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OPTIMAL RADAR DOPPLER PROCESSORS

1. INTRODUCTION

Many receivers in communications, radar, and sonar are essentially finite-memory
digital filters. In its canonical form, a finite-memory linear filter is equivalent to a trans-
versal filter, which is a tapped delay line whoge tap outputs are weighted and summed.
Therefore, optimization procedures for transversal filters would have wide use in com-
munications and detection systems.

One such application of the transversal filter is detection of moving targets by radar
systems in ground-clutter or sea-clutter backgrounds (Radar returns from stationary objects
are commonly referred to as clutter). This function is usually performed by the moving-
target indicator (MTI). The MTI, which is a special transversal filter, detects moving tar-
gets by sampling the doppler shifts of returns from fixed objects and moving targets (1).
The moving targets produce 2 doppler shift and are passed by the MTTI; returns from fixed
objects are filtered out. Theoretically the doppler filters used by MTI radars are relatively
simple in that they process a small number of returns, typically two to four. If modern
digital filtering technology (2) is used many more returns can be processed. Optimization
procedures for these more complex filters are needed to account for the effects of un-
known signal and clutter parameters. Because of the random nature of many types of
clutter returs, in this research clutter is treated as nonwhite noise,

Most of the work to date involving moving-target detection has been concerned with
developing a theoretical optimum and then showing that the performance of the simple
doppler filters in use is very close to the optimum. R. C. Emerson (3) has developed a
method for minimizing the response of a filter to clutter. An optimization procedure
developed by S. P. Applebaum (4) maximizes the signal-to-clutter ratio at the output of
such a filter when the doppler shift of the signal is known.

The method introduced in this report is based on an extension of the Applebaum
procedure and maximizes the signal-to-clutter ratio at the output of the filter when the
frequency or the doppler shift of the signal is unknown and the noise is nonwhite. The
investigation starts with a mathematical development of the optimization equations, using
the maximum-likelihood-ratio test. The optimal receiver structure depends on the
covariance functions of the signal and the noise, which are not usually known a priori.
In the second part of the investigation, this optimization procedure is applied to the MTI
problem to illustrate the improvements over conventional MTI. A generalized doppler
processor is developed by dividing the doppler space into regions and optimizing a
processor for each region. The results of these processors are compared with those of
conventional coherent integration filters (B). '

Manuscript submitted January 17, 1974
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2. OPTIMIZATION CRITERION
The maximum-likelihcod-ratic receiver processes the received data in such a way that
ratic
_ P(x]x =s+n)
Pixix = n}
is maximum. Where the received data vector is

— = ’_ 3 i =]
*y 8y Ry
Xg &y g
X= §= , and n= .
x s i
TN U] | N

P(x{x = s + n) is the conditional probability of receiving vector x when signal § is {rans-
mitted. P(x{x = n) is the conditional probability of receiving vector x when no signal is
present. When these probability distributions are Gaussian (that is when noise n has a
Gaussian distribution), maximizing the likelihood ratio corresponds to maximizing the
signal-fo-noise ratio.

The optimal transversal filter is one that maximizes the output signal-to-noise ratio,

The outpui signal and output noise refer to the squares at the absolute values of the signal
and the noise respectively. The expected value of the output signal is

Py = apMga, &)

where

M 5 1s the signal covariance matrix

a is the weight vector

T indicates the transpose of the vector

(*) indicates the complex conjugate of the vector.
The expected value of the ouiput noise is
Py =a.M NE
where M,; is the noise covariance matrix. When the expected value of the input signal

and the expected value of the input noise are normalized to unity, the improvement in
signal-to-noise ratio for a transversal filter can be defined as
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I,= — - (2)

The goal of this research was to find weight vectors a that maximize the improvement
factor Isln when received signal s has an unknown doppler shift.

2.1. Single Filter (MTI)

The conventional MTI is designed to detect moving targets with no a priori knowledge
of the doppler shift of the target refurn. A single output is used to detect all such targets.

If no prior knowledge of the signal doppler shift can be assumed, this uncertainty is
maximized by giving the doppler shift equal probability of having any value within the
analyzing bandwidth. The analyzing bandwidth for a transversal filter is shown in Appen-
dix A to be (0, 1/T), where T is the delay of each delay line (Fig. 1). Therefore, the
probability density function for doppler frequency fy is

T, 0< Iy < %
P(f;)=
0, otherwise.
x(nT) T

y(nT)

Fig. 1 — An n-stage, or n-canceler, MTI

The signal covariance matrix for this class of signals can be found by using#

N
x(t) = e/2lalt-ta) Z 8(t - nt - t;)
n=0

which can be written as a column vector,

*As derived in Appendix A (Eq. (A17)),
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where

x; = exp [2nf,(i - DT]. {3}

Equation (3) is the ith sample of the input function of time defined by Eq. (Al7). Itis
complex because Eq. {A17) is complex i.e., it is a function not of a real frequency but of
a frequency shift. With the demodulation procedure outlined in Appendix A, negative as
well as positive frequency shifts can be detected. Therefore, if the carrier frequency is
removed and the doppler shift is considered as a real frequency, complex signais and com-
plex autocorrelation functions will result in practical applications. A further result of this
is that if the mean square of the absolute value of this signal is considered as the power
spectrum this “power spectrum” may not be symmetrical with respect to the “zero-
frequency” axis.

