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ABSTRACT

Circular electrostrictive plates, oppositely polarized
and cemented together to form bilamellate disks, are sub-
merged in a semi-infinite medium and driven by an applied
electric field, or by applied acoustic pressures, to radiate
sound. Formulas for plate velocity, acoustic power radiated,
acoustic pressure, mechanical Q, etc., have been derived
for the cases of centrally supported and edge supported
disks in infinite baffles.
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ON THE THEORY OF FLEXURAL PIEZOCERAMIC
CIRCULAR PLATE SOUND RADIATORS ....

INTRODUCTION

A convenient source of underwater sound in the range of 100 cps to 50 kc is the
family of flexural, circular, piezoceramic bilamellate disks. These, in diameters of 0.5
to 25 cm can radiate up to 1/2 to 1 watt per square centimeter for applied electric fields
of 150 to 250 volts rms per millimeter of half thickness, pulsed power. A simplified
theory of the performance characteristics of such sources is presented in this report.
In the first part of the theory the piezoceramic disk is centrally supported, and in the
second part the disk is simply supported on its edge. Both cases are treated only with
reference to the presence of an infinite stiff baffle enclosing the half space into which the

sources are radiating acoustic energy. The analysis proceeds on the assumptions of a

Class I (Fischer's classification) piezoelectric transducer and not on the basic laws of

the Class mI transducer, to which the electrostrictive types belong. This has been done
to avoid transduction ratios and lumped parameters which are frequency dependent. As
a result of this choice, the material constants appearing in the course of the paper are
only "effective" piezoelectric moduli, to be measured on particular samples of polarized
ceramics by techniques conventionally applied to true piezoelectric crystals. In short,
the ceramics have been converted to "effective" crystals, and standard piezoelectric
theory has been applied to their behavior.

CENTRALLY SUPPORTED FLEXURAL DISKS

The Structure

The transducer (Fig. 1) is a bilamellar disk, one or both halves of which may be

actively polarized electrostrictive ceramics. While it is always advantageous to have a
disk of two active halves, the use of a central support may require half of the bilamellar
structure to be a passive metal, e.g., brass. Each face of an active ceramic plate is
completely electroded with fired silver paste. Permanent polarization of the ceramic is
in the z direction, normal to the plate. The structure is driven into forced flexural vibra-
tion by the application of an alternating electric field E applied across the thickness of

the ceramic plate.* Upon submersion, the disk radiates sound into a semi-infinite liquid
medium of characteristic impedance pwC,, from a circular hole of equal diameter in an
infinite stiff baffle.

Figure 2 shows the conventions of signs which hold in this analysis. The neutral

axis of bending is set at z = 0. For small displacements w in the positive z direction, the

displacement u in the x direction is u = - z(-w/lx), where -w/-x is positive, as shown. The
strain S,, in the x direction is Sxx = -u/3x = -z(- 2 w/ix 2 ). We note that 6

2 w/6x 2 is nega-
tive when w is positive and that the strain is positive (tension) for positive z. Similarly,
for displacement v in the y direction, the strain in the y direction is Syy = -z(av/'y) =
- z (ý 2 w/ay

2 ). A positive bending moment M, or My is one which causes a deflection of

the disk in the positive z direction, i.e., downward, as shown, and induces resisting
stresses Txx or Tyy.

*See List of Symbols at end of report.
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Figure 1 - Schematic cross section of a piezoceramic -brass

circular plate sound radiator

z

Figure 2 - Diagram illustrating deflection
parameters on an elemental section of the
circular plate sound radiator

The same conventions hold for a
cylindrical coordinate system in which
the origin corresponds to the origin of
the xyz Cartesian system.

Equations of State

The circular bilamellar disk (half
thickness h) is assumed "very thin," and
the stress system correspondingly two-
dimensional. This restriction to stresses
in a plane is indicated at any stage in the
analysis by a bar over all material con-
stants (i.e., Zrr, Uro, etc.). A cylindri-
cal coordinate system is used, and, for
convenience in writing, r, 0, z are desig-
nated by the numbers 1, 2, and 3. In such
a planar cylindrical system the equations
of state of the bilamellar disk under sym-
metrical electrical excitation may be
immediately taken from the tensor form
used by Mason (1).

-E d2w _E 1 dw
T1 = - c d1 1 r2 c 1 2 Z r dr e 3 1 E3

-E d
2

w -6E I dw -

T2=- 2z r dr- e3 1 E3

D3 - 31Z (dr + r + C3 3 E3

(la)

(1b)

(Ic)

The negative sign appears in the term -i 31 E3 for the following reason. If a cylindri-
cal pill of material is scooped from the interior of the ceramic, and if a positive gradient

2
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E 3 is applied across the thickness, the pill is assumed to expand in the z direction, the
polarization being correctly oriented for this expansion. Now if the material adjacent to
the pill in the z direction is hindered from moving (condition of zero strain), it will
develop a resisting compressive (negative) stress. Similarly, simultaneous contraction
of the pill in the r and 0 directions will induce tension stresses in the adjacent material
which are the resisting stresses T1 and T2 . Since the "effective" piezo modulus -31 is a
negative number, a minus sign is added to the term s3iE3 So as to render T1 and T2
positive.

Corresponding to the internal resisting stresses Ti and T2 due to the applied field E3
are the internal bending moments Mr, M, resulting from bilamellar action. By suitable
integrations over the thickness of the plates, expressions are obtained for these bending
moments in terms of displacement derivatives.

rf h rr+h D= d 2 w + v dw'63, e 3 1 hE 3  (2a)
Mr T 1 zdz = D dr 2  r dr, 2 (2a

-h

f~h( d
2

w 1 dw)\ • 3 1 h
2

E3 •

M0 = T 2 z dz = D V d 2 + 2 (2b)
-h dr2 r dr 2

where

Mr is the internal bending moment per unit of circumferential length

M0 is the internal bending moment per unit of radial length

D is the flexural constant, - (2/3) h3 Z E

E /FE
v is Poisson's ratio, which for planar stress is E12/ 11

Sis 1 or 2, depending, respectively, on whether the backing plate is inactive (i.e.,
is metal) or activq (i.e., is a ceramic plate polarized for bilamellar action),
assuming, if active. that active halves are connected in parallel.

