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ABSTRACT

Based on the studies of S. Lie and E. Cartan in the theory
of continuous groups of transformations, M. Moshinsky has refor-
mulated the nuclear shell many-body problem in second-quantizatlion
lenguage. The methods due to J.P. Elliott for simplifying the
basis set of state functions by classification according t§ the
group SU(3) are recast into the above-mentioned reformulation.
The purpose ls to make 1ow?energy nuclear calculations feaslble
for nuclei with 4 and more particles in the 2s8-1d shell and thus
render the possibility of probing for SU(3) symmetries in these
nuclei. A hamiltonian model consisting of pairing and quadrupole=-
quadrupole terms 1s known to approximate respectively the short-
and long-ranged correlations between nucleons glven by an arbi-
trary, reasonably shaped two-nucleon central interaction potential.
The former model is generalized to include exchange effects at the
long range as well as spin-orbit coupling, and is studied In detaill
from the viewpoint of its various group symmetries. It is then
employed to calculate the low-lying levels of FTluorine-20 which

show reasonable accord with the empirical level-scheme.
PROBLEM STATUS

This is an interim report on this problemj work is continuing.
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I. INTRODUCTION r

Angular momentum techniques have proven extremely useful in
simplifying the treatment of numerous quantum-mechanical problems in o
atomic, molecular, nuclear and solid state physics. These techniques,
first developed in the early 1930's, involve such concepts as rotation
matrices, spherical harmonics, vector-coupling, recoupling by Racah
cofficients, 9-j coefficients transforming an L-S to a j-j scheme,
irreducible tensor operators and state functions, etc. The validity
of such techniques rests of course on the rotational invariance of
many physical situations. Group theoretically speaking, fhé hamiltonian
of a spherically symmetric problém commutes with the generators of the
group of rotations in a 3-dimensions, Rs.

The fact that a large class of problems in addition possess
symmetry groups 1argef than Rz can be exploited by studylng techniques
similar to angular momentum methods but generalized to definite groups
containing R; as a sﬁbgroup. Solving the Schrddinger equation of a
many-body problem, even approximately, is a formidable if not impos-
sible task. The matrix mechanical approach consisting essentially in
setting up and diagonalizing the hamiltonian matrix is more promising
and adaptable to the utilization of these higher symmetries as then
the original matrix is decomposed into smaller sub-matrices. Even
considering the capacilty of modern electronic computors to diagonalize
large matrices, the labor involved in calculating the elements of the
sub-matrices is still monstrous due to the very large number of N-
particle states present. It thus becomes desirable to formulate the
problem in terms more easily adapted to computor languages so that the
machine can do more than merely diagonalize matrices.

Consider the asymmetric top hamiltonian
2 2 2
p- Loy Fey, s (1)
29, 29, 23,
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where L, , L,, L, are the operator angular momentum components in a
system fixed in the body, and theeﬂ's the three Cartesian moments of
inertia. Solving the problem for the allowable energies entails
construction of the matrix ” %T ,/ in some adequate basis, e. g.,
the set lfﬂﬁ>0f eigenfunctions of operators I° and I,. Thus, since
L"I?m)sﬂﬂﬂ)lﬂ'rn) and L5|Qm7='mlﬂm> while I? = I? + L2 + L2, our
hamiltonian simplifies to
[ 2 2 2

fo= ()W * (23, 29,05 * (35, 33k (2)
the first two terms being diagonal in thelﬁqC?basis set; we notice
that 3%; is guadratic in the non—diagonal operator I, . Our matrix

"ﬂ&" whose rows and columns are given by all the allowed values of

Eoana el Al =

%aﬂ) ( ;)’mz% ot 29 g’)d {Lf‘[?m>” (3)

where, since matrix elements between different Z -values vanish, the

complete matrix iz now decomposed into as many blocks of elements as
there are different ,e-values in the problem: the rows and columns
within each block being labelled by , where —24m$L  ana 4 designates
the whole block, Moreover, the complete solution of this exact

‘calculation of energies requires only knowledge of the matrix elements

2
<C£ﬂﬂ’Lq qun)Z (4)
But these are definitely obtainable in closed algebralc form by simple

angular momentum techniques based solely on the commutation relations

{_Lq) Lz] = -y LJ5 (and cyclically) (5)

The solution is well known, but no recurrance to its explicit form

is necessary -- only the simple relations (5) are needed to obtain

1l = LTS iy + 2 G S (6)




and thus solve (3) exactly.

In group theoretic language, the generators of infinitesimal -
rotations around the 1, 2 and 3 axes are L, Iz and L; ~-- called simply

the R; group generators. Commutation relations between them (5) form

a Lie algebra. The Operator 17 -- formed out of the group generators

as the sum of theilr squares, commutes with all thrée generators I, ,

L

55 L and its eigenvalue,f@@ﬂ sufficing to characterize the R, trans-

formation properties ofl[ﬂ)-u-is the Casimir operator of R, whose

eigenvalue provides the classification label 2 . The rows of each
irreducible representation designated by'e are specified by another label
M which proceeds from the R, (subgroup of Ra) Casimir operator La.b

The set of functions Ilﬂq7is thus said to transform irreducibly under

Rs and explicitly also under its subgroup R,

Moshingky's group-theoretic interpretation of second-
guantization techniques applied to the many-body problem lead to
straightforward generalizations of these simple R; group results to
the case of physilcal problems involving larger symmetries associated
with permutations, the harmonic oscillator common potential, r-
dimensional rotatlons and spin-isospin. The nuclear shell model
problem with a spherical (inert closed~-shell) core of nucleons is

given by the N— extra-shell nucleon hamiltonian
4 = 2 iTi+ UL+ 2%; (7)
(:(é:.l

where 'Fk= fﬁ /zyn i1s the kinetic energy, t)i a central or non-central
(or both) single-body interaction and\ﬁ}a,central two-body interaction.
In the Moshinsky formulation, a single-body interactlon operator is
expressible as a linear combination, and a two-body interaction operator

as a bilinear combination, of the generators belonging to groups of




symmetries higher than Ras. But these generators form a knownh
commutator Lie algebra. Therefore, in principle, closed expressions
for the matrix elements of any single- and two-body interactlon
could be obtained.,

In practice, however, another approach was found both
simpler and physically more meaningful: to consider the problem
of allowable energies assoclated with a mixture of palring and

quadrupole-quadrupole interactions as a model for central two-body

interaction,‘plus a spin-orbit single-body Interactlon., Contrary
t0 the concept of a potential, these model Interactilon opérafofs
have a clear group-theoretic meaning 1n that they can be written
in terms of operators which commute with the generators of varilous
related groups and whose eigenvalues serve as lrreducible représenta—
tion labels. These operators are none other than the Casimir
operators of the group involved. Thus the 1rreducible basils séts
dlagonalizing separately the three interactlions mentioned ébéve
could be constructed by elementary algebralc techniques_based on
simple notions from group theory. Having chosen one of the.thfee‘
sets, the nondiagonal matrices of the other two interaction‘. i
operators can be constructed in this base.

We chose the quadrupole-guadrupole (resembling the long-

ranged part of a central two-body residual interaction) scheme for
three reasons: (1) it is invariant under the group U,, the

algebraic techniques of which have been studled extensively by




Elliott, Biedenhafn, Moshinsky and others; (2) there is a close
resemblance between the U or 3U; scheme and the states of the
collective rotational nuclear model. There seems also o0 be some
connection between this interaction operator and guadrupolar
nuclear vibrations; and (3) clagssification of states by SUs
offers the possibllity suggested by Elliott of restricting, as

a first approximation, the basis to the single SU, representation
which lies lowest in energy.

These methods should be extremely powerful to carry out,
within a feasible length of time, calculations on familiés. of
nuclel with the aim of making global studies of thelr diverse
properties. The isotope Fluorine-20 is merely a "pilot nucleus"
for our work; the fact that it is odd-odd makes it a more
difficult shell model problem as such, in spite of having only
four nucleons outside the doubly-magic 3026 core, Little 1is
known empirically about the low-lying spins of this nucleus
unambiguously, but our results on the whole are not inconsistent

with known experiments to date,

5 ¥
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IT, NUCLEAR MODELS & LOW-ENERGY NUCLEAR STRUCTURE,

The nuclear shell model of Mayer & Jensen, with residual
interactions between extra-closed-shell nucleons has been wildely
appliedl’ z)to account for such low-energy huclear properties as
level energles, spins and parities, moments, electromagnetic. and
B~decay transition rates and even binding energies. Its successes
have been encouraging but glaring failures are evident in some
respects, viz., large quadrupole moments are left unexplained.

A second approach to the problem has grown from evidence
of cooperative nucleonic behavior seen in the fission process and
the partial success of the liquid-drop model which seems to be the
antithesis of shell structure. The liquild-drop and shell-model
viewpoints were combined by Bohr & Mottelson and the Copenhagen
school to propose a nuclear model allowlng more generalized motion
within the nucleus by the introduction of collective vibrational
and rotational degrees of motion.

A third frend has been to return to the shell model but
with speciflc residual interaction models that simulate those collective
aspects to a certain extent. So much the better if these model
residual interaction possess group symmetries which can be
systematically exploited to reduce calculational labor.

1. Heavy Nuclel

la. Collective Behavior. In 1950 Rainwaterilo suggested

the possibility of nuclei between magic proton and neutron numbers

of acquiring equilibrium non-spherical shapes to account for observed
large quadrupole moments and transition rates --~- as much as a
single nucleon outside a closed-shell core having the power to

polarize or deform the core by centrifugal forces. Bohr and

Mottelson5’ 6 proposed (1952-3) a unified description whereby




shell structure due to the particles was maintained alongside
collective structure consisting of permanent deformations resulting
in observed rotation-like spectra as well as vibrations in size and

shape. " They put forward a total hamiltonian

24?== f{p t+ f{s t /iﬁdf | (8)

with particle-like fﬁp, surface effects f{s arising from deviations
from perfect sphericity and an interaction/ﬁhtbetween particile
and surface effects. For a small number of extra—closed—shéll

nucleons one had weak-coupling since departure from sphericity was

small enough that one could treatféf#!but in a perturbation method
with shell model particle states X as zero-order functions. For

many. particles strong-coupling prevailed, that is, spheroidal shapes

occurred permitting a reasonable description in terms of well-known
rotating~top eigenfunctions “fZ%t s with perturbative effects due to
vibration, vibration-rotation and surface-particle couplings. The
Unified Model enjoyed great success7>in certain definite regions of
the nuclide table, faiiing geriously in others.mainly because of the

difficult intermediate coupling situations.

Nilsson8)(1955), using the model of a single-particle in an
anisotropic harmonic osgcillator common potential with axlial symmetry
plus a single-body spin-orbit term and a term in ﬁg*to simulate'the
partial effect of a square-well, calculated for every nuclear
ocillator shell the single-particle energy levels as functions of
a b;;é%eter proportional directly to quadrupolar oscillator deforma-

tion and inversely to spin-orbit strength. Many applications of

this simple model have been nade to odd-mass nuclei, where the even




number outside closed-shells are presumed to palr off according

to the shell model, leaving the one odd partlcle to deal wilth.
Numerous properties were predicted approximatelyg’ 10) in those
reglons of strong or extremely weak deformation where the model i1s
expected to apply but again, failing for intermedlate cases.

Both the Bohr-Mottelson and Nilsson models have succeeded
in explaining, within certain limits, the rotational band-1like level
structure of many strongly deformed nuclel beyond ,4 = /SO . These
bands are designated by a quantum number K which represents the
projection on the nuclear symmetry axis of the total angular
momentum J composed of indlvidual-particle j, and collectilve Q

angular momenta, as shown in figure 1.
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Z (lab azxis)
..... 3 (nucleary

symmetry
axis)

FiguRe 1 FIGURE 2,
For low encrgies, rotations aré about axes perpendicular to the
nuclear symmetry axis 3 so that the total individual-particle an-—
gular momentum vectox'jfcoihcides with the 3-axis,.]l beconing
equallto X, and one has the situation in Figure 2., The nuclear

wave function referred to this axis is then

xxz XJL - \{_NL?%-(’)P X.v., XJLZ "' Zx,, 5 (9

the antisymmetrized product of N individual-particle wave functions.
Perhaps with the intention of having a model capable of

covering a wider range of cases than the rotational models discussed

above and the original Mayer-Jdensen shell model, a new approach

has become very popular since 1957. E1liott3™) Bohr and Mottelson

discussed the use of long-and short-range interactions approximated

respectively by a quédrupole-quadrupole (Q" ) and a pairing P force.

The Q"force to be distinguished from a single-particle Q force of

i b Xo(ei, fp:.) | | (/0)

the form
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used by Nilsson to deform the common éscillatorvwell ~---= 1%t 18 a
two~body interaction between extra-closed shell nﬁcleons giving rise
to what Mottelson called the "aligned coupling sdhéhém'whereby the
extra-shell nucleon orbits tend to align themselves along a given
axls fixed in the core thus acting, effectively, aslif'phe core
1tself were deformed into a (quadrupolar) ellipsoidal shape. |
Mottelsonl2) shows that f? gives rise to binding energles depending
on N, while Q@® produces effects dependent on N° and therefore for
many particles outside the closed shells Q® 1s expected to predominate.

1b. Pairing Effects. Bohr, Mottelson & Pines?3) (1958)

emphasized that the large spacing (gap) between the ground an@ first
exclted states of even-even nuclel as well as the mass difference
between even-even and odd A nucleil may be 1ndicétive of nﬁcleonic
pairing. ’

The filrst formal use of the f? plus Q° model seems to be
due Belyaevlu) (1959) who reached very interesting conclusions
regarding the effect of palring 1n heavy nucleil: 1) pairing‘
reduces the heretofore too-large predicted nuclear moments of
inertia by magnitudes in much better accord with experiment.

(Griffin & Rich15) (1960y Nilsson & Prior16) (

1960) verified this
admirabiy for 26 even-even rare earth nucleili with an average théory—
" to-experiment difference of only 6%). 2) Near closed shells; |
pairing gives rise to spherical equilibrium shapes while thé Q?
interaction low-energy vibratlonal modes is respbnsible‘with
frequencies within observed trends. 3) The even—éven nuciéi gap‘ 

18 explained, as well as the increased level density above it.v'A

disadvantage of Belyaev's 2nd - quantization treatment of pairing is
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that the number of particles N is not constant so that results apply
to average properties in a given isotope region.

The Belyaev model was used by Kisslinger & Sorensen17) (1960)
in an extensive application to single-closed-shell heavy nuclei, for
cases where j? predominates over Q®, and obtained generally encouraging
results of level energies, moments and transition rates. A recent work
by these authors18) (1963) shows use of the same model with the
additional treatment of guadrupolar vibrations via introduction of
the phonon formalism. Reasonable agreement with empirical low-energy
systematics 1is obtained for numerous heavy nuclei outside well-

established regions of nuclear deformation.

2. Light Nucleil.

Experimental work by Litherlandeta]lg) (1956) on Mg+
strongly suggested the presence of rotational (collective) structure
in the A=24,25 mass region of 1light nuclei. Subsequent experiments
corroborated this suggestion for other nuclei in the 2S-1d shell,
e.g., F*° and NZ°.

The theoretical structure of F¥ presented a curious
gsituation: two apparently very different models ylelded very

20) | ne results obtained by Elliobt & Flowers>l)

similar results
(1955) with a central Yukawa interaction and spin-orbit force acting
22) (1957) using

the Nilsson model showed that, at least for this nucleus, the two

on mixed shell model configurations and those of Paul

models could not be very distinct. This embarked Elliott on a series

of key researches leading to his classic 1958 papersll). He found

that collective deformation with its associated rotational spectra

is obtainable by considering particles in a harmonic oscillator




- 12 -

common potential and interacting with a two-body force of angular
dependence P, (cos 68), i.e., the Q% force, which is diagonal in an
SU, basis of mixed-configurational states ---- SU, refers to the
group of unimodular unitary transformations in three dimensions.
The SU, states referred to laboratory axes are characterized by
definite orbital angular momentum L and projection M, as well as
by an approximate quantum number K (appearing to be related to the
rotational band gquantum number K of Figure 2), the SUé irreducible -
representation (%u) and orbital premutation symmetry EfJ .. These
’y (tf}('l\}k) KL,M) are projected out of intrinsic functions

X(E{} (A/A) K) referred to a nuclear axls. The X functions are
classified by the subgroup U, in addition to SU; and are
eigenfunctions of an anisotropic axially symmetric harmonic oscillator
potential. For N=2,3,4 particles in the 2s-1d unfilled shell he found
good overlaps between L-S coupled shell model wave functions and his
SU, basis set of states corresponding to the leading (lowest-energy)
representation of SU;. |

For nuclel with a few particles in the 1-p shell Kurath

& Picman23) (1959) found strong overlaps between wave functions con-
structed by the Elliott SU;, technique applied to Nilsson intrinsic |
states and shell model intermediate coupling (JJ and LS) wave

24 )

functions from calculations with a two-body central force 1n the

1imit of gzero spiln-orbit force. Similar results for nuclei at the

beginning of the 2s-1d shell were found by Redlich.25)

The Elliott SU, technique was applied extensively to
nuclel in the 1p shell ---- with the incluslion of spin-orbit

26) (

interaction ---- by Koltun 1961) with results comparing favorably

with earlier intermediate coupling calculations by Kurath25) (1956).




These techniques were extended to the 2s-1d shell by Banerjee &
Levinson2T) (1963). Calculations on Mg® (N=8 in £s-1d shell) were
carried out by Elliott & Harvey78) who found a small (10 to 20%)
mixing of other SU, representations into the leading one for this
nucleus. Chacédn & Moshinskygg) (1962) calculated the low-1lying
levels of Ne® using a competitive mixture of P and Q® forces and,
separately, under a gausslan central potential. A remarkable
resemblance between the two predicted level-schemes emerged, as

well as excellent agreement for the very lowest exclted levels.

The Ne®° E2 transition lifetimes were calculated on this model by the
author and co—workers3o) (1963) showing the tendency of Q® to deform
states (decrease lifetimes) and P to produce more spherical states
(increase lifetimes).

The method to be used in our work will be within the
fhird approach mentioned in the beginning of this chapter. Thus,
our model will comprise P, Q® and spin-orbit interactions whose
group symmetries shall be employed to advantage. There seems to
be no "a priori" reason why this interaction hamiltonian model
(involving a very small number of parameters) should be restricted

to certain regions of the table of nuclides.




CHAPTER
III.- THE MOSHINSKY GROUP THEORETICAL REFORIULATION OF THE NUCLEAR

SHELL MANY — BODY PROBLEM L)

1. Creation and Annihilation Fermi Operators.

A single particle in a state (’ is defined by a crea-

tion operator acting on a vacuum state, namely
.‘—
[0
by 10

whieh corresponds to '%(7'). An annihilation operator is given sim-

ply by the contravariant operator be where
e —
b 10> =0. )

They obey the Fermi anti-commutation relations
' el e+ _ €
oy, B 0= by B EE =
e (€2 _
b b f= 3 b6 =0

/

(12a,b,¢)

and hence, expanding the left-hand side of the second relation

o r
%b;, :»lff- 19; ;v"f' l:)el b( = O

be by = ~bBerbe

r|+
it becomes obvious that if (’56' 5 b( L)( = O, i.e.,
the Pauli principle is satisfied: one and only one particle can be

in the state P . For particles in a common central potential the




state (’is given by the assembly o

&
p —> vim,sT (4)
where VY is the principal quantum number, 1 the orbital angular
momentum, m the magnetic quantum number, ¢ the spin projection
along an arbitrary axis and T the isotopic spin projection.

The allowed values of e thus label the dimensions of a
_single-particle total space composed of & coordinate (or orbital)
subspace (Vlm) and e spin-isospin subspace (6T ). The (’-—dimensi_o_
nal vector defining this space is b;. An equivalent assembly of

gquantum numbers for the single-particle state could be
p->vlym,T (/s)

where j. results from coupling Z with 7/.2 and 'mf is its projection.
This choice is more appropriate for J—j coupling and here the
single-particle space is decomposed into "spin-orbital" (W]’mf) and
"jsotopic spin" sub-spaces.

2. State of “—noninteracting fermions.

A state of N non-interacting fermions is usually given by
the normalised Slater determinant of single particle functions which

is totally anti-symmetric under particle exchange:

[t %o o
@E‘(‘m%(_)glpzl{'m%&)m%(u)E‘ﬁT %(1) 'ﬂ/e;(z) TER 1v)

.

1[}(;(1) o Yo




where P is a permutation of two variables from the set 1,2,....,N.

Teking another function

Tazrrgeke - o o

]
and considering the scalar product between é and é one obtains

—

the well-known result
6 ¢ '
| 8 S+ e .
?ll 7’/ . f o n
=% &~ =S, @

AR

:e.' &
5& gt

which is called a "generalized delta function".
+
Now, since (. corresponds to b&; l0> in second-quan-
) .
tization formuletion it is natural to assume as the equivalent of

é the expression _ |
,P'€2€~> = gﬁ l;(’z l;(;ﬂ I0> (H)

which from the anti-commutation relation (12b) is clearly anti-sym-
metric under particle exchange and therefore also satisfies the ex-
clusion principle. The scalar product of (19) with another state

I ! . .
lﬂ? fu? can easily be shown to give
2




YR
066> = <ol . L by, b, o bop, 10>

(Y
= Oge. b &%

é -
using the relations (12) and the fact that b lD?"'O, and this is
/
identical with the result (18) for ( é ’ é )e

3. Single-and Two-Body Operators as Linear and Bilinear

Combinations of Group Generators.

An N-particle state with interactions, specifiable by a

set of N-particle quantum numbers A s, can always be given as a

superposition of linearly independent states of N-noninteracting-

particles
p->8 . b by, -+ b 10> (21)
A ?-f’z"'eﬂ { z
6 Cn
with arbitrary coefficients BAC;'--(’N + These coefficients will

be determined by the operator set @’ representing a complete set
commuting
of/observables required to characterize the polynomiel base (21)

exhaustively via the eigenvalue equations
- P
6.& =0 Ly . (=2

It is desireable therefore to obtain general operators
+
which depend on the creation and annihilation operators ¢ and

4
b? +« The most common of operators are symmetric one-and two-body




scalar operators defined as

2 W) ana Z Vi, > (23)
L<j =
where Y; stands for all the coordinates of the ith particle and
Y'q?.‘?;‘ﬁ-l « Let us call Wr) W and _W }3_ V}

and their matrix elements in the usual form are

qpivil> = fED W 0 dy
<’WV»)I7] S = _[f?k a);/mp an mz#z;)dwz;‘

Operators in the second-quantization formulation are usually

postulated as

We Z Wi 5, b (24)
i

Ve LS aiVeiyn>by, by, b B a9

¥
e

( 7. being the complete set of quantum numbers needed to specify
.+ )
the L‘h single -~particle state, i.e., states of the type ﬁ' of the

previous section). These postulates are considered valid if matrix
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elements in the second-quantlzatlon scheme are identlcal with the -
corresponding onesin the usual Born-Heisenberg-Jordan scheme of f’ TR

matrix mechanics. Calculating the elements of‘lupbetween non—in-‘ﬁﬁh

teracting states we have

<ee o | Wlet

=S ;wm;><ofg"~-g‘b“( b”)

o ‘
S <y W fg1><ol [ b"*b"'(é Wf}ﬁ ,»ﬁ,lo>
i

Ioe IJPMI >

"

having used the relations (12a) in the last step, so that

' !
,<ﬁa---€~m7°1r,.€2---(’~> |
) 10’0 /
|fz ' z§'7¢ﬂ€i"'ﬁ}z - (*'
2 2b)
<7"’W'I7] >§ 5 g(’: AdoRe
g |
32) pp. 169-Th
which is indeed the usual result (see Condon & Shortley/)of matrix
mechanics for the matrix elements of a single-body operator between

two Slater determinant states g§ and gi;. Carrylng ont a simllar

calculation for one obtains

<t 6l Plet 6> =
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= 1S pvaigitr <ol - BE G b b, b b’h)b b B, l03

"Iiﬂl
T

’ ; !k;“...&p
= :;1):2<7,71.IV2[‘7:7><0 |

2 o
__5').' ’)1_’_8)7-' b”):g", +57% b’% "' (5%}9’7’ +bb 27 )K
» U ¢ ' ‘

X g b(, b(’n > (27)

A b(/( 57"11 57121__ Oc%v,’ L [9'*7 !

where the last step is arrived at by applying the anti-commutation

relations (12 e,b,c) to the expression
t, n
T t; Lg'k?z
5 b

such as to push the creation operators to the right and the annihi-
lation ones to the left. Noting in (27) that the terms

57" J%l ;
] ﬂ; % 7, —_ 7'7”
g’l‘ 5 v = / N 57,’ l = g

7' 7»

and utilizing the scalar product formula (20) one arrives st the




final result that

S o
i_;<7'7’,-‘]'z’ 7‘7">{ 57, g{’ Croln
Mi) A neb 7: Neb
0 '51(, (5,6 Ont. -t

:(’ ﬁv el
e * S @

whose properties are identical with those given in Condon &

32) pp.

Shortley, / fhé9ﬁgtr1x elements of a two-body operator in the

usual formulation. In conclusion, therefore, one has the required

identities

<-tlilflet -y = (&, ZW @) o)
<66 ("“)olf(’z ) = (@) . c;, j_é) 39

(,<




g§ and ‘é§/be1ng the Slater determinental states (16) and (17),
thus justifying postulates (24) and (25)

Operators in the second-quantization form are used ex-
tensively in current theoretical physics. When states l@(;...fhj>
are given in te;ms of creation operators Eﬂ% as in (19), the
usually difficulty and tedious problem of calculating matrix elem-
ents between superposed states of this type is reduced to thé"sfil}
tedious but intrinsically simpler task of anti-commuting Er 'y b?
operators. In effect, however, even this is avoided as quicker and
simpler techniques have been found for evaluating matrix,elements.
It may also be mentioned in passing that the second-quantization
formulation is not necessarily restricted to the treatment of /V
fermions: a similar formulation can be derived réplaéing the

relations (12 a,b,c) between fermi operators by commutation rela-

tions between boson operators for the treatment of such problems as
phonon excitations in the vibrational nuclear model. Finally, we
should anticipate the fact that contrary to second-quantization
formulisms of the field-theory type, the total number of perticles

(nucleons, here) is always conserved &8s physical situations in low-

energy nuclear physics demand.

A4
Let us call the creation-annihilation pair F‘éD

¢
by another name, for example

! + 10 o
Cf’? = B b D

I

where it is understood that this operator when acting on an arbitrary




.

state destroys & single-particle state given by the quantum numbers
/

e,; and creates one given by ﬁ explicitly,

CEll g > = (06 forr B>
= 0 (if @ ts mt present)

We can find the commutation relations between the

727 7T 17
FERS B e |
e A e B

(31)

(4
C(’ 's by using
the relations (12 a,b,c):

(e c¥] = L6V, bs k'] )
ST b, T+ [y, be 1L
LW B EIE
P L, K+ DB P
o B2k
2 1 bt BB - B8 - 2 brbe S

. 5 el i |
Sl ef] = €56 - Cede. 6D




As Moshinsky reallzed33) this result is extremely 1mportan1: the

commutator of two 6( 's is expressible as other C 's. Exactly

the same thing occurs with the angular momentum operators, namely,
[Lv,( Ln}} L L‘Z (and cyclically)

are the ge,'nerators for infinitesimal transformations (rotations) of

the group R,. (A better insight into the reason for calling

L»,o Luthz the R generators for infinitesimal rotations is given

in Appendix C ) Moshinsky's argument (see Appendix) concludes that

relations (32) indicate that the set of operators f C f forms

the generators of a group of unitary transformations. The dimension

of this group is the dimension of the space wherin the transforma-
tions take place, i.e., the possible valués of the quantum number
set €=\)?'m 6T . Let the orbital sub-space VF'M be V-dimen-
sional, the spin-isospin sub-space is 4-dimensional since
¢cT= '/z‘/z,/z '/z.)"/;/z; /z./z.. Thus the set of (4r) operators ZC;_{
form the generators of a 4v-dimensional unitary group uv. whose
ILie Algebral) is given by (32).

Now, the single-body operator Z‘rof (24) is obviously the

linear combination of Uq.v,group generators

W=S<elwle> Ce (23)

66

with relatively simple coefficients as only one-particle states are
involved. For the two-body operator of (25) we use (12 a,b,c) to

convert




b, l;e A = - g. L;z 10()/19&1

B (h-L R
N g . LE - 0(&6’ bﬂ,‘ i
C: 6?; - Jpj Cﬁz

I

i

i

"

so that ?Tis the bilinear combination of Up group generators

V= -—2<€.€1IV o> 3G CE - 52' a:g"f (39
66
e

with coefficients depending only on two-particle states.
A large class of problems involve one-and two-body operators

which are independent of spin and isospin. Considering this restric

tion, and since
G —>Vlm T L= M,

where /ui refers to the configuration (orbital) space quantum num-

th

bers of the L— particle and 5; to spin and isospin, the coeffi-

cients in (33) and (34) will be
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eI = s Wilps'> = plWIp>ss"

<€a(’zmz,€|(z> </4 ,,/‘ S IV /( ,,/IA 5 >
= el Vel p 2557457

because of the impqsed independence of 'M/L— and [) on§. Insert-

ing these expressions in (33) and (34) one gets

2<,AIW'I/A> ‘ (35)

1 M pHS v
/‘/‘, |
Jops
where the new operators éﬂ are simply a contraction of the old

ones over spin-isospin indices, that is

(X S56-S &G

/“ §s/ ss!

é//f 26/:% Ap'=4% ") _(37)

Writing in (32) /MS forp and contracting over § we obtain the

commutator algebra
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which, by the argument upon (32) reveals that the Wzoperators

é;ulare the generators of an Y’ ~dimensional unitary group, Zér P
of unitary transformations within the orbital sub-space of V' dimen-
sions.

From the analysis of this section, an analogy with the
asymmetric top and ite allowable energies of the Introduction is
thus evident: the hamiltonian aqa-in (1) is quadratic in the Ry
generators while here & nuclear hamiltonian Jﬁ? with group symmetry
greater than Rb’ composed of 'bothz{f and ,p’ types of interactions,
is expressible as linear and bilinear combinations of the generators
of a larger group, in general,.uuar + To evaluate theﬂaﬁ}”nmwrix
of (3) in the Iam>’basis for an irreducible representation of
RbD Rz_ only the matrix elements <€lm'/Ll;M'”1> were needed. In
our nuclear problem, to obtain thq%ﬁfﬂhatrix we would need the
matrix elements of the symmetry group generators. Although these
are known for a unitary group of arbitrary dimension?5) other
approaches will be necessary as solving the problem via the top
analogy imposes great difficulties. .

Our approach will be to construct a (truncated) basis
which transforms irreducibly according to the various symmetry
groups of a chosen portion of the model hamiltonian. AEO accomplish

this, one begins with the problem of classifying the pertinent

N~-particle states with appropriate quantum numbers. However, a
brief sketch of the treatment of this problem in RZ> will be most

useful.