Assuming stationarity and ergodicity, we find the element (i, k) of the covariance
matrix by taking the expected value with respect to the unknown doppler shift,

E{xtac;:} = j. exp [2faf (i - R)T] P(f 3)df g

where P(f,;) is given above.

It follows that

sin w{i - k)
(i - k)

m; ) = exp Limli - &)) 4)

fori=1,2, ... Nandk =1, 2, ..., N.

From Eq. (4},
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where [ is the identity matrix., The improvement factor is found by substituting Eq. (5)
into Eq. (2): .
4.8
T
= —— ©)
apM,a

Maximizing Eq. (86) is equivalent to minimizing
— * !
Py =apMya,

where Py, is the output noise power. This has been shown (3) to be minimum when
weight vector a is chosen to be the eigenvector that results in the smallest eigenvalue of
M,;. The improvement in signal-to-noise ratio is given by the reciprocal of this eigenvalue.
2.2, Multiple Filters

It has been shown (5) that N independent filters can be generated with N samples of
the input data. By dividing the analyzing bandwidth (0, 1/7) into N equal intervals, a
filter can be designed to detect optimally a signal in each interval. In this way, the entire
analyzing bandwidth can be covered, but the sigrial for a particular filter can be assumed
to have equal probability of occurring anywhere within the interval covered by that filter
instead of anywhere within the analyzing bandwidth. This additional information on the
signal can be used to improve the detectability of the signal. The goal is to find the
weight vector to maximize Eq. (2) for a signal whose doppler shift is known to fall into
an interval ((2m - 1)/2NT, (2m + 1)/2NT), m=0,1,...,N - 1.

Derivation of Optimal Weight Vector—The optimal weights are given by the vector
A that maximizes Eq. (2):

a,.M.a"
! Mg

sin = *
aTMNa

To find the desired vector, the following definitions will be used:
P *
Mg =W.MW (7)
o *
My =WoMyW", (8)
Further, matrix W will be defined in such a way that
M;\I =I. 9
Rewriting Eq. (7) yields
Mg = (Wp) Mg (w™y L. (10)
Rewriting Eq. (8) and making use of Eq. (9) results is

My = (W)t (W)™ (11)

5
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Substituting Ews. (10} and (11) into Eg. (2), we have

a, (W) ML (W™ 'a"

sin

ap (W (W) 'a”

Define a vector f as

f=wla {12)
Then
] t 3
i oM
I
which can be written as
7 %
L, =fpMf {18)
{112 = £.6 =1, (14)

Equation {13) is maximized when f is chosen to be the eigenvector that resulis in the
largest eigenvalue of M.

Thus, it has been shown that the optimum weight, when the doppler shift is known
to be within some interval of values, is

8, = Wi (15)

where W is defined by
wiw, =M ;} (18)
and f is the eigenvector that produces the largest eigenvalue of w .M Sw*.

Signal Covariance Matrix—The signal covariance matrix can be derived in a way
similar to that used when the doppler shift is assumed to be completely unknown. The
difference is that for this case the signal is assumed to have equal probability of occurring
anywhere within a region ({2n - 1}/2NT, (2rn + 1}j2NT), n = 0, 1,.,N -1, where T is
the delay of each delay line and # is an index used to select the region of the analyzing
bandwidth {0, 1/T) for this filter. Therefore, the probability density function for the
doppler frequency [, is

N S <<
a, otherwise.
6
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This leads to the element (i, #) of the signal covariance matrix,

sin [ﬂ——gir}k )}

(i - k) a7
B

i2rn(i - k)
My = exp N

fori=1,2,..,.N
R=1,2 ..,N
n=0,1,...,.N-1.

If Eq. (17) is used, the signal covariance matrix for a signal whose doppler shift is
known to be within the interval ((2n - 1)/2NT, (2n + 1)/2NT) can be generated. Then,
Egs. (15) and (18), we can compute the optimal weight vector. For the case where Mer
does not exist, the determinant of M n Is zero, which implies that at least one eigenvalue
of M), is zero. The optimum weight vector for this case is the eigenvector that produces
one of the zero eigenvalues of M N

3. OPTIMAL RADAR MTI PROCESSORS

The optimization procedures developed in the preceding section can be applied to
the detection of moving targets by a radar system. The doppler shift of the returmns from
moving targets are unknown in general. Therefore, they are usually assumed to have equal
probability of occurring anywhere. For this reason, the detection system must be
optimized to detect a target that has any doppler shift within the analyzing bandwidth of
the radar (0, 1/T), where 1/T is the pulse repetition frequency (PRF),

3.1. Conventional MTI

The conventional MTI canceler delays the returns of a given transmitted pulse and
subtracts them from the returns of the next transmitted pulse. A number of cancelers n
cascaded as shown in Fig. 2 are equivalent to an (n + 1)-sample transversal filter with
weights corresponding to the nth-degree binomial coefficients with alternating signs. The
power transfer functions for these filters can be computed using P = aMa®™ with weight
vector a given by the binomial coefficients with alternating signs and the covariance matrix
given by

m; p = cos 2nfy(k - )T.