Similarly, the average electric displacement in one plate is

D 3  e 3 1 h (d 2 w + 1 dw\ +;3 E (3)
2 - \dr 2  r rT ) 3 3  

(3)

As the radiation of -oui-d induces a real surface pressure on the face of the disk
exposed to the medium, an expression is needed for the internal resisting shear Qr per
unit of circumferential length. Since the applied electric field E3 is independent of the
radial coordinate r, we may use conventional thin-plate theory and write (2)

= d 3 w 1 d 2 w 1 dw (Qr - D ~\dr3+ d;YiI)(4
( J T dr2 r2 dr (4)

Equations 1 to 4 are the foundation equations upon which the frame of the analysis is
built. They carry with them the limitations that restrict the final formulas to narrow
grounds of validity. In particular, they are piezoelectric in origin, linear, and planar,
the electric fields are low in frequency and small in magnitude, the sound fields are due
to infinitesimal displacements, an infinite stiff baffle is present, and edge effects, cement
between plates, etc., are considered to affect the results in minor ways only.

3
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Coefficient of Electromechanical Coupling

The mechanical and electrical equations (Eqs. 2 and 3) for the state of flexure must
be satisfied together; that is, they arise from independent laws of nature and are not
reducible to a single statement except by simultaneous solution. If the expressions for
Mr and M0 are added and the resultant solved for the displacement derivatives, we obtain

d 2w + 1 dw Mr + Me + 3 1 E3

dr 2  r +rr D(1+v) D(l+v)

i.e., mechanical curvature of the disk is expressed in terms of the internal bending
moments representing the mechanical and electrical fields. Since the same quantity on
the left appears in the electric field equation (Eq. 3), we have, upon substitution, a single
equation combining the influence of both fields.

Dh (Mr + Me' 2e3

(2 1\D(+v) - + (5)

This equation is a statement that a charge per unit area on the electrodes of one
plate accompanies the condition of flexure. The first term on the right-hand side is the
mechanical or motional charge, and the second term is the charge due to applied field.
The coupling effect of the mechanical field appears as an increment in the clamped
dielectric constant E3 3 , which takes the form of the second factor in the enclosed term.
Such a group of symbols appears in planar piezoelectric analysis and is conveniently
designated as the coefficient of electromechanical coupling in the flexure mode. Bech-
mann (3) defines the mixed planar coefficient of electromechanical coupling (kp2 )mjx by
the relation

2
(k 2) 2•31

mi 1~(i + V)61 3

For the state of flexure, therefore, the coefficient of electromechanical coupling k2 is

k2 =3(k 
(6)

We note that this equation is independent of the manner in which the disk is mechani-
cally supported. When the structure has one active half and is metal backed, k2 =

3/8 (k 2)mix . Equation (6) reveals an important feature of flexural sound radiators,
namely that the interconversion of electrical and mechanical energy is markedly reduced
by flexure from the latent potential of the planar state to 3/8 ý of this potential. This
reduction of coupling is balanced, of course, by the increased compliance of mechanical

structure and the consequent lowering of natural
Z frequencies of vibration. In many applications,

the latter advantage more than overrides the
resulting poorer power-handling capacity of the
structure.

Mechanical Displacement Under
Forced Electrical Drive

EAXIS The mechanical displacements of a piezo-
ceramic disk which radiates sound into a semi-

Figure 3 - Elemental volume infinite liquid medium may be found by applica-
of a c i r c ul a r plate sound tion of conventional elastic and acoustic theory.
radiator Figure 3 shows an elemental volume of the disk

4
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in cylindrical coordinates; m is tfie mass per unit of area and MT the total differential
bending moment per unit of circumferential length. Equating internal force per unit cir-
cumferential length on m (FT in the z direction) to the acceleration of m, we have

dMT d-o
FT=--dr= m(rd &dr)dw

dt2

Now to quantities of the first order in infinitesimals, we see from Fig. 3 that

nT M + dr r + dr) d6 - Mr(rdO) -2 Me dr + Qr rdrd]R d~r 2) r 9
= Mr + r -r'r Mo + r Qr) dr d.

Letting the primed symbol represent differentiation with respect to r, the force-
acceleration equation becomes

1 ,, f I d2w2Mr + rMr'- Me + rQr + Qr d- 2

Although Mr and Me are independent of the applied electric field, the magnitude of the
elastic constants 2l1, Z12, etc., depends upon this field. For low electric fields, we
assume D3 very small and use the constants F), U instead of the constant UE , id E

etc., where by definition

ZD = Z1E (1 + kf2
D1 (1 + kf 2

c1 1  2 ( + kf 2 ).

For the state of larger electric fields, D3 is hardly zero, and we must use a value of
1 that lies between FE1 and Z. In all cases, however, k 2 is, at most, about 0.10, and

tlhe correct choice for the constants is seen to be no critical matter. Substituting for Mr,
Me, thus modified for the particular magnitude of drive, we obtain

d 4 w 2 d 3 w 1 d 2 w 1 dw + m d2 w Qr, 1 dQr
dr 4  r 2 dr 2  r3 d- D* dt 2  rD* D* ,r'

where

- - 2 •dD

3 11*

The internal shear force Qr per unit of circumferential length depends upon q(r), the
external load intensity per unit area. Static equilibrium requires that

r

27TrQr = 0 21rrdr q(r)
0

from which

Qr 1 dQr q(r)

rD* * 5 D*

From the assumptions of thin-plate theory, we restrict q(r) to acoustic loads; i.e.,
q(r) is the reaction acoustic pressure p(r). In the condition of steady-state sinusoidal
vibration, the equation of motion becomes
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d( + r 1+ d - 2 d( + d+ k2 W = p(r,,) (7)dr2  r d'j i 1)\dr2  _r djrD

where

k 4 m)
2  3pp 02

D* h 2 eD
11

The surface pressure p(r,co) may be determined from the following considerations.
Since each element of area d A and velocity W radiates a spherical wave into the half

space, the surface acoustic pressure is a summation of the pressure interaction effects

of these waves. We have, from Fischer (4),

p(r,t) - d w -dA,
f A

where R is the distance from an arbitrary point P in the plane of the disk to an element of

area RdRd P and q is the angle between R and the line P drawn to the origin of coordinates.

For the steady state, W is equal to joW, and since p(r,ao) is a negative quantity, we obtain

the final elastic-acoustic equation of motion

4PC k 2 
4 W( k8

V4W _ k W = 21r D* e dR do, (8)

where V4W - ki W equals the left-hand side of Eq. 7.