4 4= Spherical Symmetry and the RQLGroup.

an

Consider first how one obtains in group theoretic lan-
guage a basis forAirreducible representation

of the group of

three-dimensional rotations R3 and the labelling of these states.,

The generators of infinitesimal rotations around the x,y and z

exes are respectively L,, Ly and Lz, where

2 .
Ly = (FxP), = »ﬂo -2P = "(43 2z D‘}>

1 2 _ 4 <
hy= GxPly = Zh-%Fe T Tz(%ax <52) @)
- 1
L= FxPe= xpy-yb = 7(x3 7 Y x)
In spherical components one has the three generators
L+ bx + by
Ly = ks
o L'x'i"“”#

i

“40)

|

which by[L.x’ ij = L% (end cyclically) obey the Iie algebra

[Lo,btl= tLe  [LeLd= 2k (4)

)

of which only L, is hermitean since

(L-D*= L:,: omd b= ko




Ly, L‘,, L, being hermitean. Rotations are linear transformations

and therefore the basis functions should be linearly independent
homogeneous poiynomials in the spherical space-components %4, X,
and ¥_ of fixed degree, say h, which are solutions of the Euler

equation

#V Pogx) = h Plenxo), (43

These solutions however form a basis for a reducible representation.

To decompose this set into irreducible sub-sets a further restric-

tion on P must be imposed, namely

L, P=mP “4)

using the hermitean operator L, which commutes with the previous
operator ¢"V so that it can be employed simultaneously with
.‘-("vV to further caracterize the polynomial by the integer

m. The weight of the polynomial P is defined by m. Since L,
and L_ also commute with vV the polynomials p'= LiP and
P'=1 P both satisfy (43). What weights do P' and P" have? Using

the relations (41) one has

L, P'= L,L-J,P = [Llo,L{»]P‘f'LH-LoP
L+P + m L{..P

= m+1) P!

5y

AT ITHPTALLAD

i -




L, P'= Lk P =Tk L] P+ L.kP
_L.P o+ L.P

(m=1) P’

W

The operator L*thus raises the weight of an irreducible basis P

by one unit end I_ lowers the weight by one unit. L, and I_are -

therefore called the raising and lowering operators of the group R, ,

while Lois the weight operator..

Among the solutions of (43) there are some polynomials

of highest weight f given by the three equations

?-stkf - 49)
L. P- 2L 4Y)

 and L«fﬂ? = 0, (4'7)

From (45) we take the general form
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§ “ ogP g7 - -
P('L} %o 'X-—) = Cotlb]f X-I- x— %" @{75+Y’_h>) o
) OLP,‘, |

in spherical compcnents which, like (40), are x;t = xi‘i?: xa:: Z,
Applying the restriction (46) with L, = X, 3/2x+ — X. 9/2)6-
gives the relation fb = d‘ﬁ and (47) with L_',:_(xf. 2/3)(0 +7(,2/2/(.)

gives a recurrence relation between the remaining coefficients so

that Lh-) h- { L(Ll:.g-d) N
P(Xf'xéx') = Ao ’X::Z( Z) X° * (" -ZX{-X-)
2 9 e

a
with A, an arbitrery constant and (4’_) the binomial coefficients

finally yields the solution to (45,46,47) as

. h-2
B = A xe - 20" @)

with h= 0 0-2,0-4,. .-, (15 (49)

But the term (NZ-2X4X.) is simply Y'2= x7'+447’+27' so that one

has .
Bu= A w1 (ehtebg ) @)
{

which (apart from an invariant Y\h and a numerical constant) is

the familiar solid spherical harmonic of maximum projection

Ia,g ~ Y‘h-z yu @/y)

%12(‘09/9’) _ YQ'YM(%;)' | GRa, )




To summerize, the three equations

yP-hP  LP-4P, LP=0

ensure solutions (51), or (52) which for the simplest case h—a
(maximum representation) then f rug(a,f) is the maximum weight
polynomial of the basis for the irreducible representation labeled

by [ . The full basis can be generated by successive application of

the lowering operator IL_ , giving us the rows m of the represention

A Ym 69)

1 thusly:

Bn=
= Yy 689)
B= Yt g

where the radical in front of the lowering operation (L_) is

(53)

for normalization ’/ and m takes the ( 20+| ) allowed values

0 smsd (5%

which are unique for a given ,z-values, i.e., the set of numbers m

labellinhg the rows is multiplicity free. The polynomial basis -P-P'm

is clearly an eigenfunction of the commuting ope:x:'xs‘:rl:o:c-s‘Lz and L, ,

L?' Bm = f(fﬂ) E’M
L‘% Pbm = m B'W\

v653§4,4)

36, 37, 38)
and the operator 1 is referred to as the Casimir operator / of R3

as 1) it is constructed from the R3 generators by
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s L;*L'; L = %C’_’)# L; L—4 - (?‘t—’a) (56)

¢

‘2‘)'11: commutes with them, namely [L)zlq.]:o and 3) it suffices
to characterize each irredu‘cibl”e representafion of R3‘ by the label
,e, + - The Lé operator generates rotations around the Z-axis and is. .
thus the single generator of the group Rz of axial rotations.
Hence, the polynomial basis Pt'm is said to be explicitly reduced - .
with respect to the chaim of groups
o [R @ )
B>, ¢ | 7)

the 1 in the lower-right hand corner coming from the fact that axial ’
rotations here are about the Z-axis.

Exactly analogous techniques have been develo;pe%i‘i ) for
unitary group irreducible bases which are needed to construct wave

functions for problems with symmetries larger than rotational.

5.~ Supermultiplet Classification of States by Unitary Groups.

Pernutational Symmetry.

The group of unitery transformations within the totsal
orbital-spin-isospin space of 4y . dimensions is uy whose (4r )7'
OB aeas
generators are CC = D¢ ’ Q designating the components, which
obey the Lie commutator algebra (32). Our transformations are
linear, so the polynomial basis must be a set of linearly independent

homogeneous polynomials P of degree N in the b e The set more-




ovér corresponds to the completely antisymmetric representation

4r-N : -
[1"0 ] of u"' . The scalar product between two such poly-

(B,P) = <ol PTR 10> o {sz)

where in gt all i% are replaced by'1£ and thus evaluation of

(58) depends only on the properties (12 a,b,c) and (11). The

cfeation and annihilation operators themselves transform as

| é;l = ;;Ei ‘[Jrf.L5;

U : N =124 (59
le! e
- S

¢
the : being elements of a unitary matrix.
e lalsl
As already seen in (37), contraction of Q:? =3 Q;;S.
over the index s gives an operator set é é? .f with Iie al-
gebra (38) and therefore constitute the generators of a group Z(P

of unitary transformations in the orbital space of ¥ dimensions,

ie€ey

I+ CZEZ_ﬁbL/‘ +
/M’S =,2,..,7
Ut (§ome) @
L I s MS
= S
/A

Moreover, we can form the 4L=16 operators
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......

Cs'= 25 S'S’ 2 (SS’=/,2,3,¢) (¢1)=
» G <

by contraction over the index/a, , and see inmediately from (32),

contracted in the same manner, that

III s S/
[CSS/ Slllj S” - CS” JS

s///

(¢2)

is a Lie algebra identical with (38) and (32) so that the operator
!
chsf form the generators of a group .U; of transformations

VO;Q' = ; -[);'S
L = Z@)Ug

The generators of Zl—v' commute with those of ‘U;_ H
, . M s
WSty J
[6),CT - [;C/;,QC :
MS
Z [Cf, ¢ ]

U, -

il




ps' oM \
= ZEC,MS T s f
&

=0 )

#Isl._ PJ s
recalling that 5 = 5 5 + Hence, the group
" )4-V‘ of matrices //u 7’ // contains the product sub-group

’urx'U; of matrices //Z(/“ U // and this contains separate
ly the sub-groups Zly-wrth //ZL,“&S // . and u with //é‘;‘;1 Us—f//.

In shorthand:

U > ol ] 2 Brem o 9

3 > U <«— (spin-isospin)
(orbital-spin-isospin) 4

the names in parentheses referring to the single-particle transfor-

mation space.
Iet us now define the irreducible representations con-

nu
nected with this chain of groups. The ¥ operators é“

S
4 operators CS are hermitean since




M PrIWITI NN
5o 5 of Temede
NN I B VL

64"= S )= 3 b b= 6

Cy =2V =S b =&

4

. / ' S
while }é/a (/A;ﬁ‘/u’ ) and CS ( S#S’) nave the hermiticity

properties
@=Lt GG

In analogy with the R, hermitean operator L, one can define, as

. 3
in (44), in ZIY‘ and simultaneously in -(Z,, , the weight of the set

of homogéne_ous polynomials P of degree N by

GLrP=w P (peszyn (67)

CEP=-=w P o

)]

4334) @y

"since the operator sets commute mutually, so that the weight of P
,'1n ur is the set of numbers [Mw; Wr] sy and in U; it is
[w' w;w3 w‘} . From (67), the integer % is the degree of P in

B/“S with respect to the index /M while, from (68), the integer
ws gives the degree with respect to 8. Example:

o+ F [+
&—_g g 'F = é// 12 2z 32 P44

has Z(V weight [2(/,%%]:‘ L[211100--d and U4.weight .
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[w’wzw3w4]= Il 30'] . The sum of individual degrees
2“’ - N

is the total number of particles, which in turn is the eigenvalﬁe

,u'

of the number operator

§- 365

M (71)

(P~ NP

A polynomial P of weight [WW, -+ W] in Z‘/r is of
/ L) [
higher weight than P of weight (ww, - Wr] in uV' if in the

set of differences
/
LW W, o) W W] (72)

the first non-zero number is positive. ILikewise, the same criterion
for higher and lower weights in —(]; applies.

Consider now the remaining operators of Z{r y 1eee,
5 7y 9"’"/“) and of U y Le€oy CS (54’3') . Take the two

polynomial classes P’ and P’ as
,ul
P = 5/44 P (/M<-/AI)
S




Using (11), (12 a,b,c) and (67), one can find their we’if'g'ﬁ‘ts:

g/uMP’ g/Ag B_[g,«agm]l) Z’“’f’“ﬁ

’“'_F-{—_’W fwf = () P’

so that P' has weight f'W;, "',‘W ”; "'9%"1;”'71”1'] and P" .

weighs ['W, cony Wyt e 74'{.; +H, er which are respectively
higher and lower than the weight [ s ,,, o ﬂ{,., . ’ Wu' ’ 'M/,-J
of P. Thus in analogy to I, and L of R, 5 Ca</al) are

the raising and g M (/M 7/“') the lowering operators of the group

ﬂr « In the same manner, one can sée that C (5<s") - and
SS’ (SPS’) _are the raising and lowering operators of —(]‘;

‘Thus

lllll
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WEGHT
OPERATIRS

(72)

>

\k

—
il

(/A)}A'-: b2 "

: )
LOWERING

s’ U
and a similar array for ?CS fof 4_clearly show the three categories

of raising, lowering and weight operators present in unitary groups
which is the generalization for these groups of the similar result
cbtained previously for Rs .

Aypdz}g the set of linearly independent polynomials P which
satisfy gqu;.tions (67) and (68) thus being characterized by both
[ww, .- - Wl and [w,0,w, W,] , there are some, say IF , of

highest weight in both Jl, and UJ, &iven by

» | U //,/A’=/,2, vy P
?ﬂfuﬂf’ WP, gr=o (/«/»' )(75‘9”)

and simultane 6usly by




. / $s'=1,23¢ P
Cip-w P, BP0 (Yi') (b

the highest weight polynomial set f now being characterized by
Ih.h,-.-hv]x{v.v,v, ti , which is the representation label of the
direct product group ?,{Y)(TL . The set of equations (73) and (74)
for ’U.,,X-U; is analogous to the set (46) and (47) for Ryt they
select the‘maxi-mum weight functions IF out of a largér set P.
Should one furf_her insist on an analogy here of the Euler equation

(45) treated in the discussion of R, , We can cite
ScP=NF
4

which like (45) gives the total degree of P .
We recall from (53) of our discussion of the rotation

grbup that the complete base Em, corresponding to irreducible re-

presentation j of R, , where the row index m is given by -
~bsms ,e , can be generated from the maximum weight and h= /e
polynomisal IPLN 9(,{? of (51) by successive applications of the R,
lowering generator L,_ o

In the case of ’Z(.r)( _U.;. y it is possible also to genera-
te the full basis =—=-- labeled by the appropriate rows to be

discussed further onﬁ---— via application of operators which are
functions of the lowering generators of this group. The representa
tion [Mhe - ha TX§Vi Vet V4 of Uy XUy is thus definitely

irreducible. Moreover, this irreducible representation is unique

(See Appendix B - e
The direct product group %rXU; contains Z(,, and U4:




as subroups. The highest weight term of an irreducibie basis for
'ur and u , labelled respectively by [hphz"'hl”] and {MV,_V;KJ ’
obey restrictions analogous to (49) for the irreducible representa-
tions of R, . We recall that (49) followed simply from the fact
that _’h_D was a homogeneous polynomial in X4+, X, and X_.  In the

QP 6/P)= QI B'GL4 P> ()
= | P g}, d;/’]f/w |

o] PT (1 -41)P o>

- BB zo0

i

(75)
S b B forpy

where in step & we used (73b), in 3 (732) and in the last step the

fact ( ]P, T )2 0O . Similar results are obtained from the .

scalar product (CSSIIP, Cgs‘f) for S>S' Furthermore, frbm (71)

one obtains éhﬁ z Vs = N « In conclusion, we have the
H

Szt
following conditions:




Wy b2 by 2 e 2O o
hthet hyt oo h, =N

U4—: \/’+VL+V,§+V4=N » (77)

which are precisely the requirements on the well-known Young dlagrams

(or partitions, or patterns) giving the permutation symmetry of an
N-particle function.

The unique highest weight function of an arbitrary orbital

permutation symmetry and the corresponding (conjugate)spin-isospin

permutation symmetry can be constructed at once. For instance, take

the 13 particle orbital symmetry given by the partition

Uy Thho-h]=[2221] = (78)

}-——-
L1

R
where obviously 4+3+2+2+l+l = 13. A polynomial function P ( b/s )
with this 7/(, irreducible representation and of maximum weight in

/M. y is simply




y t o+ F
‘Tj-)( ;AS) = bu bn, bﬁ'b bm
+t t +
X 21 22 2%

G B )

¥
<Dy,

which is clearly totally anti-symmetric with respect to interchahge
of any pair of orbital-spin-isospin states. Note that the arrange-
ment of bl 's purposively follows the Young diagram (78). The degrees
h/u of ? with respect to the components/u in ;5 is h, = 4 so that
= 3 and three states with

2
/A. = 2 are constructed, and so forth. The second index of each b+

four states with/M = { are constructed; h

operator —-—-- denoting the spin-isospin state ———— is pla‘ced in
numerical order in each row. (If two of these indices coincide the
whole expression vanishes as from (12b) any b+s /:5=0, i.e.; the
Pauli principle). Naturally therefore as 1S4 , there are £
four blocks in any given row. By the same taken, there are X ¥V
(=number of single nucleon orbital states available) rows in the
whole expression.

) M
Mental application of 5 (/{ = 14250¢.06) shows that

/44




- 45 = =2

indgeeda [Mhhyhehsh,1=L432211] | me effect of any =
'6’“' ( #< ' ) is zero asin some column a factor -b+ b+ =0 R
o (PN | usus =0 =
would then occur, thus (78) is of maximum weight in Z(,..
/- _
Again, mental application of CSS (s= 142,3,4) shows
that [V\V, \/5\/4] » the degrees of ]P in 8=1,2,3,4, is _
[VWWVoVa Vel = [(.,4.2|] y Which satisfy (77), end furthermore is
the conjugate representatlon of E"' " h3 “)4 lﬂsl-u]as

[W] = [432211] = [b#2(] = TU Vs %] '(@

as can be seen by reflecting the diagram (78) about its principai
diagonal. (This was to be expected since the irreducible répresén-
tation f’\.k;"'kv])‘i"l‘/ﬁV}VqE of ’L(r X -Uq. is contained in the irredu-
cible representation [1" qu-"_] fuv- Moreover, (79) satlsfles h
Cs'IP-‘—’-O , for S<S', since the effect of any of these Cs
would create pairs of the form b/us

The state (79) is the analogue for the Z(rx U; group

of (51). Extremely powerful and§imple is the technique of construct-
E[hc‘\z‘ "hleivl v stq’;

ing any of meximum weight. Lowering operations
as in (53) for obtaining the complete bases Eﬂ' irreducible under
RB > Rz ’ with-—fS’MSl and of dimension (2[-” ), also have

their analogue in unitary group theory.

The polynomial set ﬁ,m transforms 1rreduclb1y under R.S
according to the well-known "rotation matrices" )

Pb:n (0" %’2) =% ﬁofzvl Brm’ ('K,y,%), (g D

4
The row of the irreducible representation ;8 of dimension




(§l£+' ) by (204! ) is given by m which, apart from being the

polynomial Weight in Ré’ is 8180 the irreducible representation of
Rz which is contained in R3 as & subgroup, i.e., f%”’transforms
irreducibly under the chain of group transformations designated as

R, © | |
Ry 2 o 1) (82)

Simllarly, the rows (and columns) that would specify the
r]

Lhhy - +
full basis of a polynomial set LD us ) transforming

irreducibly under ,21v could come from sub-groups of er » Not any

chain of sub-groups, however, would provide a complete classification

of the polynomial set. For example, the chains

UdoU,, UpTsxG,  U>R @3

h3)

among other physically important caégé are known as "non-simply
reducible" because for a given irreducible representation of the

large group there mey be repeated sub—group irreducible representations

thus requiring additional 1abel§9)(quantum numbers, physical or not)

t0 distinguish these multiplicities. However, the so-called '"canonical
39)

chain"




1
1 0 o

Lo Uy-» © O -
r-1 © 101> ...> 1 84 0
MM)( o) 1)> o O 1 o . ( )

unequivocally specifies the rows of a ur irreducible representation.

The "canonical chain" for the spin-isospin group []; would

hence be
O O O
v, oy [%°% |5 100
3 > 1 19
U4>(ol> g 1>ooio (8¢)
| O 0 o1

and as this is smaller than uy in general, let us illustrate the

sub-group generators. The 42 generators of U;_ are

ﬁjc.cc

gl C: | C;, C"
U: %Cs{ = Jd 27 T 02 < q (8L)
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m l,lzl 4'>
with Lie algebra [C C SS”’"] C;S'd" C-S'” Js ’ ’namely
the commutator of any two generators never gives other than U:,,
generators. The -[]3 generators can be chosen as the 32 operators
in the upper-left hand corner above thev solid lines. They satisfy
the same Lie algebra as .(L y but with ¢,8'=1,2,3 -=--- &8 can be
quickly verified. The T]Z generators C C Cz also obey
the same algebra, but with g,8'=1,2. Flnally, C,' is the sole gene-
rator ;‘wof U; | ‘and the cdmmutator C,; C,’] = O also gives nothing
outside U; . An illustrative diagram showing the group chain (85)

sl
in sofar as the 4z generators CS (s,s’ 1,2,3,4) are concerned is:

TS
U - 7
Z

Generalizing, ‘l(, will from (84) have ( Y-1 ) sub—groups
7/(?’ (p=1424+4+4 ¥ ~1) each with p* generators (f (/4,/‘ ,f),

Moreover, the equations
@{‘P= hP  ElP=0 (37)

(M=12,, p)  (usm’)  (F=42., r-1)
define +the irreducible representatlon label [h,,, th 1ee hPP:{ of
the sub-group Z{ Cur . ILikewise,




Cp-v,P CP=0 (39)

(5= b2, .., 3_) (43 = 1,2,%) (3<S|)

define the irreducible representation {K& 29 " V%;f of the sub-
group Ué < Uq. .
Hence, the generic state forming e complete basis for

1rreduclble representations of the groups in the chain

Uy
" )(u )5 - >( Oi,fij (8%)

U
U, o U, 0
U)(O i) ( 1 1) 0411 (8’%)

U > Urr U2

could be designated with a notation used by Gel'fand & Zetlinug) as:

Chigp 153 Vgt |
P = Thes V> =




withf(k =1,2,...,0 andg&f =1,2,3,4,

which, for the chain (89), is the analogue of (53) for the simple
chain (57). In the latter, one had the restriction that

~fSm < 2 . An analogous restriction holds in (89), for both
/Mr and -U:; chains: Let ')TN be the symmetric (or permutation)
group of N objects. As ‘ITN>T‘-N~| s the former having irreducible

representations (Young patterns) [‘f,-f'z... 'fn] and the latter

Lf(ﬂ 'ful-s] » then _
'F.7/‘ﬁ’>/‘Fz>/‘F;,Z"'>/'ful—n7/'FN z O (9/)

(see Weyl, ref. 43 ). Because of the intimate relation between




i | N
the T,;‘ and er groups ), namely, that they possess the same
irreducible representation labels, one deduces from (91) the follow-

ing inequalities for uy\ and its canonical chain subgroups:

hw7/ )hr-l 7 le‘ 7 l"ZY-J T2 hr-u r-i 7/)')rr>/ O

hnr-l7/ l'W'2>/ S hr—zr-z7/ hr—;r-l 20

he 2 hi 2 hsw 2 0

or, to use the same arrsngement as in the generic state(90),

h"‘ ")z\« "/] 3y ' ¢ * ° hYY‘ ; o

7
%w_\ hzy.. hsr—l o l'\v-nr—\ 20 (CIZ)
X 7 N 7 7
, . N . . Zo
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For _U; and its sub-groups, the same reasoning in (91) gives the

requirements
Vig Vs Vag Voo 20
N N Ny
N N\ 4 93
V17, Voo 70
N 4
Vi

[h.hr--hr]’qvn\/zV;\/‘;{
The polynomial F of highest

weight in both Uy ena U4 must satisfy both (73)and (74). Now,
the conditions (73b) and (74b), i.e.,

G P-0 (uop), G'P=0 (559)

ensure that IP ig automatically of highest weight in all the

canonical chain subgroups of ’er and -U;. .

Concretely, if the representation Lhkv‘] (E=1,24000,))
of ruv is of highest weight, the sub-group representations
[hk‘,} (k€p=1,2,..,Y-1) take the maximum value compatible with
(92) and if the -U;. representation {V‘Hf (f=1,2,3,4) is of
highest weight, its sub-group representations i\_/f%f (f<g=1,2,3)
acquire the maximm values allowed by (93). This result will be very
significant in future developments, but for the moment we note that

in the explicit Gelfand-Zetlin notation the solution of (73) and (74) (&




can consequently be symbolized in the simple form

Dnv l'hr tee hrv‘lxngvﬁ V34 V«} — |

= F

l"lv‘ L’zv L‘sv vt hr\r‘
b Mo by koL
R . . )

e hay
hyy

‘where the h's along any diagonal parallel to the lowest one éyre _
equal among themselves. The same holds for tHhe v's. |
Equations (67) and (68) define the weights in Zér and U;
of a given polynomial state such as (90) ---- weights being
nothing more than +the eigenvalues of éu'“ (/|=1,2,...,V‘) in the
case of ﬂy- and, of Css (s=1,2,3,4) for w + From relations

(38) it is easy to see that the sum of operators

M ' |
i @ = dece, (of ulﬂ weight generators)
=

conmutes with all the generators of Z‘p and its subgroups

2{'1’" ,,7(,,-1 gesey Z{, o« Thus the eigenvalue of this sum is the




seme for arbitrary state (90) as for state (94) of maximun weight

v . M
in Z{p . For the latter, the eigenvalues of é‘, V=1,2,...,p)
are simply h/’o so thet

i 5/;“ has eigenvalue (l‘),r +/)z'b LT § /I,f)

M=l
6 M
for any dimension p. Hence, / has eigenvalue

%‘: (h,/ﬁhz/d'-“-l'h/d/‘)"(h:/-lf,12 -l+”'+}}“"/‘">. (q"a)
45)

Nagel & Moshinsky have recently constructed operators

k /
" ™ polynomial in the lowering generators é“'« (/4'(/( =1,2,404F)
k
of a unitary group Z(r for any ¥ . These lowering operators Z')“

decrease by one unit the /(t“" representation label /qk r-1 of the
subgroup /M«“y-.p , keeping the representation of Z(V‘-I in maximum
weight. Now, an N-particle totally antisymmetric ur representaw
tion [1“ O4V_~j .will contain several, say x, Z(y- representations
of highest weight. (See examples in Appendix A ). Neglect for
the moment the spin-isospin part of (94) = ==== which is irrelevant
for spin-isospin independent interactions and which is equivalent to
assuming maximum spin and isospin projections MS=S, MT=T, for any

S and T, in the calculation of matrix elements of a function only of
coordinates. Successive application of ka. (for k=1,2400ey ¥V =1)
on each of the x inmediately constructible states, like (79),




\ hnr lnw I’?kv ;.-" l"rr
hw hw“';' hk? ,',"l'\y-.ly‘

@s)

will glve the x sets of kets w1th all the representatlons of ZZr;,
in maximum weight contained in the x orlglnal Z‘V xepresentations
of the 'type [“)". kzr . l‘)rv] and which satlsfy the 1nequa11t1es
of the flrst two linesin (92). Next, by similar applluatlons of

I[JY y  (for k=1,2,...,f- -2) one could generate all the states
ass001ated with all 'Ziy;z representatlon_contgipeq‘pnder each

1Ly_‘ representation of maximum weight generated invthe previous
step, and which satisfied the inequalities of the 2nd and 3rd rows
of (92). Qontinuing this process until one obtaihed'all the
representations contain in the 'Z(Z representatiqns, according now
to the inedualities of the last two rows of (92); the full set of
linearly independent polynomial functions transforming irreducibly
with respect to the canonical ZLr chain of subgroups (89a) would
be derived.

. Removing now the restriction of spin-isospin independence,

the complete basis with regard to the chain (89b) can also be

6)

constructed, though with more physical operatorst as will be seen
later.

One would therefore have all the N-particle totally anti-
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N r-N
symmetric states compatible with [1 04 _-_( but in a "canonical"

(or "mathematical") chain beginning with ur s le€ey

l hwhw"' hN‘, hy- hzea by )*%° hizhas, hu 3 3Ve Voo Vo %4?# SMsTM r> (qL)

whereq (5 stands for a pair of hermitean operator eigenvalues
needed6to fully distinguish multiple occurances of (ST) contained in
the 'U;_ representation VeVeVae V44} =JThyhay o+ her) . However,
this bagis (still non-physical in the orbital part) could be trans-
formed to a scheme with definite total orbital angular momen‘l_;p.m L
and projection M, with the aid of the ma‘trix " L,z“ calculate(’ih in
the'"canonical chain' basis (89a). The resulting complete s"e‘if’:oi.‘
totally antisymmetric N~particle states after thi's‘ transfoﬁétion

would be:

| GFIY LM I3 p SMsT M 2 @7

The hav ==+ heed  (Young patition)

-

[Vm Vz4 v34 V44] = [rhnrhur“' hrr]

A1l

i3
t(¥3

(3)

n

provided the operator L‘2 were diagonal in the original basis (96),
and this can be chosen to be so. Here, 'X' designates the set of
quantum numbers required to distinguish multiple L-values contained
in a given [-FI representation. The (physical) chain of groups

under which the complete set (97) transforms irreducibly is thus




IYLrouTInAMLA
T35 Y OTON

-
e

oot
iF1 () L M,
| | &

U, >U XUy D | @)

1 v | _
[1”0‘,"-"1 "['F]’('{‘?f U4.>-U;' X Uz 2 Rz(spifn))( Rz( Csospim)

o . ) ' ¢ 1 ¢ | |
Hes T M M

where the quantum number labels of the ket (97) are given under-
neath the chain; those with arrows pointing to a specific group are
the labels for the irreducible representations of that group. The
-.subchain RBD Rl represents the special case of spherical and axial
symmetries discussed in Section 4. The group .U;. of transformations
in spin-isospin space contains the subgroup szuz of separate
unitary transformations in . -dimensional spinor and isospinor

spaces. EachSUz sub-group, as is well-known‘w), is homomorphic to -

a group Ra(spin or isospin) of rotations in the (spin or isospin)

space of three-dimensions spanned by the components

oy y Which in turn contains the subgroup or

z . .
T T, T '- i
£, '7,'8

z
of rotations around the (OY') axis. Example:

Sx, SQ,S% - | o {SPL’H >
n




SUL Gpin) &2 Ru(spimy 2 R, (apim) (100)

t t
S M

The label P comes from hermitean operators formed from
the generators of the U.‘. group which are to completely characterize
the rows in v4.> UQ_K Uz « The label T stands for irreducible
representation labels associated with subgroups contained between

uY‘ and R, and also with hermitean operators which may be neces—
sary to completely characterize the rows between two succeeding
subgroups of the chain.

The problem of deducing the irreducible representations
of R contained in a given one of 2{,, is a simple one. The same
is true of the irreducible representatlons of U XU contained in
a given U4, representation. In the former, one obtains the L-struc
ture of a given N-particle Young diagrem and in the latter, the S
and T values contained in the conjugate N-particle young diagram are

derived. For a given L s the different terms

2841, 2TH L

e

arising from a representation iV. V,V5 V4I are called "supermultiplets",

41) discusses the p and 4 orbits (Z(.b and ’Z{Y y respectively) and

Jahn
the (S,T)-structure for up to N=10 particles. For some illustrative
exanples, see Appendix A,

The generic state (97) can be L-S coupled to total angular




momentum J by the usual Clebsch-Gordan coefficient to give states

[cs30L 5 [F3pS, TMy ; IMy> =

S <LSM M [ TMy> | T kMo TRTpSM, T 2 (1)

IWLMS

Now, the total number of linearly independent anti-sym-
metric ortibal-spin-isospin N-particle states is given by the simple

result from statistical theory

4w> _ “v)] (102)

N @r-M)! N!

where 4Y¥ is the number of single-particle states available. In the

nuclear 2s-1d shell, for instance, Y = ( Zfol ) = 1 + (2e241) = 6

orbital states. The number of orbital-spin-isospin single-particle

states in this shell is 6X4 = 24, Then, for N = 1,2,3,4,5 particles

there are




—F ot Totally  anti-
N symmetric  N- particle stateg

1 24

2 276

3 2,024

4 10, 626

s 42 504 ete!

TasLe IL. 5.1

Obviously, one cannot hope to solve an N-body nuclear shell problem
~——= even with a model hamiltonian =-=-- without making drastic re-

ductions on the number of states to be considered as pertinent. One
such criterion, first used by Wigne%prl is based on the fact that

the attractivity of nuclear forces will favor the most symmetrical

orbital configurations as lowest in energy. (This being the exact
opposite of Hund's rule in atomic structure where forces are repul-

sive). For example, restricting 3-particle states in the 2s-1d shell




.U;4 2 ub X U4 # . B

L

224
[l > [3Iximi | (103)

> f20x§213 1400

> [mixg3f 400
TorAL: 2,024 states

to the symmetric £3] partition of 7“0 would reduce the original
number of states 2,024 to only 224. The TJ; representation L/I]
(I/L’ l/z) (See Appendix A } so

that 2T+l = 2, corresponding to Moo=+ 1/2. For light nuclei

is equivalent to [I1} with (S,T)

coulomb effects are negligible so that one need only deal with half
the 224 states, leaving 112. Moreover, our hamiltonién would certain
ly commute with j = I,‘(" § so that instead of dealing with

(23 +1) values of M, for a given J one could limit the calculation
to MJ = J. The 112 states are thus reduced to 17 states. This is
still a large number resulting in still large matrices to be calcu-
lated and even further restrictions will be warranted. For this we
turn to the simple harmonic oscillator well as a model for the

nuclear common potential.
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6.~ Harmonic Oscillator Symmetry and the Z}Q group .