The results are shown in Fig. 3 for n = 1 through n = 7. These curves are normalized by
dividing the gain by the maximum gain

n+l 2

Gmax= Z Iai[ ’ (18)

where & are the binomial weights.
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DELAY DEL AY DELAY
- 1 — 2 — n

21} >——— e e e —

Fig. 2 — An n-stage, or n-canceler, MTI
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Fig. 3—Normalized power transfer function P, for an MTI having the
indicated number of cancelers

The improvement in signal-to-noise ratio can be computed using Eq. (2). Weight
vector a represents the binomial weights. Since the doppler shift is considered to have
equal probability of assuming any value, signal covariance matrix My was shown to be the
indentity matrix. If remains only to define the clutter {noise) covariance matrix My in
order to evaluate Eq. (2).

In a typical clutter environment, the clutter energy received by the radar is made up
of the returns from a large number of scatterers within a resolution cell of the radar.
This resolution cell is determined by the antenna pattern and the transmitted pulse width.
The scatterers are randomly distributed within the resolution cell, and they generally have
random internal motion such as the fluttering of leaves on trees or falling raindrops.
Therefore, the clutter must be described as a random variable.

To design an optimum detection system, both the probability distribution of the clut-
ter amplitude statistics and the clutter spectral shape must be known. Nathanson and Reilly
(6) have considered the effects of clutter statistics on radar performance and have shown
that current knowledge does not allow an optimal detection criterion to be specified a priori.
With this dilemma, one is naturally led to adaptive techniques in which critical clutler param-

sters are estimated and the receiver characteristics are adjusted accordingly.

8
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When the clutter return in each resolution cell is due to many statistically independ-
ent scatterers, it follows from the central limit theorem that this clutter can be described
by a Gaussian amplitude distribution. This model is representative of many types of
clutter, such as rain, forests, and sea returns, and is assumed to apply for this optimization.
The distribution of the doppler shift of clutter has been found to be highly dependent on
the type of clutter and on weather conditions, particularly wind.

In prior analyses of MTI systems, a Gaussian distribution of the clutter doppler shift
was used to evaluate the performance of the MTI system. For this reason, a Gaussian
distribution will be used to compare the performance of MTI systems using prior theory
with the performance of the optimal processor developed as a part of this research. The
model for this doppler shift is

3 (19)

[+

~(fy - 1,)?
P.(fy) = Co €xp | ———
20

where 4, and ¢ . represent the mean and variance of this distribution and C‘0 is the energy
level. The Foruier transform of Eq. (19) is

Y(7) = 0,Cy+/27 exp(- 2n%0 272 -j2my, 7). (20)
Since the receiver design is not affected by Cy, let
1
Cy=

O’C\/_z—‘ﬂ' ‘
Therefore, element (i, k) of M . 18
m; y = exp[- 21202 (i - k)2T2 - jomu (i - k)T]. (21)

With Eq. (21), all the terms of Eq. (2) are defined, and the improvement factor for a
conventional MTI with binomial weights can be computed. The results are shown in Fig.
4 for u, = 0 and 0.001 < 0,7 < 0.1 where 1/T is the PRF. The mean has been set equal
to zero for this comparison, although many types of clutter do not have a zero-mean
doppler shift, in particular clutter from clouds and rainfall or that received when the radar
is on a moving platform. If this nonzero mean is not taken into account, a smaller im-
provement factor results. These effects will be considered further in a later report.

3.2. Optimal MTI

The procedure for deriving the optimal MTI weights was developed in Sec. 2. It was
shown that when any value for the doppler shift is equally probably, the optimum weights
are given by the eigenvector that produces the smallest eigenvalue of M n- The improve-
ment factor is the reciprocal of that eigenvalue.

If Eq. (21} is used to generate M N the improvement factor for the optimal MTI is
shown in Fig. 5 for N = 1 through N = 4, where N is the number of cancelers. For
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comparison, the dotted curves represent the improvement factor for the conventional
binomial MTI. The corresponding eigenvectors (optimum weights) are tabulated in Ap-
pendix B for N = 2 through 4. A single canceler (N = 1) is optimized with weights (1, -1)
for all values of ¢,T. These are the binomial coefficients with alternating signs for N = 1.
In general, the binomial weights are

g, =(-1®), i=0,1,.,N. (22)
For a double canceler (N = 2), the binomial weights can be normalized to
a=(-0.5,1.0,-0.5)= —é— (-1,2,-1).
The normalized binomial weights for N = 3 and 4 are
a=(-.333,1.0,-1.0,0.333) = % (-1,3,-3,1)
and
a=(0.1667, - 0.6667, 1.0, - 0.6667, 0.1667) = —é— (1,-4,6,-4,1).

If the clutter spectrum is very narrow (i.e., ¢,T — 0), the optimum weights are very
nearly equal to the binomial weights.* However, the small differences between these
optimum weights and the binomial weights result in an appreciable increase of the im-
provement factor. From this it can be concluded that the accuracy of the weights be-
comes very critical if the achievable improvement factor is large.

The transition of the optimum weights as the spectral width of the clutter doppler
shift increases is shown in Fig. 6 for N = 3, This is typical of the results for other values
of N. The absolute value of the weights toward the end of the transversal filter (a; and
@y ), in general, increases as the width of the clutter spectrum increases. This results in a
filter transfer characteristic that has a narrower main lobe and higher side lobes, as shown
in Fig. 7. The dotted curve is the binomial weighted filter with no sidelobes, which is
shown for comparison with the optimal filter for a wide clutter spectrum (0.7 = 0.5).
The appearance of side lobes for these filters is revealed by careful examination of the
filter characteristics near zero doppler shift.

