean-value theorem for integrals,

ISN(X) - f(x)I = If(QN) - f(x)1 (75)

for x E 'm where ýN is a particular point in ig. By the mean-value theorem,

If(aN) - f(x)l = If'(a•)[• - x]i, (76)

where is a particular point in (•, x) or (x, G). But

If'(a•)I ___.m

if (Um)[ýg - X]I < 2N 2N •< (77)

which proves Eq. (74).

COROLLARY 5. If f(x) is continuous with a bounded first derivative existing every-
where on [0, 1],

ISN(X) - f(x)l < 2N (78)

for x C [0, 1].

Eq. (78) follows directly from Eq. (74). We note that the corollary says something
definite about the rate of convergence of Haar series, namely that the accuracy of the

16
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estimate SN+1 is bounded by a value which is half that which bounds the estimate of
SN.

When dealing with well-behaved functions, the following theorem is useful.

THEOREM 5. If f(x) is linear (f(x) = ax + b) in the intervals im and .m+N then for
NN NX * m .m+1

X1N ,1N

ISN (X) - fAX)~< I f'(x)l

2 N+1 , (79)

and

SN( ) - f )= 0. (80)

Proof. If f(x) is linear in i and 1Ni , f(x) = xf'(x) + b, then the range in either
interval is

f=If'(x)I 81Af - 2NX~ (81)

For x E iNN'

SN(x) f f-(i) - (82)

so that

ISN(X) - f(x)l I f( )- f(x) (8

Similarly, for x C iN ,N'

SN(X) = f(i7N +) = f(N ,. (84)

and

f f(m)+ f(x) < AfI SN (X) - fAX)I = f•-•---fx - (85)
(\2N 2
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Thus

I< f'(x)I (86)
ISN(X) - f(x)I < 2N+1

in both intervals. Finally, at x m/2N,

SN(/) =[ [2 )+ -+ f )]- = f(-) , (87)

where we have used Theorem 1 and the fact that f is linear.

We note that in the expansion of well-behaved functions, Eqs. (79) and (80) will be
approximately true for large N except at points where f'(x) = 0.

5. CONVERGENCE OF HAAR SERIES FOR DISCONTINUOUS FUNCTIONS

Since Haar functions are discontinuous themselves, it is not surprising that for certain

classes of discontinuous functions the Haar-series convergence is stronger than in the mean.
As might be expected from the developments in Section 3, the convergence properties in

the neighborhood of a discontinuity depend on whether it is at a binary-rational or binary-
irrational point.

Consider first the case of discontinuities at binary-rational points. Suppose that
f(x) C L 2 [0, 1] has an isolated discontinuity of the first kind at an Mth-order dyadic

xI = k/2M. From Theorem 1 we know that SN(Xl) is discontinuous for all N > M. In
particular

SN(X) i ) + f(lmg )], (88)

where m = 2N-Mk. This may also be written as

SN(Xl) = [gSN(xl-) + SN(xl+)], (89)

which shows that

lim SN(Xl) = '[f(x 1 -) + f(x&+)]. (90)
N--oc 2

If [a, b] is a subinterval of [0, 1] that contains a finite number of binary-rational discon-
tinuities, we see that

1
SN(x) -- j[f(x-) + f(x+)] (91)

18
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for x C [a, b]. By Corollary 4, the convergence is uniform. Applying Eq. (73), we have
proved the following theorem.

THEOREM 6. Let f(x) E L2 [0, 1] have a finite number of binary-rational discontin-
uities of the first kind in the subinterval [a, b]. The sequence of Haar partial sums is uni-
formly convergent to [1/2] rf(x-) + f(x+)] on [a, b].

It is easy to see that this theorem does not hold if f(x) has jump discontinuities at
binary-irrational points. We consider the following example:

0, x< 1

1 1
2X)' = 1 (92)

1, x>1
3

which has a binary-irrational jump discontinuity at x 1/3. Let us calculate SN(1/ 3 ) for a
few values of N:

1

2s(3) = f 3
1

:l =1-
sl!)= 2 ff(x) dx-

0
.1/2

$2Q1) = 4 f f(x) dx- 2 (93)
3 f 3

1/4

3/8

831) = 8 f(x)dx

1/4
_3/82

s4(-) = 16 35 f(x)dx =2

34~- 163
5/16

In general, if x, is a binary-irrational jump discontinuity, SN(X1) will be discontinu-
ous for no value of N. Thus SN(xl) = f(iN) always, where x1 E im. As N changes, x 1

falls at a different relative position within i m, resulting in a different value for f(iN ). The
sequence does not approach a limit, and SN(x) does not converge at x 1 .
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However, in any interval containing a finite number of binary-irrational jump discon-
tinuities, it is easy to see that SN(x) is pointwise convergent, except at these discontinui-
ties. We consider the two nearby points x, and x 2 and assume that f(x) has a jump dis-
continuity at the binary-irrational point X1 and that it is continuous at x 2 . For a large

k V kenough value of N, x 1  N while x 2 e IN, i.e., f(x) is continuous in i N. By Corollary
4, Sg(x) converges uniformly to f(x) in ik, so that

N'

lim ISN(x 2 ) - f(x 2 )1 = 0. (94)
N--o

Using Eq. (73) once again, we therefore have the following theorem.