6a. Single Particle.

High-energy electron scattering from nuclei indicate
that while the nuclear common potential of heavy nuclei resemble a
‘flat bottom shape with tapering edges of the Saxon-Woods well, that
of light nuclei up to the Mg region resemble a harmonic oscillator
parabolic well shape. The harmonic oscillator is simple to deal
with analytically because of its group-symmetry properties. Let

us therefore assume a hamiltoﬁtian

H= 2 H™ + ZN Y+ 2 Vi) (104)

i= l,<&-(

osc - ‘_2' + -L'msz‘ (/05‘)

" ineluding any miscellaneous single-body interactions Hi'c that

mey arise, viz. sgpin-orbit coupling, as well as residual inter-

nucleon interactions :E .‘r(Y;t3 The allowed energies and angular

momenta a single partlcie are known to be given by

HE g @) = 0 2rhw Yo,
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12 Upp () = 2D Voem (106 8,4,0)
LV @®= ™ Vom ®

2 %
SICHNIRAZE s oY, 69
%m(?)= [(net+%) € L’" ) oo

<

and with Y=z 2m+ L being the principal quantum number, n the
. L+

radial quantum number in the laguerre polynomial L,,’,(Y'z),

ﬂ, and m the angular momentum and its projection. Since n is a

non-negative integer)
. | , . .
=0, V-2, 04, (707)

and in general several orbitals (given »é ) appear degeneré.te in a
given shell (specified by Y ). The energy difference between shells

is 7iw « The number of single-particle orbital states available

within a given shell is

r= i(—zefl): = (V+1)(V+2) 0 (iog)

1:0011
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FIGURE III.6.1
Doublet-splittings for neutrons.

MAGIC NOS,




g0 that 2Y neutrons or protons fill a given shell. . Thus for “ﬁ
V =0, one has 2. TFor V = f, there are 6; fof J =2, there are 12;
for V =3, 20, for ¥/ =4, 30, etc. Hence, this model based solely on
the harmonic oscillator well predicts the following neutron (or

proton) numbers at each closure:

o[ ' [2[ 2] #[ 5] (109)

22 82020 | 70 | 1r2] -

But, the empirical "magic numbers" at which nuclei show special
stability in many regards are rather 2,8,(14),20,(28),50,82 and
126 ——-— numbers in parenthesis refefring to less pronounced sta-
bilities. Thus only the first three fully-magic numbers 2,8 and 20
are predicted in the scheme (109). By introducing a strong,
attractive spin-orbit term to the oscillator hamiltonian Goeppert-
Maye#“g)and independently Haxel, Jensen & Suess50)predicted the
magic and semi-magic numbers correctly, thanks to the ensuing
doublet splitting (See Figure III.6.1),.

The single-particle oscillator hamiltonian (105) and
solutions (106) can, as is well-known, be formulated in terms of
creation and annihilation boson operators.

Taking M= # =w=4 , then

H = 5

L3 (Bt % 1),

q:bﬁo

\

(10

wnere Qi = 7 =( vy, K=E; fri= TPy, p=re (1)




- -
are the spherical components of vectors V' and 75, the scalar

- - - B
products 7b‘]b and rroin (110) being given with the ususal

metric, namely

FPR = 1= 2(—)"9(49(_4 = %&X"
q

. D
== %")9' Y Ps = > PP

I

Furthermore, one defines the creation Cﬁ;: and annihilation

operators as the linear combinations
+ L - $.=: JL.;{ﬂy_- ?

on  Ag=peKa tifs)

(113)

and since

L I=lph %] = 18  Gi=D

, , (14)
[,0* 1= [%,x% ]=0
one obtains the relations
g/
[a% a1 =
s ? (1/5a, &)

[a% a¥]=[aj,a4]= ©




indeed the commutation relations for boson operators. Raising and

lowering of the indices is governed by the metric in (112) 50 that
+ -4 +
att= ot aly, Ay =6*AT (@)= ai. )

Suppressing the particle index { in (110), it follows from (112)
end (113) that

2, 2
H"“=;aga +S = %c;w 2. ()

Similary, it can be sown that :

R _ sl g_ll
Ly = (FPXP)y = %,544'4" ara
, + ”
::Q’Z?“(—)ff eﬁ'ﬁ'ﬂ-” aqzaﬁ
! gll
L.q_ = 2_(—)% éq_,qlqll Cﬁ" Glg)

ﬁ’ﬁ” .
the 6441404 being the completely antisymmetric tensor, 64314,, =1

if q, g,’q” are ¢yclic in order I1T0 ’ €4$I?n ==1 if not eyeclie
and 655140 = 0 if any two indices repeat. In the step previous
to the last in (118) the index q' was lowered according to rules
(116).
51)
As early as 1940, it was noted that a2 harmonic oscillator
potential remained invariant under the transformatibns of the three-

dimensional unitary group U3 « In (117) and (118) we defined the

single-particle operators




¢l =atat G- (19)

which, upon using relations (115a, b), can be seen to obey the
commutation relations

[ed, car 1= Cs,morf»" Can 05 (20

which ---- by the same arguments associated with (32) ---- stand

2 v
for the lLie commutator algebra of the 3=7generators for infinite- -
simal transformations of the group -U; e That this is the

oscC

symmetry group of H of (117) follows from the fact that H

commutes with all the generators of ‘U_-; y that is
" 9 g
[H* Cqi 1= %[C%Cﬁ'j
"cg g 4/
= %—%C; 4 Cﬁ’-é-:r f

= O,
Again, as in (72) the set { Cg’f of ; generstors can be sub-
divided into three classes: lowering Cf COT, Co, 3 weight-
giving C, C;, Co (in that order), and raising C,r, C; and
C,o. Moreover, R;b being a subgroup of U3 , the generators of
the former ( L?, with? = /,7, 0) should be expressible as linear
combinations of those of 'U; and from (118) this is indeed the case.

; A
Operators La and L’Z = Arp can be simultaneously diagonalized

08¢
along with H since




T 2] = [ 3erkbal=0

O e B 2

[L?;Lo}: O.

Now, an arbitrary single-particle harmonic oscillator state can be

written as

@) @ >"" (a*>
{79,, { 'nl

(123)

’”r{nf 'no>

in terms of the numbers 774 of oscillator quanta along ‘the 'bhree
spherical Mdirections" erg 2/ sF,0:° The state /0) is the N
oscillator ground gtate (no excltatlon) and the radlcal prov:Ldes
normalization. There being Y = d ( VHl ) (VH2) . dlfferent pSSlbl-
lities for the triplet ( 7, 7r 770) where +77"'7') Y always,
the vector (123) spans the r-dlmensmnal orbital subspace of our
problem. From (115a) one notices that the effect of O.ﬁ' actlng
on any homogeneous polynomial P( a‘; ) is equivalent to a partial

derivative:




ot Rag) = a* Rag), (721)

The effect of H** and Ao upon [ 7y M is thus immediate:

. 27 @ fian)m@)
|"‘|°sc m.'"\""t) = 52 a‘-‘r 36{4 2-% m" lo>

= Qn,vn.— +M, + ’2‘,) "nl'ni' N>

(v+2)Inm > | | (128)

(c!' -ch)mmm>

i

by (M 05N

= l('nu - 'nf)"nt Ny N>

L

m|{nm N> (126)

These results are' identical with (106a,c) in the sense that the
abivong Leoibey st ban (oofd DGy
energy and the a.ngular momen tum pro;ject:ton are dlagonal.
rdieny daacelpdl (S4YY (vty ) owos Vo saied ouws Ao by
present case, L' 1s not diagonal ‘as 1t was in the old sets
Al e o % ‘K* W awaaly {80 00 Y Gergher o0t gy mec
,,,(‘(Y‘ ) which “forms & basis for an 1rreduclb1e representatlon
w50 to soggadpe Iatidye Lamelanemib-v ofdd 2oeun ‘m"f.:‘ ;o omodoan gl
according 1;0 the chain of single-partlcle transformatlon groups

T f ", D o
u r’; £ -u,3 ERe

In the

R Fand = axn 4 adlDy mood

V2 l’\’ D) R ”(127)5,’

wd .
o Ty

AT

with representation labels 1% ’ ‘e and m, respectively. Deallng o

with this physical chain is more difficult at present than working




with the canonical (or mathematical) chain
V> U, > U, (128)

for which the basis |MM5 Mo is most appropiate. Specifically,
the group, its weight-giving operators and the corresponding

representation labels are simply

_();: Cl'sc

£l

U: ¢, § — (M)

,C: —s (M75 ’no)

~ta)

-(] . CJ —> C"J

and, in the Gel'rand notation, a general state forming the basis

transforming irreducibly according to (128) is

77, ’}7,— ()70 :
nm; Mo = n, Vi (729)
w/ [

6b. Mahy Particles.

7
The operators C}f defined in (119) are single-particle

operators. We are now interested in dealing with the N-particle

N '
> G,
i=y

Being spin and isospin independent we can use formula (35) to cast

operator

(130) into second-quantization formulism:




O S 6, . (31)

recalling from (37) that
Y Ry CTE P RN
é/= SZ é/u’s b d‘sﬂ'=l,2,3;4-)(/3?_)

are the group generatcrs of 22;, the group of transformations in
orbital space, and where//& stood for the single-particle guantum
numbers Vlnn, to be replaced here by the new set % Wr 7, .

Thus,
7,7,

C’”"—Z <'M'n.[ > e N> ‘,(/35)

%7 Mo 7, 7'7’4

The coefficients in this expansion are very easily found from
definitions (119) and (124) whose effect on the normalized oscil-~
lator state (123) is seen to give the simple result (seé Appendix
G for details):

7, U

! 1 (/3 4)
? = - [
Cﬁ - 2 Vg (g =Sy 9 e g1 Ogy, M7 +047-04'7 T+ 030~ dgr0

NN Ny

These 9 operators, from (131) and relations (120), obey the comnu-

tation relations

[, Ca 1= %wf G Il
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o I G A I )5

q,l _ qm ql ql gm . | ::
[Cq,,c%n ] - Cq 85}:- - C?’" 53‘ , 035')
which compose the Lie algebra of [); . For the par'l::i.cula;:-‘c;ase
of the 2s-1d shell

NeN;+Ny= V= 2 quanta ; V= T t(VR) =6 (
| 136)

Expansion (134) of the generators of the subgroup .U;invt‘erms
of those of the group u" can be explicitly given if we first
take the convention of enumerating the 6 states M= (77,'}7.' ’no)
in order of decreasing weights (in the sense of 72) and éalling

é}_._. L T,O - 1,2, for convenience:

/M ’ ’n,'Yl,—'Yl,‘ | | dt — Cll

1] 200 - . _
2| 110 —

>] 101 and C"° "3 (137)
4] 0zo | 077 Cs

Sj{oftl] 0 3

6 oo2 | cl - Cr

, N ] .
Therefore, we have the set of U3 generators 2(1;* i expressed as:

-
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C? = G L2t 6 liv 65
G GGl
LC;:: 6:*"5&(""‘6&:

Dz_“_.)ﬂ
A

Cl =26+ 02 + 6.
Cr= g+ 2868 + 4c

G
v b
: C: 6, + ¢ + 26,

w
E

ED)

|

i

(Cs
s \(iﬁ,+ \fiﬁfw" ﬁ?

[ Ci= €2+ G 6+l

G, + vz 6+ 6

e=Z—~MECOT
.
x
i

The N-particle interactionless oscillator hamiltonian

SHF - S izce3 (30

L=t




cen likewise be obtained, from (35), in second-quantization language I
osc | 3.3 M
A =2;</“,42c4+5//;é
7z

_ 4, 3 A

= %:C'g +2/Zé
n,+ M + N +3F2) S é/“

/A

= (v+ 3/2)(/{[' - (139)

\Aﬂ being the number operator defined in (71). Similarly, the

as

N-particle momentum operator in (118)
N
! sll
t=1 L:, 314”

now becomes

L= 2" Epgrd /%9"%?” > G ¢

glgﬂ
n
i Z(’)q -4/ d$ (9'= l T;O) (/4,)
lﬂu

so that expliecitly, the spherical components

G-Aciec), Leccl, L=Chey (520

are easily seen to obey the commutation relations

[(Lfed= £ L [L,LGI=-L  (#24)




of the group R C U_a, .
In the many-particle case, the group U with generators i
CQ( (g, q, =1, ,o —» 1,2,3) obviously continues to be the symmetry
group of the harmonic oscillator as its hamiltonian (136) is a -C]é

4in variant, namely,
0S¢ L1 = /¥3a

Hence, just as Lz(in section 4) commuting with the R, generators
Ll?' (4= +,0, - ) lead to its diagonality (55a) in a base P
transforming irreducibly under R s We here have that % will be
diagonal in a base irreducible under U (See Appendix )e As
in (73 a,b) for the group Z{r , the maximum weight polynomial .
belonging to the -U_; basis set is defined by | |

q, ,
C’Q E’nbhnhn\ - hgg fa"!hzs ‘)33)
d Y B')(thn")%) = 0

where C,% and c 9} ($<ﬂ.) are respectively the weight-giving and

( 1‘:;,7’3 (1444,4)

raising operators and the second index on the h's refers to (]3 .

The raising operators (144b) of U; are linear in Zér raising
operators according to (138). If _P is choosen with meximum weight
in Zty- as in prescription (79), it will thus also be of maximum
weight in U The full irreducible ba.s1s in U3 could be obtained
using lowering operators of U (the LY‘) as was mentioned in the
previous section for Z{, « This would give the basis in the

U:,,)U?_)T], chain, later to be transformed to one in the physical

chain U3> P P Pz-
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~UTIAMAN
el H ¥ i

T

The second-quantization version of the N-particle -

hamiltonian (104) will thus be e
% = % t Heont //435)

with /{M including both single-and two-body interactions to be

- dealt with later. |

- Conclusion: in the Z(,._) R3> 2 section of the chain of
groups (99) with respect to which our many-particle nuclear states
are to transform irreducibly, one can insert the extra (oscillator)

symmetry group so that

Z(V. D.U; 3 P3 2 Qz (145a)

t { ! |
] [£1d (hishss Im) w L M|> (1 456)

will provide the additional classification quantum numbers

( h,3 Az; l)33 ) of -U; needed to further distinguish multiple

[_, ~values appearing under a given [f_] partition of Z[r « Labels
4 'é.nd w » not proceeding from any particular group, serve res-
pectively to distinguish multiple ( /7,3 1723 /)33) values under a
givén E-f] and multiple L -values under a given ( /),3 /)23 633 )s

The basis state irred:cible under (145) is thus designated as:

G o (hahs hsy) w b M > (45<)
g1 by w ;2

PERMUTATUNAL  HARMONIC OSCILLATIR  SPHEAICAL AXIAL
SYMMETRY SYMMETRY SYMMETRY SYMMETRY
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CHAPTER
IV. MODEL RESIDUAL INTSRACTIONS AND THEIR GROUP SYMMETRIES.

In the shell model one is deaiing with 2 hamiltonian of
the type

H-= Z.Zf’:; + ZU(V.;) + é%ZL
v L - (147)

a
v 35 Voo (Wel By - HE[+BE,)
. i<4

Y T o
wherei, '.'3' ’ ‘:3‘ and 'Pia are the Wigner, Majorana, Heisenberg
and Bartlett exchange Operatorgz) defined by

Besleng)  ByEz(e®O
(148a,4,c)

P'=- L@+ &+ Wl
s 4

and W,M,H and B indicate the magnitudes of those components in the

exchange mixture.
We shall assume that U( Y; ) is a harmonic oscillator

common pbtential
2
Uty) = 3 mw*x

and furthermore restrict ourselves to particles interacting within

a single shell of this harmonic oscillator. Under this assumption
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L]

o

Wb

e

. L]

the two-body interaction cén be analyzed as a mixture of long- and o
short-range correlations with .definite“group theoretical prbp‘erties. ','_,:f]j

2
1. Long Range Central Interaction:  The Q force.

Iet us take an arbitrary (say, Gaussian) from of the central

potential function in (147):
~Yiy ‘
Veon W& Gymam 08D

having variable well-depth -V: and range Q parameters. In addition
to short-ranged forces (~1 to 2 fermis) within the nucleus there ‘
are longer-ranged correlations ( A nuclear radius) responsible for
collective behaviour of the rotational and vibrational types.6’ 7)
Assuming a gaussian well, rather flat throughout most of the nuclear
volume (large a.),we can expand the exponential in (151) retaining |

only the first few terms, namely

.
z L)
%y S

’V(Yq) = —VDI 1 % 2at ]

where the relative distance Y:t = \IY},L“’ V‘a, - ZYZ'Y} ¢an be inserted
above, and upon convenient rearrangements obtain
2.7 tof
G 2% G+ Y
V(Yq)“'v'; L- "‘_07:1’"’— _—a'ft + ?za:
(152)

—

sy e B | 2GR 3]

304 ot at e




the energy spectrum is determined by matrix elements of the type

f 70! y, /
Qn‘-fi"ﬂ‘,& ’ L‘MI -VZY?) l'ni [;,mj,jf,lﬁ?for excitations within a
single oscillator shell )/ . But, from (105) and (106) one deduces
thet the 1st. 2nd. and 5th. terms of (152) contribute only as

functions of Vﬁ-Z’).'H'Z . Terms linear in ( —V:'o Vi, ) ==———- 3rd. and
/
6the =———- give zero because states | ’n,;,»e,; > and <’ﬂ,‘, [ol have the

-h
same parity while Y:,?* have 0dd parity. The 4th. term is separated
in the particle coordinates and thus contributes not as an interaction
but es a correction to the common potential. Therefore, the only

pertinent term remaining for large @ is the Tth:
. 2Vtre 2\ Lyepn?
Vo) m — 2E[05)- 4] (152)

This term is related to the harmonic oscillator symmetry group U_-g
as we shall see.
i + e
The creation a?‘ and annihilation aﬁ- boson operators
defined in (113) for harmonic oscillator states (123) transform like
contravariant vector components, i.e., like a wave function of
orbital angular momentum l =.t . Let us vector-couple them together

to form the k-rank, g-projection tensors

U = D <nae lke> By Oy

?l?“
2“9'"( 119'-9" [ke> cg’ (159
ﬁ'?"

" + n" " -
since Cgi = at a?’ wiwm 9/4"= 1,1,0 are the 9 single-particle

generators of U_; defined in (119) and which obey the Lie algebra




AN

(120). In linear combinations (154) only k=0,1,2 and q=-k,-k+l,...,k

ATT ITAArUMAGONL

-

can occur so that there are

S (k) = 1+3+S = 9

=01 |

k )42 (k)
linearly independent operators ?9L4- which can equivalently be
considered the 9 generators of l,é . (It can easily be seen that

the commutators between these 9 operators also form a closed algebra, )

In particular,

2 YO - S <ngrize G (159

- 54"
7,(‘” = Ser<ig g 118> G
k=t ¥ 4" | |
T = — L Z(—')5 a- -9'g" C#l E L’Q’ (/s—é)
?lﬁn
“” 2(—)9*< 114/-9'[ 00> cé
k::_ol ﬁ'%ll
\ | '
= “‘@%Cq - —=H (s7)

where (156) follows from definitions (118), and (157) save a scaling
constant is the single-particle oscillator hamiltonian of (117).

Considering the 5 operators for k=2 we have from (113) giving the

CL; A% in terms of coordinates and momenta,

(7-) Z<11$ gu 124> aﬁ-' a#”
Iq”




—
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= S <uagr267] ty ¥t o o

gl?ll

- "ig j{% WYzq(en% + EZ; r yzf‘r(gf’ 3

given as solid spherical harmonics in coordinate and memontum
spaces. The matrix element, between oscillator states of a given
shell, of a momentum function is identical with that of the same

function of coordinates —-=—--— thus

uw ~ [ r*Y,, 69 | (18)

The mass quadrupole moment induced by a single particle is conven-

tionally53)taken as the expectation value of the operator

Q = 3e-v* = EeY.ep 0D

so that the 5 (); operators
UL
can be thought of as representing generators of infinitesimal

quadrupole distortions. A quadrupole-quadrupole interaction between
+th

the L~ and };b particles is simply the scalar product

Gy = ;("5’ RO Q-4 @) (16D
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From (158) taken separately for particles { and jy and the addition [~

theorem for spherical harmonics,54) : =

I
A
=
~
Q‘ﬁ
MV,
=
T

|

N

=

>

=
~ O
—_
|3
S———

O = LG -3 czryz] (162)
Qu}«

which is identical in form to (153) ==-——~ the only significant
- portion of a long-ranged central potential.
The expressibility of (162) in terms of U; generators is

the erux of this whole section. The Casimir operator of R, defined

L?- = 2(__)5; La} L'—q. = 2_ Lq’ an‘ | (lé%}
4 S

was particularly useful in solving the asymmetric top problem

in (56) as

discussed in the Introduction: its eigenvalue was simply ﬁ((‘f‘( ),




dependent only on the irreducible representation label and irregard- -

less of its row. A contraction analogous to (163) yields

G, = ZCer @ Ce~<z/> (L4=12 N (lbda)

Then,

% G, (1644)

is the (second degree) Casimir operator of -U; which should and

. . ¥, .
does commute with all the many-particle -(]; operators ch ((,) .
Employing the orthonormality relations between Clebsch-Gérda.n

coefficients35)one can reverse expansions (154) so that

.
Ci=© Z< 14'-4" lk4>u(4) (I6s)
# :

and which is valid separately for { and j. Using this expression,

the Casimir operator (164b) will contain
(k
= 23 >t Z{:‘)(O u_; (?/)f
k %
_ 2(_)2,3 U )7/{“’ + um © w«) ZlZ’(c) u-(:(f)j |
= -'_é H:—(i) + -2‘.—2(—)51 Lﬂ-(‘) Ll_g‘l_(}) + ;(_)QQQ'Q) Qﬂ}(})

having recalled (156), (157) and (160). - Finally




(/Léq,lr)

Clearly, since the interaction operator 2 Qb}, is given solely
G<’

in terms of the Casimir operators of -U-:,,> and R3 , and in terms of

Z Hou 'y it will be diagonal in a basis for irreducible representa-
tlons of the grou;ps U 2 Rg, .

To cast the N-particle mass quadrupole moment operator
Qq_(('.) into second-guantization formulism we again use formula

(35) to give the linear combination

Q, -S<pQ > 6
P

" S =Y 60> 0F  04)

whose expectation value, for g=o0, between appropriate states is the
quadrupole moment induced by N particles. (More detail concerning
quadrupole moments and transition rates are given in Appendix J ).

Result (166b) in the new many-particle formulism will be

Q= Y-37- L4 (168)




where the many-body Casimir operator g is eonstmc_ted as in (164)
but now in terms of the many-body US generators defined in (131):

Y->clcl 19c=0. ()

%

Moreover, we shall have
9= ; @ *&, Q’# - ()
OC2'= %(—')#O(‘g_ OC-ﬁ | : (/7/)
%: %{asc— %W’VVV’ (/72)

in accordance with resilts (139), (141) and (167).

Our model long-range interaction (168) is diagonal under
UIb) R as argued above. To find its spectrum is a simple matter
precisely because of its group gymmetry. The eigenvalues of OC and
f(, are simply L(Lv‘H) and vN, respectively, tubeing the total
orbital angular momentum of a given state. Now, commutes with
all the U generators; the lowering ones can be used successively
to generate the full irreducible U basis starting from the function

of maximum weight in U defined in (144) as F(hl‘bhl’b ]..”) + Hence,
the eigenvalue g of g is independent of the row of the irreducible

bagis and it suffices to find g in the equation

gﬁ‘hs‘ngbg,) = ? Eh:ahzslm)- |




But, expanding g one has S - ‘:
¥ = C? c, Ci/+>C Cﬁ
-3 GG - 2 ZAGZI
—2@;) > zc;' M+ z%cg, q,
9<g' <

where the effect of the last term, involving a raising operator on |

the right, vanishes because of (144b) and the second term upon use

of relations (135) gives

9P - f30 2 Y P

$<?l

jore oz +cy r2(c c’X f G

- Wekh ks 2baoh) 79

depending only on the U; representation (h,., hzs hu){ This
representation can alternatively be characterized by only two
numbers (k k,) = (plb-hu, h,, -h,,) since (172) gives

)4,3 + ")7,-5 +“1’)33 =) N = constant for a given problem. (The
relation between (k k,) and the labels ()\/u ) used vy Elllott in his

work *) are: >\ = k,~k, and /A ) Hence, the eigenvalue nf Q ise




gl _ g - & Lbe) - $ ON)°

L 2

B Zhk) - 2kfD - £ LLH) (170

L

manifesting a rotational band-like structure due to the L(L+l) term.

2
States (145c) are eigenfunctions of ég? :

— 'kz
O |rkyobh> = B |1 atkkd wl > (77)

0. "
2. Exchange Dependent On Spin and Isopin. The Group /4.

We shall now include the effect of exehange forces of the
Wigner, Mayorana, Bartlett and Heisenberg types for the prticularly
simple extreme of long range. It will be recalled from (147) that a

central two-body interaction with exchange can be taken as

v T o
2 I, Vep= > (WeME, - HR +B R, ) Vi), (7ta)
L<f il} .
| ‘th th . .
The operator of exchange between the (= and }-— particles is Ii}
(for interchange) and is defined as the linear combination within
the parenthesis of (178a)of the operators
3 : . _ -
Bartlett: Pi’ = - (1+ ¢ 03.) = (1 + 44&90;)

L
i 2




Heisenberg: E;: = zl (1+ ﬁ"f}) = 2'(1 t 4‘2‘-'; f;) (l734;c,d)‘

Ma jorana: >P;;= - 4‘7("" 4';5&"1}')(1"" 4’—‘&;{})

in accordance with (148), B and (3 being the spin and isospin operators
of a single particle with possible eigenvalues each of 1/2 and -1/2.
Now, by formula (34) our two-body operator (178a) in

second-quantization language will become

$7- 3 StIn Tl e G O 3G

(’. (’1' o
where = ( I (0 T), (=42 . since I,z depends only on spin-isospin

and V,_ only on the orbital part, then
3T 5 >l Ll 80> SV pipi>s

."‘L‘.
/*%‘*Ft /«’f " M’z«t» M s
/}:lr'?; { it G, 5 3. 5 MO

' - Y' 2
Assuming 'V'(V,‘,_) =z -.V,-,_ equal to say — -V,.e 12/ to be of
lonig range then we can approximate ‘ :

-VI’?_ L — -Vo- (constant)

so that <y, u, V ] o /“" : and thus,s.nce
e | /y 2> V294, dus

in this case ’2)"— -




Jd= 2 2 Granl Lola', 6/t > | (179)

d;ta ‘zt;

GLGT cS 't/ C Gt ' gtl C"'»"CL'
4T, GT, 5@' St /17

: _ 't
where from (61) the 4 operators Cd‘c s Which obey the u—. com-
mutation relations (62), are the generators of u“- the group of
transformations in spin-isospin space..

The problem of the complete classification of states of

supemultiplet 'theory, i;e.; accordirng fo the -(]4'. chain given in
(99), has been solved recently by Moshinsky and Nage1.>6 To completely
characterize the rows of the bases for the irreducible representations
of I],; , Raceh in his Lecture Kotes 25 )proves that 2—'_"7; (n-1)
commuting operators tkat are functions of the group generators are
required. This, for _[]4_ six such‘operato'rs are needed. Explicit
reduction of U; representations according to (99) provides four
of the six needed: S2, 'Tz, 8, Tg with eigenvalues S(S+1), T(T+l)
Ms and MT . (The other two, whose eigenvalues constitute the addition-
al label p in the chain (99), are derived by Moshinsky & Nagel in
the paper referred to above.) The cited authors redefine the 'U‘;_

group generators as the following more physical operators, totaling

47' in number,




o
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W= Smrng e Se
Sk = ZZ '(Mk)r N)w T | |
B (180 a,4,¢,4)
—'1 = Z.Z (M o"(Nf.)g' dﬂt
goa'y
Rkt = :}“2 (Mk): (NO:, C:cc
ara'T

where k ’L =1,2,3 refer to cartesian components and

G Gl e Mo (0

are the unif matrix and the well-known Pauli spin-matrices whose
rows and columns are given by 0",'0' =1/2,-1/2. Similarly, No,
N' (1:1,2,3) refer to the unit and Pauli matrices in isospin with
rows and columns given by T', r =1/2,-1/2. Among the commutation

relations between the operators (180), the relations

[S;,Sy}‘ L%Gi,lk N (7:, l}]"’ L%— €igk T 5 [SJ,TA:’O
hold ----- thus S, (k=1,2,3) and Ty ({=1,2,3) are the generators
of S‘(jz'(spin) and Su_(isospin) which in turn are homomorphic to




- 92 -
Now, a tensor operator

(isopin), respectively.