When the signal doppler shift is considered to have equal probability of any value, it
has been shown that the signal covariance matrix is the identity matrix. As the clutter
spectrum width ¢, is increased, the clutter approaches the characteristics of white noise
in that the clutter covariance matrix approaches the identify matrix. For this case, it is
seen from Eq. (2) that the improvement factor approaches unity (0 dB) regardless of the
weights, Therefore, the accuracy of the optimum weight is less critical for a very wide
clutter spectrum and a small maximum achievable improvement factor. This is shown in
Fig. 8, where the clutter spectral width 0. T is increased to 0.5.

In summary, this optimization procedure results in a significant additional improve-
ment in signal-to-clutter ratio when (a) more than two pulses (N > 1) are processed, (b)
the clutter spectrum is narrow, and (c) the filter weights are accurate, as tabulated in

*This can be seen in Appendix B, tables B1, B2, and B3, for small values of o.T.

11

L —




G. A. ANDREWS, JR.

aed Areardewn o) equdsazded X
‘myyFram xeqduwod sy Jo 1red [wd oY) syuaseadat () "L slesued-aidin € 103 syyFem wnwpdO—g Bid
. &)
54] .
S g a;,.wm 2015 WO L3345 H411073 A B / A3 cOLS WNELI3S 4311077

oY 90 ¢ o
1 ; | oo Igatdots | :_:.wmﬁvuﬁz u‘ﬁ,, NETITILTITFRITTENRE PR D B Ll
ML e L 5

i [ | b . _

_ I | v : !

' - ,

i e -

i ; ,
- ' S I T I U A R G ol 2 B 1 ,
i | :
] ﬂ i
E - ; m =
gee ...ﬂémﬁﬁér?f ; 6D © , _,

1 . I ot -] :
] ! B B i G -G e W ” 7 ﬂ . h
] ! ! , , :
, E | 5
1 ) _ 2
1 , 7. “.G = P o e 8y 3t ot A e x..»JuD
. Aot _a:u T VN S - e i 2 * 5 m , & :
] : = (=} 4 ' | i C
| R
] } y T ] | s
; ,T M ] i i H W i 90
_ CAUNN = - _ " T
! T " i . !

41 - | ,
E _ L i ! 7
1 5 hgows - 2 a3
[ I - ? 3 i
] | C | ; |
| | , _ . |
i i , ) L
E ! Lo _ . B
- [ g 43“31“1_._!".' T I kil | m .

"
3
s}

© g WRluy o A0 POLw WO 3P4

()
(9) X , o
JHg HECEY A AT SOLS WNELJAJME W30

1 U

- AJuo_ it L L Pl o -
) ...pr_.:!« - i ot

\@ -

H

L -

2 3 @ 7 -

1 L d .

4 C :

- I

1 [ = - 2 [T (R NV, L1 «4|l¢|!l 0-
Tt - 45 G : . |

y - Z |

; - H

# L 1_.. i3-S ” " 2 k= . ﬁ _—

- _ . . |

| [ = t?m.ﬂxw\e.?mfwr@r r

| r i
| IR 5 ! —& 8]
; T : |

L, P |

Al t 4 - mm—— IM _

4 [ i

__ A I . "~
ok ; ! ik J,I Do T Y TR
y e ke T L .

SON LHERTIM WIWT L0

=

MWW LD

0N LRUT:

i

12




NRL REPORT 7727

Y P O PP P P, P P 1N, PR A
E - 'UREE
3 =gl v-Ein_g ; l-:
E = SETo
= /ﬁ m B
E 24 TESE
E yzc' ~gg L
3 f/ L 2B g
3 = b E =
E ES & =N
3 o g = o gk
3 vt E @ ]
3 e il Fe 2 H q, ;0: 8
3 « FS o 3.8 e
ER Ex S - Ed g o
5/ Eg En li: _ = = ]
N o 2 Bt
ERE E“'\ EE ] T e
3 o - < o
3 h“*-‘-—._.* E oo b e
3 T"r‘:\“\ = 53 BE
B — e o = 3] I
E ] ES B 25 e
= « “‘*\‘\\\g- g © =3
E E NE o 95
3 3; \éa o 2 ﬁ £
3 28 3 S 2EL
k| a E— et
3 g' S L8y
3 = =
= mm o T Fo g=g%
L I & ] o | Hi \l||ll‘l‘)lllliHI':’) I Il\:.:lllllllr_) I If\| \‘Hl‘lnl‘llll\\l(iD E u "U
3 d d &8 & 38 3 3 o | s 8 E
@ =
NIBD WAL “XHWNTED 9] s -~ §u3
. O E =]
IS
hoovo