Except for very simple geometries and for simple displacement distributions, this

integro-differential equation is intractable. We can avoid this difficult mathematical

situation by making the right-hand side independent of the variable r, which means in

effect independent of the variable W. The reaction pressure, which is known to be a func-

tion of the coordinate r and the frequency w, is replaced by an approximate pressure

constant with radius but strongly dependent on the wavelength of radiation, that is, on

frequency. Instead then of seeking an exact solution to the radiation problem posed by

Eq. (8), we will seek the solution to a germane problem in which the external reaction

pressure of the liquid medium is arbitrarily defined to be independent of r, while still

retaining dependence on ao. In place of Eq. (7), therefore, we will set the equation of

motion to be

k4 W -___ (9)

where a is the outside radius of the disk.

The reaction pressure p(a,co) can be only an average estimate of the true pressure

p(r,wo).. A convenient procedure for determining p(a,wo) is to assume a displacement

curve, W(r) for the flexed disk, conformable to the boundary conditions, and perform the

integration required by the right-hand side of Eq. (8). The result of this first step is the

pressure function p(row). McLachlan (5) carried through such an integration for the

assumed distribution W = *.(I - r(r 2 /a 2 )) and found that

"[_L2 z Z6 ( Z3 Z$ (10

p(r,t) = pwC 92 -"' g4 + - ... + j Z-" 93 + - ... ) , (10)

where g2 and 96 are known algebraic functions of the radius r, and g, and gs are known

hypergeometric functions F(a,,6,y, 8) of the same coordinate. The symbol z stands for the

6
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wave parameter ka. The infinite series of Eq. (10) is applicable to any size disk having
the velocity distribution prescribed. In general, however, the frequencies corresponding
to the grave mode of vibration are so low that ka is less than 1/2. We assume, then, that
ka << 1/2 and write, after McLachlan (5),

p(r,t) = pc•w*o [(ka)2 + j(ka)gl] (11)

for the case of the centrally supported disk. The exact expression for g, is

b = r
a

The average pressure p(a, t) is found by averaging Eq. (11) with respect to disk
area. The result is

p(a,t) = p [ckW 2 + j -6ka]. (12)

A convenient symbol for the impedance portion of this equation is Z(a,co), defined by
the relation

p(at) = Z(a,co) Wo

Z(a,-) = PwCw ,__T + J -4g7 ka .

Having now defined the nature of the expression p(a, t), we return to Eq. (9) and sub-
stitute our results, recalling that in the steady state, W = jwWo. We have, then,

4D 4 jwW0Z(a'c) (13)

This is an inhomogeneous differential equation, the right-hand side of which is independ-
ent of the coordinate r. A particular solution is easily seen to be

j oWo Z(a, c)

D* k 4

The complementary solution of the homogeneous equation is found in various texts,
e.g., Ref. 6. Adding the particular solution to the complementary solution, we obtain the
complete solution

j owZ(a,co.) Wo
W(r,co) = aj 0 (kr) + /Yo(kr) + ylo(kr) + SK0 (kr) - D* k 4 (14)

1

where a, 8, y, and 8 are four constants, to be determined from the conditions of support.

The boundary conditions for the case of a flexural disk supported by a rigid built-in
central pin (radius b) are easy to formulate, but they may not correspond to the actual
stress configuration because of local yielding, rotary inertia effects, etc. At the risk then
of stipulating what may be an ideal situation at the point of support, we specify that

7
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at r b at r- a

1. W-0 3. Mr -0

dW
d4. Qr=0

Four conditions are thus available for determining the four constants a, /3, -, and 8
by employing explicitly the general solution contained in Eq. (14). Upon performing the
necessary derivations, we come to

jco Z(a,co) Wo
aJ 0(klb) + /3Y0 (klb) + yI 0 (k 1 b) + SK0 (klb) - D* k4 (15a)

-k[aJl(klb) + /3Yl(k 1b) - 7Il(k 1 b) + SKl(klb)] = 0 (15b)

3 63 1 F3
aA1 + 83A2 + YA3 + 5A4 = 4D kl2h (15c)

k 1 [aBi + 63B2 + -yB3 + SB 41] = 0 (15d)

where

A1 = -Jo(k 1 a) + (1 - v)J 1 (k 1 a)/kla

A2 = -Y 0 (kla) + (1 - v)Yl(k 1 a)/k 1 a

A3 = -I 0 (kla) - (1 - v)Ii(kla)!kla

A4 = Ko(kla) + (1 - v)K 1(k 1 a)/k 1 a

B1 = Jl(kla), B2 = Yl(kla), B3 = II(kla), B4 =-Kl(k1 a).

Simultaneous solution of Eqs. (15a, b, c, d) is rapidly performed by use of Cramer's
rule. We can, however, simplify the results by noting that for centrally supported disks
the ratio b/a is considerably less than unity, so much less, in point of construction, that
we may assume that b-*0 without major error. As a consequence of this choice, Eq.
(15b) reduces to

limit+=,
b---i0 WfYl(klb) + 8Kl(klb)] = 0,

or
2 - 0

Substituting this result in Eq. (15a), and again letting b-*0, we obtain

j jcoZ(a,wo) W.
D* k 4

1

Completing the solution for the two remaining conditions, Eqs. (15c) and (15d), and
substituting the results in Eq. (14), we obtain
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-__(B2 + B4 3 (A2 + - A4) - A3 (B2 + 34
W(r,7o) + A [Jo(klr) -I(klr)]"

+ [7(B- B3 ) + A3(B1  B3 ) - B3 (A1 - A3 )] FY(kr 1 K0(krrl
+ [ AA i 0  ' 7T~

+ 0•Io(kxr) - 1]-, (16)

where

3 931_3_ jwoZ(a,w) W.
74 ED 2 D2k 4

11 1 1

A (A1 - A3 ) (B2 +ZB 4) - (B1 - B3 ) (A2 +-A 4 ).