R, (spin) and R
qr;v (similar to (154) for T]é)' ‘can here be defined as
Pk rld g. _OI,
M t 181
%v( q.,,, >”' C r=ol= 0'25( )
such that
Toﬂ-" 2Ty ’ Tk!= 4 RH,

T \M ko-zs"\

and whose scalar product
2 2 2 T < + T 2
aI.ao t Zh T’(o t Y] ol 1 kl

QZ 6I;Y' TY‘ =
(82

"

Wi+ 4S%+ 4T+ 16RE

On the other hand, from definition (181)

2 Téw q;r 2 ZW%)O“(Mﬁ-) Z(N) (N) Cﬂ; C&"z:

ot
eTFE
2 F'r
2 50_, 5.—1 ’21 5’[ 5 C T
aTa'T!
FTT'T
Ty’
= 2 Co¥ Cim
a"z:'

(183)

I

4 G,(T)
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where is the (seconddegree) Casimir operator of D . [
z 4 4

Therefore, - s
G.(G) = 2% S*+ T 4Q2 (1§¢)

So much for the formal properties of the group U; .
Turning our attention to the exchange operator Q of (179), and in

view of definition (178a) for I,,» one concludes that

+
7 T
d- WM BE- HE 015
W,M,B and H being érbitrai’y constants as before; the script (J7%

referring to the second-quantization formulation of the various
exchange operators.: For example, the isopin ihdependent Bartlett

operator is now

6t T, &'t ~G'T
a S| ol ! Z; % _NacHY Nt
(P=2_—'- D <66, P.ZIOT@Z Co‘,fc, Cm; 5<fz§fzcm. .
9,02 _ A%
6’/ |
But from (178b), the coefficient

3

pe
so that from (180a,b) the operator f becomes simply
. i \ﬂ/\l \(Y’ 2
F=L"-{W+S
4

if one recalls that, for example <o"l Ak Io"> is one-half the




( d; 0' )-element of the kD component Pauli spin matrix. In,

exactly the same menner, the spin~independent Heisenberg operator -

reduces to

o LWE-W TS

The Majorana operator (1784) is more general then these; it can be

" written as

Pw — - L ,_0. -,(T - :E"%L_ 4@:':57')(:&'—‘2)
12

L R g 4 S it it

k,L=1

Thus, using formula (179) one has
= - L (@ FF)+ 1y 4120

4SS <alhda>< 4l 5> Co'x

kf. 0-1;‘ (I,El
6',' ' 2 U
K Q<«rzwkz|«;><rcz|tulc;> Cer,
T,
6T,

+43 > <albulaD><a el e><ul tlt Dt b | BN
L "‘l'd‘}{cz; Gztz. 5 gt: }
73

6T, 0' Ty




—_L(PA07)+5) L0 - 4R F WS

where the scalar product of (1804) with itself is used in evaluating

the expression before the last and the last expression is simply

4%.3— \(V so that

Pr= -L @% P +L3EWHI) 4R 1wy
_ oW - LA W RS T

P'= 2W-% G.(Us)

having used here the previous ‘U; result (184). To deal with
G,,( ur) instead of C‘f;(‘(L) ----- future developments will make
thig more convenient =————- one can derive a relation between thesei
two Casimir operators which is very simply due to the fact that the
U:;. representations must be conjugate to those of er (see example
in 80). From the last two steps in (183) and from (61) and (31) one
can write

Gz(w)"'zcss-,css' = ZZ}X b+s B“Sl Io;s' ID/M
ss! ss' p

(slsl_-: d'v, d"tl-) (/A,ﬂ,= '}21' .‘)v\)




which by using anticommutation relations (12) becomes

@ p
Gz(Uap) = (4‘?@\[\{"% @/M 6/',«'

G.(h) = G+)W- G.(Us)

the latter being the Z(,Y Casimir operator. Thus
Y\
P'= 2]G.(U)-r W],

ro¢
Combining the results just obtained for P’ f and

T
P into (185) we arrive finally at the long-range exchange

Jd= W+ 2@-HWW-9 + BS* - HT?®
+ L M[G(UD-r W]

which is an eigenoperator of a basis set transforming irreducibly
according to the IZ;)SD;X SZZ segment of the chain in (99), that

is, when acting on the kets

| v ad p ST My > (185)

———— ~
where ZV.V-L\&\I.,% =[hhhd = [F] of (97). The Casimir oper-
ator G—Au\f‘) is the operator _[7 to be used in the section on

pairing and whose eigenvalue is there derived to give (226).




vvvv

Finally, one has the algebraic eigenvalue ecuation -

IleirpshsT> = T[S THS

T= WLE-H) N(N-9) +B S50 - H TTHD +3 M by (e 20
‘ =

where I 1s the contribution to the energy at long-range due to exchange.
Conclusion: +the simple eigenvalue .I given above depends

only on S and T for e given fﬂ:j partition of N particles. One

must multiply the diagonal éQf.matrix elements of (177) in a base

extended to include total spin S and isospin T quantum numbers. Thus

< B tllake) 0l My [FTRSMT Mr | S| 151l 0l Mo FFTpSM T >

= i k)w L, | Q2] Lk w LM > x

(187)
x{ TFpSMsT M| S| 1S Ms TM; >

is diagonal and accounts for the long-range part of a central inter-
action with exchange.
One final remark regarding different exchange mixtures

is in order; for this end we give several of the more popular ones

in Table V. 2. 4.




e fw M (A B
RoseNFeELd || =15 | 9> | -2 46
SERBER S0 .50 o o
KuR ATH 0 .80 0 , 20
MeSHKov 40 40 0 .20
SOPER .40 .30 10 ., 2.0
su® || 0| s | s | o
TABLETL.2.1

Note: WiMtH+B s 1

3, The Pairing Force. Short-Range Character.

The general interaction operator :;E 17?7@,) is
i<
equivalent under second-quantization formulation to the operator

(25):
N AN
W= 3 ><ebl Vo lee > [92 Pe b }3, (188)
6l
e

g = W om; 5 6T, = dimysy)  (i=1,2




being the single-particle state labels referring to orbital quantum
numbers V&'m‘; arising within a single given shell )/ and spin-
isospin quantum numbers S;. As before, if -[[z = V(V}z) is spin-

isospin independent then

<Ol Val 67 > = <vhms,, vloms, | V| vhm's! vlom s >
' ‘ (189
= <Vl).'m,, Viz'mz. I Vz' Vplml’, ijm£>6$.sl’ a’S,,S,’,

holds. Furthermore, letting A be the resultant orbital angular
momentum eigenvalue and M its projection, one has the coupled or

paired state

Wy, AMS = S<Alamm, | AMD [Vhm Vem>  (1900)

mmw,
the Clebsch-Gordan coefficients obeying the usual orthonormality

relations

St lman, | AM>ELmm, [ ATM' > =5 S (90b)

™My

Let us rewrite (188) such that particles { and 2 are paired to give

net angular momentum /\ . Obviously

_ —2(91)4'1 \),?zmz_"\'/— IVP/'WI,,VJ“ 7 >§%§:L(§m5 "

20,04,

+ Vims, (VM S
?hm,,vn. ", Z bumg b l:)z 2

T, T, ! Ty Vim,s,
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is equivalent to (188) with restriction (189). Using (190) and (191)

there results

Tt S <tab, AITIAL A NN Syt S

AMAM
Wbt Vim s, julim S
XZ %2(9 Emm, I AMD bﬂz‘mzsz, AmS z{Zd'p’ ', [N M>ID }
33 mm,

5/\/\ SMM'appearlng because of spherical (and of course, also
axial) symmetry, i.e., L. and L’E commute with Vz « The
coefficient matrix element, moreover, is independent of the row M=

A » A - 1,....,-/\' (see Appendix F ) so that suppressing

the redundant label M in that coefficient one has that

S otk AV VEVE, AS>S@PUL, 49, ) (9

___ L
2
where
/ S ttmm AU By, B vtms }
Pee, 00, 8) = g:m s, 1
Viim's, | Vom)s,
X %E(z’fém'mz’ Ay B f
mmy
can be considered a "generalized pairing force"57) ----- it acts on

a many-particle state of the type (21) destroying a particle-pair
ne
in the orbitals ,0 ‘p and of total angular momentum /\ and then

creates another palr in the orbitals 1, ﬂz hav1ng the same resultant /\
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A pairing force with A :0 considered in the case of
superconductivity58’59)directly predicts the experimental enérgj bgvap
between Fermi surface and conduction band. A similar inte‘rac‘tion
between nucle ons was considered by Bohr, Mottelson & Pinesm) which
among other things accounts for the well-defined large energy spacing
between the ground and excited levels in even-even nucleilq’ 15). Asg
early as 1943 Racah6o) calculated interaction matrix elements of a

pairing force of this type in some complex atoms using the expression
AT 22 A> = 241D,

for a pair of "equivalent” electrons in an orbital state j . For

!
non-equivalent ones (mixed orbitals 12 ) this can be generalized

COUA| Vo [ 20 A> = [N Sy,

Inserting this value for the coefficients in (191) one obtains

to

Moshinsky's form of the pairing operator

P= S &0l Pk, 24, 0)

y
yim's, | yo-w's,
) _—,mf,ml + +
= 2( ) bv(’—msl Vims, b 19
m SS,

Tt
where use is made of the well-known result that

0-m
- —_— Li—— [4
<ff'm wl00> ‘/.2.7;1—

The operatcr W clearly displays the required pairing property. A
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more convenient form in terms of y 8roup generators follows

from anticommutation relations (12) and definitions (31) and (37):
vA=-m

P- 1S b b —2 M 09

/M

(=36

m

]
R
R
\\
<

{
S

(j: VIV’Z/"') 10"0) (m
where W is the particle-number operator defined previously. -

3a. Single-Orbital Pairing and the GroupRz £4]

The special case of pairing between nucleons in a single

orbital state ,( is given by the operator !

P= 1> e 5,,,,%’5-:1' -3 W
i (19%

\{VL’ZI gfmm

n=1

) /
which follows immediately from (192) if ZEZ . The set of
+1)*
(—2 + operators
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Lo

/ + Im's
énq” - ; bfms b - 99

Loed

are the generators of 2(2[.'.1 . The Q/f’)’dimensional space
.’—
is spanned by the CZ,P{' f) vector components bp.ms . Which under

rotations in this space transform like the spherical harmonic

components Y(:'M (9,9[7) « The scalar product

2 G btns g ™ 2(4)7" :ns b‘-':yns'
m

mm'

must remain. imvariant under (-‘?.I'f 1) ~dimensional rotations. The

space metric ?,m.ml is thus seen to be .

— (™ ' -
?rmfm' = (=) 54@-'m' (/CIQ)
which also gives the rule for raising and lowering indices since,

for instance
—-m!

, -
mn?
> =" (196
= m m” g = ) m
mm - ? .”77 | | |
The Zéz(.ﬁ generators, in doubly-covariant f 6rm, thus obey the

Iie algebra

):gfmfm’, gfm”fmmjg ;"n"'ﬂ” g'm’m”' - 7’""”4’1 gfm”/m’.

Defining the antisymmetric operator set33)
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Almm' _%/ (gfm'm' - gf)ﬂ’a'n), | Amm' =- /\»m'm (,97‘7’5)

one can see that these obey the commutation relations

[/\'m'M', A 'm"”""‘]

- (199)
Ql,‘%%/m"/m'/\ﬂnm”’ + ?m"’m /\'m'/m" + ?»mfm" AM”@' "’?"m'm”’ /\fm"/m}

which from Appendix E are seen to be the generators for infini-

tesimal rotations in (2,&1) -dimensions, i.e., of the group EZI'H .
From (197b) it follows that there are 1(2/1"7) linearly independent
generators of this kind. The operator set 25/\'»1'»1'{ is contained

m/! -
in tre set { @"m ( of Z(z(ﬂ sy 80 tunat Z(Z?H-) EZI'H as a

subgroup. Using (196) we can express the set (197) more conveniently

as

1 ! ! /- / ] - N
/‘4?1” E,J(éﬂfm,;_(__)'mm M&;_,,:) , /]4;’”: (_.)'M+WH/\-::, (/C)f))

!

the latter symmetry rule again confirming that one has 1[2 f‘/’f)

independent generators. From (38) can be derived the relations
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[Amm,' Am" 1 = . (200):1

' E | w
m" o m cm" WA ™ Mo AT
:2!:% A“" .- /\m" 5Im + (__)mm /\—m' 5»":" +0) /\m" é:'m' :

qn”

equivalent to the algebra (198) but now in a form more convenient
for us as will be seen presently. ‘

The contraction of %2[1—1 generators

FE 2 ‘grm’ml m’:’" (201)

mm’

is seen to be a /Zézgﬂ invariant since ‘ :
M m'y _ .
[J_, @,m ] =0 | (202)

The equivalent contraction over EZFH generators

o ) m .
C_-]_S = 2 N Do | (203)

/m:m'

is an /Rz(ﬂ invariant as

[, AFI=0 (209

Thus, f and @ satisfy the first two Racah conditions6l)for
Casimir operators (given on page 3Q in relation to the group R3).
Introducing & numb:=ring convention/u=,€-'m+ f (Jinteger) such

/i
that there is a one-to-one correspondence bé&tween W=»€F‘,, vor, =4

and /M =1,2,....,2!+1 we have, first of all,
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. E Zlﬂ | K A ) )
P S pR S S STEN (11425 G ba

where, from (73b), the effect of the last term when acting on a

meximum weight state f is zero. The equation
will have an eigenvalue X‘ (velid for any row of the 2¢éyirreducible

basis, since _[7 is a grouxi invariant) that is evaluated identically

as in (173-175) to give the result:

o Epptprred] e, (o9

-
=

Regarding the group ?zu, ’ the',e linearly independent (hermitean)
operators, which from (200) mutually commute, can be used to define

weight in Rzlﬂ by

—

Am'm P=__ 7‘4,'& P (/4,4-',?-/»1”) (zo¢8)

P being a polynomial of weight (%) » The set of operators

mz
2/\,"‘ f is divisible as before into three clases
(207

1) A”’nm (m7m'7_m)~ :’2") Aly?\“(/m=lJ e")'f'l “l) 5>A::‘|| (’m 7""'7 ""Vn)
of which class 2 are the weight operators. Let two new polynomials

! ——”
P and be defined as




A P = T At I P+ /\m""' A P
- (NS NS = Nl S Ao & ”’) P
| + A 4::"' /\W }’5

N m oy ( - m" - =/
-[Z m" —'.}5, m zgm" +-:ZLI5"V" +%)P

shows that class 1 consists of raising generators and a s:unllar

analysis of P proves class 3 to be the lowering generators. Hence,

maximum weight polynomials IP in szﬂ will satisfy

/\mm P- }‘/A P /\,:'II) =0 (m>m'>-m) (209a,b)

with maximum weight being given by the set of K nunbers

K= 1 (r-0)
(A.)z e AK) . (2 IO>
y= 2444

In a way identical with (75) one can deduce that

),>/Az7/"'7/)\;(}0' (2’0
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Finally, since : E

where SP is the Casimir eigenvalue of }az(+1 which, after a short

deriviation along the lines arriving at (205), results explicitly

in33) | K )\ ) C K= 2(r-1)
o 1S -2 e

g)‘ | Z/M pATM M = 24+ (212
= ‘

A specialvcase of (201) was used to great advantage in the

oscillator symmetry group [:g to determine the cgzzz interaction
eigenvalues. The gingle-crbital pairing force (193) can also be
expfessed'as a linear combination of Casimir operators (second degree
ones—and all further reference to Casimir operators will entail only
this type) since, an expanding (203) using definition (19S%) we have,
putting >\'-_= m+m' + 1, o

b - S AT = 4SS ERNE )

mm' .

SISO iSOETET
4'qu' mm
+Z;-,_Z(~))‘ é‘;’" 4:1 + 2’1’2 ZOﬂ—»m' -m

mm mm'

which upon change of some dummy indices and signs becomes
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m p-m! A
&- 25”' a2l €y E

’mm' | AN
Roest ¢-z F‘f @ -z | | - @3)

from (201) and (193). Therefore,
@:ép—gﬁ—é\/‘f (214)

will be diagonal in a base transforming irreducibly under

Uzen > Raes.

The resulting states can be classified, in addition, by
total orbital angular momentum L, sy 1.eey with respect to R whcse

generators c[; are expressible as the linear comblnatlons

L= iy <etm'g >N (=170 @19

mm!

which, through (200) can be seen toc satisfy the ILie algebra
[(ﬁq’ i 'j - %(‘)3 63’3”9'01\3 (g’ ?l: I) ',0) (2 IC)

coinciding with (142b). Thus, single-orbital pairing ig diagonal in

a scheme irreducible according to the group chain

Uppy > Retr > Ry > R2 | (217)

(L
where by R3 is meant the ,D' )(R3>representation of dimension (2L~H).
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The corresponding ket state is denoted by

\ Zhn"lz"' hzcn] ol (An)‘z"’)U) LO'LM._> (Zl?>

! t
where, again, °< and W are additipnal labels that may be needed to
distinguish multiplicities, if they occur.
3b, Mixed-orbital pairing and the Rzgﬂgrog.p.

If the particles paired to total angular momentum /’ =0
/
have available more than one orbital then A#" in (192). In the

chapter on harmoniec ogcillator symnetry we decided to classify our one~
particle oscillator states by /M = (NN 770) instead of (V/'m),
where the former are "partitions" along spherical ' )"'MOJes'
(+,-,0) of oscillator quanta Y= 77,'!‘77,"”7 . The single-particle
orbital state (creation) operator bt’('m transforms like the spherical

harmonics Y?tm (6, q.’) which in turn have the phase convention

VX 69 = O Vi €9

of Condon & Shortley.u) Thus, following this convention

(gyeqn)* = =)™ +Vl-'WI.

+ - | ‘
On the other hand, the state L),"mf.”o l O> ’ where’ ’O> is a
vecumn (no-particle) state, should transform exactly like the oscilla-
tor state |’Y|.'Y17 'Y\o> of (123) given in terms of boson creations

operators acting on a ground state '5>. Now, since
(a-'ti)*: - = according to (116), then the aforementioned state
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|'Yl. N+ M, > has the property | <

+
and since bnmfﬂ‘transform like |7, ’n771°>we have

(B’nmm»* = (__)'“c‘m"' B;IT’”: No »

But in (192) are involved the operators
1—

g fom ! ™
vim , -m
and their respective annihilation counterparts. To the complete
g +

set gbvelmf there corresponds the complete set {b,nlfn.‘-no% ———
there being in each case (= "2‘(1) H(V2) components? Iikewise, to
the set g (‘)'m B. ithere corresponds the set é(— ittt |

ve-m P 71;'",1,':}'
The same holds for annihilation operators. Thus with N, 7 N,

indices (192) becomes our (working) pairing operator for mixed-

orbitals:
. mim, 071, %y
| NNy + M+ N |
= = e — (219)
2 N, 7 2 UV.
,nl.n,'.,no ’n,’n,—rno 1 I
UL

The generators defined in (199) now become

@teneral formulas and tables for the 2s-1d shell of the

transformation coefficients from one scheme to the other have

been published by Chacon and the author."b)
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W, 77 77, 'YI,,
nfﬂ.—"ﬂ,' ' ”'”' Yo MANT N NT +1 5 '
=1 + 6) i

"N, 2 ’":”r"o P
(22.0.4,10)

'nf'n|,"o

]
1,7 Mg N7 FNANT +1 /\ /
/\ ) NFN Ny

’Yl.”lh ﬂo

where the former (symmetry) relation shows that one has LZ Y'(y--1)
linearly independent such operators.

Let us adopt the shorthand notation
@y = p i) = p
(% mmy) = M- (mn'm,) = /M_‘

Qé.-l)-

there being y = ‘i(\)-l-l)(\H'Z) possibilities for each /A . It then

becomes simpler to prove that

mooA AT

[/\ ’ /\ } (222)
m ” v /M.{’ /M 3 m /M
_1{5 ’M /\ +(’)v 6/; /\/4_' +()75/44 /\/4,1

o ,
having put 'Y]E N, +N; N+M; . From the results of Appendix
' '

l}
one deduces that, indeed, the zr(Y"!) independent operators /\/M

are the generators of Y'- dimensional rotations namely, of the group Y.
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The Casimir operator of R, is defined similarly to (203)

for RZQJH as

R @:%A/’MM (ppi=nzer) (229

18 AL =0

and keeping in mind that /A stands for (’ﬂ, Ny 'no> . Expanding this

where

in a manner exactly analogous with the steps leading to (213) one

Rer B=5 - -2 @29

where

r=>¢rer, WwW=>¢

/1‘/“! / /‘ ’ - /“ /

refer, respectively, to the Casiuir operator of Rr and the (invariant)
particle operator; Fis now the mixed=-orbital pairing operator

(219) which, being the linear combination of invariants.
F= -3 W 228
= 3 _[_, - =, 5 (—-&2&)

is itself an invariant in the chain 2{,,‘) Rr .
The eigenvalue ')/7 of the operator _[1 in a Z{r irreducible

basis is, as in (20?),
¥ = 2“‘7‘(})}‘- Z/M+V‘+1)] v=Liv(va)  (220)
= | |
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Y' now referring to the V -shell orbital degeneracy. The eigen-
value 50 of é in an R, irreducible basiswill be (212), i.e.,

p= £ dulheer 20) (227

(ole-) for Codd ; keLy for rewn  (229)

The various shell orbital-degeneracies ¥ are given in Table

vl SHELL %
0 L
1 : 1p 3X

2s-1d ?w

2p-1 |10

3p-2f-1h  |a1

|4s-3d-29-10 |28
taBLE I . 3b . 4

For any shell, the mixed—orbitél_ ﬁairing force has

by -4 ) .
eigenvalue (-2—_ 'X' (JO = N ) ; nence

|

2

3 |

4- 3s-2d-19 |Is
5

b
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1£3 o -2 - 5 (A -2 +V')
EQ‘uaz"'/\K) - é’[ % h}“(h}‘ /‘+Y‘> /27 P /M ] .
| (2290) ©

= Thh he vbital permutational
1§1=1 (I ey

Y

¢aking care to follow the correct K values involved in (228).
Finally, as each R, irreducible representation (A Xy eee /\K) will
contain one or more Rb irreducible representations, namely I-values,
one can label the spectrum (229) by total orbital angular momentum
values which however will be degenerate. The basis is irreducible

under transformations of the chain

Z{rD ‘Rw 2 ]23 2 /?2 (qub)

and is denoted by the set of kets
| ol ders- A )0 LM > (229¢)

- where ):{'3 = S_h,hz"' l’\y] and (o(’/ LO,> are distinguishing labels as
in (218). '
Phe effect of an attractive pairing force between two
particles in a single orbital j will be to lower the level /1=0
from the degenerate group of levels /\ =O,1,2,...,2»€ , thus
producing a "“gap", as can be seen from the Racah matrix element on
page 98 which we have used in our second-guantization formulation
of the operator @ « But more importantly, its resemblance with a
short-range central interaction as well as its group invariance

properties warrants its use as a model interaction. The latter
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characteristics we have just seen. Its short-range character is
well displayed in some calculations of wave function OVeriébé,‘éﬁergy
levelé and quadrupole moments carried out parallelly between a
gaussian central interaction and a "model" central.interaction
consisting of a variable mixture of F and @zforces. The cases
covered by Melléu)were for 2,3 and 4 particles in the 25"C{nuclear‘
shell using 2{1’ partitions 1= [2],[11] [33,02, [1n] ana [43 .
Energy level and gquadrupole moment diagrams for both gaﬁssian ahd
model interactions show marked resemblances at intermediate 'I:a.llhujge's‘.:‘
In particular, overlaps calculated between wave functiéns. of ‘pure
pairing against those of zero-range gaussian (which with proper
normalization reduces to a J—-force) are extremely good for the
lowdying levels arising from the partitions [f] mentioned above.
Good overlaps are also found in the comparison of pure gzzand
long range gaussian. |

One undesirable though not very serious feature of the
pairing force is its inability to break degeneracies as well as an
ordinary 5-force. One can see this, eg., in the comparison for

N=_2 given by Biedenharn.65)

L4a, A Word About Exchange at Short-Ranges.

At short range, ideally a J—force, the Majorana
exchange operator (1784) becomes the Wigner operator ( = 1) and

consequently the Bartlett and Heisenberg operators (178b,c)

coincide.

Treatment of the Bartlett operator has proven difficult for
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short ranges, we shall thus make the not unreasonable assumption
that at short ranges the Wigner part predominates over the Bartlett
such as to justify neglecting the latter. Consequently, the effect
of exchange at this extreme reduces to a constant factor to be
ignored, as only energy differences arising from the pairing force

metter.

2
5, Model Central Interaction Composed of 69 and Q

Combining the interaction operators discussed in the

previous sections one could therefore adopt ¥he model central inter-

action (apart from an overall in}:'eisity factor VO)

P+ -0 d (0s%5 1) (230)

with the variable parameter x determining the percentage of involved
in the mixture.

To re-stress the group theoretic simplicity of the model
interaction constitaents Wand cgzwe recall from (168) and (225)
that, apart from thev invariant number operator W,

&2 —>» Casimir operators of T); and Eg',

69 ——> Casimir operators of /My- and Qr i
Consequently,
' QL is diagonal in the scheme U_;,-D ’e;:,

0:) is diagonal in the scheme urD RY‘
The first scheme can be extended to Z{YD.U;D/eﬁ.) }e.a to include
permutational and axial symnetries; the second can be enlarged
to %YQRY‘ 0 Rb) K;_ to include spherical and axial symmetries.

(These "enlargements" of the group chains will allow us to reduce
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the number of states to be dealt with in the caleculation of matrix
elements.) If one decides upon one of the two schemes, the operator
corresponding to it will be diagonal with eigenvalues for which
simple algebraic formulas hold, i.e., (176) or (229). The remaining
operator is not diagonal of course,and its matrix elements in the
chosen basis must be evaluated. For reasons already stated in the
Introduction we will here choosethe .Cl -scheme.

All interactions dealt with thus far are>spin—independent.
In the following section wé introduce spin-orbit coupling and shall

consider the evaluation of its matrix elements in the 1/3 ‘scheme .

6. The Spin-Orbit Force.

We are interested in the matrix elements of the single-body
épin—orbit operator for N-particles '
N = : oo .
Mo.= 22"‘45 ‘ ('ZSI)
=] ; .
calculated in the le; scheme. In second-quantized language thié
_ operator becomes, by (24), o
= !
W, <> Wsy = S<el b le>Cf (232)
' ee! | |
recalling that F=$M€f)re€er:to orbital-spin-isopin singie—partiele
quantum numbers and C? are the MT group generators.
The trensformation properties of 'Z{Z'o_ under U; will
be specified and fully exploited. Accordingly; instead of uéing a
basis set irreducible under transformations according fohthe chain

(99) with U3> inserted between ur and R,s as in (145), we shall
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use the segment

U Tso U > U

(canonical) (233)

replacing the segment

MY‘D ‘U:” 2 R‘5 2 R& (physical) (234)
in chain (99). The irreducible representations of (LDUZDU:,

are characterized by (hlb ‘123 L)55, l’)n_ Ln,z, "]u) « On the
other hand, the weight (’W' W, W‘3> in U is given by

N his has hss his, hzs l’m
q, h”_ hzz, = Ju& hl'l- l’\L‘L (23S>
hy hy

(‘q, = IJT)O —_> I,Z, 3)

in accordance with definition (67) and numbering convention in 9

of Seetion 6. By (94a) one has explicitly the eigenvalues of
| z E)
', C; and Cs respectively as

)V' = h, |
w;.= (l'nz.f L)u,) - l)u | | (Z, 34)
W (hib t LILS ¥ hji) U’hzfl'lu)

Now, from the many—partlcle angular momentum operators o[ (‘-?«I,l 0)

r
expressed in terms of U generators d% ----- relatlons (142a)
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_____ we see that 0(\ I C C’ will therefore have

an eigenvalue

Ml_= W -y, = Zl'iu - (h”"fhzz)

80 that classification by UZ P U', with (t):zl'ln, l),,) is equivalent
to classification by Uz) Q?_ with (h,,_ ‘?7,2, M,_) s R, being the

group of rotations about the B-axis. For conv'enience, let us call

(hg hos b = (o hohd)
(he he) = (29) - - (237)

()= (§) = 2(Mrara)

g0 that our general state would be given by the set of kets

| Cf3ellhhhy)g g Mo pS M TM > (239)

where ZV% has been suppressed as {Vf= [-?’3 mekes it redundant.

Writing the operator (232) in more detail

= S<porl Bidi|pev> Ciore

aT
%’f't'

- SO"S S by p<eldeel o>

oo
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where q” designate the’ spher‘ical-coniﬁbn'ent indic’:es,v(.'l;T-',vo) and - - -
the unnecessary particle index is 'suj_op'resséd. i IntroauCing expansion

(118) for j—g'one gets

- Sete _é” o g quq. J')Z<ﬂ’(?l/">fj;?r

299" o g
e T
2( PHE g g §_<¢4Aq,.{<r >( g{m @39)
B T

ce
- where the set of operators G0T can be" 1nterpreted as the

generators of a subgroup ‘ 75)( U (spin) X U (isospin) of U

and 'U-3 bemg the subgroup of /Mr discussed in Chapter III,6. The’
T

set E 4]— f ’ from the above equatlons, is hereby expressed

90T :
as linear combinations of the UV‘ generators C/“ ‘cT’ , namely
14 { l['I '
00’ _ : c ol 240
Qrﬂf > </A ngr > ar., ( )

PP

If one now defines a tensor (traceless with respect to indices %g’z '; T,o)
. < s (s e 9":(
“ ((.Zlﬁ. ; 11,11) EZ.<O-I/OQ”‘G’>):CQO"C —Z ( q,d’t )5 (2‘“)
g ,
T .

o ol
then from (239) and the fact that > ) E”%'.' é, 499 g/ 6-‘4
I R A s

vanishes we have simply that

ZJ;A = ZL_)M‘-}" é“%’"'%‘#’ T((ZD;,_; iét”>. (242
q_%'q’u
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Iabelling (2[)% 1%:: on tensor “ refers to its transformation

properties undergU and ( ) (spin), respectively, and will now be
explained, This can be seen from the commutators between the Us

generators C' and the operators (240). PFrom (131), (240), (37)

(32) and (120) they are found to be .

O, C 1= [Z o 6, Snaocs]

grﬂ: |
~ & ./"S' W g
=ch- (< €3> Zb E‘C/ﬂ? 5"5 5 oy
"
/ 'atp! ‘-‘%d"‘t' - gt 9
o, - G- e

gince 85(0"5') Since (243) is s:LmJ.larqto relations (135) comprising
i

the Lie slgebra of Uz, ’ operators quv: transform under U
like the generators C‘% . But these in turn transform exactly

like the smgle-partlcle generators CE]» = a aﬂ- or, as

oof= F+ B = @d+ (t10),

+ : !
where [] represents a quanta from aq_ and E a hole from aﬁ}’ the

[} . i ) :
"Q representing the outer product of two representations which is
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calculated by Little Wood's rules for unitary groups (see Hammermesh, =

9"’"5' C g9'T" gl s
ref. 3‘f‘ sy P 249). Hence (Z 30T )Sﬂ trans-
forms under U like (h h,h,)= (210) since the trace( :>_- a"?;

transforms like (h, h )= (ooo) Therefore ﬂ]_‘((z 14")
transforms irreducibly underS\U like (k k, )=(21) with indices 9, q

which determine the row of that representation. The coefficients
in (241) can be written, by the Wigner-Eckhart theorem, as

<ol oR 163 = <kl 4 (o>

=1 | e ><uIAV > (244)

the superscript 4 indicating A‘?}" t0 be a tensor of rank 1

(2 vector) and of projection g” —I,I,O so that, under U(spln),

(241) transforms irreducibly like a vector with projection index g_” .
Before proceeding to the evaluaetion of ZJ:Q in matrix

from beiween states (238), we require an important result to be

sketched below.

Theorem. Recall first of all that any vector operator
X (E), ,7,0) obeys with R, generators of (Q)_—— L, T, O}
c Ommutatlon relations [J:O,X-ﬂ} = )(4_1 and {OQ,X ] - __X

similar to relations (142b) between £9 themselves. Consequently,
Xq, transform irreducibly under R, like the o[ . The
Wigner-Eckhart theorem thus tells us that <L M'/‘Y?_/ L M> =

AL<LM,IO(; /LM> where the proportionality constant A, is
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independent of the row of N3, namelyﬂl and M,, This constant is
furthermore easy to evaluate as for M=M'= L ana 4 =0 we have
A= f(ELIXOI L L.> . Vestorially, we have added L + 1
to give L. which appears only once.