| gl vlysbie vl donbnad b bl 1 _.mhm FTYCY FEETURTET| YY1 FERTY YT CYPUINT) YT (YPRUCTTTA YT OOR) Ly ....I|..._
3 Eor
E E =
E / E Fo
E = E E=
E f/ e 3 A
] Az 93 2 sk
E L= - 3 I sy -
— = = 1 E
3 e s é E )”‘,._ﬂ E o é
iy S g TR Tl
:/ = - L E _'5 E HEY
E [ s 2 3 of ES &
E 3t S 3 - : wil, S 2 o
N :’,‘[4 G ER 5[ - C)
— 3 - ; =y =
3 e ‘ = 3 R E Y
e £ : R =
3 “\% 8 E ~NES 3
= = o E-
3 5 P 3 £ \\zmﬂ
E 3 ] 3 =LY 3
= 2 g E 5 E
E 3 & 3 §“‘ F
E £* E E 13
E H 3 E 3
= T i T |“ILIBI"|"" IlIIIIl” |||I'III4 lIIIIIIII \IIII!III IHIIIIII:;3 -Ill‘i”" ""i"" ‘lllllll_l.lﬂrlllll Illwrlll IIIIIJHiIHlIIlH illllllll T T T —Q
tal [+}3 2o} - w X [3¢] N - @ - : 03“ T ; U.’z 3 -: 'l) f:l f: [

d 6 & &8 4 & 8 8 & o 08 & & d & 3 &8 4
NIHO H3LS “XEW/NIET H3LT14 NIHD H3LTI4 “XHW/NTHO Y3104

13




G. A. ANDREWS, JR. :
sqaaland WWW}JII}JJH INRTTTITAITEE

1064 s, 13- ol

ENGRER 3

EREN - 3

ERER \ E-

8 g ‘-h'! =3 \‘\\ ;

& 3 AN E

=] 703 2o Pe E

3 -~ . =

= ~ \\’\ E

th:) 5{;5::‘\'\ \ “uds E

o 3 T “‘\ '\‘\ 3

= S = ~ E-

& o3 Nk SR 2

5 RS NN =

Lyl 3 A -

2 and T2 ;\t\ b E

a E e SE “::\ MY E

= — -5 ‘\ B

— 265 \‘\ S ;‘\\\*'\ E

3 ~ ! N

_:: ""-.__‘--......____ \\h“‘\\ 3

105 b ] P 2 E
P e T Y T T T T m mmmmw-mﬂﬁﬁ1il

0.005 G, 05 25

CLUTTER SPECTRUM STB. DEY= / RRDRR PRF

Fig. 8 — MTI improvement factor, optimum weights solid curves,
binomtial weights broken curves. N = number of cancelers,

Appendix B. If the standard deviation of the clutier specirum is 0.01 times the PRF,
Fig. 5 shows that the additional improvement factor achievable with optimum weights is
about 2 dB for a double canceler (¥ = 2), 3.5 dB for N = 3, and 5 dB for N = 4. Al-
though the weights must be accurate, Fig. 6 shows that they change very slowly as the
width of the clutter spectrum is changed. Therefore, if the approximate width of the
clutter spectrum is known for a given application, the optimum weights can be computed
and adaptation can be avoided.

4. GENERALIZED N-PORT DOPPLER PROCESSORS

In the preceding section an MTI was optimized for detecting a signal whose doppler
shift is given equal probability of having any value. It was shown {Fig. 8) that using the
“hest” weights gives significantly befter resulfs than using binomial weights if the retumns
from a large number of pulses are processed. However, when the clutter spectrum be-
comes very wide, the improvement in signal-to-clutier ratio of the optimal MTI, as well
as the binomial MTI, approaches 0 dB, as shown in Fig. 8.

The improvement in signal-to-noise ratio of both the optimal and the binomial MTI
filters with a signal-plus-white-noise input is also 0 dB. This can be seen by referring to
Eq. (2) and remembering that the covariance matrix of white noise is the identity matrix,
and the covariance matrix of a signal whose doppler shift is unknown is also the identity
matrix. Therefore, the improvement factor is unity (0 dB) regardiess of the weights used.

In a realistic radar system, the receiver must contend with both clutter and white
noise produced in the input stage of the receiver. To cope with clutter-plus-noise inter-
ference, the doppler filters are generalized fo form N independent doppler filters from N
samples of the input data. Each filter covers a fraction {1/NT) of the analyzing bandwidth

14
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(0, 1/T). In this way the entire spectrum is covered, but each filter is optimized only for
the region to which it is assigned.

4.1. Interference Model for Clutter Plus Noise

To derive a model for clutter plus noise, it is assumed that (a) the total energy of the
interference, which includes clutter plus noise, is normalized to unity, (b) the clutter has a
Gaussian spectrum, (c¢) the noise has a “white” frequency spectrum, and (d) the clutter
and noise both have Gaussian amplitude probability density functions.

Let E. represent the power of the Gaussian spectrum and E w represent the power
of the “white’ spectrum. Then

Eg+ Ey =1

and the total interference spéctral density is

o LBy (F - 1,)? 1

where U . and 0, are the mean and variance of the Gaussian spectrum and
0,7<0
u(f) =
1,7f>0.
The total energy of the interference is found by integrating Eq. (23):

J Py(f)df = 1.

—oo

The Fourier transform of Eq. (23) is

sm(%—)

- 2.2.2

w(r)w(l-EW}exp(—mr ;T —J27rucr)+EW (m_) ex
T

Mg = (1 - By) expl- 20262 (i - &)2T2 — j2mp (i - k)T

) w

The element (i, k) of the covariance matrix is

sin m(i - k)

+E, —— "
V' ri-k)

explim(i - k)],
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which ecan be rewritien as

m, , = (1 - Ey) exp[- on202(i - k)2T2 - j2mp, (i - )T} + By 8G - k) (25)
where
1, i=k
Si-k)=
0, i+k.