The important quantity, of course, is the displacement at the outer edge, Wo. At r a,

W. {(B2 + B4) [Jo(kla) - 10 (kla)] - (B 1 - B3 ) [Y(kIa) +7Ko(kia)
XjcoJ Z(a,w) 2 1 r2 1
A w -. a, Dk {B 3 [A 2 +-Z A4] A3 B~2 + 2 B4 ] [j E(kja) - I~~)

jco Z (a, 3) A3(BI- B3 )- B3 (A- A3 )} [Yo(kia) + " KO(kla)]
D* k4  '-

AjcoZ(aro) [i 0(k 1a) - 11
D* k (17)

The edge (maximum) displacement W, is proportional to the electric gradient E (that
is, proportional to the constant 77). In the absence of acoustic load (i.e., when Z =o0 the
expression for A becomes zero for an infinite number of values of ka. The lowest of
these (excluding ka = 0) corresponds to the grave (or umbrella) mode of vibration; the
remaining values of ka correspond to modes of vibration consisting of a successively
increasing number of nodal circles. With the accession of an acoustic load the denomi-
nator, for certain values of ka, reaches a minimum, but it may never be zero, since
Z(a,-o) is a complex quantity. We note in particular that it is the resistive part of Z(a,oa)
which contributes an imaginary term to the denominator and that a purely reactive load
will not restrain the motion of the disk at mechanical resonance.

Transduction Ratio

The time-varying charge Q accumulating on the electrodes of one plate is obtained
by integrating the expression for the dielectric displacement, Eq. (3), with respect to
plate area. We have (assuming b---0)

Q = D3 dA = -e93 1 h f \dr 2 +7 d'l rdr +ira2 eE 3
A0/

or

Q = -irr 3 1 ha [-]r-a + 7r8 2 S33 (18)
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The alternating current due to an applied voltage V3 (across one plate) is therefore

-- / B2 + 2- B4)

i = j coi 3 1hk 1 a 77 B 2A 7T [Jl(kla) + 11 (kla)]

+770(B1 B 3 ) [Yl(kia) +_2.Kl(ka)]

jcoZ( a,co) W0 FB3 (A2 +- A4 ) - A3 (B2 +2 4
+ Dk A ][J(kla) + II(kla)]

w j Z(a,co) Wo A3A(B1 - B3 ) - B3 (A 1 - A3 )] [Y (kla)
+ D* k• A

jwZ(a,coW 0 1(a) +Wjo V 3

D k 4)} (19)
1

While the electric current thus found is a useful parameter in exploring the acoustic
performance of a centrally supported disk radiator, successful application of four-
terminal network theory requires some simpler form than that presented by Eq. (19).
To obtain a more convenient expression for i, we note, from Eq. (16), that to a first
approximation in kr, the deflection w has a parabolic distribution with respect to the
coordinate r; that is, W - r 2 . If then we assume a deflection curve of second order in r,

W = Wo(r 2 /a 2 ),

/d\ 2wfid= a2Wo (second-degree terms in W only).

The charge for a condition of parabolic distribution becomes

I Q N = W. + 7ra 2 s E3 (20)

where N = 27T' 3 1 h = 7r93, t.

The symbol N is the ratio of electric charge accumulating on the electrodes of one
plate to the peak mechanical displacement (at the edge of the disk). To the approxima-
tion of second-degree terms in r for the variation of mechanical displacement with radius,
N is seen to be a real number. When fourth-order terms (and higher) in the deflection
curve are considered, the magnitude of the slope diminishes, and with it the transduction
ratio N. To find the transduction ratio corresponding to higher order deflection curves,
we assume more complex displacements, consonant with the boundary conditions, or,
alternatively, we assume some known mechanical load on the surface of the disk. Two
examples of the former method and one example of the latter are given below.

Example 1. Let the displacement curve be of the form

W= W., [A(_E)2 + B(_E)]4

This type of variation with radius has been used by investig•dors in recent times.
Southwell (7) has shown that such an assumed curve yields a value of grave resonant fre-
quency 75 percent of the correct figure, if A = 1 and B = -0.275. Proceeding with these
assigned values of A and B, we obtain

10
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a dW 0.9

and c 0
[NI = 0.457r1 3 1 t

Example 2. Let the displacement curve be the one which Southwell has shown to
yield a value of grave resonant frequency 99 percent of the true value; that is, let

W = Wo [rq - q 2 (q-_2) aq- 2 
r

2 log--7a

q= 2.89.

Proceeding with the integration, we find that

I N = 0. 52n7 3 1 t

Example 3. Let the disk be loaded on its surface with a uniform real static
pressure po. It is easy to show that the total charge I Q1 from one plate is

IQI Po 7ra
4 d 3 1  3 a 2

S 4 t2 -4 t2 d31 F

where F = p.7T a2 .

From the theory of elasticity,

Fa
2

WO =yEt3
0

Hence

[QI -Y dtW--4- Y0 31 t W.

= 0.5257T6 3 1 t W. (for v = 0.3).

Therefore NI N 0.53 7rn 3 1 t

The inclusion of terms to fourth order in the slope (dW/dr) r = a reduces the transduc-
tion ratio found for parabolic distribution by a factor of 2. Correspondingly, the presence
of an external static pressure load introduces a similar reduction in N. Terms higher
than fourth order affect these results in minor ways only. We conclude that the trans-
duction ratio under actual operating conditions lies between INI = 7r •31 t and INI= (ir/2)a 3 1t.

We have now reached a point in the analysis where further progress is impeded by the
complexity of the approximate deflection curve as revealed by Eqs. (16) and (17). It is
more convenient, from this point on, to assume a deflection curve of simple algebraic
form, consonant with the boundary conditions, such that computations of acoustic power,
etc., are facilitated. Such a choice would leave oire factor, namely the peak displacement
W%, indeterminate. However, the transduction ratio N relates W, to the charge Q and
therefore relates mechanical force F to applied voltage V3 . With the magnitude of N
explicitly known, the peak displacement, velocity, etc., become electrical quantities whose
magnitudes are then precisely determinable. In accordance with this procedure, then, we
choose a deflection curve of simple parabolic form, namely W = W, (r/a) 2, and proceed.

11
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Radiated Acoustic Power, Mechanical Reactive Power, Kinetic
Energy, Resonant Frequency, Acoustic Pressure and Mechanical
Q of a Centrally Supported Disk Whose Deflection Curve is
Parabolic (Second Order in r). Infinite Baffle Present.