For the case of '(]3 , consider the operator set

Z.Z;,{ which obeys the commutation relstions
wy $m 4’ _ g/ ‘-;?'” |
[Cf; Zﬁf .( - Zﬁ 51@” Zg,n 6; (245_)

!

’ .
80 that Z: transforms like lei, gspecifically like
(hihzhg) =(210)  or(ks)=(2 1) under SU;. It is easily seen that

since

Tr 2 = ;z: and  [Cf, To2[=0

then the traceless operators

2¥ = 2} -1 28] (240)

1l

satisfy the same commutation relations (—2459 end transform
like (21) ong_,’. If one is interested in the matrix elements of
2;; in the chain -(]3 > (_]—ZJU; , between the same 'U_;

representation, that is,

}‘),3 hz; A%a — g1 h'3 L)13 }7‘33
h:z ‘7;2 Zf} hl?— l‘u ’ (24 7)
/

hy hn

one must consider the fact that, by Littlewood's rules, the outer

product




O‘na )l‘zs L);;) & (2l0) = ceo Tt G’ha l’123 h;;>2+-4 ‘oo

involved in (247) gives, asmong other representations, the

(h,, l;w 633> twice except when 1735—-/7;_3 or /);,5 h,g.
Thus, (247) is expendable as the matrix elements of two inde-
pendent operator sets which must trsncform under U;llke (210),
We saw that the traceless gemerators

&Y= o7 -+ maog  ew

form one such set. The traceless operator set independent from
the above, namely, '

6= >07GH- 3(24 Mosg PN
>

also transforms like (21) undenS@ as it is easily shown that
— =, 5 : g g
G 65 1= ).'C;*' ZC; Cyr
T2 4 2 g
§ 9 4’
= (& 9, 5y .

Hence, one can write (247) as |
hl‘b "n; 1)33 — ! hl‘b llz} "135
] [} Z Q' ‘1 ‘7 —
hlz hn g iz Nz
h, hy

(250

.....
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h\%kza hs; — l\|5l’ns!'\33
i |G| hek JHR S
hl‘:‘ll’;‘\-n l’\“ hll hh‘ﬁyka;

l‘m l)z3 L;s —=)gl h": l)3'.’5 An
ik | G | b has
! 1! o 4 i h"

the A and B coefficients being independent of the row of‘Ij;-
These are evaluated by taking $=€f' end maximum weight in
both bras and kets, i.e., for ‘ ‘

,'1,7_=hu = L)I,Z: A:’ = A'3
he = has,

hzz =

from which considerations three inhomogeneous linear equations
result, one of which is dependent as

T2 = (@ = Tr(@ = O.

It is simpler, therefore, to evaluate A and B via the 2 inde-
pendent equations involving matrix elements of

5U5i- 227 and Zi-2i- 2I-2D

These results are generalizable to the Z(y- group,
should they be ‘required for a given problem.
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Returning to our specifie¢ problem, the matrix elements .

of (241) between states (238) with the same [ <L(h/h, l’b) '
in bra and ket will be, in accordance with result (251),

T M3 S M T | (s L) BT 5, My pSUS T

= J AR AL | O [ bubs 4, 0>
(£52)
+ B, Shhihy, g, M| G [hhihy, 96,0 M¢>f<51msa”l ST

where the Wigner - Eckhart theorem has been used in the spin
part to give on the right hand side

<S1Msgr| S >\/z”4’()"/2> \51/“ L >\)?f_

the factor \ Yy " JM) “ /&> \[M(J+l) Fi‘? being

incorporated into 'the coefficients Asc and B ;%= Wwhich depend
neither on 4,4, M. (the row of LT> nor on Mg (the row

of Uz) , but do depend on [4] »((l,l, he) of  Ue> U.'S .
Coefficients Aggand BSfS can now be evaluated by

constructing the two linearly independent ikhomogeneous egquations
corresponding vo the matrix elements of the two differences

Ty 1) =T (@035 L) and “TLi 510 - TT(e03; 140
(252 a,b)

EalE ol s e AR S0 a1
SEY NS
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(as vefore: 4,4'=1,7,0 = 1.2, 3) between states of the

same -U;representatlon (”): l'\ l)3> on both bra and ket, of
max. wt. in U )U _)‘U"1 and max. proj. of spin, namely for:

(h.’w,_kb‘—‘-(h.ln 3>
h=%=%/ =%r="

hz= %" % S 54)

!
{4"“' Ms” Mg =S -S.

The calculation is simple and will be given in Chapter VIII

for the case L[fHhh,h,) = [313(710) corres-

ponding to the lowest levels of F? in the TJ; scheme.

From (242) and (252) the spin-orbit operator Zf);a.
for N particles will thus have matrix elements between states
(238) of the same [f]bL (/1, h,, A}) given by

E3lubuhs) &) Mg ST [ U | D3O bt s o S, T>

i\

. ):}Il;A ‘1 ’1;_‘1,, h -}L,M I /( ) t"f’L o, ;r" h, L);Zly :;:}’L%Z’ML})
“a‘n_ C

+-.[)l \!"l) 175, 71?1«; u/;;q,( )+/,fl// 44 ,‘\; /}7}7 t)}, ‘}l‘fz’/“L/J

XS 1M, 47| ST Mg > (259
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But, from (141) we have that the operator -
e
-l (4) e
4 =
2( ) é-q"-q.q' Cg’_ ' "qf'” ’ .
%%
~al ! /
the trace term of C’_,? = Cq’ - TY‘(C’) (Sq. contributing

with zero as before,where of couree Of(') transforms like a vector
(superscript 1). Calling the second operator on the right -
hand side of (255)

_ = —-\/ / ~
%_?ﬂ = 4_2 (‘)gé—q”—gg’ : COgg : (’254)
44/ |

it is easily seen that it too transforms like a vector since the

commutator

4 _ _ ?ﬂ -~ %
[Ls, ig'] = 20" € g L
3 |

)
is precisely %e condition that X # be an irreducible Raceh
tensor under 3(compare with Rose, Angular Momentum p.84,

ref. ( 3F )). One is thus left with the problem of evaluating
nmatrix elements

<}),l17.l)5, q',ﬁ;_,ﬂﬂ,_’ I'o(\__(’,{ ’ }.1/");1)3., 4192, M(,>

Chihahs, a3 ! | _‘;’, [ bbby, 9., M >

in the basis irreducible under DTs > UL)U,, The similarity
transformation passing from this basis to the basis irreducible
under |\ }53 RSD PZ. with respective quantum labels (145 b)
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and given by the kets

k|5 hl-hS

| (hhh,YwlM> = | (kik) wlM, > ez b,

(as in eans. 176 and 177) can be applied to both sides of (255).
This transformation will be discussed in detail later. For the
moment, if one imagined it applied to (255) the result would evidently

kbW LM p'SH T U, | B (kbs) LMy S I T
_ Se g A k) w LM | Lo | (kb LI>

: @s?)
F By Llkk)wil'M | ;Q“; | (k Lz)wLML>}<S1MS;n s>

!
W,X" naving the same significance as in chain (145). The
metrix elements of 'Clzg" and _jé:_gn can now be reduced by
the Wigner-Eckhart theorem in }35 thusly:

4&,&,)w:Lr/hJ/oC_‘g,, [kl M > =

LM =g N >L b kYo L LOM Chik)w 1>
k) wll' M | ’f;’,, [Chb)wr LM > =
<Lit-gr | LM>Lhbyw U KO N kk)w L>

with the same Clebsch-Gordon coefficient as proportionality constant.
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Puarthermore, the reduced matrix elements are:

b 'L'L'/o[,f, s

_ Lkl [ L] (4,4L)w;9‘4{> o
<L1Lo/UL>§ |

= \}L(L'HS &,’w (guu

4@ = n’ M -
and, for , arbitrarily choosing M = = one has

' \WA (,,’) ééz L <(‘?I L)/\,’f/zv/ﬂ, L)/"’>
<(Ic./ez)w/-”3€ /((, ) w > A <L110/L’1>

z@ Lk M=) 9> G £ Ie;.q,, 1>

em; X 4% Ckiby M=) wl>
| (R59)

\L11OIL1

where the bracket symbols66) <‘CU' Ll( LI éz ML) ?‘II 3‘,;> stand for
the elements of the similarity transformation matrix that pusses

a basis from U;)U;)U; t U;) /e_,,) PZ, i.e.,
from the "canonical" to the "physical" chain. One therefore

needs first to evaluate ( fov- M= M = l) the matrix with elements
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k)48, l%iﬁ [(kk) 32,9, M.> (259
Qhere by (256) ﬂ;’L é: - C—;zz= G/~ @F and by defin-

ition (249)
‘X:l)z alal+62ai+c3csl_C;IC,’Z_CIJZC;Z_:-C-;&_SC{: (Zé@

so that matrix elements (259) can be found if one has the matrix
elements of -[J_; generators C’; (q,q,'z IJT,O -» l,2,3) in the
chain U_,’) ‘U'z > Uy since, for instance, suppressing labels

(lal I<,) R
Llkk) 2 M | C2CS [ (kik:) 4,9, M.> =

_ - (261
S <AuMICH & MG M CL 4.4 M>
qlq’tﬁt ’ / qi
is a typicel term. The elements <q,q.:’M,_ IC'% l#. 9. M,_> ~
(‘?OV q'/q"‘ LT0> L 3) are listed in Appendix H. Using these
results, after a brief calculation (259) becomes: (see next
page)




PIAMST AT T EL ] L
VItV LRIV VY XL X LS

— ¢ 2 ] ¢ Z z _\.
Yoy + 646 =4 b2z a2t Q0 & H ¢y ¢hey

0+75-6)_(B-'6)(-%5-'k)
A W @-.&CIQ éQt&Q -'5) (15 =) + %5 -) (5 - 2n) (W)

Jsdsm W% m 1-6 %

@& \
ﬂ.m...\:m.._..ww.%\?..am,.fc.ﬁ&\.wu ..Sws _‘Aw\w.rm_tw_&
_Wti.ﬂw “B)( AW E-B) (W - TH-N) B @B (1 B By | w m -
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which despite its formidable aspect is quite simple to evaluate
for particular values of (k, é;) .The inequality conditions listed

below are the equivalent of (92) for U;)U; )U-.

Combining these results---except for the last one re-
garding the ve-c.:tor_‘ ) which v_\ELll be illustrated in appligation=---
and coupling L+ S to give J in the bra and ket of Z(Z:o,
by Clebsch - Gordon coefficients, one obtains

ety w ks §S, Ty, T | Ul [P (k syl ps, TMs, T

= Z(—)q%LSMLMsUM:> US| TMS LA M=4" | LML
thM
4 W, XS Mg }S'M;>{ A, [L(u‘ﬁ " Sl OL'L ’
+ B k)l LM Gh az>wL>}

= (—)‘P‘S -\T(ZL'+D( 2541 WL's! LS; J1)x 203)
X {As's m Oww o T Peslll)w'L I Z (kYo L>}

after a slight rearrangement of <SfM5 3" IS'MSI> with the
aid of Clebsch - Gorden coefficieni symmetry rules. W(L’S'LS;J_{)
is the well-known Racah coefficient which can be defined as a

sum over four Clebsch —-Gordan coefficients (c.f. Hose, page 110).
Matrix elernent formula (263) can be considered a generalization

of Raceh's formula 0 for the same operator acting for N particles
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2ll in the same 6rbital level 1.

In conclusion: evaluation of the spin ~ orbit interaction w.
metrices in the S'(L scheme is reduced to!
1) evaluation of coefficients Aglg and Dsls,

2) evaluation of the quantities <(kk ) L’ //,(/[k, ,)L>

forming a matrix of rows and columns given by

with only the principal diagonal and the diagonals
immediately above and below it differing from zero
from the selection rule L’=Lt ’, L as
is a vector.
. s Tt
3) Use of tabulated Racah coefficients W(LS‘ L.S,Jf)
Points (1) and (2) will be seen in detail in application (Chap. VIII).

For particular SU representations (k, I?,) in
which ‘( =0 or l( k,, , the second term within the brackets
of (263) vanishes thus leaving the problem of evaluating spin-
orbit effects an extremely simple one (e.g., F'% w;.ﬂ‘ N-—Z
in the 2s-1d snei1, (k (z;} (4-0) is such a case .

Finally, the case?(jg,f different values of (k, k—;,)
between bra =znd ket of $.0, ~-—Wwhich is outside our present
scope ~~- - is a probiem involving actual use of SU; Wignér

coupling coefficients and is being studied.
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7. The Complete Model Interaction.

The full hamiltonian in second-quantization form (143b)

for N particles 1in an unfilled shell is now explicitly

{{ %osc+ %w.t M
ﬂosc__) ;-i_ﬁ' +1 ,szr ? | ('g6ua, b, ¢)

%Mt’ -—(9(&1' %sz*zw;o)

» 0S¢ , .
and since ;ﬁ: does not affect the relative spaclng between levels
it is thus neglected. Only %“t is pertinent. Factoring out (AH'#'I'Z')

one has ’
%M‘ '(7“?"3)[“4?& fP"’ ZT%E Q’z‘j "’» x,«;;% w:o]

where the sum of the three coefficients is obviously unity. Letting

X
(%1‘%*%)5/0:, X+ytz = o, Xﬂff% P

then
z

KFytz = I-ol=p

and since a,B and (1—a—8) must be positive or zero for x, y and 2z

positive or zero one obtalns
j{w— - [oL +/5<@?10 +(l'°¢-/5)w§,o,]
oLp €

Coefficient parameters o and B will be varied in compliance with

(265 a,b)

(265 b) and parameter Z determined by a least-mean-squares fit to
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the empirical spectrum of the eigenvalues from the matrix

| <peolCeles 3 0S5 7 T| Fa (. ) stk ;535 TT> [ ()
NOTE: distinguish Fammdevsd,/b from gquantum wos. o, p,

having taken MS = J and. MT = T because of invariance under

rotations in the spin-orbital space and neglect of Coulomb effects.

Each predicted level is labelled by J: Tand of
course T , the parity, which is positive for excitations within
the &S~ 1J, shell. It is expected that for onthe lowest levels
are of T= 7, the lowest 7=2 levels being above 5 /{’/6’1/'.

We know that the o?/zterm in j{iﬂt of (264 ¢) is diagonal
in the SU; scheme states of (266). The matrix elements of and
5.0 must then be compu'ed in this scheme, should it be chosen.
For the spin-orbit matrix elements one only reguires the maximum
weight component of the U_) Ué) Ubase. The whole base is
needed to evaluate //F//bu% fortunately one only needs the
diagonal elements for the case of F.Zo These details will

be discussed in application.

Alternatively, one could in principal choose the
"pairing scheme" associated with the oup RY‘ under which
//0)” diagonal but not //&z[and lZf];G:/{ Thirdly, a ”f’}
N - particle coupling scheme" which diagonalizes// s.0. //
could be decided upon and under which the matrix elements
of ” Fﬂ and ” Qj’/would have to be calculated.

All three coupling schemes will be discussed in the
following chapter even though only theSUs' scheme will be
adopted for our present calculations and these are relegated to
Chapter IX.

Lowr
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V. POSSIBLE CLASSIFICATICN SCHEMES FOR NANY - PARTICLE
STATES IN AN OSCILIATOR SHELL, IN PARTICUIAR
mE s~ 1d SHELL.

2
1. The &_f (0'50.3 group) Scheme.

The problem of finding the irreducible representa-
tions of ‘U; contained under a given one of Ur is simi-
lar to the chain caldulation illustrated in Appendix A
for the reduction ZL_,» > R_; (r-‘-' é) . Further details,
as well as an extensive table for the ls -~ 1 shell, are

found in Elliott .12 Finding the L-values contained

in a given ( /Q, Ie,_ )‘representation of l]_; si.e., the re-
duction U3> Rs , are easily gotten by simple inequalities
jderived rigorously by Bargmann & Moshinsky67) and tabulated
elsewhere 8 by the ssme authors for some particular cases.
The inequalities ianvolved are simply

(k-L) even; 0529 <k, k,- k< 29 S kL

2¢67)
(k-k) odd:  0€ 24 (-1 k-L S 25§ ky-L-1

. e . *
where ﬁ, is a non-negative integer. Using Flliotts and

Bargmann - Koshinsky's tables snd inequalities (267) we give

*

The L-structure of a given (k,/?z) representation further
breaks down into classes of levels, each class labelled by a
number K 20 and which for quanta (k, 7,2/(‘) is simply

K= Ifz" Zf’_ while for quanta - holes (/(' <Zkz‘) it is

K= k."?;— 24. Ellio’-clzidentifies this K with the rotational -
band quantum number K of the collective model (Figure 2).
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mable ¥, §.{ covering /V { to 12 particles for the more
symmetrical orbital partitions [4] and the lower (enersgywme)

S-UB representations (k kz) For N< 5 al[ SUrepre-

sentations present are given.

Some observations regarding these results are in order:
1) The meximum number of allowed nucleoms in the 2§ —fd
shell being 4y = 2?-, only N /2 are included in Table
since any number sbove that can be treated as N /2 "holes".
Interaction matrix elements for N  holes differ from those
for N particles by simple phases.69 2) Always LK k
which is obvious from (267). 3) Multiple L = values for a
given (k,k,} occur only when }Ql>/ 2 in which case the ad-
ditional label {) in (177) mu‘s’_;s be used to distinguish them.
Bargmann & Moshinsky found - the operator corresponding to
this label. 4) For N 4, (/? k, ) - values appear only once
under a given [-f} To distinguish multiplicities occurring
elsewhere, eg., N Cf](k ky) = S ):52-](40) , additional
label ol of (177) must be mede available. 5) For further
convenience, the eigenvalues

é(kukb);__ ES"L’)"'% L(L-"’D = %(l!.fk;_)z— 2 k' (kz ,|> (2 Lg)

of the Q} interaction, save for the term = L (LH>
are given in the last column. The SU; repre sentations are
listed in order of increasing energy recelling that larger
’k‘)lle lower in energy because @z is attractive. The base
truncation suggested by Elliot consists in taking that ( L,,)
lying lowest in energy and limiting calculation to this repre-~
sentation. 6) Pinally, some .Zs'fd shell nuclides are written
in parenthesis under that C—f] partition which will presumably
explain its lowest states. MNore details are given later on

this point.

The 5-(73 representation falling lowest in energy (having

T ALN
Eof sz is

Pl o
Y
[F I

L
F“M.
ke
v
s
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(k. o
meximum Casimir eigenvalue 5 )seem always to be given
by

k= ha-hyy = 2(=he) + (ha-he)
- (269)

kz.E ‘l‘\v:"hb}: 2(1’4“11") + O"z"lh,) |

where D‘l,h;hs'"\\y} = C‘f] refer to the Young perti-~
tion. These relations follow direetly from the Tj_; weight
operators C.,, ,C‘i and C’: (with eigenvalues /),3 b, and /’3‘5
listed in (138). The construction of polynomials,transforming
irreducibly according to this SU; representation will be a
simple matter if one uses the prescription of which (79) served
as an example and will be illustrated in detail for an and
other nuclei.

TaBLEX! Gor 2s-1d Shell)

W | sU, R .,
N | O3 | Gk L gk
B 0,2 ]
L] Gem| @ | 6%
2 2% 40) 0,2,4 ’g Y3
osFs) | @D | o2 6%
Ly €)) h2,% 0%
3 [33 o) | 0,246 IREYA
wyy | @2) | 062 B4 16
(F'* Ne*) oo |o o
23 | ) | Lu%48 24
(o)) 42> O,CZ)f 34 16
@h |42 6
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’ o2
(41 (%0) 12,46, 58%
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44 024
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(2'0) 02 , é yB
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(Fo N (6D | o(2%3@isé 30%
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“ ‘) 5,23 4 /6 2/3
32 1,2,3 10 %3
(29) 0,2 A
[22] ) o(zy 3,(4) 5, A 207
() | 4H 0,2,¢ 1%
@) 12,34 /6%
(206) 0,2 6%
413 CD) ,2,%54S, 67, $,9 b6 Y4,
(NENSY| 6D | o@% 2@ 50573 50%
(73) ,2, (3 @)% () 6,7 3%
) ,2,% 4,5, b 327,
() | o(2%,3,6);5¢6 30%
(52 ,z,(3% 45
(40) 0,2, ¢4 ZZ%’;
@» | 1,234 137
Gy | 123 e
]
(22) 0,2 LY
(3D | 0@ 3@ Sl 78 50%s
(73) Lz, (3)1;@')} (5)‘5 L; 7 38 2/9
e | huz4eSt 52%
s | oy 3 @250 307
&) | 1,245 2275
@0)" | 0,24 foresch @9, 187
@3 | 1,234 167
@) 1,2,% 10%,
23 |o2 6%

Lo
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. GO |t SUNENCST sk 46
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(7.2) L23Y 4 6% 7 40
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23 25 10, !
(N, M5} o, O WSTCE D 0| 70%
A,S) L2 R@S3 LD 89 S§%
423 | o) | L2345678910 %0%
N | (o, ® | 0@5, 3<4>?<s)j<e)3(7)}(s)jyjo 707,
(A | 12F;4()76,0D089 Breack(d 62%,
@S) |, 2ER@ L2184 587>
Ga | (29 0Zs@sG BT IE | 937
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N AP 0,9 \Lznes g dinn | 827
(105> |I2% 2627287900 72%
70%:
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-9 | (44
- ] | 023 ___
: 5 4 ,;2, 32 2c2/72 » ' ‘
|y ALY a8y | g2 A S T8 ]
: ,2,4'3é+83 2 4 //[;/Z -
(e |1 2 s /0, 12 102
. )2131 4_:.5—347_ 302
‘ 7% /7,81 7/7-/0// 74
@323 [ ULD | 12,3 | - 8¢
(NO.K) a7 ; 2’ 3’24'15; 67 89 0, Il
- : 14 14.7,-53 z
(L9 | 12,3242 s é’z 789 10 7
: ~4 Yy, S’ LI 73 82' z g?’
'_O » 7 s 7//o/’l 84‘
0 |M4z] | (2D |02234s,0?
- 1, 27 A
(Mi",Aﬂ’ﬁ (12,9 {02*3 ;3’5 , 7/38/"/ 10% 11,12 T
1<) 2T, 2, (3 72
GZ,S) \,2, 3242 63 le 73/ 8,3 7/2 /0/1—“ /2 ; 2.5
. 3
[44“] (12 YR 2
- / ’2'/ 3,43‘ 5134383 qz/ 2 o
2 |12 324252 (:z /z, 2 0% 11,12 947,
z g2 >
r A ;876738793 7
1| (443] | Oz ;81,001 ¢22
(Mq27) D [ L4545 6 %
1) | (210 0275 42 , 7, 89,10, 1,12
(12,9 0’ A , 4 S/élzz 229 J0? 12 %’5
oy | 222 S S Wiy 1 12 106%
. 7254 S, T8 420 s
T GRS | 76
a7 | (124 — ;8797107112 e
AT ,4Y | 0253 425%(> 7> ! 9t .
sy (27 23.4252(3 P89N0 N 12 9 -
(1,21 4,2 5; ;6 7’28??,2/0,2' 112 8% ‘
’ 142, 4’,5-1""4 7% 2 745_'3
27,789, 10, 11 g
07
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12 | 4441 | (2,00 | 0,246 500,12 120
S| 023 | vz, 3242 5242 729292 iz | /02
12,0 | 0224264 8210712 9

(4438 | (12,3 | h33545S7 678797107 1)z | 102
A 129 |ba3 eSS g210X I 12 | 102
(12,6) | 0,22 42¢6% 87 10312 A

2. The Pairing (Rr group) Scheme.

It was shown in (IV, 3. b. ) that the mixed-orbital
pairing operator @ given in (219) and (225) - ~~- which ap-
proximates the short-range character of our central two = body
interaction - -~~~ is invariant in the chain ZLy- 2 Ry"
where as usual Yy’ is the y - shell orbital degeneracy

r= %(vﬂ)(\H'z). The spectrum of @in a base transforming
irreducibly according to nyuD ;?r is given by (229 a) and
is a function only of irreducible representations [‘fJE

[ha )1:. M l"V] and (A| A?. e AK) of Zl" and RV‘
respectively. The number KK of labels reQuired to specify
an irreducible representation of RL is given in terms of V¥
by (228). One can further label the states by orbital angular
momentum L and projection M, by reducing R explicitly
according to R:b)Rz as in chain (229 b) corresponding to kets

(229¢.) Additional symmetries (Pauli exclusion, spin and isopin)

can be incorporated into the base which transforms irreducibly
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according to the chain a

U;’u, xU,>R-xT, >RXUDR5XUXUDR(o)XR(s)xE()
f t A t ¢+t t t 1
o] By LAy pd S T M M M
(27)

Ck=ie-n Yodd K=iv r even

where eL' and @' respectively designate eigenvalues of
operators reqguired to distinguish multiplicities in the re-
ductions. ZLV‘D RY’ R w > U, x ‘(J; and R > R3,
when and if they are needed. (This chain of groups under which
(P is diagonal should be compared withchains (99) end (tqra.)
under which &2' is dn.agonal.

Calculations in this scheme would thus require the cons-
truction of the set of totally anti-symmetric states

B3R A po LS T, M M Mr, @7r)

The irreducible representations (/1 2 tee AK) of
I?Y‘ contained in a given one [fJ= Lhh, - rj of Z[r.
can be derived by a technique given by Jahn4 1) (1950). The L-
structure of each Rr representation is in turn found by

chain calowlations of the type illustrated before. Elliot '2)

provides a table for the more symmetric Young partitions in
the 25-1d she11 (r=6) for NK4 particles and we here
reproduced that table with the pairing force eigenvalues (229 a).
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TABLEY. 24 (for 25-1d Shell)
Tl & 2 ”
4] (A L» | )
Ci] (106) 0,2 jo)
23 (000) ° A
(200) 0 2:' 4 [o)
013 (o) 1 2,3 o
[3] (100) - 0,2 g
(300) 07223 43¢ o
£213 (160) 0,2 4
R A
[47 (000) o 16
2 oo} 1 0,224 o
(400) | 07272475()¢ 0
3T | aro 12,3 §
@oo) | o02%¢ ¢ |
316) | o245 7
0o

4% <3
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More pronounced degeneracy in the - structure is :w
present here than in the case Z(‘ 2 U_;, > Rs P S
Typical exemple: The 3 particle partition [21] fontains

L=o0,122%3* 4% 5 which in the & ° scheme

is broken into three levels (see Table V.1.1 ) while only two
levels result under the ('P scheme (Table V. 2.1.).

Multiple (A, A, )5 ) of a given [F] occur only
for N 2 { ---the label ol!! 1is then needed. '

The problem of éonstructing pairing scheme states (271)
is being studied by Chacén at the University of Mexico.
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3. The *f’f Many - Particle Coupling Scheme Using
Unitary Groups. '

If the single-particle gquantum numbers P were to be
given as (VA§M,T) of (15) instead of (vdm,oe )
of (14) or, with more explicit reference to the osclllator, by
(?l."lr’np, ¢ T) as we have done in our work, then our N -
particle functions of the type (79) would be elgenfunctions of
the single -~ body spin - orbit operator for N particles -

Sia- 230G T2
L= v

with eigenvalues given by

Z[Mﬂ) LD - 24 | (272

L=

What would be the chain of groups under which the corresponding
set of eigenfunctions transform irreducibly?

The largest group of transformations is of course
4 5 Y being the orbital degeneracy involved and 4 denoting
the spin - isopin degeneracy. If the major oscillator shell
contains but one sub-shell, i.e., 2 single j value, then one
may certainly consider the whole space as broken up into spin-
orbital and isospin subspaces (of dimensions 2}-{-1
and 2, respectively) leading to the chain

-U;y' U(ZJ-H)D uzﬁ' U > R (syt'n orbu’(a\)XU(LSospc‘n)

This chain is easlly generalized to the case of K sub-shells
within our given mayor shell by considering the "direct sum"

%2}_*_' where (/2 ..., K¢
4

of unitary groups




L5
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LN
uzhﬂ : X-UZ-. P EB XQ (2 73a) :

ul;.‘ﬂ

where our notation means the direct product

ul‘.ﬂ ’uq,ﬂ AWNE! 1
Uag,a O 1 uzf‘*' L .
‘ 2 . . v X e X .
o . . :
/a?""“" ! i i , Z{Z

al

urDu”XU’- >

(273b)

i
><

and R3 refers to rotations in the full spin - orbitel sub-
space, i.e., in representation language,to

Gy
R, = D
0 . D

while ‘U;_ refers to isospinorial space. The told spin -~ orbital
degeneracy, is simply 2V where

2yv = 2-: (ZJE'H).

(273¢)

In the 2¢&- 16(, shell there are 3 sub-shells, namely,

dsh, S"IQ_ and d!yz (see Figure V,III.6.1) and the chain involved
is thus:




215 (}ftf ‘ A S O L N B
M‘!-D ZL,ZXU; 2 ¢ X Uz’( 2 RSXUZ. \(274)

i T B R
071 I3 T g

in accordance with (2732, b, ¢,) the irreducible repré"s'entation'
labels (quantum numbers) of the various groups being ‘given
below them. Notice that, as desired, our totally antisymmetric
N - particle states would be of definite J end T,

Consider & single particle in the <£S§ - 1d shell.
The 2(,7_ Young diagram [?] is simply [l] and its dual repre-
sentation [T] = [1] is the corresponding diagram for -Uz-
(isospin) required by the exclusion principle----thus, T=¥.
The perticle can be in either of the three sub-shells d‘/z’
Slh_ oy d’."yz. so that there are three irreducible repre~

—————

sentations, each given by [}'} [?"] [?'"}E {9',?? ?I"}’of the

subgroup

7/{(, O

0 7/(4' 275

contained in the L[943 = L1] representation of Uiz s
namely,

zlloiog > 3‘?1: 5/2_
30,,61> = f= "2 (27¢)
30,0,1§2 3= ¢4,
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“he first, second and third numbers in the brackets refer to
the Young diagrams, respectively, of Z(b,Z(z and 2(4.

The irreducible representations of Rj (J-structure)

are shown +to the right of each bracket.

Which are the irreducible representations of subgroup
(275) contained in a representation [?]"' K I OM-NJ
that is, totally antisymmetric, of Z(,z ? The 12 single
particle states (vlj, 'Yn ) referring to spin - orbital co-
ordinates for the 2§ — 1(1 shell can be labelled with

by,say,

mli 2 2 4 s cf|7 |9 r0 1 12

zzzzzztzoozzzz
4 S S S S S il e R[22 %2 3 3~

_3, _ yoo- 3 y, -1 -3
M % % ol %% A 2| 7 /2 72
3,
dS/L Sy, Lym, V2.
so that the generators of Z(Iz are é‘ 0. ﬂ’ W =42, /2)
and obey commutation relations like (35)." an § - particle

bagis irreducible under Z(,z and also explicitly under sub-
group (275) is the general polynomial

Pz@%"%‘"f I0>= | [3319.973" > =
+ +
5 A/AIM-» “Mn b + ot b/ﬂn |O>

P
of degree N. "In accordance with ( T3 ), to £ind the
2995 4" {% conteined in [gJ= Z1" 0" M] one

must require the conditions on P that
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M ~ : L ,JE £|%z"'35]

C?"JE [71%9]

[?MJE [%1%10 gn ﬁ’n]
97927 % 5 2% G Ge? Gu 7P

Z)ﬁ/f"P:o g 1< g < pist

%},:o ov 1

TEM<M'SE
GEp Sp'S12
so that P is of maximum weight in ulzg_r_l_@ in subgroup (275).