4.2. Effect of White Noise on Optimal MTI

It Eg. (25) is used, the interference covariance matrix M; can be generated. I Eq.
(25) is compared with Eq. {21), it can be seen that M; is

M, = (1 - Ey)Mg + Eyl (26)

where M, is the covariance matrix of the Gaussian clutter spectriim. Identity matrix I is
the covariance matrix of the white spectrum. It has been shown that the optimum weight
vector for an MTI is the eigenvector that gives the smallest eigenvatue of M;. To find this
weight vector, the eigenvalues and eigenvectors of M; will be calculated from the eigen-
values and eigenvectors of M.

The eigenvalue equation for M; is

M= A 27)
where u is an eigenvector of M, and A; is an eigenvalue. If Eq. (26) is used,
{(1 -EpM, +Epliu= A,

which can be rewriffen as

Mou 1 &, U= ?\Cu {28)
where
A - E
N T Ew
?\ﬁ 1 -EW {28}

Since Eq. (28) is the eigenvalue equation for M, it follows that M, and My have the same
eigenvectors. The eigenvalues are related by Eq. {(29).

The eigenvalues of M, are found by rewriting Eq. {29) as
Ar=(1 Byt Ey. 30)

When Ay is a minimum, A, is also a minimum. Therefore, the eigenvector that produces
the minimum eigenvalue of M also produces the minimum eigenvalue of MI'

16
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In summary, the optimum weight vector for a Gaussian clutter spectrum is also the
optimum weight vector when a white spectrum is added to the Gaussian spectrum. The
improvement in signal-to-noise ratio for the optimal MTI is given by the reciprocal of the
minimum eigenvalue of the interference covariance matrix,

: 1

n = O\I)min’

where s'/n is the improvement factor for a Gaussian spectrum plus a white spectrum. If
Eq. (30) is used,

1 (1 -Ey)
I I

sin sin

+ Ey, _ (31)

where I s/n 18 the improvement factor for a Gaussian spectrum only. Equation (31) shows
that the improvement factor for the optimal MTI when white noise is added is related

only to the amount of white noise Ey, and the improvement factor for a Gaussian spectrum
I s/ Ihe eigenvectors, or optimum weights, are not affected. This means that the deg-
radation of both the conventional and optimal MTI by white noise can be expressed by

Eq. (31), which is plotted in Fig. 9.

70
Ey =078
ol w
Ew=10"8
50t w
Ew=l0"4
a0}
Il
e o Ew=l0"3
30— 6@
Ew=10"2
T /
Eg=l0!
10
Ew' 0-5
0 | ] ! | | 1
(e} ) 20 30 40 50 60
Iun

Fig. 9 — Effect of white noise on the improvement factor of
both the optimum and the binomiai ML I In is the improve-
ment factor if the interference is clutter alone. I;‘/ﬂ is the
improvement factor for clutter plus noise. Eyy is the fraction
of the interference that is white noise.
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Figure 9 shows that when /_ becomes very large, I;/n is determined (and limited) by
Ey. Under this condition, the achievable improvement in signal-to-noise ratio cannot be
increased by processing move samples (increasing V), which would increase Fj sin but would
not increase {;fﬁ.

Ism is also increased by decreasing clutter spectrum width o,. However, when [
becomes very large, I; is limited by the white noise energy E.. This is shown in Fig.
10 for N = 2 through N = 4.

i

4.3. Optimization of the N-Port Doppler Processor

To improve the performance for wide clutter spectra and white noise, a contiguous
bank of N filters is formed by applying N independent weight vectors to the N sample
input. Each filter is optimized to cover a portion of the analyzing bandwidth. The
optimum weights are specified in this section and the performance of these filters are
Hlustrated.

The optimum weight vectors for signals whose doppler shift is known to be within a
bounded region was considered in the second section, where the optimum weights are

8,0 = WE. (32)
The Matrix W is defined by
WWy = My (33)
Vector f is the eigenvector associated with the largest eigenvalue of M,
where
[ *
MY = WiMgW. (34)

Performance Against Clutter With Gaussion Spectrum—As shown above, the optimum
weights and the improvement factor can be found if the covariance matrix of clutter M
and the covariance matrix of the signal M_ are known. Equation {21) can be used to
generate the covariance matrix for a Gaussian clutter spectrum. Equation (17) can be
used to generate the covariance matrix for a signal whose doppler has a uniform probability
distribution within the region ((2n - 1)/2NT, (2n + 1)/2NT), n =0, 1, .., N.

If Egs. {17) and (21) are used to generate Mg and M _, the optimum weights and the
improvement faclor are found for N = 2 through ¥ = 5. The results are shown in Fig. il
for g, = 0 and 0.005 <g,T<05. TheN filters are shown by the solid curves graph,
the filters are numbered starting with the one at zero frequency. The average improve-
ment factor for all N filters are shown by the dotted curves. Since the solid curves
represent the average improvement factor for a doppler shift with uniform probability
distribution within the region of the filter, and since the entire analyzing bandwidth (0,
1/T) is covered by the N filters, the dotted curves represent the average improvement
factor for a doppler shift with a uniform disiribution over the analyzing bandwidih.