In the far field, at a great distance R from the infinite baffle in which the disk with
parabolic deflection is located, the radial distribution of real acoustic pressure p. has
been found by McLachlan (8) to be

pwWa2 [Jl(z) 2 J 2 (z)] (21)P.- I z Z2

zka sin k k = wavelength.
X

Since the liquid-particle velocity v at great distances is pa/PwCw, the peak sound power
Pa radiated into semi-infinite space is

2
p. v A = 2T a 4 j027 j(z)- _ _Pa = P vdA = 2"aw f 22 sin 9 dO

or

Pw -
2 4 (-1)m 2m(ka)2m

l (1) (2m -2 +12m

(G)2+2m 4+-2m (_1)3+2,n( 2

L2+m)! (l+m)! (4+m)! (2+m)! 2  (3+-m)! (•. +m) (2"+ m)!

When this expression is expanded, the peak real power becomes

PW 04W2 [1 (ka') 2 
+ 4 - .. ]1P. = 27T-vW 0a 4  1 - +-- (a) (22b)

At the frequency of mechanical resonance in the grave (umbrella) mode, the magni-
tude of ka is usually less than 1/2. Limiting the infinite series of the above equation to
the first term only, we obtain

P = IL Pcw ' 22 a4 (peak power for condition (22c)
a 8 'W W.,ka«< 1/2).

The mechanical reactive power P x can be derived by a similar procedure applied to
the reactive pressure Pi, explicitly written in Eq. (10). As in the above case, we limit
the expression for pi to the first term in ka and write

P. = f pivdA
A

= Ipwcw2ira2Wo(ka) g1 b•0

Since the value of the integral is 20/637T, we have

12
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C-

Px = j cL1 (23a) <,.

= Pwa 3 . (23b) rn

The parameter L, is the inertial mass which the liquid medium adds to the disk
flexing in the grave mode. It coincides with the values found by McLachlan (5).

The magnitude of the kinetic energy of vibration (Tp) of the disk with no acoustic load
is also found by a simple integration:

T P f 27~r rrtpp2W.') dr
b0O

or

TP = M Mra 2  (24)

The lumped mass, corresponding to the edge velocity W,, is therefore 1/3 of the
actual disk mass. Adding to this lumped mass the inertial mass of the water (LI), we
obtain the total kinetic mass Mq, corresponding to W*;

Mq 3" a
2 t (25a)

120 P, a
637r p t (25b)

The presence of a semi-infinite liquid medium may be thought to raise the density of
the plate from its value pp to pp(I +/ý3). In an ordinary design for a water medium pwa/ppt
is close to unity, making 3 about 2/3. One result of this added mass is to lower the
natural resonant frequ.ency c% of the disk in the grave mode from its value in a vacuum
(approximated by air) by the factor (1 +/8)"½. An expression for wo. may be obtained by
solving the secular equation

A = 0, (26)

where A is the denominator of Eq. (16) in the absence of acoustic load. We obtain as the
first root of this equation the value ka = 1.933, a magnitude quite close to ka = 1.937 found
by Southwell (7). Upon solving for w., the vacuum resonant frequency becomes

c = 1.081ctp (27)
a , CP

Hence the resonant frequency in a liquid medium (coR) becomes

/ -D

WR =1081 - *P 
8  P ~ +,a)) (28)

a-2 P \rp L /

A spherical wave (such as is radiated by the disk for the condition ka << 1/2) of
source strength Q,, looking into a semi-infinite medium bounded by a stiff baffle, develops
a pressure p in the far field (distance R) whose expression (4) is

(jkR

P Q. e--- (29a)
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We omit the time-dependent factor. If the velocity distribution over the surface of
the disk is parabolic,

Q =Jf v2,d A=f ~) 27Tr dr
A 0

= (Ira
2 /2) o

From this, the absolute magnitude of far-field pressure is seen to be

1= 4R Wo (29b)

Another important performance parameter of the disk sound radiator is its natural
damping factor ad, or its steady-state mechanical Q0. For assumed parabolic deflection,
the rms radiated power (Prms) is

7r =~2 Pwj2.Prms = 1 -Cw

The rms kinetic energy of the plate and water is one-half of the magnitude found
previously, since this quantity varies as cos 2aot. In any cycle of vibration, however, the
mean energy Tm is twice the kinetic energy. Hence the mean energy of plate and water is

S=a2 Pp(1 + 8)t *2
Tm : 6 0

Now the diminution of mean energy during free vibration is equal to the radiated
power; that is,

dTm
dt Prms

or

7rp ( +/3)tW, W2a2  2 4

From this,

where

a 3 Pw' a2 02 (0
d 16 pit c(1 +,8)

The quantity ad is the temporal damping factor for free vibration, when the damping
is due entirely to radiation. With it we can derive an expression for the number of cycles
of free vibration (at resonant frequency aoR) that must be completed for the amplitude W0

to be reduced to 1/e of its original maximum value. This is Wo/
2 7r ad, and hence

=R = 0.788(1 +13)3/2 PPCw

27ad T.pwCp

14
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Now by definition, the mechanical Q is

'OR

Q = 2ad r,

Therefore

= 2.47(1+18)3/2 PPCW (31)pýVcp

Mechanical Displacement Under Forced Mechanical Drive
and Receiving Response

A steady-state (sinusoidal) pressure of magnitude p. (independent of the parameter
ka) is allowed to drive the submerged, centrally supported disk. We stipulate that
ka << 1/2 and write the equation of motion as

4 4
V W - ki W = + p', (32)

where
(P_ jcoZ(a,) P

As for boundary conditions, we require that D3 = 0 (i.e., open circuit). Assuming

once again that b/a << 1, we obtain for the first two boundary conditions

al + y = p + k5'

2
2 8 0 .

Proceeding with the two remaining boundary conditions, solving for ai, 1, y, and 8 on
the assumption that E3 is zero, and substituting in the displacement equation, we obtain

P [A3 (B2 T -4) 3(A2 +2I A4)] [ -o(kla) .O(kla)].+ [B3(A1 -A 3 )- A3(B -. B3 )] o(k)+ K0 (kla)

W=A- coZ(a,co [B3 (A2 + I A4) - A.3 (13 + I B4)] [J0 (kla) - Y(kia) +

1 [Io(kla)- 11]
ek 4i D' 7 k41

(33)

The complexity of this expression requires that some simpler representation be
sought for the accumulated charge IQI due to the pressure p. than is contained in the
requirement that I d, = 76 31 ha(dW/dr),=a. We assume, as before, a parabolic deflection
curve, and calculate the open-circuit voltage V3 due to I Q1 stored upon a capacitor of
areaina 2, thickness h, and dielectric constant E3 3 . We have then

V e 3 1  t2 n Wo
Po 4  a2 E•33P (34)

where n = 2 for parabolic displacements. We can use the same formulation for the case
of fourth-order terms by setting n = 1.