A polynomial of arbitrary weight for, say N = 5, would be
labelled by say '

3 110100, 10, 0100 § N=¢S
but to be of maximum weight it would have to be designated by

3 111000, |0, )oovo§

in accordance with (1) above. Our polynomial would then have
. b+ + + b‘l’ B’ .

to contain the factors Iy bz’ 4, 3Dy and q9 3 in fact the

polynomial is simply

b b, b, by by

up to a multiplicative constant for normalization. A similar
. ; gt m 1 —
analysis would give us the other{ ?,9 ) ? f for [?]..
Ctuy It] apart from the {“() |’ |§ already obtained.




- 153 -

For N=2 consider the [M]partition of Z(:z» |
which hes the dual partition [;T]=[ZJ of U;. implying
that T=1 . The possible representations of subgroups
(275) involved here are then: '

[13 > §1,003 %), l,bggl,o,nl jo 1,01 50,1,1F and Foo M (278)

each possessing'a definite J - structure. To find the

2‘?1’ ? H’% nlf contained in the [?] =f23, [53 =[NY =>
T= O case, we take the external product of ILiJwith [1]
in Y, so that .

(110l = p®0 = o+ H

according to ILittlewood's rules. Taking all the possible
external products of (276) among themselves we find that

./ul. 0
Up > U,
0 ¢
o®0=m +f > {2003 {HAO} FLL,0351,0,13 £110F $620f
 fomop fo,4, §1,0,1} $o1,3 $0,02¢ Foouf,

and subtracting (278) from this, one is left with:

O > 72008 §1,403 $0,2,0851,0,13 fo;b'? {6027,

[<on
o

e,
P
=
“
[

Py

ry
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Now, {2,0,0} means 2 particles arranged symmetrically in the
d‘/z sub-ghell, the possible J -~ values are thus J= /,3/.5',
Representation 2/,/,0f means & configuration (ds,,_)' (sh)’
so0 that, J- being 1,4'}3 vectorially, we have J= 2, 3,

Then }0,2,0} contains simply J= 7, and so forth. Tabulating
these typical results for [?] = J2] we have

TABLE V.3.1.

’unz Uz_ (ubou“f)u‘}) J | D
[23 { T=0 | 420, 0¢ 1,35 21
2’1 1, oi %5 2.
{0,2,0¢ o 3
2', o, lf 1,23 ¢ 29
,
N . L

where the numbers in the last column refer to the dimensionality
(c.f., Hammermesh, p. 387, ref. 34) of the representations in-
volved. The D's are given in each case in terms of the Young '
partition numbers of the unitary group involved (Weyl dimensio-?
nality formula) and are the analogne of ( 2 J+l ) for an /?3
representation given by J. Their use provides a good check on
the 2?', ?") ?'”5 's obtained from a given [?J . For
example, in the above Table:! for {2, o, Of > J= 1, 3,
and for which D = 21, one must have (recalling definition (273b))

D(%) D) D(Ug) = 5 @3+

J=0435

ZIxIx | = 3+7+1

21 = 21,
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-

Agein, the grand total of 78 must result from ;W
| -

D(ﬂlz)=ZD(?(b> D(uz) D(u4> = 2 QSH} = 78 o

ally
for the L[§I=[2] representation of Z(,z_.

To continue our chain calculation, the Zl,?_ represen-
tation LMY, with conjugete Uz re:presentatlon [/”]= [33_-—_—>7g3/2,
contains the following ??”?',' 3"‘({4, of subgroup{ 275):

Jmo0 g, ,08 $mo0,1f $Ln,0F $L1,1) $1,0,11%
§0;",l§ oL}  and {o,o,uf.
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By a process identical to the one for deriving the structure

of E?’S‘-‘-E?’] in the previous example we can find the structure

of D}]r- [21] with T =1/2 from the structure of H@D = B+
B and of [ above. s e

The process is repeated for any desired number N of
particles and results like Tabl‘é}ét‘agbulated for eny wanted [9]
representation. In particular, we shall give the complete
table for the case of on (N = 4) whose lowest leve'ivs ai’e
given by T = 1, where one has [2-]=_ $203 and L%’} =[313
which implies T,= 1. We includedthe triplet of numbers (4 m,%3)
giving the distribution of N particles among the 23 —1
shell according tothe configuration (ds/z_)'n' (Sl/?_)"" (da/z)q:'B
Also, the eigenvalues (272) corresponding to each such confi-
guration and normalized with respect to the single - particle
oxygen - 17 spectrum (c.f., Preston, p. 184, ref, 53) -
sre given in the last column.

TABLE V.3.2. ’L{,z: [2u] (Tzo F2°

] NoRMRLIZED
U, | Ua Uy (mm_mg_ J D b
211 o o 400 |12283%342S207 /08 o (Mev)
I I o 310 | 1,22545S 40 871
21 | 0 310 | 0,12223%4752¢57 | 140 871
0 2 0 220 | 122,354,§ 4s| 172
i 0 ! 3or 0,’,2273,34-35,4 80 3,08

21 | o | 301 | 614 28344'sTPTs| 20| 508
" / ! 211 | o 122%3%¢4352( | /20| .95/

2 ] ! 211 0,122%3% 41 52027 /68 S, 95/
! i ) 121 ,2,% ¢ 2¢4 6.922
i 2 : 121 0,12 23 3345 72 6522
l | " 12 0,123 3245 72 11.03]
/ ! 2 112 o, 1* 2% 3t 4252C | 20| 11031
I ) " 202 | 0*1,2¢3*425¢ 90 0.76
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a0 2 202 | 1#233542532¢7 | /so| w06 )
[ 21 0 130 23 /2 2.4/3
1 T o 220 0, 2.4 5 1.742
T ! 21| o 13243 £3572( l20 | 545/
2| o I 202 | 1323t qer§3¢7 | 126] foT6
i 0 2/ /03 | 0,/22%3%¢3672( | /20| /S2¢
! I / /2] 1,234 2¢ 4.§22
0 21 ! 03| L2 g 7 693
0 )l 2 022 L3 /0 /. 902
[ [ n 112 0, 122333 42§ 72 ete.
0 17 h 022 02 (4
0 2 ] 021 32,3 18
0 ! o o13 | 01322324 40
I 0 n /0% Le3 ¢ 2¢
0 | n 013 bz g
o) 0 21 00¢ 52,3 /S

D= 2148

Conclusion: One would naturally only be interested

in the first few lowest configurations (see TableY,S_z_)

to carry out calculations in the " —j N - particle coupling

scheme" described here.

Notice that even these lowest states

are very degenerate in J, but it is presumably removed by the
pmd QZ interactions. Construction of the lowest states of
the basis irreducible under the chain of groups(274) has not

becen attempted as we have decided upon the &S@ clasgification

scheme for thich the construction of states we turn to the

following chapter.

[t
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VI. CONSTRUCTION OF MANY — PARTICLE WAVE FUNCTIONS IN
rHE SVUa SCHEME.

From elementary angular momentum theory we recall that
there are two basic methods involved in the construction of an
N - particle basis set of definite total angular momentum L
out of single - particle functions of definite ,e . One is a
lowering - (or step - ) operator technicue end the other utilizes
Clebsch - Gordon vector - coupling coefficients. Both will be
illustrated briefly as a prelude to their generalization forSUs',

The lowering operator technigue is essentially contained
in (53), from which one can easily see that

%- = 3 L-%{LM'—‘ Cim L ?'—M- @)

M-t [ (-m+D

The operator L.o—- lowers the value of index M in steps of one
and is given from (279) by

L. = ZN L_G) = i[%f” 2 a0 2

U e T T

so that if one possessed all the %L funcflons of maximum weight

for a given N - particle configuration ( tee N

one could by (279) generate the full (2 L+I)-d1mensional
bases according to the row index M where -L < M < L

In particular, for maximum L namely, L= /?1-1 + +/p~

one has simply /gl'l-l— fljl' 1&"9‘101" tudy where from °*
(51) end (52) /%i 2= As (X G= 2, W),

For non - maximum L-values the Le '8 could be obtained,
e.g2., by the following procedure for 2 particles:
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The weight operation o e
L,, %m, ‘%mz = M %m, (%lz'ml | |

gives that M == M +M, as Lno = LI(,? + L'(:). A maximum
weight (i.e., M = I ) two-particle function transforming
irreducibly as |, = ,0'+fz, Rab-1, -+, Ad,-42, is then

the linear combination

Yo 3 Aafim Yo

where M= m, , Mz= L- M. ~ The coefficients
A,m are easily found through the fact that

Ly yu, =0
and L’it) Aal;m; = \[(Zi-mi)(‘ei""mi’ﬂ)' y‘l, metie

One gets then the result

Ans: C=m)( 4 +mer)
A @;—LMJ(;)( bo-L-m)

allowing us to determine A'm up to a constant Ao s that is:

e AT Y,

P (- m) (L, ~Ltm)!
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By (279) one could then generate all the ?LM functions for
L: [lwz,‘p’*‘/z-/’lov, %"[z and hamad L s M S L,

in other words: the full basis for irreducible representations
L of the grouyp ng, .

Alternatively, to build Z y"’,{ for N- particles one
could vector couple the first two particles to definite «ﬂm' by

%,m = Dbl mm | 2w> Yy om 7/1,%

‘W,h'mz,

and couple this to particle 3 to give

/%‘e”,mtl = Z(lbliﬂk ’W)'N"MI"> ?{3"7{3 y'“"'"
'mbm'
and so on, up to the Nﬂ’ particle - - -- thus obtaining the
complete set 14 for each Eb irreducible representation L,
(Note: we disregard the problem of antisymmetrization in our
example.) ‘ B
Both technigues --~-of lowering operators and Clebsch -

Gordan coefficients - —-~- are relatively simple. Coefficients
<ﬂ, «”zfm, m, I[*m) which refer to the coupling of two ’P'b
irreducible representations j, and /,_ to give a third one j,
have been tabulated extensively. Using the three lowering
generators of ‘U_-; and the Wigner coefficients for -U_;
which have also been tabulated to some extent, one can generalize
for .U; the above well - known methods.

1. Lowering Operator Functions. ;
From the introductory discussion of (IV,d) we recall that
the irreducible representations of U_v,D -U—z D _(J; are charac-
terized by (kl k’_, 2,4,, y:) through the general bra




- 161 -~

Ry2R, AiALoquE: . k. 0 (k. k)
0 _ 1 %3 +
u'ﬂ\> = %fm , a.YQt - Fﬂnﬁuv‘l (' 17/“S) l0> (2 20)

the superscript on the polynomial P referring to the irredu-
c¢ible representation of SU.; , the subscript denoting the
row indices of that representation. Prom (235) and (236)
moreover, the weight of (280) is given by the three eigen-

values of C',l, sz and C;

R W=
ANA :
BOR ML e (251)
m= /Q,Q'l, ln’—-l 4
Wy = (e, th)—(3,+4,) |

and the polynomial of maximum weight in SI]S is designated by

R,>R, ANALoGUE:

= Y

k, k o
; > Iﬁ,k . (b) 0> @89)

and satisfying (144 a,b), remembering that k, = ’1:3"1133

and kz=hzg" h” R

The operation in (53) yields an arbltrary M’M} ’é{ m
from the maximum weight 184> = 44« 2 (¥) in
An arbitrary state (280) in 'U; can be generated 39)

from (282) by

. oo o (ke
P Q Cs ”fk.k,) (283

9,,9“,
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(I
where @(C’o-) must be polynomial in the 3 lowering
generators of U; , namely,

=" CY CHC) ‘
R =)D Ausr ( Y (C2) (289)
chk

Analogously with (279), it is desirable to have lowering ope-
rators which reduce the representation label of a given sub-
group in steps of one, keeping the representation in meximum
weight with regard to that subgroup. The rows of (k k,)
being characterized by three indices (9, q,_,v;) ’ there
will be three such operators obtainable directly from (284)
by imposing on it the appropriate restrictions: The first such
operator 1 is to lower by one the first index 3: of U;
maeintaining maximum weight in U?_ s 1.4,

(7 P

al-"g‘b)4|_l
having suppressed the unneeded (k, /t.,_) superscripts.
Now, from (144) and (281) one can write

C, 02»1.? (g,- D @ P
C: (EIP= f}z@xP
C:R.P=o

where f P that is, of maximum weight in
These three equa’c:.ons can be rewritten as.

lg‘b) q‘| =

z.

(¢ RI1P+ra kPGP @
ICr Q1Pra, RP=9KP &
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[c‘z’ QI} P = 0, | ©)

Carrying out these simple commutations using (284) and the
fact that from (135), €.8.,

[C, CY']=- ¥

then equation (a) gives condition Y'= I-ol and (b) gives
/b = ol s0 that »

Q.= > A CEHTe)™
1= « (C2) (C5) (Cs
ol
with the requirement that it stay polynomial (°‘=°; Dbecomes
- | ‘ | 2
@I— Ao d3+A,dzd30
Equation (c) then eliminatesl of the constants so that

(EI = A,[C; (C-Cf) + C, C;] (285)

having used commutation relations (135). Our second o_pera'tor
must lower the second index q.’_ s

@n P.%%? JI.D

Exactly the same reasoning as before leads to conditions
ol= T::o and IB:I on (284) leaving

% q'r.",eh ’




@]r = A: dz ’ | (230

The third operator Qm is to lower the third index ¥

by one
(gm- P 14251 = Pﬁlﬂ’»,ﬂ"

and one similarly obtains that .§(= P-H’ ﬁ= ¥=0 80
(284) here becomes

(gm"" A': CL.

The operators QI ’@Iand @m‘ are precisely the
U}>U2,3U| equivalent of the normalized operators Ika.
mentioned on page 43 in relation to the canonicalkhain uyDZ(r-/D
D) u , They have been discussed thoroughly by Nagel &
Moshinsk#‘is, who alsc obtained the normalization constants
for the general case of ur by an elegant method relying
only on the group and subgroup generator commutation rela-
tions. The normalization constants here are A,, ,'and A‘”
and are given in the above reference allowing us to write

[@-2.C, + C} Ci]
Ky

|
L £ =\l(ﬁ-."Q,,ﬂ)(".’ﬁl*")cq'c"kz)@a"")‘

1l

)

UI);_ 2 -
3) @1{ = " 5=
1. = — C.

3. 12 2 (28%74,b0)
oY, e
’ { @m 2 [G-20(a-%+D

(k{ﬁ},;ﬂ)( ke, - ,41“'2') 4, 2
. : . e
in normalized form. As before, the upper index on LY‘




- 165 -

refers to the representation label of the subgroup; the
lower index designates the unitary group order immediately
before that subgroup.
In conclusion, <the full base of the lowest - energy
‘U; irreducible representation (Ita k,,) within a §iven Young
pattern f‘f] can be generated by operators L; }Ipz5 and Ez
of (287) in the chain U;)U;) 'U;, The desired [f) symmetry
function of maximusa weight is constructed by prescription
(79). The (k,k,,) representation corresponding to it is given
by (269) which is the one lying lowest in energy and of
maximum weight in U3' Oné then applies (287) to build the
full base but with the '[)-; lowering generators C,:' (O"? 0")

replaced by linear combinations (138) of

r lowering gene-
3 convert it

!
rators é“'a (/M?/”D which acting on a
into & +S . Thus, making that replacement one has the

normalized lowering operators

L, - = :

(ﬁl'Qt "'D(kfﬁl“")(ﬁg‘ kz—) (ﬁ-.-i's‘

x a0 (& Cr@ e 65)r (B B Cot e (vt £)]

-

"%, +t2)
(kz,"' ﬁ.,"ﬂ) ( kl - 4t+2)q‘2

(289a,bc)

(62+ i LEe i CC)

L, - (R LB 0+ £2)

1~ Ga(g-v 4
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which by definition accomplish the following:

ok (kb
I, p* = p*¥

qlq&’% ‘ ‘ 41 %:,%-1
(kike) (eiks) |
290 a,b,c
L Psl Qz: q’l Pﬂ'l Qz-” 31 < )
(k) S (k)
]L ]P %14.,Y, = Ps.g,,n-/

the row (94,9,,Y,) of (k, k,,) from (92) being subject to the
conditions ‘

k22 2 k.29 30
42% 29,

SU,>U,OU, : (271

analogous to -—l{’)ﬂS/e for R_g,) E . Just as the

latter gives a dimensionality of (2,?-{-[) for the Ps

irreducible representation one can deduce 5 from (291)
b4

the dimensionality of a given (/th) ofsa,

DEL) = 2 (k-k, +Dki+2)k,+) - (292

. 70)
this being a special case of the Weyl formula for Z(r.

2. Alternative: SU; Wigner Coupling Coefficients.
We recall from (237) that classification by the cano-
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nical chain U_,,)UZD_U; with a basis set

(k) bk, 0
PQ-.Q-.’Y‘, (bzs) ,0> ...=_-" Q,rf’z |

was e?tkiicraslent to classifying by U;)UZDP?_ with basis set .
ke

4,9,, M, where ML = Zn-ﬁ.. -9, is the projection
of the total orbital angular momentun along a given Z-axis.

Taking the generators C" , c: 'C,"' and Cz' of | )z in the .
? : . : N
three linear combinations : E ’

—’:IEVJ% C"Z —['5 _V%' Ca

- (293)
T;i -;_'(C,'—C:') = 'z!'. °E°

one can directly verify them to be the normalized generators of
SU,_ (hom-omorphic to Ra) since, upon using relations (135))

[TTl=tTy ; [T, Tm]=5T

is a Iie algebra identical to (142b) of AR3 . Thus, the irre-

ducible basis of SU;D Pz can be charscterized by the eigen-
2

values of | and [, ,. say t(‘t‘ﬂ) and T, or by the kets

H;‘t> in analogy to the [4dm> of RBD Pz R

One can immediately find that

t= Jz' u’c'g‘z)
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T= v tGtay= B (294)

2

T=t £, o0, -t

so that our base can be designated by P

(k, k)
%%, T

a) The outer product of two irreducible representations
08 ; ,8' 2) of R; gives the well known Clebsch -

Gordan equatl on

% DAL @(ﬁ,fﬁz) JéAL . HAY

where -4 means that the resulting irreducible representations are

of the form ' Wm |

| (&"‘IZ'D | O
08 %6) 8(13) —_ 08
/

The basis of a given irreducible representation £= jp"'[;,

L.}fz-l’ ...}[,-[z is then simply

o> = S lmm ) Lm> BmSdm,>.  (245)
M,

For unitary groups, the outer prodi).ct of two irreducible re-—
presentations labelled by [4'] and E—f"_'( is

ﬁ[—f] B[_Fn) Bt-f. . ’8 Gf.1 -i- .
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where the resulting [$J= L, 3, [‘F;'], oo are determined by ‘ er:
Tittlewood's rules (See Appendix A ) and the basis transform- g
ing irreducibly according to a given fesulting [-f J is in prin-
ciple obtainable by generalized (Clebsch - Gordan, or ) Wigner
coefficients for the unitary group in question.

In particular, for SU one has [f'J= (k’b )and If 1=
(k" k”) whose rows are respectlvely given by 94/9)/T’ and
ﬂ” 9 # T”* so that the full base corresponding to a given

) resulting from(k/ k,’)@ (E ”»é”) shall be o

(klbt) 2
99,5 ‘ (23
L”k,’)

(k'k,
; NGALER AR R Lz)a.s;c>lj Bﬂw e
1 1’.‘5'

?ﬁqgr‘galogy%to (295 )for Rg,. The Wigner SU coupllng coefficient
factorizes into parts referring to SUg,DSUz and S[L_DE .

<) s (RRDGT | (k) 3g,0> =
eAN)

<(kk:)%5 5 ( /e,”/e’l)fl.”fiﬁ) (kk)g,9.> ('t [tT>
t=3@-9), t=:16@-%), 1269

the latter factor being the ordinary Clebsch Gordan coe-

fficient widely tabulated. The first factor in (297), called
the reduced Wigner gcoefflulent was obtained by Moshinsky
in closed algebraic form 66) and extensive tables for them

are being prepared by T. A. Brody 71) at the University of

Mexico.

To construct a given N - particle basis transforming
irreducibly under U;)U;_)U; one could use (296) and (297)
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to couple two particles, then a third, and so on up to N
particles. The one — particle Young partition [1J of Z{,. ;
contains one and only one SU_,: irreducible representation :
(k,Lz) =(YO), where Y= -',;(Vﬂ)(}'-l-?.), (pre dimensionality
of this SU; representation is, by (292),simply I

The dimensionality of LI1J of 2, is, by the Weyl formuls
for Uy, also r.) For the 28 —1d shell Y=( states,
those given in (137) single-particle quantum nu.mbers/&?
MMM,, Conditions (291) tell us that, since

229202920
9> r 249

then ﬂz_-_:O and

%

2 f O
2

1 o)

o

will define the 6 states n->%9.1 or /4—) 2,9, T

recalling that T=%N- ‘Iz'_(ﬁ»,'l'f},_), The correspondence between
set (M, N7 M) end set (a, Q,,'C) is one - to - one and is
given in Table¥L,2.4 .

TABLE vVi.2.1

1 2 > 4 Ly 6

|

MMM || 200 | 1o 01 020 ol 002

29.T || zo1 | 200 | 1042 207 | 104 000

P " AL A | D A, | A | 4,




- 171 - =

In the last row of our table are given the single-particle
functions: Using prescriptions (79) for L3 or Z{L one
gets P= 5‘;' ’ which by (138) and (144) is of maximum
weight in TJ so that

(20)

=

2or (Bis) B:.EA'. (p=s,5=) (298)

the remaining states labeled from 2 to 6 in order of decreasing
weight (’n. N7 M) will thus correspond respectively to QLS)—?
@ 0D30@&1) (s, D (6 1). (These could also be obtained by
successive application of lowering onerators (289) on maximum
weight state (298) .) As in Appendix A, we shall use

the simplified notation

$,S,+ S .
A/‘,},‘,_.../uv _%(_)ﬁ P E;«S. /A,s,_ e g:“"s" (299)

where Ps issa pgrmutation of the indices S,S; ¢+¢S,
-
so that A ‘o v is antisymmetric with regards to

Mz oo U +
spin - isospin indices § and,since the b S anti-

commute, symmetric with respect to permutation of orbital

indices . In short, a form SiS.Ss : y SEY,

transforms under Uy 1ike [-f]—- I2] /‘/as and under q
S +

like [',f} L3, Thus of course, A = b us
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To couple two 025‘16{ shell particles one has, by
Iittlewood's rules, inSU;,'

(20)® (20) = @0)+ (22) + (3D

of which (40) and (22) are contained in 123 anda 31)e Lnj
(see Table V.1.1). Representation (40) is the lowest - energy
S‘U} representation of both O"®ana F®  should we then
congtruct the base in (A L,_)- (40) by the Wigner coefficient
method (296), our states F;)‘U would be linear combinations
of A A » which terms wouid have to be regrouped to give
terms of 'rhe type A z}‘n , that is, of symmetry J¥J= 3
under ¢+ If the permutation symmetry is maintained
throughout the whole construction however, great labor will be
saved. Thus, to construect P‘«:t it is preferable to use the
lowering operator method beginning with

P(m U [t _ L A%
= I 12 = 2 T
7 ‘ .

which is of maximum weight in U;) TJ; DU: ., The symmetry
C-f] EZJ shall then be maintained throughout as operations
(289) affect only the lower indices of A\)* without eltering
the form -A'? e -

Efficient construction of an N - partlcle 'U;,)TJZDU
base for a definite (/? L,,) contained in a given [4£]J
partifion requires an adequate comb1nat1on of both methods
discussed above. By expressing N - particle states in terms
of determinants of the ‘bjrpe (299) one avoids destroying the
permutation symmetry of the desired partition E‘f},

Consider the N =8 particle partition[fJ= [S¢3/],
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According to formula (269), the lowest - energy SU_; repre-
sentation contained here is (k Lz) (/I Z) - To construct our
8 particle base (Q,‘L)" we proceed as follows: '
1) Construct by prescrlptlon (79) the maximum weight
polynomial for (lt :_) = (80), this being the lowest~
energyS{J, representation contained in f]= L4],

Applying lowerln% operators (289), proceed to generate

the full base P . This is simple since here.
3.T

k,_-—O. Bach of the D(T, 3>.. 36 polynomials (see

formula (299) of the full base will be simple linear

combinations of terms A/:';:;;“‘with symmetry [£J=L¢].

2) Repeat the process for (k lz,,) ((90) which is the .
lowest - energy ‘SUb representation contained in
)= f’ﬁ] i.e., construct the D(U:s) = 28 polyno-~
mials P(“)

1T
3) The lowest U( L,) of f‘f.} 437 is bg (269) equal to
(ll 3) so that we then couple '%t' and

Ps.

“ph obtained in (1) and (2) by (296) to give
P ’("'3) rPhesg Wsl%’l result as llnear combinations
f-
A with
3 q ,
obvious symmetlxl"y[‘ﬂ E43{A'/A/“3

(] 2e,
4) Flnally, couple ‘P( ’9Wi‘bh 'E"O'U" of Table to

)
give ‘F(l ’2 by me%i?hod (296) ’Phese are 11near

comblnatlong of A /Mz/l/u4 A ! A o
and of symcetry Ef} f43!j as de red.

. Notice that permutational symmetry has been mainteined in each
step. “There will be D(Ua) = 195 polynomials foz?:) (/? kz) ,

= (11 2) but one need only construct those 3,97 with 7 non-
negative as negative values of M‘__- 27T are unnecessary to
calculate matrix elements of a central interation like pairing.
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3. Explicit Construction of the anBase for Lowest
(kckz) ESU&) Ui) Ez .
In [F?%° one has 4 nucleons (1 proton and 3 neutrons)
in the 2s-1d shell. Lowest levels are thus given by T=1.
The most symmetric Young pertition of N = 4 with conjugate
representation containing T=1 is, according to Appendix A,
143 = C313, The lowest energy (l, k.) vz1ue contained
in £317 from Table .44 is (71). Contributions to the wave
function proceeding from higher-energy (k, k;) values of
will be neglected (Elliott hypothesis) in our calculations.
(71
The polynomial basis “P%;Z‘ (b}-s) is composed of
D(-U;I(W)) = 63 polynomial compo;ents of which only 35 possess
T non - negative. This set of 35 polynomials was constructed

separately by both lowering - operator “and the combined technique
explained in the last section. Identical results were obtained
but the combined technigue involved much less labor and time.
Since the chain of representations E3|39(7l) ig desired, one
starts by using lowering operators (289) on the maximum weight
(k, k;) = (60) function of symmetry [37 -

(o t+ 1+ | _ 1 A123
TEEPGO,5=L9|s 2 03 = ¢ —ml

in accordance with (79) and definition (299). A set of D(‘();:(co)>
= 28 normalized polynomials is generated, each of which is a,.
linear combination of terms A 123 1pe longest polynomial of

Popspt

this set was, for example,

P(w) \ (Alzs + 203 A»z—s + Ans N Al:fl 5 Al;ﬂs)‘

(Incidentally, this (‘?.L;) = (60) base corresponds to the lowest
energy S‘U;representation of FH ).
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o Next, we add the 4th particle to our 3 - particle
P.“.:ot using ST, Wigner coefficients. The fourth particle
" (ki) = (20) so thet

(LoY®(20) = (80) + (71) + (62)

where the first, second and third resulting (k k; values corres-
pond to the lowest energySU; representations of Nezo, on
and O , respectively (see Table V.1.1). We take the (71), and

thus reculre the ,S-U; reduced Wigner coefficients

L (e9)4!0 ;(20)9/'0) (1) 9:%>

7% 20 224720 T792179%.

71)

whlch are available in Brody's tables. Cne also requires the

ordinary Clebsch - Gordan coefficients

ettty = <34 1 14 v 2GBTS
o
fov = 3 @-%), 3@ %1, - ’; 3

which are also tabulated in various sources. Then by (296) and

(297) the F © jowest - energy U)U )E base is gotten by
3/ V2 2
evaluating, for T 20,

() , 2z 2
Pﬂ 4.7 ( A/‘ S, /")
S sio; Goglo) (14, at>2<- 3 Lar TT|44) T> X

T'T"

....
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) (20)
X P .'oot' /""L}:/‘4> P" ot 3 | (300),

3

(20)
where single-particle functions -FS.'O'C” are those of T‘ablem..-z. f.

The 35 polynomuals -Fﬂ».%t of T2Z0are linear combinations of terms
123 A (whlc,h have symmetry [3!]). Let us abbreviate
ppps

A}« A/;,;,/i = (p, et o) | (3o

as the upper (spin - isospin) indices are identical to every term.

The polynomial E"-" resulting from (300) is however
/4

P”') ‘F’I(z ) = (I,ZH)] \f—[ (Zm)l (302)

7%

| 123 d 123 ‘
since (as is easily shown) A,Az“=_5 AzAm . Prescription
(79) allows us, on the other hand, to construct this polynomial
immediately as it is of maximum weight in SU; namely:

(1 + + |+ = 1
? = bn 12 b"b e = b(z '“)

7% 21

which is moreover normalimed. Thus, in view of (302), we must
multiply by E/Z all polynomials resulting from (300) in order
to obtain a normalized set. Iloreover, the number of terms
Al A i 23 3
IRV IR resulting in each 5'4"’_ from (3CC) can be
reduced by use of the following easily derived identities:
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(a, kb = - 3( Lo bb)
@ be) + 204 ake) + (e bba) =0
(@b = - aka)

@, bed) + (hacd) +(c,ald) + (d,ake) = 0,

(303)

¢))) :
The complete list of P for U20 is given in Table

where NE (4,4,1) =1,2 ...,@ét.