THEOREM 7. Let f(x) G L2 [0, 1] have a finite number of isolated jump discontinui-
ties at binary-irrational points in the subinterval (a, b). Then the sequence of Haar partial
sums is pointwise convergent to f(x) everywhere in (a, b), except at the binary-irrational
jump discontinuities, where there is no pointwise convergence.

6. COMPARISON WITH TRIGONOMETRIC FOURIER SERIES

We have seen that the Haar series of any continuous function f(x) C L 2 [0, 1] is uni-
formly convergent to the given function. This is not the case for trigonometric Fourier
series. In fact there are continuous functions whose Fourier series diverges at an infinite
number of points. We have also seen that for functions with a finite number of jump dis-
continuities, the Haar series is still uniformly convergent as long as all the discontinuities
are at binary-rational points. However, no functions with jump discontinuities have uni-
formly convergent trigonometric Fourier series. For functions with isolated jump discon-
tinuities at binary-irrational points, the Haar series is pointwise convergent, except at the
discontinuities. However, there are functions with jump discontinuities whose Fourier series
diverges at an infinite number of points.

These differences in convergence behavior are related to two important properties of
the Haar sequence:

* Each Haar function contains all frequencies in the trigonometric Fourier sense.

As n increases, the coefficients C7m of the Haar expansion depend on a
smaller and smaller portion of the function being expanded.

The behavior of the Haar series expansion in the vicinity of a binary-irrational jump
discontinuity of f(x) makes an interesting comparison with the behavior of the trigono-
metric Fourier series near the same point.

Let Pn be the nth partial sum of the trigonometric expansion of f(x) on [0, 1]. Then

n

Pn(x) = + r [ak cos (27rkx) + bk sin (27rkx)], (95)

k=1
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where

ak = 2 f f(x) cos(27rkx)dx

0

bk = 2 f f(x) sin(27rkx)dx.

0

(96)

(97)

We note that the nth Fourier partial sum has 2n + 1 terms. The Nth associated Haar

partial sum has 2 N terms. We consider the following function which has a binary-irrational

jump discontinuity at x1 = 2/3:

1-x, O <x <2
3

f(x) =
5 2
1 -x, 3

(98)

For this function, both expansions are pointwise convergent, except that the Haar

series does not converge at the jump discontinuity, whereas the trigonometric Fourier

series converges to [1/2] [f((2/3)-) + f((2/3)+)]. For n = 32 (65 terms) the trigonometric

Fourier expansion of f(x) is plotted in Fig. 3, superimposed on the function itself. This

expansion exhibits the well-known Gibbs overshoot phenomenon, present at every jump

discontinuity. For comparison the Haar expansion of the same function is plotted in Fig.

4 for N = 6 (64 terms).

First of all, we note the absence of any overshoot phenomenon. In fact, the behavior

of SN at a binary-irrational discontinuity is better described as an undershoot. We recall

from the development of Theorem 6 that this undershoot cannot be eliminated by

10

09

08

07

f W 06

IC0

Fig. 3-Fourier series P 3 2 (65 terms) of a function with a

binary-irrational jump discontinuity
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Fig. 4-Associated Haar series S 6 (64 terms) of a function with
a binary-irrational jump discontinuity

increasing N. However, the width of this undershoot region may be made as narrow as
desired, the undershoot width being given by w = 1 1 2 N, This is directly analogous to a
one-half wavelength of the highest frequency component of Pn. In fact, the magnitudes
are roughly the same.

Figure 4 also illustrates the fact that the effect of a jump discontinuity on the con-
vergence of SN is entirely limited to this undershoot region, a direct result of Corollary 1.
The opposite is true for the trigonometric Fourier expansion Pn in which the effect of the
Gibbs overshoot is felt throughout the entire interval of expansion. This relates to the
fact that each term in Pn contributes to the expansion throughout the entire interval. On
the other hand, as previously mentioned, each successive term in SN contributes to the ex-
pansion in a smaller and smaller portion of the interval.
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