15
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It is useful, at this point, to derive an expression for the receiving response at fre-
quencies so low that Z(a,w) becomes negligibly small, that is, at quasi-static load condi-
tions. From the theory of elasticity,

Wo a4

P0 t3(Y)AV (static load),

where (Y,D )AV is the average Young's modulus at zero current.

Upon substitution, we obtain

V 1 a2  
3 lln

Po -4 t E333 (yD) (static load). (35)

Formulas Describing the Acoustic Performance of a Metal-Ceramic
Bilamellate at Mechanical Resonance, RadiatingsSound into a Liquid
Medium. Parabolic Deflection Curve Assumed and Infinite Baffle Present.

At mechanical resonance in the medium, the magnitude of edge velocity wo is gov-
erned solely by the radiation resistance of the medium to the disk vibrator. Since the
real acoustic pressure for the condition ka << 1/2 is independent of radius, the total
mechanical force restraining motion at mechanical resonance is FR = pia 2 . We know that
edge velocity and pressure are related through the impedance equation, Eq. (10). Hence

FR= pwcw(ka) 2 nTa 2 . (36)FR4 -W."

When electrically driven by a voltage V3 , the applied (mechanical) voltage force NV3
balances the mechanical resistance force FR in the steady state. Recalling that N = T31t

for the condition of parabolic distribution, we find, for edge velocity,

o = 4NV

pwcw(ka)
2 Ta

2 '

or

CwE3Wo=1.71 E31 .*2 PW(37)

Cp ,w

This is a key equation, for with it, and with Eq. (28) for the resonant frequency cý, we
can substitute into Eq. (22c) to obtain an explicit equation for the acoustic power

Pa = 5.36 31 Cw V32 (38)
Pw ;

Similarly, substituting Eq. (37) into Eq. (29b), we find that the (real) acoustic pressure in
the far field (distance R) for ka << 1/2 is

1P = 0.924 i3l Cw v3  (39)
p

As for receiving response (V/p,), when an alternating pressure of constant magnitude
p, is applied (at the mechanical resonant frequency) to one side of the bilamellate, and

MMEME00i
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when simultaneously the electric terminals are open-circuited, an edge velocity is ini-
tiated whose magnitude is

p,,wc(ka)2

In consequence of the electromechanical coupling action, an alternating electric cur-
rent i=NWo flows through one plate of the disk and charges the capacitance Cs to a potential

V NWo 4pp N

C' j wCs j pwcw(ka)2wRC,

Substituting for cR and N, we obtain

V1.582 a 3l cw (40)

The open-circuit voltage reported by this equation depends, for its magnitude, on the
presence of an infinite stiff baffle. In the absence of such a baffle, the magnitude of
response would fall by a factor of 2. The response, in any case, is that across one of the
two possible active plates of the disk.

Conclusion

Equations (6), (27), (31), (37), (38), (39), and (40) are the most useful results of this
part of the analysis. Taken together, they form a relatively complete summary of the
acoustic performance of a centrally supported piezoceramic. One seemingly vital equa-
tion appears missing, namely an expression for the motional admittance. This is not a
serious omission, sinfe the small magnitude, of flexural electromechanical coupling
renders the bilamellat:+ almost a pure capacitor, when loaded by a liquid medium. In
many instances the moa' onal resistance is less than 1/10 of the reactance at mechanical
resonance, and for modera+ e power absorption the current flow through the radiation
resistance is relatively small. No great error therefore ensues in treating the bilamel-
late as a "pure" capacitor. As for material constants, it is best to determine these by
actual test; e.g., it is best to determine c * by measuring the resonant frequency in the
liquid and computing this quantity from Eq. (28). Only in this way can one avoid dubious
values for these parameters. Preliminary estimates of the values of these parameters
based upon the available literature may be obtained from Table 1, which lists the piezo-
electric properties of three popular piezoceramics.

An alternative procedure for determining the electrical series resistance R at veloc-
ity resonance is to assume that R - XB/QE, where XB is the blocked series reactance at
resonance and QE is the electrical Q. The factor Q% may be obtained from a knowledge of
0• and km by the additional approximation that QE = 1 - k/kf Qf " At velocity resonance
therefore the electrical impedance is approximately

kZ QmX 5
(w=WR) " -kf2 -
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TABLE 1
Material Constants of Polarized Ceramics

Electromechanical Ceramic *
Property

(See List of Symbols) Ceramic B PzT-4t PzT-5tBaTiO 3 - CaTiO3  PbTiO3 - PbzrO3 PbT103 - PbzrO3

-E
Z1 1 (planar stiffness) 127.9 × 109 (N/M 2 ) 91.3 x 109 74.7 x 109

C12 (planar stiffness) 38.3 x 109 (N/m 2 ) 27.9 x 109 23.0 x 109

s' (compliance) 8.62 X10" 12 (m 2/N) 12.05 x 10.12 12.05 x 10.12

kp (planar coupling 0.33 0.48 0.54
coefficient)

d 3 1 (strain-electric -58 x 10.12 (C/N) -97 x 10-12 -140 x 10-12

field modulus)

i31 (planar piezo modulus) -9.45 (N/mV) -10.38 -12.01

633 (blocked dielectric 9.64x10"9(C/Vm) 7.89 x 1 0 "9 10.24 x 10-9
constant)

633 (dielectric constant at 10.7 x 10"9 (C/Vy) 9.7 x 10i9 13.22 ×10-9

zero stress)

pc (ceramic density) 5.4 ×I03 (kg/m 3 ) 7.6 × 103 7.6 x 103

V (Poisson's Ratio) 0.3 0.3 0.3

*The chemical content of the above listed ceramics may be obtained by writing to the
author of this paper.

tThe two PbTiO3 - PbzrO3 mixes are different in composition.

EDGE-SUPPORTED BILAMELLATE DISKS

We shall consider in this part a bilamellate disk of two active halves, simply sup-
ported at its outer edge. Care must be taken, in building this structure, to insure sim-
plicity of support, i.e., to insure absence of clamping while at the same time not restrain-
ing radial displacement along the outer rim. In any case, the boundary conditions W = 0,
Mr = 0 must apply; that is, the external casing must restrain but not flex the disk.

