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ABSTRACT

A completely analytic solution is presented for a one-
dimensional strong blast wave in-a-perfect y-law gas. On
the basis of qualitative information obtained from this exact
solution, approximate expressi ns are derived for the
dependence of the shock radius on time, total energy, and
ambient density. These approximate expressions are appli-
cable in any number of dimensions. The effects of ioniza-
tion and dissociation of the properties of the blast wave are
considered in a semi-quantitative manner.
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EXACT AND APPROXIMATE TREATMENTS OF THE
ONE-DIMENSIONAL BLAST WAVE r:

INTRODUCTION

The following problem is considered. A given amount of energy w is deposited instan-
taneously in a very narrow slab of fluid in a tube of unit cross section. We wish to find the
subsequent motion of the fluid. This situation is approximately realized in a shock tube of
the Fowler type in which the energy is transferred to the gas through an electric arc. It
is hoped that the analyses presented will be of use in interpretinggthe datafrom such a
shocL tuc -be.

If the relation between internal energy (per unit L 'ss), pressure, and density can be
written in the form

E 1 p
E -Y p' (1)

where - is a constant, then it is possible to find a completely analytic solution to the
problem. The method for doing this parallels closely that used by Latter* in treating the
spherieal b1ast wave. From the exact solution thus obtained a simple approximate method
for finding the dependence of the shock radius on time which is applicable in any number
of dimensions is derived. This method gives the correct dependence of the shock radius
on time, total energy, and density of the undisturbed fluid. In addition, the influence of
dissociation and ionization on the velocity of the shock front is considered.

EXACT SOLUTION FOR A v-LAW GAS

The hydrodynamic equations to be solved are conservation of mass,

'a P (P U)
Tt ax

conservation of momentum,

-(P u) - (pu 2 +p), (3)

and conservation of energy,

a -pu2+pE) -U3-+ P(u+pE +'pu7 " (4)

These equations must be supplemented by the equation of state

E - I p ý5)L1- M . (9)

'1R, La•tter, RM 14r3,5., Rand Corp., Santa Monica, Cal., 1955

1.



F,-

The above four equations must be solved for the four dependent variables: u, p, p, and 91.
In addition to these equations, we have the equation for the conservation of entropy,

SP + u - = 0 (6 :

this equation is not independent but may be derived from the others.

At the shock front derivitives do not exist, and the above equations must be replaced
by the Hugoniot equations. These equations are

P_(v - "L) = Pý(V - "i) (7)

for the conservation of mass,

PL UL(V -UL) - PR HR(CV-UR) - PL - PR)

for the conservation of momentum, and

L (V-us) - P U2 0ER) (V-uR) =PL UL -P R UR (9)

for the conservation of energy. Here the subscrpt-s , -and -R-deaote .AUleft (strng)
and right (weak) sides of the shock wave, and v is the velocity of the shock front. We shal
be concerned only with shock waves running into stationary and "cold" fluids (the temper-
aturu mrrthe weak side of the wave is negligible compared with that on the strong side).
Therefore we will set uR, P. and ER equal to zero.

In addition to the above we have the condition

2 d.x U +p E = constant. (10)0 (2

That is, we assume that there is no energy loss from the tube, and that one half of the
energy goes into the right half of the tube.

We will now use dimensional analysis to reduce the partial differential equations to
ordinary differential equations. Our dependent riaralIes .ax!eiunct ins of xv t, W11 pD the
derrskiWof the cold gas, and y. They cannot depend on any other variables or parameters,
since no others enter the equations or boundary conditions. Therefore we may write

p = p(x,t,W, Po),

U = U(X,t,W,p 0 ), (11)

E = E(x,t,W,"0 ).

We have omitted y since it is dimensionless and will not enter into our present considerat

Let us assume that the solutions may be represented by power series such as

p= • c•t,, x t wt. (12)
a, C, 0

NAVAL RESEARCH LABORATORY2
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Since each term in the sum must have the same dimensions, a, e, y, and 8 cannot be
independent. Equating the dimensions of the left hand side to any term of the right hand
side gives

(ML-
3

) = L- TV (ML-3)7 (MT-2)5, (13)

hence

-3 a - 3 y

0 6 -28"

These three equations in four unknowns can be solved for three of them in terms of the
remaining one. Finally

P=Po •Cx./tz •/\w"v )P . ý O7 Kt2/3 WV3]

or

p = O0H(X),

where

x pOI/3

t
2
/3 WI/

3

and the function H(X) is still undetermined.