NRL REPORT 7727

q : =1 =
! 23
] : 58
g+
E -+
E O @
E & H
E [V -2y
é : ; 52
. - : o
] i g § =
x =
] : = )
] o v
E I ~ F &
e 7 . e s
3 i e B E
B 3 = =
E| " v g
E Al EE & ¢ =T
E ! // ES = a9
S 853
E . 2 ] o E Q
E H T @ Q =
: o9 &M g
E / £ £ 2,5
3 E S
3 £ v E‘ bt
E : E o~ g B A
1 ; T ) ==
E i E = = o @
E E 3 ~
] : E 3 EFgw
] ' F o 4y o=
7 — Q E gB
= PR =
E A A o [T
.7 5 o] gy
3 Ff i T I 2o
E i ES Moo g
Pl ‘1“('_'.\ il CJ“ | d) T \\alllllliaww T il T H\::IIllllllch\HIEI i) L_j | .E. T
o (o)) a o~ w wl T L] o - ~
= o E
A0 H0LI64 LNIWIADHAH] b U
- "E
[EA= =
hbuounlinedsndaly o ool bbb g 40
(=] - ' i
b sl G el oD bl 22
i ! ;! i~
£ E ; ! T
E 2 f ! E
E E i ' i E
3 E o E ; 3
E E & 3 | f [ E
— E 3 =
3 E s = r &
3 F 3 : ! Eo©
- @€ > -
h r @ 7 ! - °E
=g I T ] - T
3- i o 1 - &
E =2 = ] = ~
3 o E
ER ] E [} 2 E E a —
3 i W 3 2 >
E 7 B El - = B
2 = 3 = o =
I R 3 “Ein
a, 3 =] @
= Y 3 E
E =] o E ES & -4
E 2 2 E FO » ~
E - E 3
3 I = 2 L
E S —45 £ 5
3 E w o E [ 4
B E o — E E w c
E P ol R
: v = ; T e 3
1 . oo 1 s
4 L 1 E3
= 1z ] / a
¥
. Fa -
o —
3 i I
_Em w d 1{! "fo a:o
UL LU L L] W L L) W L) U R E — = p=y
S%’ p l"‘i'--J w (3] - (3] % 2 é . i
d:I.llllll‘5m|| i “: "\:JTHTITI'I'E;JW‘ h{_;]
E e} w r~

[1a} 5 Es

(80) H0LJ4 INIWIADHGW]

(B0 "HOLDES LNZedn]

19




G. A. ANDREWS, JR., .

o

c)
J
|

131 i1 irFiTIvTIviing iﬁmiﬁ'iiﬁfﬂ&;ﬂii RTSur, i § 3 ftd i 444 13 HH’%W

llII

pakl

uy
o9}

1Il]IH

[@2]
.l
1

a
b

1L

h
(ew]
i

)
)

s
faw)

/hm Ll
: L]
-
o
Ind
=
.

3. Avarangd

ol
G
TN
3

AL
-y

& :t-;\__ ‘-"‘-1__
LETN

\_-h— ~u]

H

IMPROVEMENT FACTOR (DR
‘llll

Illll
=1

L
EJIIIlIHtJ:IHHI‘!IHq)

g
e

T84T opt MTH

i e P
T T J!IJ]IiJlI\]I\l] TITATI TERAR] DALk AL TH 3 i3 11117 88814%5)

0. 05

1 IE]III ”TI]T\“ |HIIIH1 lllll\ili FlllIH” [nl]”” ””{ll” ||H|Il|1 III?IHI[ IIII!IIIII

”/d,f_ o

[

&

-
C}%
by
I

CLUTTER SPECTRUM $70. OEY. / BRDAR PHE

{a)} Two-port processor

e pammn ...‘..M_{_LLLLMJ;JHM! SEIE T SRR AT ]W IR ERUNAR FEESIEk:H] Tiﬂﬁﬁ{ijﬁmﬂ}__
= -
2 £~
& E £
[ 58‘5 E
L3 = =
< 3 E
w 505 —— E-
= 3 B
=. = L E

= AVETAEE =

s E| pA E
E l%G: -t_.‘ 3
S riiterjil = -2 =

= = =l B gy =
3 P % £
g_’: U3 5 E
~n g * 4

253 \ = =

—=j By =

3 . '*-H vptimgn MTI3 =

iﬁ: . L =

= ~ - oy =

= L1 |3~ ¥ E

G a3 T T T T T T T T g T IRERERREaseeristl el i i
0,005 0:-0% -5

CLUTTER SPECTRUM STD. OEY. / RADAR PRF

{b) Three-port processor
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21




G. A. ANDREWS, JR.

For comparison, the improvement factors using the optimum weighls derived for the
MTI are shown by dotted curves in Fig. 11. The improvement factor for the optimal MTI
and the average improvement factor for the N-port doppler processor coincide until the
chutter spectrum becomes very wide. The reason for this can be understood by examining
Fig. 12, which shows the optimum weights of each filter for a two-pulse processor N =12
The [J curves are the real parts of the weights and the X curves are the imaginary parts.
Both filters have weights of (1, - 1) until the clutter spectrum becomes very wide {&,T >
 0.15). Therefore, since both filters have the same weights, only one is needed for o, T <
0.15. That one filter has the same weights as the optimum MTI for N = 2. It follows
that the improvement factor would be the same in each case.