TABL®E VI.,3.1

' 70)
rﬂ%‘f |E2i3(109,9,7 5 23 S=1, Mg=S  T= LM =T = e 4 lo>

m O] t@m
> @ LL\E;B@'S") + (Q“')J

AN E©) b%[j(z,ln)-(—(«%,m)]

512 ® Ei—ﬁ-Z 12(2,%30) + T0Z(S,30) + 4(3,321) + C(360) +2(621) 12 (3,9"?]
w2 & ;'T-Z-Yz\ﬁ.(a,azm 2(620) + (531 + 3 5n)]

402 © | 5&(2000+ 2(633) + (GLm)]

T @ 2—'@12(2,221)+ 2(4,20)+ (2.41)]
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5 S| #Re%Y + 16(532) + b (342) + 2066.22) +4(352)
+6G(4,231) + 2V2(3430) + 3V2(4610) + 2 (641 + 12(2,53D)
+ 4vi(§,sn):(
3 @ | | G - 6,32) - 3(3052) r @ ban]
b o] Is(seat be oD + 35D + 4(5353)]
6ol eu%[ 2(3,322) + 2( 6, 22)) + 2VZ(S,321) + 216(3,#2;)
+2(334) + (L) t (5,5”)_]
401 (@ Z'-\ﬁ—a[(i(s,wz)nt \Z(6332) + = (L621) + (S,631) + (3,m)+2(c,,s‘3/)J
200 (@ _5'\—@[(@ 633) + (,660] ]
70 (@ zr [ 2042200+ 2(242 + (440
510 Iﬁ(s 327) — V3 (3522) +2(4332) - 2(3432) + 24, 6zi)
+(o(s,S'zb + 30(593) +VE(554) +4V2(453D) +2(2 Ss:) 2(/4qu
30 ® | = (@) —(6433)- 303 643) + (664D + V‘(€é32) z(3 49_)
+3(§¢,$0 + (65D +2(5539)] B
lo g (- (366)]
oo (D LRZ“" 222) +3(5322) + 3(3,522) +3%2( 3, 4az)+ 3V7é 4.9./)
L +33 (552D + 3(s,43) + 3(3,54»)]
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[

......

(400 ® 2_,_'lﬁ:s' [(b,@zz) + V2 (5,632) + V2(3652) +2V2(6,522) + (3643) +(6,433) |
F (664D +(5esD + 655D
200 @ 501 2653 +6(6,662) ]
bi% j@[wfi (2,31) + 8(s,n) 1—36(3,211)]
7()% @D b—'-ﬁ[gvz (3210 + ()]
5 il
2 B z55] 23350 + e +26630)]
b @ 8\}7&[28 (2,521 + V(S 20) + 4(3221) + 14(431)
+ 2(341) + 1E(350) ]
-, -
41z Llo'[4-(2,333>1- 1S(2,630) + 6(6,321)+ 3(-”,421)} |
+2—:->EIL(5)5%I) +3(S,Ln) + 2(3,53() + (6,51)]
7% € {:E' ): 2(3,22)) + 2(521D +341)){
503 @0 | 55 ) 217 (3,332) + 28(5, 62+ 4B (6320) + 2§33 + H(353))
+ 2(L51) + ('S,én)_]
03 @ L
2 (,ﬁ?[ 1206,630) + 2((,339 + 3(3.6L1)[
bl3 ELET[,E?JO(SZZD - 412(3,222) + 4207 (4,321) + Wz (3,420) +42(3 521)
B + 2 (2,83) + IS(541) +21(651)]
413 ‘5‘@{3\5 (2,632) —2\2 (3,622) + H2(%333) + V2 (4431 - CIE(,643)
—~ (2 (3641) ~18(3,532) + AZLST) —12(1,452) +9(5,621) +((5332)
212 (5,31) + 313 (3,557) |
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oG [ (e, baz) (3,LL2)J + = [3(5,433) +2( S'é(.l) +(¢, §33)+2(QL¥)J 1,

| 2 (3222 + L5, 22D F (542D +X g4 ]

Sr):@ b22) +2(6320)-V2 (% §3D)+ 205 (452D +12(S621) -

+(3,433) + (3,b4)t 2(4,430) - (L,553)]

J@E‘}\E((q (32)4 5 (366D + 4665 +2(6,533) 1 (S6¢1)]

LT(6et3)]

sen) )




ST
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A AITYI AN
LT M

¢))]
The base 2.4:T given 1in terms of(/u,, ,le/l,(g/h’)is convenient as ':';
any interaction operator is expressible, from (35) and (36), in e

terms of operators 4;{hwhich replace U, kyylh,that is
(

g/l“z(/";/“z/@/‘of) = (/";/%3/“0 | (304)
Gl profis )= O, ot

To construct the base for any number of particles N in
2s-1d shell with orbital symmetry'Ef] and associated lowest-energy
8U, representation (k, k,), one can proceed in the following
systematic‘fashion. If one has the bases for N=1,2,3 and 4
particles with [§3 (¥ k) = [1] (20) [21(40), [31(60) and [4](80),
respectively, any [4] (i, k) for any N can then be built by
appropriately combining these "elemental bases" with the aid of
SU, Wigner coupling coefficilents in accord with equation (296).

The [1](20) base (O'7 and F'7) is simply given in Table VI.2.1. Base
[27(40) (0*® and F8) could easily be generated from E@") = b bl
(of orbital symmetry [2]) by the lowering operator method (290).

The [3](60) base (F'° and Nel® ) can likewise be gotten from

E(GO) = bf, b bl, of orbital symmetry [3] (See VI. 3). Finally,
the base [4](80) (Ne® ) rollows JPGD = vf, b}, bi, bf,, with orbital
symmetry [4]. By formula (292) the respective dimensionalities

are 6, 15, 28 and 40 but, as mentioned before, one may restrict
oneself to components of the base having positive M, row-index

values. A few schematic examples follow:
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KN OU) = « 4 Ckoka) + -+ Cim formula 298),

(3OO0 = -+ +DBFAD+ - ( F?, Na®)
[3EO®BIT) =+« +[4IMD + o (N, ALP*)
(43160®M0U,) = - oo + [4430(23)+ ... (AL*)
3E)DL4I(E0) = « -+ + (43 )+ 0 (Mg>D
L X)Y® [447(124) = o0 + [440(123) + - (AL
"'C‘?'—3(40X8> (44301248) = « o+ +(442]C11) ++ oo (Na?®)
L3200 ®[442TCi,1) = « « » + [442(3C124) + - (AEZZ Si?D

Global studies using the SU, classification scheme can

thus be carried out for several nucleil at a time, leaving as much

as possible to the computer.
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CHAPTER _ o
. _ &

VII. PAIRING FORCE MATRICES.~ S . i w
The many - orbital pairing force matrices ‘in the o I:

physical (angular momentum) scheme %V' 2 -(]:3 2 /e3 O R,
for a single SU;representation (/e,/r,_) for N particles in an
oscillator shell are designated by C

<o ) ot LM, | @) 56T ki) LM 65)

where @is the pairing force operator (219). Since waas
assumed & central spin - isospin -~ independeh‘t o;ae‘ra',to‘r, then
{&f@} = Eofo, (P] = (0 so that (Appendix F ) it connot con-
nect different L~ values in (305) and is moreover independent
of the row label M._,

In the canonical schene Z{p)U_;)Uz—J[[our natrices would
be denoted by

|| <ee3 lhikn)q 5. M| [ 3llkibe) 9,9, M| (306)

whose clements can be evaluated readily if states ,[-}]g[(k, Lz)
949, ML> are constructed as shown in the previocus Chapter
since the effect of operator (219) on these states, as well as
the resulting scalar products, is stralghtforward. This will
be illustrated shortly. ‘ ‘

Tn view of transformation (I.1) of Appendix :I; the
passage from matrices (306) to (305) would then involve the
sinilarity transformation

1€l - 1SI U@l IS, o




- 184 _

the R} and U;_,subscripts referring respectively to (305)
and (306), and ” q@ﬂ standing for orthogonal transformation
matrices of the type (_[,c)) of Appendixz I.

If, however, w=w in (305) -~--which is the case
for the (k,/e,,) = (71) of our present interest - —= the matrix
is diagonal and of dimension equal to as many L - values as
are contained in (k,kz), Hence, in view of (307), the sum of
the eigenvaluesof P, which are labeled by L, , is simply

To | <cristbk) wl M| @ £3albib)w LM | = o
T || <ct1 (kb 44 M| €[ 243 lki k)59, M > |

so that only the diagonal elements of (306) need be calculated
to obtain the eigenvalues of (305) that will figure in the cal-

culation of energy levels. Matrix (306) is explicitly reduced

into sutmatrices labeled by M = Ly, hwsg=1, «ees 1,0

(where L:max = k. ) and of dimensions egual to the multiplicity

of each M;_ involved. Natrix (305), which is diagohal, can be ima-

gined to be ordered into groups of diagonal elements labeled also

by the ML’A'. Then, according to (308), the eigenvalues ﬂ of
associated with a definite [ can readily be found through

LC1dlkk:)a/s, M=L | Pl Te1a(hb) g4, M=

p
_‘nﬂ«f} dlbk, Jaral Mo=tt| PleTalb k) 4.9, ML=L+'>//}
- (309)

We now turn to the evaluation of the diagonal elements
of (306). Applying the numbering convention of Table Y[ ,2.1
for/,t-‘é(ﬂ,”,"ﬂo) to pairing operator (219), which is bilinear in
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Uy eroup senerators Gy astinen 1n (37), ane ovtatne
O= 0202+ 00+ 6 0+ 6 GG+ 47
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Recalling (304), the effect of this operator CF) on states of

the type given in Table VI.3.1 is clear; one must be careful

to use the same numbering convention regardi$g/u for both ope-
20

rator 69 and single -~ particle states 1?xq1t as in Table VI.2.1.
]

Tor (k.k;) = (71), operator (310) must be applied to all 35

polynomials given in Table VI.3.1 to get

(i 23
Pl erntk)ggno= ¢ Pq';.)c: m (A, A/u o .) 10> 61

for all 35 cases.‘aA.typical result of (311) for the polynomial
with 9,9,T= 43 is, having used simplifying relations (303)
and regrouping terms,

(i)
¢ 2= “1—-@[9(3,53:% (5,330 - 7(2,32)) ~(3221) - "7(¢, 431) G
~(3,66D + S (34 7(,14“)] 12)

where as in notation (301), e.g.,
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| oA l23
(3,550 = A, Dss

lower indices referring to orbital and upper to spin - isospin
guantum numbers. Multiplication of (311) on ﬁ}e left by

<E‘f304(k!bz)€h%_Mu = <O|( Pq{,;:_’b=‘44/3>+ I

will result in only a f:w different elgmental scalar products
12
/

of the type ( {‘g' té/“/“’/a” A/:A{ A/A;.',;z/&'g)g (/J?ll,_/(g/l,_ //":’/‘:/a;/‘,a

which are simp efaluste with thé &id of enticommutation
relations (12) and definition (299). Calculation of diagonal '
elements of (306) for \R, ;)'= (71) required only those

(/"lyuz/a;/l*//{,/l;/ﬁ%;) given in the following list: .
(a, bed [t k)= O N2y, DNulice
(a,lredfafed) = { (@, bbk ) b akE)=-12 (a,alrlr/a,alr(r)z g

((l))erC/a,z"rc)':)Z (A,IJ‘CC/&AC(;)=-4- (alalrc/a,abc)=4

@, &bl a, blb)= 36 (a, becfe,abe)=—4 |(a,00k[a,80b)=4
(a,erd Ilf,&Cd):'Z o

(312)

If in (/M';/‘Z/AB/W- //14,/, ﬂ{ﬁ%/«&) 1,7he, set, of’ indices
ey differs from fthe set /M,/A;/A; ¢ » in any
order, the’elemental scalar product vanishes because of (1l1).
To finish our example for 9,4,.T = 4{3/2  with (}z,k,_)

= (71) and [4] =[’b|j, ( +{ being unneeded):

p (1 :
LN 4s| @l 413D = 0| (Pm)+ (P R7) 10> |

4%, 1%

= | : ' 33 .
20 ,0,2[6 q(s5,21)253) + &7 (5 1f5,33)) +2 ?[?,i_a;é,i;,)
-4 /2 q

+270 gi/s, 23) |
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Calculating the other 34 diagonal elements of (306) in a simi-
lar way z2nd then using (309), one obtains the following eigen-
values ) for L=/2.., 7 of (305):

Elgenvalues oiJ<C5l](7I)LM«.[G7l[3|J(7I)LML>"

2| 4
B

(314)

¢ei=

constituting five different levels the highest of which is
degenerate in A, =5, 6, 7.

In cases of certain (k, /€;_) values where w#w'in (305),

the trace technigue (309) would not suffice to obtain all the

. eigenvalues as then matrix (305) is not entirely diagonal
and would contain small submatrices along the diagonalbfor those

L - values which occur multiply under the given (lé, :éz), These
submatrices would be of dimension equal to the number of W4
that occur for the given L and to obtain the corresponding
eigenvalues ﬁjwt. of ” 09”33 the similarity transformation
(307) would be applied explicitly uron " (P”U for ihose ‘M‘_-
labeled submatrices of Ry containing nzén—diagonal terms.
The resulting Rs are then diagonalized and the WL
obtained. A typical instance of this w#w situation is found
in Table for M{'o’ with (f]= C44]) (‘(. k;,) = (lZ) 4)

which contains up to three - fold multiplieity in the /-

. N
structure, that is 5 (£ W +=W,

Result (314), after coupling each L,-value with the
associated total spin S -~ values of each level to give total
J , will provide(dizgonal) matrices with elements
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< [3kbk)u LS T T| P L1 (k) L STMG T > =

ZM<L.SM1 M I TMy LS MM | T My >x
M Mg
MLMS

K L Gy LM 5 315 TIG] G0k )l Mes LF1SM, T

where the latter matrix element is identiecal with those of

(305) as is spin - isospin independent. This element

moves outside the sum since it is independent of row labels
Mc.,, msl s M,_ , MS s0 that by Clebsch - Gordan Coeffi-

cient orthogonality

CHbIWL STT| @ | 53 (k)WL ST T> = @)
< i530k)w by RIS T| Pl cs3Ckk) wl; LFIST >

being independent of row label Ma— . Matrices (315) with
rows labeled by L and S shall form part of the total in-
teraction hamiitonian matrices whose eigenvalues are the ener-
gies of definite J and T values.
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VIII. SPIN-ORBIT FORCE MATRICES FOR F=2° , -

To permit evaluation of the spin -orblt interaction matrix
elements (263) in the sug scheme one must.evaluate coefficients Agte »
B gl and the simple matrix of elements (kk,)a}'b' I%I{(k Lz)(.{JL>
This will be illustrated here for F2° ; extension to other nuclel will
then be quite straightforward.

.Coefficients /QS% and ESsgvbeing’independent of U; row
indices %%Y; and of Uz' (spin) row index MS' 5 co‘nditions (254) maj
be imposed on the two linearly independent inhomogenéOds equations
resulting from the application of (252) to both operators (253 a,b).

Typically,

<E5Telhdcb) b (b 5 S'S'T [T 4 4.6) <TI0 )

X (m AChybs hs) k.th;h,); pSST>
‘ (316)

3A55<auzo, h,))C’ d lm,,(u. 1)> |
+ B hibn, ()| G- @2 | e Che h,)>}<5135’5135>

and similarly for (253 b); the (h hz. hs ) labelingvof Uz 1is here
suppressed for brevity on the right hand side. The operatorﬁon the

left is by definition (241)

er((z'). is's) T((z)t 2 iS'—S) =
Z«rl Ay slG‘>XCWT | zi-:? s (3:7)

ToiT
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and similarly for (253 b); and of course

I ! |
<o|dssleD> =.J:—§<z” S-sl§ o> (318)
by the Wigner-Eckhart theorem, Moreover, from expansion (240) we
have
)
4T _ §< C/”r - (319)
94=05L1,0->123
while

UCHY> =< | G WA A> = Mg (320)

from Appendix G. Combining these results carefully one arrives at
operators (317) expanded in‘ terms of U‘. generators C}:‘;"' (S:, s’
- 1,2,3,4) and (u, u’ = 1,2,°**, 6 for r—6) That 1s, for S‘=S=1
say, (317a) shall be z{ Cs' + Csz + C + Cs+] -2 [(1:

+ (4G + €T+ [Cr+ i+ ¢ CL] - [C',’,N: + Cqi .
The ket states on the left of (316) being of maximum weight in U,

may be designated briefly as

Ity ke Ch-h); SST> = T g

the first index referring to total intrinsic spin, the second to
projection of same. Now, operators Rkl of (180 d) related to
cartesian components (k, 1 = 1,2 ,3) can be case in spherical

component form: ﬁ- = —-Z_(Mq-)f' (N-‘P)t‘ d‘t

otaly!
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where the Paulli matrices now 1n spherical components are

heom () M) meea()

- ]
with rows and columns given by d; g = 7} y - /2, and
similarly for Nq, (Q‘ 1,0,T7) with rows and columns given by

T’ t' = Y, , - Y, . The operator 2R_, 1s then
3 c 2
2R = 5 (Cy- Cy)

in terms of U, lowering generators belonging to the set (61). It

i1s the lowering operator for total intrinsic spin S, i.e.,

2 Rs, -TPS,S = R-l,s-l

and moreover keeps the result in maximum projection. Likewilse, 2R07
would be the lowering operator for total isospin T. The case of F?°

involves (h; hs hg) = (710) and from Table VI.3.1 for S = 1 is simply
{ . + + T +
.IP = T (2 “') = b b 2
W ) / 21 i [ 12
and consequently

jf;w = 2 E%b.IEi, = q%;‘rkz:Slgz k;;zlgt3"l5:;lsz—£5:; Z;:3L>.

Evaluation of the left-hand members of equations (316) now follows

easily. On the right hand side we have, from (144 a),
{ L —
< ‘).lu,(ht'l’z) lC’, —CZ ll‘l L’?—, (hv-h?—)> - hi‘- h?_

and similarly for’@% - @E. Furthermore, by definition (249) and

condition (144 p) G,’- 6;',-—' (ql)z_ (sz)zf C/’— CZ

4

3T i

<

AT ITr2TIAMA
] PR EE
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and sim;larly for @2 - @, so that
<h.h;)(h.'h;)‘é: -G: l h\l‘\z) (‘h'k:)> = ",?-_ h:,"' h\ - ;‘2

and likewise for Gg -@:. Finaliy, for (h;, h, hy) = (710) and

S’ =8 =1, say, equations (316) reduce to
' L
1= LA+ OB 2= A t2B0)

from which follow A, and B, numerically. The cases (S', S) =
(1,0) and (O,l) then involve use of operator 2RTo as 1indicated before

and the complete results are:

- TABLE VIIT.1

FZD 10 ol
-2 2B 3
(k) =(71) & /
V,z "6/! 2
Notice that the case S =8’ = 0 does not appear as then matrix

element (263) vanishes, sinée the factor <S1Ms g” ‘S'Msl>
would be zero by violation of triangularity. Thls reflects the
fact that spin-orbit interaction is zero in first-order for singlet
states. '

To compute reduced matrix elements <(k,k;)w’uIIX”(ICI’Q)CUL>
recall the second expression for it in (258) and algebraic formula

(262). Transformation coefficients <%,Q3, (k, kz Mf") w Lo>
‘form the matrix diagonalizing " <(k.|zb)q.'9,£,m,,lJ:zl(k.le,,)q lq,le_>"for

Mo=1, t.e. ,for (i k) = (71) the former matrix is (I.9).

Thus, one begins by constructing " ((k,kb)q.,’q," M, I%g’ ,(k,kz) Q-,S‘}zML> "
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T3y5F EURT

-
]

for (k, k) = (71) and M_ = 1 by formula (262) which shows that our

ﬂﬂ! 1"1\1\!11’\}_!;@
v H H : 1

5 -
P

matrix will have many zeros. In accordance with (258); the result

is then transformed by similarity with matrix (I.9) to gilve

" <(7l)b‘1lx(:,'(7l) L|1>” which has non-zero elements only along‘

the principal diagonal and the ones contiguous to this above and
) -> -
below. This results from I} = I+1 which implies ¢ = L, L+1. Each
/
element is then divided by the appropriate <f],110’la 1;> coefficient

and the final result is:

TABLE YIL.2
Maree | <thkes)arld 1| ZONCkibs)wl> || fo@(é,é;k(7l),w=w£
N 2 2 4 5 A 7
| 5z |-LY2/>
2 | o | ‘3%‘[’: —g- =
> ST o [Z R
! L el |
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In conclusion, formula (263) can now be used to construct

the matrix of spin-orrbit interaction s.o.for- a given'SU3 représéﬁta‘cion,

wherein W=w' automatically, the results for F*° with (k k) = (71)
are thus: LS| 1l LS 10 | =
o0 |2l _ o | -4 |-
. J=l -2/ E78
L3
-2
J=8 5 7
LS 20 §] 21 [ 31 LS 3,0 21 [ 2 | 4| |
] ! 2m 203 ! - [5'
3%2 374453 @] 47q —%- %%,. O
-2 . 7T
-2 /9 4\ =3 |-z
..'7/!8 il _,_“/‘2
LS| 40 | 31 | 41 | 5 Lslso | 1| & | 61 |
51z | 475 |_{55 1307 | T=n WEN
o |21 1 5 o |[EETiE [Eap
11 .
2 |pw | © s (B2 | o
_n |Jmise7 |-, [Eost
-4 L0 lTe3e J=5 Yaco PXELTRR
—_— -7 —_— "
%o v A /C]
vs | 6o | S 6l 71 s | 70 Al 7
shen | iz [{35- 841 TR
S qﬁ__ TN o |[ER ] [2h
7 | {62569 2 264299
fr He2sEl o 2 RS
1 _\26110 1=/,
T=0 s |- S J=7 2/14
A mry D,
7
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IX. PREDICTED LOW-LYING LEVEL STRUCTURE OF F?, ' -z

The interaction model to be used was discussed‘in
Chapter IV with speclal emphasis on their group theoretical
symmetries. It should be kept in mind that éjrefers to orbital
pairing as explained in IV, 3., and é&f%o orbital quadrupole-
guadrupole ---- extension of the former»to include spin might
provide a more realistic type of pairing but wouid introduce the
symplectic group Spg 1nstead of R; and force us to use a ‘j%f
coupling base. A linear combination of our 6) and@zmay be used
as a model for central two-body residual forces between extra-closed-
shell nucleons and evidence in support of this was cited at the end of
IV.3. Regarding exchange effects, an exchange operatorﬁﬂ taking a
simple form at long ranges as discussed in IV.2 is employed with
theé&f;mn%ion of the model which approximates long range. Exchange
at short ranges, i1.e., in association witklé), 1s neglected under
the assumption of predominance of the Wigner component (into which
the Majorana collapses at zero range) over the Bartlett component
(into which the Heisenberg collapses) ---- for a Rosenfeld mixture
the relative intensities are 80 to 20% respectively. To this is
then added the single-~body spin-~orbit interéction discussed in IV,6.
Our total interaction hamiltonian 1s stated by (264) or, parametrically
more convenient, by (265) and is acting amongst the four extra-closed-
shell nucleoné only. The doubly magic.s%6 core 1s presupposed
spherical and inert though departure from this simple state of 4
affairs is hopefully expected to be simulated at least approkimately

2
by the 10ng—ranged£ﬂ,interaction between extra-closed-shell particles.
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The lowest levels of F?° will be given by My =T =
From (A.4) the most antisymmetric spin-lsospin Young partition
whilch by WignerLW) is lowest in energy is[?l] == [.7—“] to which, for
T = 1, are associated S=0 and 1. The corresponding orbital symmetry
18 then [f3=- L) ﬁhose lowest-energy SU, irreducible representation
by Table V.1. l/aﬁ k,) = (71). This representatlion, to which our
set of basis functions is restricted (Elliott hypothesis )),
contalns L-values equal to 1, 2, 3, 4, 5, 6 and 7. The resulting
J-values are thus O, 12, 24, 3%, 4%, 5¢, 6%, 7 and 8 so that our

largest matrix for%;‘r is 4 X 4, The base is designated by

[$3Cky)= £303CTD)
oL wnnarded o [£1=[203
|pgatleleols £S; 3T 4 L, fn Clykes)=(71)
po n [fi=C2n]

A&I= J- dﬂQl, AAT =T

The (diagonal) matrices ofgaﬁﬂ in this base are glven by elgenvalues
(176) for Q’L and (186) for exchangeg, in accordance with (187). The
matrices for \, which are also diagonal in the orbital angular momentum
guantum number L, are composed of palring eigenvalues (314) ih the
manner of (315). Finally, the matrices of 5. are glven at the end
‘of the previous chapter and their construction was discussed there.

The matrices were fed into an IBM 1620 compﬁter for
diagonalization by the Jacobl method, with parameters o and B of
(265) varied. |
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Scanty and rather ambiguous information on the spins of -
low-1ying F¥® is known to date. The B-decay79) from its ground state o
to the second excited Ne®® 1level J" = 2* suggests a J7 = 2% spin for
the F?° ground state. Considerations8o) involving the Nilsson
rotational model corroborate thils assignment. The B-decay from
the 0%° ground state J7=0* to the 1.064 Mev level of F2° suggests

a J7T=1* spin81). Mazari and co-workerssg)

have studied the F1°

(d, p? )F20 stripping reaction measuring gamma-ray energiles for 15
exclted states as well as angular distributions of proton groups.
Distorted-wave theory fits to the data permitted generally reliable
neutron-capture angular momenta‘jg assignments (see following
Figure). The same reaction was studied by Chagnon83) who measured

( 1&'? )-directional correlations85) through four low-lying excited
states. These results were interpreted by him via DWBA computations,
thus providing him further restrictions on possible spin values for
some of these levels. To the 0.66 level he assigns a J"=3*, but a

2* 1s not inconsistent, and suggests that separate measurement of

the mixing ratio for this transition would suffice to determine the
spin uniquely. (Based on the stripping reduced width, Dazai8u)
previously obtained a J"=3* for this level.) For the 0,989 level
the angular dilstribution correlation is i1sotropic and this a O
assignment would not be lnconsistent. Chagnon finds a 1%t for the
1,064 level admissible, but was unable to discard 2* or 3*. The
1.312 level he finds decaying to the ground state with an intensity
ratio of E2 / total >0.97 leaving 1ittle doubt of a J"=2*. These
results are summarized on the extreme left of the Figure, all levels

have T=1 and T=2 levels are expected to begin appearing in the

neighborhood of as high as 6 Mev.
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Variation of parameters o and B by tenths (a+Bs<l) in the
computor diagonalization program results in a set of 66 predicted
spectra. The non-degenerate ones fall into three groups of level-
order J=2, 3, 1, O, 2, 1,°*" and 2,1,3,0,2,1,*** and 2,1,0,3,2,1,""".
The first and second J=2 predicted levels were assoclated with the
empirical ground and 1.312 levels, respectively, and the second J=1
predicted level related to the 1.064 empirical level. The remaining
predicted levels, l.e., J=3,0 and first 1 were associated with
remaining empirical levels in order of appearance and least-mean- -
squares (involving above J-levels only) calculated for the three
groups. The over-all intensity parameter Vo was found from the
least-mean-squares procedure. These results are displayed in the
Figure to the right of the empirical spectrum. Parameters x, ¥y,
and z glven by x =Vga, y=VoB and z=Vy(1-a-B) denote the relative
intensities, respectively, of palring (short-range), gquadrupole-
guadrupole (long-range) and spin-orbit interactions.

In conclusion we may state the following. The spectrum
in optimum agreement by least-mean-squares (a in Figure) predicts a
J=3 for the first excited level, followed by a J=1 and J=0 levels.
The first J=4 level is excessively depressed here. However, adding
a slight amount more of pairing (moving from.a to b) ralses it
considerably. Our most encouraging result is perhaps the reproduction

of the gross characteristics of the empirical spectrum at low

energles, i.e., at some point slightly away from (a) and toward (b)
one obtalns a "gap" above the ground state followed by a group of 5
levels, followed 1n turn by another gap above which is another group

of levels. For all @, B) parameter values allowed, the second J=2
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2
#im = -VQ[GP-FBQ J+(|-Q-B)Z(}so,]
) 2
IN LOWEST-ENERGY SUz REPRESENTATION "/’, 5
/s
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1l ’
111 4
111 ]
]
s
e
1o
1o
/// /
2.87 (3)= i/
/7
- 2/r [/
P l/ /
-7 - 5, /
/z’ ?/’ / /
2.200 2 IS, 3/
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0.828 R R L Tm - 0~ - 3
0.66 2 2,3 ___ Tt s 3-— TS 0
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Mev [n Jt (0) (b) (C)
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F'9(d, py)F20 {a,B) = (01,01 (a,B) = (0.5,0.) (a,B) =(06,0.1)
Vo =0.963 Mev Vo = 1.659 Mev Vo = 1.988 Mev
x = 0.,0963 x =0.8295 x = 1,1928
y = 0.0963 y = 0.1659 y =0.1988
2=0.7704 z = 0.6636 z = 0.5964
>0 m.s.d.=0.236* m.s.d.= 0,252 * m.s.d.= 0.267 *
*EXCLUDING UPPER FOUR LEVELS
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appeared below the second J=1 ---- 1n seeming discrepancy with
experiment. A similar situation arose from thils model for the
second J=2 level of F18® for a wlde range of the parameters86) (with
and wlthout the restriction of the base to the loweSt-enefgy'SU;
representation). More definite experimental information on spinsu'
is required, in particular for the first three exclted states, to
render a more complete test of these results. Expliclt wave
functions for the low-lying states of spectrum (a) will be avallable
86)

in a forthcoming paper.
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X. SUMMARY AND CONCLUSIONS, o

Moshinsky's approach by group theoretical techniques to c;
the nuclear shell many-body problem is presented in general form
and illustratedeith a calculation of the low-1lylng energy levels
of Fluorine-20. On comparison with experiment, encouraging results
are found but more definitive conclusions regarding detailed agree-
ment must awalt further empirical spin assignments for thls nucleus.

Every low-energy nuclear level structure calculation is
beset by two basic difficulties requiring basic approximations of
one sort or another: uncertainties with regard to the nuclear force
and those regarding the number of nucleon configurations to be
considered.

The customary use of a reasonably shaped two-body residual
interaction potential well is justified only "a posteriori" on
phenomenological grounds but not on fundamental theory. Therefore,
an equally phenomenological model hamiltonian consisting of a linear
combination of orbital palring, guadrupole-quadrupole (with exchange
character) and single-body spin-orbit interactions was employed. The
first énd second interactions respectfully approximate the short-
and long-ranged correlations of the central two-nucleon residual
interaction. The advantages of this model lie in the fact that its
various portions possess group symmetries of considerable convenience
in the calculation of matrices.

The enormous number of totally antisymmetric states
arising from all possible particle configurations was limited to
a smaller, more feasible number by making the following restrictive

assumptions. (1) Only configurations arising from a single mayor
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oscillator shell (the 2s-1d shell) are considered so that oniy
positive parity states will result. (2) Assuming with Wigner that
the residual two-nucleon forces ingide the nucleus are attractilve
and to a large extent independent of the nucleon spins and charges,
one may further restrict the number of states remaining in (1) to
those corresponding to the most symmetric partition under permutation
of the space varlables, compatible with the total isospin T of the
lowest energy for the given nucleus, (3) Accepting on a tentatilve
basis the proposal of Elliott's that the lowest-energy ST, (group
of unitary unimodular transformatlons 1n 3 dimensions) representation
contained in the partition chosen by (2) will to a reasonable degree
determine the low-lying states for nuclel in the 2s-1d shell, one
further delimits the number of states to be used in calculating the
energy matrix. Whereas the first two restrictive assumptions are
usual in shell model calculations, the third is more group
theoretical in character and is based on Elliott's work showing
that SU; provides a link between the shell and collective models,
For the simpler nuclear p-shell (1ying immediately below our 2s-1d
shell) this group theoretic classification scheme by SU, collapses
into the ordinary LS coupling scheme. There 1s moreover no
conclusive ‘evidence that SU; cannot serve usefully in dealing with
more complex nuclear shells beyond the 2s-1d shell.