(14)

(15)

(16)

SirnTrarly we earr shcw that

u t1/3p,/3 G(X)

0

If the relations

pINV2  
)(V2

0 1/ 2 XI 2
0

p5/3pol 3 W./_ WW F(X) =-: X F(X),
t2/3 x

W2/3 W
- 2/. KOO) x K(X).
t 2/3 P0/ P0 x

-d aX d _ 2 X d

'at at dX 3 t dX

3 _1X d _X d
Zx -ax dX x dX

C,--

,rn

ii
I and

(17)

(18)

(19)

(20)

(21)
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are now used in the partial differential equations (2), (3), (4), and (6) to reduce therm

ordinary differential equations, we find

2
- XIi' = (EG)'
3

2 x1/ 2 (X"ý2 H G)' (H G2 + F)'

(1 +IXG2.-HXK - 1HG3 - yHGK) 0

2 (XFHY)' + G(FH)' - 0.
3

the prime indicating differentiation with respect to X. The equation of state becomes

-I F
7-H

The Hugoniot relations become

(I (y--L) KL,

3 L 3 Al HL KL - 2 HL L - ( X1L G2L 2L G 0.

In these equations

x 13
XI 1 O

t2/3 W
1
/3

and
2 W1/3

V = x l= 3 X i P 0/ 3 t0 3

where x, is the position of the shock front at time t.-7'Md'Hugonlot re17tn•oTrsarn t

for HL, GL, PKL I and FL in terms of x,. The results are

y+ I

4

L 8 8 2

Ft 8 X2
9('Y+1 ,
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Equation (10) becomes
I rdX HG2 Ii K

2 0 r(2

: r dX(IHG2+HK 
(36)

0

It is convenient now to make the following changes of variables

F = X2 f(z),

K = X2 k(z), (37)

G : X, g(z),

H : h(z).

The Hugoniot relations become 8

8
k(i)k() 9(y+1)2 ' 38)

4
3(y+1)

hCl) :/ +'y+v-1

The remaining equations become

2
-zh' = (hg)', (39)3

2- z71 (zl/ 2 
h g)' (hg 2 

+ f)" (40)3

2 zg

k =. 2 3 2 (41)

2 2
2-(z fh-)' : g(fh-7)' (42)
3

k f (43)
-y 1 h'

12 X3 fld z I1 h g2 + hk) o(4

2 xi 0 (2z~g[u) (44)

The solution to the problem is now the solution of (39) hrugha 443) cnPc±o1 he bound-
ary conditions In (387. From (44) we then find X1, which gives us the position of the shock front.

*Obtained by integrating (24) taking into account (29).
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The remainder of the solution then follows from the definitions of f, g, h, k, F, G,(-,
K, and x.

We begin by writing (42) in the form,

3 z-g) - Y z- f h 3f

and (39) in the form,

z- '= h g'.

After dividing (45) by (2/3 z - g) f and (46) by (2/3 z -g)h, and then adding the equation
we find

S 2~

i 'h' 3• 9 ' Z- 9)

This can immediately be integrated with the result

f 2Sz - g = A
hv,-1

where the constant A is found from the bouixdazy rtmitions in ('38) to be

A = 16 (y-1)V
27 (y+i)V1l

Since (41), (43), and (48) are three algebrai-c v in reittng f, g, h, and k, they c,
be solved for h in terms of g. The result is

h-/2 = y 2 (3~ )

2A 2
This can be used in (46) to get a first order differential equation containing only ',. Thresult is

2 g (2v-i)(l)' 4

This equation is of a standard form and may be integrated to give
v-1

The constant of integration B is to be chosen so that the btrndary condition on a Is
satisfied.

We will now relate the functions f, ,•,lm, * wt - rrigin-T -pntions p, u, p,and" E. In terms of V, the velocity of the shock front, it is easily shown that

3"u = - V g(z), (5
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9V2  
(54)'

P V p0" ) f(z). (54)

p = pO h(z), (55)

E _V 2 k(z). (56)4

Also
2 W/

V =2"" X1/ 1 (57)
p0

W= t2'3, (58)x I oiV3

x (59)X,

where x., is the position of the shock front.

The numerical work has been carried out for a monoatomic gas (7=5/3), and the
results are presented in Table 1 and Fig. 1

TABLE 1
z g h f k

0.000 0.000 0.000 0.0000
0.566 0.232 0.167 0.0464 0.416
0.661 0.278 0.320 0.0631 0.298

0.128 0.313 0.585 0.0900 0.231

0.768 0.338 0.960 0.124 0.194

0.821 0.369 1.19 0.140 0.177

0.861 0.396 1.52 0. 165 0. 163
0.898 0.422 1.95 0.197 0-.151
0.934 0.449 2.45 0. 230 0.141

0.970 0.475 3.10 0.275 0.133
1.00 0.500 4.00 0.333 0.125

APPROXIMATE SOLUTION OF BLAST WAVE PROBLEMS

A characteristic of blast waves in ohe, two, and three dimensions is that most of themass is concentrated very close to the shock front. This is more pronounced when (y-1)is small. This suggests that we treat all the mass as being concentrated at the shockfront mad.havfng the'velocity and internal energy which prevail there. That is, we will put

W -- .Fu2+E) p dr

(iU )P dT (60)
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x

z=- xj

Figure 1

Here, uL and EL are the flow velocity and internal energy at the shock front, d 7 is tI
element of volume, and 0 (R) is the volume enclosed by the shock radius. -The Hugoni(
equations, (7), (8), and (9), are easily solved for the strong shock case with the result

2
= 2 = V,UL +1

FL 2 V 2
(y+1)2

2
PL = )`1 O 2

)`+1

12 2
"2 EL =(+1)2

w = 4--- j Po n(-).