Coefficient of Electromechanical Coupling, Bending Moments,
Dynamic Equation, and Solutions

A few of the results of the previous derivations are immediately applicable, since
the mode of mechanical support does not enter into the basic equations of state. From
Eqs. (2a) and (2b), we obtain (since ý = 2),

Mr f*[d2w _ dwl- hEM, = D* [L2-- I -Ký' -63 h2 E3
[dr 2  r d

M =D*[ d2w + dw - h 2

M dr
2 r ] - e31

(41a)

(41b)

18
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Similarly, the coefficient of electromechanical coupling in the flexural (grave) mode is

k V (kp (42)kf 4 )MI mix

In order to write the dynamic equation, we need an expression for p(a,wo), as required

by Eq. (9). Now the radial distribution of pressure p(r, t) has a form identical with that

expressed by Eq. (10), with the exception that the g's (hypergeometric functions) contain
additional terms. Restricting ourselves once again to the condition ka << 1/2, we employ
only factors g, and g 2 in the infinite series of Eq. (10). On the assumption that the
deflection curve has the form W = Wc[1 - (r/a) 2 ], we consult McLachlan (5) and find that

92 = 1/2, and gj is

g,' = F(I, 1, 1, b2') -{F( 4 , b2) + b2 [F 1, b2) F 2 ~, 2b2)]}.

Performing once again the necessary integrations, we find that the reaction pressure,
averaged over the surface area of the bilamellate disk, is

p(a,-) =j coWc Z'(a,co) (43a)

Z'(a') = P r[(ka) 2 + 64 kal . (43b)

It may be concluded that a change in the mode of support has altered the pressure
distribution in a minor way only, assuming, as has been done, that the deflection curve is
parabolic in both conditions of support. Equations (43a) and (43b) lead directly, in con-
junction with Eq. (13), to the equation of motion (steady state):

-
4  W - cowr Z'(a, co)

1 D*

Although Eq. (14), with W, replaced by W,, is a general solution of the differential
equation, the boundary conditions noted in the introduction to this section of the analysis
require that 13 and 8 be zero. Our general solution to Eq. (44) is therefore

W(r,co) = aJ 0(klr) + yI 0 (k 1 r) - j WZ'(aco) W(.
D* k 4  (45)

1

The two conditions that determine a, y are

j ,Z' (a,co)W•
aJ 0 (kla) + ylo(kla) = D* kW

1

3 '631 E3
Cl, + 'A3 = 2 ZD k 2 h

1

Upon solving these simultaneously and substituting the results in Eq. (45), we obtain

i~ e 3 E3 [1 0 (kia) J 0 (k 1 r) - J 0(kla) 1 0 (k 1 r)]W~r,w) =J .A
2 Ecrzc()oD* k 2 h-L111

+ jcoZ'(a,co) Wc [A3'o(kir) A, A, 10(kir)]-jc Z' (a, 60)
D* k4  D* kA J 4  Wc

1 1
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where A' = A3 Jo(k 1 a) - A, Io(k 1 a) . (46)

From this, upon setting r = 0, we obtain

W- 3 e 3 1 E3  [Io(kla) - J 0 (kla)]
2 -ED1 k 2 h + jcoU'Z'(a,co) jCoZ'(a,w)(A 3 -A 1 )"(47)

11 A D* k+ - D* k4

1 1

The displacement W, according to Eq. (46), is parabolic to a first approximation in
the parameter kr. We have seen (Eq. 20) that for such a distribution of deflection, the
transduction ratio N for one plate of the disk is 7T 31 t. Under surface loads, however,
the transduction ratio diminishes, as may be seen from the following development. Let
the simply supported disk be subject to a static surface pressure p.. The charge accu-
mulating on one pair of plate electrodes is

fa Sr + St

Q = d 3 1 sa 2 27rr dr,

where

d31 is the electric displacement-stress "effective" piezo modulus

sr, at are the radial and tangential stresses induced in the disk by the load p,.

From the theory of thin plates, it may be found that

S r + s t 5 Pa [1 2 4 r 2]
2 t2 5 8

and
3 Yot 3Wc

Po 2 a4

Upon performing the required integration, we obtain

Q - 77Yot d31 We

4reT 3 1tWc

that is, the transduction ratio N for the (static) loaded state is 3/4 of the value predicted
by a parabolic deflection of the disk. When two plates are considered, the ratio, of
course, will be twice the value of one plate. The advantage of using two active plates is
thus clearly evident, since the coupling, power, pressure, etc., will all be improved.

Acoustic Power, Mechanical Reactive Power, Kinetic Energy,
Mechanical Resonant Frequency and Mechanical Q of a Simply
Supported Disk Whose Deflection Curve is Parabolic (Second
Order in r). Infinite Stiff Baffle Present.

An expression for the acoustic pressure in the far field rdistance R) due to a
baffled disk having a deflection curve of the form W = Wc[1 - (r/a) 2]" is given by
McLachlan (5):

NEEMENEi

20
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r,-)

2Pwa 2 Wc J 2(kla sin 9)

(kla sin 6)2 (48) -

A suitable integration over the spherical area of radius R of the product of the acous-
tic pressure and the particle velocity yields the peak acoustic power radiated. In symbols,

Pa =f Pa vdA -wJIf p 2 dA

. j .a4  2  ( kla sin sdn )L 8rr -W (k 1 a sin 0)4

Upon evaluating the definite integral, we obtain

M ________ (_1)2( 2+m) (ka) 2
m 2mm!

P ý 8i~~4j2' (1)"' (4 +2m)! 2________
a W C L~ m! (4 +nm)! (2+ M)! 2  (2m +i1)(2m -1)

=.0

or

Pa = 7T fw 4i k2+(9

We note that if ka << 1/2, the expression for peak acoustic power in the medium due
to a flexible simply supported disk is the same as for a centrally supported disk, both
having parabolic velocity distribution and both having equal maximum displacements.

To terms of first order in ka, the reactive pressure on the surface of the disk is

pi = i pwcwc i(ka) gj .