The language adopted for operators as well as state-
vectors is the second-quantization formalism involving creation
and annihilation operators for fermions. Thus, a given problem
becomes more transparent to possible group symmetries that may
prevail in a given operator or which are to be "built-into" a

given state-vector. Consequently, the computation of matrix

elements is reduced to simple commutator algebra.
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The construction of N-particle state-vectors possessing
the specific quantum numbers demanded by a given problem was thus
approached group theoretically. These techniques rest on the studies
of S. Lie and E. Cartan in the theory of continuous,groups of traﬂs?
formations and are essentially generalizations of angular momentum
theory to symmetries higher than rotational. They are discussed
in as strict analogy as possible to the better-known concepts of
angular momentum and its deduced consequences.

For nuclel with a number of extra-closed-shell nucleons

7 U4 the present methods are felt to be an improvement over
conventional fractional parentage methods which then become
particularly cumbersome. The results obtained thus far in this
work with these methods are considered to justify further work
along these lines for a larger number of nuclei. This program
is beilng pursued at the University of Mexico where an exhaustive
study of 2s-1d shell nuclei, their energies, moments, transition

rates and other low-energy propertlies 1s in progress,
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APPENDIX A

SUPERMULTIPLETS OF A GIVEN SYMMETRY PATTERN IN THE 2s-1d SHELL.

Derivation of the irreducible representation labels of

R, contained in a given one of U, has been discussed, among others,

>
by Jahnq'l) who considers N particles in the p shell (r=3) and in the
d shell (r=5). In the2s -14 shell r=6. A single particle within
this shell has onlyl one possible Young partition, nemely, 1= 0O

and since s means 1=0 and d means 1=2, one heas
7/{4 > R5

N=1: g > k=02

For two particles one can form the guter product of two one~particle

’M.b representations and according to Littlewood's rules72’ 34) get

De 0 = m + g

i.e., the symmetric [2] and the antisymmetric [f1] irreducible re-
.‘-
presentations of u(, « Defining A/'A'E b/“.s, and

$S2 L)+ ]:; _ B- L
A}")‘-z = )A.S, }Azsz p;s; f‘zsl
which is obviously symmetric under interchange of orbital coordinates

(the indices Iu, ); two particles in the 2s-1d shell give rise the

following orbital configurations with associated angular momenta and
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4

wave functions in second-qguantization form:

LR EFESE
3 H FN A | H

(€~

1

Sy | ©'@* &)

L=0 L= 2" L=01,2 3% 4 (A'D
. Slst

SiS, SiS2 . Ass AS"' 2<’Z?-'m.'m;|LML> Azm"zw;

AOO, 00 00, m J 00 2m 'm.'mz
St S'l-
- (.)\"Z<’),ZN{ML [LM> szm.,m1
MM,

where /4,4,; = )}L 2;_ m; and as V‘; refers always to the same

shell, it is suppressed.

In configuration (d)", the function is symmetrie for
1=0,2,4 and antisymmetric for IL=1,3. Hence, the total I-structures
of the symmetric ( 3 ) and antisymmetric ( E ) partitions are;

> =024

A2

B > L=1,2,%

Now, the 3-particle antisymmetric partition is (111l = ﬁ with
. S(s; S, I—m- .
wave function Zk)"l“’/" , Where /ui = LM (t=1,2,3) and

™m; = 2,1,0,04,-2. since l; =0,2. The total (positive) M values

can be formed in the following ways:
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2t1-2 2+0-2
24140 E-b 2¢4-4 ) 2ro-t (202l
2+ 140 2+ 040" 2¢0-1[7 0 1 40-
I +0+0' | + 0
Hemnce,

M= © O ©0O
1 1 11

2 2

3 3
so that L=1%, 3* and thus, in the 2s-1d shell

B> L= 152

Knowing the I~structure of ,u‘b partitions [1] , [R],
[11] and [1111 , one may proceed to deduce the rest by a chain

calculation:

o o = E + P
will have an I-structure given by the vectorial sum of L's
12,5 + 02 = 0,152%3%, 4,5
from which, if we subtract the a L-structure §ne obtains

B > L=012%34 s.
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Continuing, . oo
med= H +0o

has I-structure »
; : ¢ 42,723 44
0;2,4 + 02 =O,1,215,4', 56
which leaves, after subtraction of the H:' I-structure,
% A3 2
m ) L — O, 2 ? 5 ) 4‘ ’ Q .

The partition [11”] has the seme I-structure as [11} , for u‘,,.
Proceeding with the chain calculation sketched here one further

deduces

[$1 L- structure

S g2 c?
[211] 15,2/3’37 4, S

2z 44
[22] O”, 1, ,'Z,S, 3, 4, 5,(9 _ 64.3)
(311 o 1, 2, Y 45576, 7

[4] 252,45 5,6, 8

To find the (S,T)-structure (or multiplet structure) of a

given Young partition H:} one must effect the reduction

U4>U2.XU2
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the irreducible representations of U4 being ):? ] « A chain
calculation similar to the previous reduction ubD R-} is again
useful; one starts with the following primitive cases:

The [H 111 representation of U4 is equivalent to [O)
which contains (S,T) = (0,0). Representation [1) of e
explicitly reduced into those of U, XU, s

a-> oxQ

the X symbol standing for the inner product. Thus
gef U >6D=(03)
Representations [23 ana [H] of Us are formed by
m > mxm 0> "’B
> Bx8 B x e

that is, the symmetric spin-isospin two-particle function is either
spin symmetric times isospin antisymmetric or spin antisymmetric
times isospin antisymmetric; the antisymmetric spin-isospin function
is either spin symmetric times isospin antisymmetric or spin anti-

symmetric times isospin symmetric. The corresponding (S,T) structures

are thus

o of Vi S (5,7 = (1,1),00

0 of U, 2@6M=00,6D,

Tabulating, one has
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|

U | U0,

D) u
L] = Lo} [o1xLo] (eYe)) |
[l Ox O | (b 1)

(27 |mxm ; Bxd \ N ©60)
m B ; Bxm \ a0 (1

Cnj

Then, in 'U; one uses Littlewocod's rules for external products to

form

meo = F + 080

whose (S,T)-structure is found by vector addition of S and T

separately,
GO 4 (4d) = (1A (3 (33) (3:%),
©,0

Again, in ();

B@ o= a+ = 0O*+t Bj ;
gince [wl=013 , has (s,T)=-structure

(,0) IR AR .'-‘3) 2,4
o+ 313) = z’z) (Z’z ("72
(0,1

which upon subtracting that of Ct1 1eaves

N AVEICH B CINCE 3) (3-%)
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Subtracting this from the multiplet structure of (213 + [3] avove

one gets

am of Up > 57)=G3) (3>3),

The calculation can be continued nad extensive tables
prepared ~—--- Jahn and Hammermesh (refs, 34 and 41 ) have rather

complete ones. we extract from those sources the table for N=4

particles as it will concern us directly.

N Uy 1§ (ST - structure ;__‘_S
Elilli ia,oj g
4 | [213 0,00 ©,n OO
22] | ©o ©» @0 G (A4

311 | ©n o an 0D (2,1

(41 ©0,0) U, &I

i -
If multiple (8,7) values occur for a given‘Lgl ----- does

not happen for N§S -——- the additional label p in chain (99)

is required.46)
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APPENDIX B.

UNIQUENESS OF TOTALLY ANTISYMMETRIC MANY-FERMION POLYNOMIAL OF
MAXIMUM WEIGHT.

A general many-particle eigenpolynomial is given by (21),

namely

F= — B}‘lsl,/ltsz,'“,ﬂnsn /“lsl )Alsl ) /“"SN ¢
}‘.Sn,/ﬂas;,"',)AaSu
For a given set of values S,S,:..Sn the corresponding term can be
chosen to transform irreducibly according to the permutation group
T[‘; as Lhhyo h'] . Likewise, for a given set ‘/“;/A',,"u ,u,,
one can chgosethe corresponding result to transform irreducibly as
[ViVa V3 V4l  of the same -ﬂ-N group. Due to Weyl's theorem,LB)
a function transforming irreducibly under TTN as {‘1. h-,_ ' ht]
will also transform so under ut (where t is the dimensionality
of the coordinate space), and the irreducible representations of the
latter are characterized by the same label [h. l‘l,_ ht] o Therefore,
the (maximum weight) representations D), l-,,_-")qy.l of uv and
iv‘vz_ Va, V*i of Uq. , specified by (73) and (74), are irreducible.

The Young pattern of ny for permutations in the total
-N
space of 4y dimensions is [1N O‘w : ] '3 this is also the
irreducible representation of UV' +. And since

uVD u,x Uq.
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then Y1N OQV"‘] > D‘\.k;”; \qux §V|V1V3V4§

where, as in example (80), Chhge kv] = [VWVaVy Vy]

Simple examples follow:

N= 1 partice (1 o DIxCil (a)
N= 2 particles  [n] > [23X oy (F_)»
N= 3 particles (] > 33 x Lod (c)
5 [z11x L] - (a) -
N= 4 particles [ > .[4),‘[,“”] (e)
> 211x [2u] ()
2 [;ZKK tzv?—] | (g)

N particles

= I
I =1l > A X

(rowsg v)

T

(0
b\:c\ts o

In each case, the orbital and éjiin-‘isbsj:in permutation symmetries
must be such that a totally 'antisymn;éfric orbit-spin-isopin permu-
tation pattern results. In (a), (‘b),: (¢) and (e) we have examples of
“pure symmetries", i.e., symmetric x antiéymmeti;ic; = antisymmetric.

In all other examples "mixed symmetries" such as [21] are involved,
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but the net result is allowed by the Pauli principle.

We have shown in (79) how to construct the function
which is of meximum weight in the'repfesenfa’.tion of the subgroup
urx U4_ contained in the ): 1“ O‘W‘N] representation of uv .
This polynomial is unigue as otherwise it would imply that with -
e given representation [h,hz'u h,.] we cen asgsociate besides the
conjugate 2\/. Vo \/3V4§9_'_t_1_1_g}'_ representations of T):,, and still get
the totally antisymmetric representation of MV‘ . However, it -
is shown by Bayman73 )that this is not possible for representations
of the permutation group TrN which are closely connected with fhssé
of the unitary groups.

Conclusion. Polynomial ]P as a solution of eqns. (73)
and (74) is unique.
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APPENDIX C.

ANGULAR MOMENTUM CCMPONENTS AS GENERATORS OF THE GR X

A real infinitesimal orthogonal transformation of the

cartesian components is simply

x{-—-%‘_ Ry ty Gamva) 5 R= TreA ; Qfégx ()

€ being an infinitesimal real number. Now

RR- (T+eA)(T+reR) = T+e@th) = T
. KR=-A (C.2)

shows that matrix A must be antisymmetric so that one can write

3
€ Ai} = 2_‘- €k €k €.3)

using the completely antisymmetric tensor 8.‘.3‘( (see page 64 ).
Now, a function F (%; ) = F ( %, ,'X,_,'\C;. ) will trensform to

Fay= F( ?—Rq %)

F(x) = F (X; + % aqk ék')(a)
k

Pl S o S B EFE €4
4
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;;;;

1y puTInMn
E55 7 N

-

......

using the Taylor expansion in the last step. But the three cartesian r

;;;;;
.....

angular momentum operators given explicitly in (39) can be written

collectively as

0
= T %_ Exgt %4 37, c.S)

so that (4) now reads

F)= F&) — 1 Z €, Ly FO C.0)
k=t

and an infinitesimal increment in F( %L ) due to an arbitrary rotation

of the axes 1is

SFuy = Fog)- Fou) = — S b F, c7)

k=1

Conclusion: The angular momentum component operators L, (k=1,2,3)

which obey the cyclic commutation relations [L,,L413== Llus can

be considered as the generators of an infinitesimal transformation of

the three-dimensional rotation group RS. The relations [L”)L;1=vilug

form a ILie algebra of the Lie group R3.
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APPENDIX D.

UNITARY GROUP GENERATORS.

In similar fashion,laonsider an infinitesimal unitary
transformation acting in & t-dimensional space vector (')C,,')C,, vy, ‘)(t )e

The vector—components will transform as

(X'J’= %U} xt ‘ (IIJ”JZI"'lt) ) (D,1)

where by definition

SUU - & o UU-T G2

U= I+ied (D.3)
€ being a real, infinitesimal quantity and S *=S (hermitean) since

UTU' = T+e)(I-ieS?) = L+ie(S-sH= L. (D4
An erbitrary function in this space F( X; ) = F(‘X,’ 2" _¢) will

transform as

Foxg)= F(k+ie ;s,m | (.5
and using Teylor's theorem:

Fo = Fooy ie 2 (54 % s Fa) +- Y

7o first order in € , the cha.nge in the function

§Fug)= FOg) - Fap) = Lez_ (S %4 3 )chg) ®7)
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L2

is accomplished by tz' linearly independent operators

0523% 12)( . (D,S)

where since S is an arbitrery hex'mitea.n matrix the tz', operators
2 - C | |
& = - D.9)

could be taken as the generators for infinitesimal unitary trans-

formations in the t-diwensional space. Their commutation relations,

following from (D.9), are immediately seen to constitute the commutator

algebra

[Cip. Cip = Cig iy - Cé’; ‘5%’_ o D.16)
identical in structure to (32) since here the metric 363= 5% 80

that Cq = C.L*_
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APPENDIX E.

ROTATIONAL GROUP GENERATORS.

In the same t-dimensional space spanned by the vector

( vL","C,"---, ‘it) consider the real orthogonal transformetions

X = ;,Z Rig *4 (=121
where by definition |

S RgRiy = du  or RR=1
[

with the added condition that det 'Ru}‘ = <+ _1_ (rotations only,

excluding reflections); moreover
R= I+eA
& an infinitesimal real quantity and 'K:-—A since

RR= T+eA)T+eh)= T+ e(A+A) = T,

An arbitrary function in this space G(Kﬁ =G (9(, )9(,_ L 'x-e )

will then transform like
G = Gr(xue%Aﬂ;x,,)

which on Taylor expansion becomes

)
G(xg) = GU) + € Za_ Ay Xy 55, GO+ -
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G = GOy + € 2 A“? Caz Gly) + -
. 7 .

Cai' being the operators (D.9) of Appendix D. Then

GO GOy +2e D> Ay Ay Gy + -+
C<3.

where we have called the operators
= 1 :

the generators of infinitesimal rotations in t-dimensions, of which
there are -'i t (t-1) independent ones as the real antisymmetric
matrix A has, for L<? ’ it (t~1) independent elements, In view

of relations (10) of Appendix D  one derives the relations
| .
[/\53) /\,'j{] = Z(A.,yg‘/t + /\ti’éi‘&l + Aaat 5(:(,’ + /\L’L 53&,>

which constitute the Lile ' algebra of the generators of the group
Rt,‘ The space metric here is again simply %63 = 50} .
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AFPENDIX F.

GROUP INVARIANCE OF AN OPERATOR.

Again, consider the t-dimensional linear vector space
spanned by the vector X = (9‘;,)5(%,,%2 R %t)which trensforms

unitarily as:

An arbitrary function FO)= F&, X, ..\, xe) of the vector components

will transform, let us say, as

O, Flu)= FOO & br=I. 2

Consider an operator H for which F (%;) is an’ éigenfunction,’:'tha'ib
o) , ‘ | s o |
HF®x) = E F),  (F3)
Then, providing that ' | o
6, Hl=c o~ GrHOB-H €9
one has that the transformed function [F(X{)is also an eigenfunction

of H s since

HFa)= By HBg Fay= E Foo)

8(,9;H 6-0 F(’LL\)'—'-' H 6‘[] FO‘&) = E D:O’ F(X‘)
.. HF) = E F(X), (F.S)
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from which follows the Theorem: the group of t-dlmensional unltary

transformations Ub is the gymmetry group of of the operator H if

H commutes with operation 8U' (Common examples from both
atomic and nuclear physics ror DU' are the permutatlon and ro-
tation operations——-—-in which cases the hamiltonian H is an

" invariant, respectively, of the permutation group (IT; and the

" rotation group P‘b e Alternmatively, these are the symmetry
groups of H.) ' '

Now, for a continuous group it is sufficient for it to

be a symmetry group of H that 8& is an infinit'esimal trans-

formation of that group namely, as in Appendix D,

Gr= (1rie35,6)

recalling that S is an arbitrary hermitean matrix and the
Y ]b

W

t2 generators of infinitesimal transformatlons of the group _[]t
Hence if (4) is fullfilled it follows that

[H, é;i]’:

Conclusion: A necessary and sufficient condition for the invariance
of an operator H under a group Ut is that H commute with
the group generators.

Consider two different, complete, linearly independent
sets of functions of X (L=I,‘Z, <),

Ve @Y U G
CPW) 5GP HB . <1‘>f - E9)
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which are bagis for two distinct irreducible representations
lebelled by j and j*', with rows by m and m', respectively, of a
group Ut’ Since 535—13 unitary the scalar product

[ 69) = (GUS, 6o 07) W

74
But, by definition of an irreducible basis,

O Y - ) U DD () E
C?) 4251 Ct{@J @ (zc) (F;l%>

afj (ﬂa being the irreducible representation J with rows
and columns k,m ang u refers to the elements of the group Ut
!
Likewis% gor ljg;(ﬂ). These obey the well-known orthonormality
4

relation

2 ‘8(3’) ('u,) (3) (%) — __516 gkki g,m ' (F",a)

h being the number of elements in the group (which is irrelevant
for our present purposes) and from (8) =

of 8)(3) (W) « Thus (F.10) becomes

(/W\’ ca')> Z Bca) *(,u) Dcﬁ? %) ( kc:f) cb‘?')) o

which upon summation over all the elements, h appearing as a factor

j is the dimensionality

on both sides, one obtains

RN N ® 4@
tlk;‘7 (t%ﬂ ) - ‘nﬁ é%4‘2$m~M ;;éz( k. 9 k ,>. (thsj
Remembering that, by stipulation, the operator H commutes with

é%r we have




i
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ATT ITALrHTIALN
£8 R PN

£ =
{1

28y 7= BHYY) - SEU) e (FY

HA® . /)
wherefrom clearly wm 1is en irreducible basis if - is

such a one, and thus the result (15) can be applied to give

2, BUD = % b G O (B, HU9) (1)

which is one of the most useful results of the theory of group
representations, it states:

Conclusion: An operator H having U, as a symmetry
group will have non-zero matrix elements only between states of
a gilven irreducible representation J of Ut and furthermore

these elements are independent of the row m of that repre-

sentation.
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APPENDIX G.

THE GOEFFICTIENTS <MMiM, | C}_?' [ 010>,

The coefficients appearing in the’ ()—3 gz"oup generator °
expa.nsion. ( 133 ) are easily found. The annihilation boson
operator aq’i becomes & differential operator ( 124 ). .Then,
in view of ( 119 ) B

| N /At \NT +\N 4
s < ap 2, G @)" d.) 15>
C%. MNND = g aa;, W "',W:T‘ o
167 referring to the ground state in our tri-—dime‘n\s‘ionail_:harmqnic

+
oscillator. Differentiating and multiplying by 0.4 one gets

.—5' o} - - 0a'T : o~ loy o | =
(a:_)ﬁl g’y + %1(({;)”' 53 +5gq(a:)‘h 53_ 4-59, l O?

W ", |

Cﬁl MmN, = Ny

Thus

<mmem, | € (MmN =

g -
= <’Y\l—5q,'1 +5q,1 ’ 'n"- "5q,'i 45%7, 'no’gq'o*’gq«: l Cq. , NN 'V‘6>

- [E e )l (oG « a1 (1 Byt 85.),
¥ YIRS

= [y (Mg-8q +1) .
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APPENDIX H. S r-

MATRIX ELEMEMTS OF U§ GENERATORS :

Calculation of the matrix elements of the generators of a

wnitary group /M.r in a base characterized by the canonical chain

upD ur—u)"')uz)u, has been discussed by Gelfand & ZetlinL,Lg)
N v
Biedenharn75)and Moshinsky. 5) We here simply list the results

!
for the 9 t); generators C’;* in the chain Ug, )U;,) t]; ’
in & manner useful for calculations ( cf. Section on Spin Orbit
Force for notation). The labels (k,k, ) in the bras and kets, being
redundant, are suppressed.
1 - - L
<. M|C 3.8 M> = W= 5(Mratda)

[4;‘"" Llo>12 3_}
(aa, M| C| 98 M>= W, = 5(4,t4.-M) ‘

<‘4.QLM\ C: “I\.,SH_M>= 'Wg,:' kl+kz'_q'l_€l’z

<q'|ﬂ;—M’l Clll 4.%M> = LZ\IKQFQZ"' M+2’> (fh‘ih' MS ga:q,, Sq,l,f?,, JM;M-}Z |

<3/ [CL 9,4.M> = L[58 MG-4.8M42) g daa, w2
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<sla.m'|C2|3.9,M> =

(ki-4)(9,-k, +)(2,42) (g, -4, + M gg
2(%4,-94.t)4-%. +7—) 3

R 5% % 5M: M+l

_J@mx k.- 5.)(k-4,40)(4, -5, -M) S
- 4

2(%-%)(9,-%,.+) 4 gfti@fm 0, MM+

<&M Cl13,9.M> =

k- H+O( - ‘2,_)(9}‘ 1) (9-9,+ W p ’ M-
\) 2(4-%2,)(g,-4, +) 54, 4,1 Jﬁ,é},_ SM, I

- 9’3"&'4,“\“(,-9,,_+L)(€;,-£h,M-ﬁy , ' ‘
JT 2(4,-9,+0(5,-9,42) 5.4' 59}»4;: Jm,m-;

<ql’4'z.,M,I 02,3' ﬁ’uQLM> =

. (krf}h(ﬁr.- kz*‘)(fh"'?—)(ﬁ,-f}z-M-ng , 5 , 5 ,
2(4 %242 (4 -9,+) 49,11 0%, 9, OM, M-I

(q"'-"D(k -q’z>(kl‘32+‘\)(q"§h+”‘)' ' ) |
JFJ T 2l nmGe)  Op 044 dwu

<HEUM |CT 9 9. MD> =

kl' ‘-‘r."’D (fh" kz) (f}. t 1) (fh'ﬁz, - MT
,) 244, 4)(%-9,) 5%’%-' 0 39, 0 MMt

(ks % +1)(k, -4, + 2) (4,-4, + M+2) |
+[ 2(4-442)(3,-9,+1) 9 /% 5@{ G-l O M+




o
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APPENDIX I.

TRANSFORMATION BETWEEN U;,D U, > U; anp Uz > R;) Rz BASES,

Both the basis set |(k k,)4,4, M. > transforming
irreducibly under J3 DL D> Ui and the set l(k. ) wl M >
irreducible under U‘bD R5 » ) Rz constitute clomplete sets of
normelizable wave functions in second-quantization formulism. Thus

one may expand

V) wlM> = D' <ag,(kkMywl> [(kk)34.M> (T
7%

where <5},Q-,_(k,k,M,,)w La> denote (orthogonal) transformation
ceefficien‘ks.66) Calculation of matrix elements in the canonical chain
UsdU,> U, is simpler than directly in (Jz D R—_:, >R, as con-
truction of the base in the former scheme is more direct, as was
seen in Chapter VI. However, the latter chaih is the physically

significant one as it provides the quantum number 1. Coefficients

(I.1) are thus needed.
Ve know that

o[ % |tk )wL M> = L) [(kkulM> (TI.2)
but, in general,

L2k M>= S k)M L2 (ks N> 1k >
1{2‘1 (I. 3)
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Equations (1), (2) and (3) combined give us

Z<g“q"( R, k; Ma.)u) L> <(k1 kz)f}:%Mu‘ &zl(kl Ll) éh 9’2 Mt—> l(kl Lz) g}"g’i ML>

%% ' | .

= LS GakkMut> (kk)gg M (T4
13

Multiplying both sides by < (kik.)q! ,{’.MLI and summing over
a"’ q,:f , supposing set [(klk,’) 4y 4 ML> to be normalized, one
gets

Sk M) LD k) 474 ML k) M>
%44
= L‘(Ld' ')<5n”%f' (‘et bz Mn.) W LJ>

and multiplying by the (transposed) coefficients <w’U(k, k, M,_) 3,” 4;’ >

and summing again over ﬂ,” fhﬁ’ we obtain the result:

S <agllbMY0L>ek) 54 M | L2 (k) a9, M>Cul (kEM) 4747 >

34

%%

= L) S'<argl (ko> oLk Mg
T

= L (41 o’ 51.1.’ (T.5)

ISINLAS = LewT
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FAPFPTALTN

meaning that the desired coefficients < 9,9, (k, le, ML) W L,> 3

are nothing more than the eigenvector components of the matrix

2
representation of operator oC in the base irreducible under

To obtain them, we can construct the matrix

ll«k.kz)ﬂ:% M.,IJ:z,(k. ‘21,) fh E'h ML> “ y diagonalize it by computor

and obtain at the same time the associated eigenvectors. The cons-

truction is simplified since Qf zby ( /4! ) is expressible bili-
nearly in terms of 1]3- group generators C;’ whose matrix
elements in the scheme U5>U17U1 are known (Appendix H).

We know from (171) that

0[\?____ ; (“)q'o[:_-} cj:-g (4= 47,0
= ’2£7i| +£,(&o+l)

if use is made of R, commutation relations (142b ). Suppressing

labels (k, k,) we have

<g'9 M1 L9 MD> =
_2;<a|’gl'lea.l £T&| ’ 3.3;M._> + ML(ML-H)CS%’% gﬂ;q.z

since J:o is diagonal in U5)U,_)U| by (/424 ), (236) and

(237). Now, since o(*\,-fz -oC,
<M |L99. MDD =

=23 <ot &g M <ol MK [ 34M>
- “"MI—(ML'H) gﬂ:ql 5‘:1'113’2
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<ag M L2999 M5 = |

2 2 <gige |22 |49 M>Cargs M C2e 0l |98 M

E + M. u*')gq ‘4, 53,9"_ (L 0
since | &k, | > are real end from (142a) O(\..—(Cic )

To evaluate (6) in general form one needs essentially the alegebraic

expressions of matrix elements
<taMl 9. M> and <ggM|Cll94.M>

which are included in the list of Appendix H. Carrying out the
calculation one obtains the formula in the following page. Only one
of the seven terms with double deltas will contribute to a given
element of the matrix so that it is relatively simple to use.
me matrix| lhk) 412, M. | L3 (k) 4.9 M. D || 1o

formed in blocks or submatrices labeled by M, and with rows and
columns given by 94,4, where M, refers to the positive projections
of all the L values contained in the given (k,kz) representation

of interest (See Table XL, %A ). For (k k,) = (71), for instance,

L =1,2,3,4,5,6,7 so that |

M= O 1] 25,3547 5,6

Our formula is:
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where it is to be noted the the sum of block dimensions equals the

(1 |
dimensionality of a8, M, fer M(_ 20 (pagelTh), i.e., 35.

Our calculations will however only require one submatrix

(see chapter VIII), that for M =1, e.g., which is 7 X 7 and is

associated with all seven values L = 1,2,404,7 Using formula on
page 22‘1 one gets

I
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which must fulfill the requirement

o | <Ok g 1 L2[ o k) g2 W] =

the sum on the right extending over all L-values contained in

(k‘kl). The normalized eigenvector components obtained by computor

diagonalization of above matrix are:

| <49 (1t ML=1)¢;L.> | =

(L.9)

‘K 1 2 3 4 ) 6 7
ity
-0, 0410 0.202220
b1 | 0.190702]-0.261574] 0.bes553-0.162451 |=0-536545 | =0 0.302220
41 [-0.2i3809] 0.3187128 |-0.4b2317 ~0.0322%2 |-0.321474 -0. 151947 0. 71S18¢
21 |l 0.218218|-0.325300{0. 164122 0,262181 |0.627675 —0..124—0%4 0. 585‘]_45
" Lo 0.015423
i 10,0578 70 | 0. 1S T2€0 : |
70 | 0.59016 | 0. bsas2q |0. 166450 | 0.40037 | ,
; ~0.427bl8 _O.‘qu!o,omoa 0.530193 \,o.:sam 0. 64S777 | 0.089%8
30 O.%osw}—o.lqu 0. 2644q2|-0. 5002l |0.051037 | 0. 693542 |0 163219
0. 186047 0. 145936
10 —0'4%4%;' 0,4g7as0 | 0492366 |-0.314771 10.34 2368 0 i

The label &Y is ignored as no multiple I-values appear under

(k,k,) = (71) (See TableX A4 ).
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APPENDIX J.

QUADRUPOLE MOMENT AND TRANSITION RATE OPERATORS IN SECONDs-

QUANTIZATION FORMULISM.

The mass quadrupole moment of a given N-particle

6
state is defineg )as the expectation value of the operator

G, = i(éz-f— ) a9

which is of the single-body type (23a). Being spin-isospin
independent, (3.1) cast into sécond-quantization language by
(35) becomes

QJ,, = 2</M| Bar-v|p'> é‘a' (3.2)

where =('n "y 'no)denote quantum numbers of a single particle in
a harmonic oscillator common potential and Zé {the set of ZL
generators discussed before. Restriction of states to &
single harmonic oscillator mayor shell means V= MMy N, =
N, '+ ’n +'n and moreover that

<pl Bg=r2|p> = Z<pl 522 r‘+5fa 7L >
°o _ 9'-_ 3 [
</Ml5€, %Cg* 3}/4)

because of definitions (113) and (117). From (/25) we know
that C4 > = cgr MM N> = Ng MMN)Eor g = 1,7,0 so that the

desired matrix elements




Sl Bz rr|w> = [2m- O - 215,

= 5 Smemt S
5/‘}‘ MmN Oming Omym,
The mass quadrupole operator CQ.O in terms of r=6 generators

is thus very simply
A
Q,=-1@ ) -2 + 56 (U3

123
whose effect on states of the type A/" A/“}a}u}is clear from (304).

The transition rate for uadrupo],ie de~excitations
. 77) _ 2z _ v NG
will involve' ’the operator QZ— sz”ﬂz(“‘y)‘ which

here becomes

o [} M
&—%Vl K> L) 9
Again, restriction to & single oscillator shell Y implies
SHIAZp> = 2 Sl 42+ i >
=<l G+ 2 >
= (’)’), + % )8/‘/“'

and therefore our operator (J.4) is simply
- é’ 5 ( z 3) -

of the same type as ‘Qo of (J.3).

The low-lying states, e.g., of F20

by I L23C7) IMz=J,T= 1> which will be linear combinations

of terms A/" A}:;z;& of Z{,‘ 2 TJB; symme try [‘ﬂ(k,’eb)sfsl:(ﬂl).

are designated
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Enhancement of calculated quadrupole moments and
transition rates due to collective coré effects can be estim-

ated by the addition to each nucleon of a certain fraction of
17,75 22)

the proton charge e (.~ 0.5e for O
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