Po (-/+1)2

This becomes

(I

(I

(I

(I

and

8

(I
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r

in one dimension,

W j2. (,,R 2 ) (68)
po "Y+l

in two dimer&ions-, -and,

WR 2 j2 R3) (69)

in three dimensions. These equations can be integrated with the results

3(2/3_,3 , )1/3•o

in one dimension,

R =1t2 ( ,/
2  (71)

771/4 (1221 p0)
in two dimensions, and

R \2/S (13 1/5 2,1 2 (_2/ ' w5/S(72)

in three dimensions.

* In all cases the correct dependence on t, w, and po is given. The numerical factor
* in front is probably not in error by more than a factor of 2.

EFFECT OF IONIZATION AND DISSOCIATION

To be specific we will think in terms of hydrogen gas although the results derived will
be more- genera+. We assume that the temperature on the strong side of the shock is suffi-

ciently high that the hydrogen on the strong side is completely dissociated and ionized. This
will be an important limitation on the validity of the treatnieiiA. --A hydrogen olecule pass-
ing through the shock front must be given the energy to dissociate it (ED = 4. 85 ev) plus
the energy to ionize it (2E, = 2 x 13.5 = 27 ev). In addition each proton and electron
will have a kinetic energy of (3/2) k T . Taking the energy of a hydrogen molecule at zero
temperature as the zero of energy, we may write the internal energy of the gas on the
strong side of the shock as

3 E
4 x'k T + ED) + 2 Ei(34xkT +E+2 1 (73)

2 MH

_ + (ED+ 2EI) (74)

2 p 2
MH

1 pI -+u (75)Sv- I P

I ., where MH is the mass of a hydrogen atom and y = 5/3. It is this expression for F that
l ,• must be used in the Hugoniot relations. For the strong shock case these relations become

PL (V-UL) = Pit V (76)
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PL UL (V-uL) = PL = C-Y
1 ) PL (EL-U) (7'4

S(78)

From these equations it is easily shown that

I u2 (79)

and

1/2 ,Y 1/2VEL -- E U. (80)

We now make the same assumption that was made in the last section, that is,

S(1 .- +-"÷ ) •o 2 R, (81)

or from ('9},

W 4 EL p0 R, (82)

from which
W

E: 4PR (83)

Substituting this into (80) we find a differential equation for R,

v : 1/2 R-1/ 2(12) uRI/2, (84)

From which
o 1/ -1 •/2

- (( )

It is convenient to introduce the dimensionless variables,

x: Ž4- 4 UPOR (86)

and

7- = 2/T( ls/ U0U 1/ 2 t,

in terms of which (85) becomes

2 Y,2Y (88)
+ 17-x

U

10r
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Thfs can be immediately integrated to obtain
1/ 1 + X,/21'

+r ="' -x +lori-

II-XV/2j (89) t

or when x is small,

.7- =-2x'/
2 + 2(x1/2 + 1 X3/2 +..3

2- X
3

/
2

3
3 (90)

or

x 1 2 / =2r / 3 9

and

(2-) ) t2'2 (92)

in agreement with previous results.

We now consider the limits of validity of this theory. We see from (75) that when
EL = U the pressure and temperature on the strong side of the shock become zero. If thisIs true the- assemption, of complete dissociation and ionization becomes nonsensical.
From (82) we see that this corresponds to a shock radius of

w
R 

-=934 po U (93)

and from (86)

.T- 1  
1

X +1 4 
(94)

For such a small value of x, -(92) is a good approximation to (89). We conclude then thatwithin the limits of validity of this theory the shock front radius-is- adeutt7give, by

We need scarcely remark that no account has been taken here of radiation losses orof wall effects. The actual conditions within the shock tube may be.profoundly modified by
these effects.

We conclude by estimating the energy that a shock wave must give to a hydrogenmolecule to raise it to a temperature k T - 3 ev. At this temperature hydrogen is almost
completely ionized, and from (73)

2 4 kT + ED + 2 EI 50S ev. (5~;I2 +E+E~0v(95)

From (79) we see that the same energy must go into hydrodynamic motion. -Therefore,about 100 ev is required to raise each molecule to a temperature of about 3 ev. However,it would seem that when the shock was reflected so that uZ/2 was reduced to zero this



I

NAVAL RESEARCH LABORATORY 
-

r2--

energy would go into thermal energy. Writing the energy balance equation after theA,

tion we find

100= 4xYkT+s32 AFTER

from which

(kT)AFTER 6

showing that the temperature has more than fripled.