The magnitude of reactive power in the medium (P.) is therefore
I

P. = jco273a3Pwj f g (I-b 2 ) bdb
0

or
24 8  a (50)

The mechanical reactive power of the medium whose expression has just been
derived is due entirely to the inertial effect of the medium. If the motion of each ele-
mentary volume of adjacent liquid is referred to the peak velocity W,, we see that the
inertial mass added by the medium is pw a, (248/315). Since the kinetic energy of the
vibrating plate Tp is

Tp f PwCwW(ka) 27na2(1-b2)bdb
0

1 !n2 i2-6 7r 8p pt C

we conclude that the total effective mass of plate and water (M,) referred to the peak
velocity Wc is
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Mql = -1 7Ta ppt (I + ý3)

•, 3 (245'\ p,," P,,
77 315,• Pt 052 .ppt (51)

By thus increasing the effective mass of the plate, the liquid medium acts to reduce
the natural frequency of vibration in air o.' by the factor (1 + 3') ' An expression for

2 is obtainable from Eq. (46) by setting Z(a,&w) equal to zero and solving the secular
equation A' - 0 for the lowest root, excluding ka = 0. We obtain, for this lowest root, a
value ka R 2.252, from which we find that the grave resonant frequency of a liquid-loaded,
simply supported plate to be

= 1.468 t c'* (52)
a2P

CC

Since for equal maximum displacements (Wo = w,) the radiated acoustic power is the
same whether the disk is simply supported or centrally supported, and since for parabolic
displacements the kinetic energies of the unloaded plate are also identical, we see that the
temporal damping factor a, has the same form as in Eq. (30), with the exception that 8 is
replaced by /3' and WR is replaced by c. The mechanical Q, therefore, becomes

S- ) 113/2 ppCw (53)

where
-DCll

Cp PP =

Formulas Describing the Acoustic Performance of a Simply Supported
Ceramic Bilamellate, at Mechanical Resonance, Radiating Sound into a
Liquid Medium. Parabolic Deflection Curve Assumed, and Infinite
Baffle Present.

In this section the same reasoning and the same steps in derivation are applied as
was used in obtaining Eqs. (36) to (40), with the additional consideration, however, that
the transduction ratio N is, for the entire disk, 2X the value previously used. A first
result, employing N = 27TF 3 1 t, is the center velocity, W,. We obtain, for this key parameter,

1.85 e3, cwE3 (54)
p P

Similarly, using Eqs. (49) and (52) and this value for w,•, we derive the expression
for the acoustic power radiated

2
2 CwV 3  (55)P. = 11.65 e 3 1 'wC*2

As for the acoustic pressure, it is noted that when z << 1/2 the limit of J 2 (z)/z 2 is
1/8. Hence the resonant acoustic pressure in the far field (distance 'R) on the acoustic

22



axes has the same form as in Eq. (29b), with the exception that Wc replaces Wo and co.
replaces c. Substituting as before for w• and W,, we obtain

Cw V3 (6 -r

1Pi = 1.36 e 3 1  ,- V3
C'* R-

A procedure similar to that which led to Eq. (40) yields the resonant open-circuit
receiving response

S) 2 e 3 1 Cw

0.632 3w (57)

We observe here the same precaution in the application of Eq. (57) as was noted in

the application of Eq. (40), namely that this is the response from a single plate (of two

possible active plates) and that an infinite stiff baffle bounds the half space from which

the incoming signal takes its origin. In the absence of the baffle, the response will fall
to a value of one-half that noted above.

Conclusion

Equations (49), (52), (53), (54), (55), (56), and (57) constitute in their entirety a sum-
mary of the acoustic performance of a simply supported flexural bilamellate disk radiat-

ing sound into an infinite half space. All the limitations, precautions, etc., noted in the
discussion at the conclusion of the earlier derivations are applicable to these last results.

In particular, it is of importance to repeat the stipulation mentioned previously that all
material constants occurring in the formulas be determined by test upon an actual disk.
Substitutions from generalized data available in the literature may,.or may not, lead to
dependable results. And a final point: all power, pressure, and voltage response for-

mulas are based on assumed 100-percent energy conversion, no losses occurring on the
way. In actual practice, overall conversion efficiencies vary from 40 to 70 percent at
low electric drive (0.01 volt rms per mil of thickness) to 15 to 20 percent at high, elec-
tric drive (10 volts rr is per mil of thickness). In practice, too, the material constants

Z3 z and aD1 are lossy (i.e., are complex quantities) and are frequency sensitive. From
these remarks, the approximate nature of the derived equations may be surmised.
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Symbol

A

a

Cs

C 1 1 , C 1 2 , etc.

Cw

D

D3

e31

Ez, E3

f

1 , g 3 ' etc.

h

Jn(z), In(•),
Yn(z), Kn(z)

k

kj

kf

Mr

Me

N

P.

Pa

Pi

Q

Q%

LIST OF SYMBOLS

Definition

area in square meter

radius of plate (meter)

capacitance (farads) at constant strain

stiffness moduli (N/m2)

velocity of sound in water (m/sec)

stiffness constant, (N- in)

electric displacement (coul/m 2 )

piezo modulus

electric field (volt/m1 )

frequency (cps)

hypergeometric functions

half thickness of plate (m)

Bessel Functions of order n and argument z

wave number, (rn')

3 pp W 2/h2 Z!D1

coefficient of electromechanical coupling in flexural mode

radial bending moment per unit of length (Nm/n)

tangential bending moment per unit of length (Nm/r)

transduction ratio

acoustic power (watts)

real pressure

inertial reactive pressure

charge (coulombs)

mechanical Q

24
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LIST OF SYMBOLS (Continued)

Definition

Q,

R

r, 6, z

Si

S2

T,

T-2

V3

V

w

w

w, p

YE

0

z

z

a., 83, 7,

S
C3 3

P

NO

A

NOTE"

Symbol

25
I....'

F. C:

rTr

internal resisting shear per unit of circumferential length

distance in sound field (m)

polar coordinates

radial strain (m/m)

tangential strain (m/m)

radial stress (N/m2)

tangential stress (N/m2 )

applied voltage (volts)

velocity in meters per second

plate deflection in z direction as a function of time (m)

plate deflection in z direction as a function of frequency (m)

subscripts for water, plate

Young's modulus (N/m2)

acoustic impedance

ka

Ž,, • constants

dielectric constant at constant (i.e., zero) strain (farad/m)

1 or 2, depending upon backing plate of bilamellate

density (k./r 3 )

Poisson's ratio

angular frequency

special denominator in Eq. (16)

The MKS system is used throughout this paper.
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