When ¢,7 > 0.15, the weights on filter 1 become (1, 1). At this point the two fil-
ters are different, so that two filters are needed and the improvement factor is greater
than for the optimum MTI, as was seen in Fig. 11. The fransfer characteristics of the iwo
filters are shown in Fig. 18. The O curve represents the optimum Z-pulse MTI. The &
and X curves represent the 2-port processor for ¢ T > 0.15.

The optimum weights for the four filters of a 4-port processor are shown in Figs.
14-17. When the clutter spectrum is narrow {¢,T < 0.05}), the optimum weights of all
four filters are identical and they are the same as the optimal weights of the optimal 4-
pulse MTI. Therefore, again, only one filter is needed for narrow clutter spectra, and
that filter is the optimal MTL

An N-point discrete Fourier transform {DFT) is given by

a,, = exp {—jiﬂﬂ' (”_'iiﬁﬂ . mk1,2,.,N

This operation corresponds to N contiguous filfers. For N = 2, the DFT weights for the
two filters f, and f, are

f, (1, 1)
and
fa > (1, -1}

These weights correspond to those of the optimal 2-port processor for a wide clutter
spectrum. For N = 4, the DFT weights for the four filters are

f,~(1,1,1,1)
fg - {fs 1: _j; "1}
fg - (_11 11 _15 1)
f4 - {_ja 1:j= _1}'
These weights are similar to those of the optimal 4-port processor for a wide clutier
spectrum. The optimal 4-port weights are modified by a “window” (0.83, 1, 1, 0.83).
# is well known that the optimal window is uniform (1, 1, 1, 1) when the noise is white.

When the clutter spectrum is very wide, the optimal N-port processor is very close to an
Nopoint DFT.
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In summary, the optimal N -port processor is a single filter (i.e., the optimal MTI)
when the clutter spectrum is narrow and approaches an N-point DFT when it is wide, In
the transition region, the improvement factor is very low (Fig. 11), and the weights may
change drastically for small changes in the width of the clutter (Figs. 14-17). However,
the filter gain changes very slowly in this region (Fig. 11), and this implies that the values
of the weights are not critical in this region.

The filter transfer characteristics of three of the four filters of the 4-port processor
are shown in Fig. 18. The O curves represent the filters when the clutter is narrow
(0,T = 0.005). All four filters are the same for this condition and all four are also the
same as the 4-pulse optimal MTI (Fig. 3). Not all of the filters have maxima in their
detection regions when the clutter is narrow, as one might expect.

The X curves represent the optimal filters when the clutter is wide (0.T > 0.5).
Notice that each is very close to a (sin x)x shape, the shape a DFT would have. The
peak of each filter is centered in the detection region for this case.

Similar curves of the filter shapes for N=3 and N = § are shown in Appendic C.

Performance Against Clutter Piys White Noise—Tt was shown above that the optimal
MTI does not improve the signal-to-white-noise ratio, Thus, the MTI improvement factor
becomes limited by the white noise (Fig. 10), and processing more pulses or reducing the
clutter spectral width 0.T does not lead to a higher improvement factor. This difficulty
is overcome by the N “port doppler processor.

If Eq. (25) is used to generate interference covariance matrix M 1 and Eq. (17) to
generate signal covariance matrix M §» One can find the largest eigenvalues of M.'S. which,
along with the associated eigenvectors, give the improvement factor and the optimum
weights for the N-port doppler processor. The results of this computation are shown in
Figs. 19-22 for 2- through 5-port doppler processors. The improvement factors of the N
ports are averaged and shown along with the improvement factor of the optimal N-pulse
MTI for comparison.

Figure 19c shows that the average improvement factor for a 2-port doppler processor
(dotted curves) and the improvement factor for a 2-pulse MTI (dashed curves) are identical
unless the clutter spectrum is very wide. The reason for this is that the optimum weights
for the 2-port processor are unaffected by the addition of white noise until the noise level
becomes high enough to overcome the effects of the Gaussian clutter spectrum. This does
not happen as long as the noise level is less than the clutter level £y <0.5).

Figures 20¢, 214, and 22d show that the N-port doppler processor for N > 2 gives a
better average improvement factor than the N-pulse MTI improvement factor even when
the clutter spectrum is narrow. As N is increased, this advantage of the N -port doppler
processor becomes greater, so that the need for an optimal design becomes more important.
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Figure 18 shows the four filter shapes of a 4-port doppler processor for three values
of clutter spectral widths (¢, T = 0.005, 0.1, 0.5). If the clutter is narrow, all four filters
are the same and are also the same as in the 4-pulse optimal MTL if the clutter is wide,
all four filters approach a (sin x)/x shape centered at their respective detection regions.

The transition of these filter shapes from an optimal 4-pulse MTI to (sin x)fx filters
centered at their detection regions is shown in Fig. 23. If white noise is 10™% of the total
interference, these filter shapes are altered appreciably, as shown in Fig. 24. The effect of
white noise is much more severe for narrow clutter. For wide clutter all four filters again

approach {sin x)/x.

Comparing Fig. 24(a) with Fig. 23(a), we see that filter 1 is drastically affected by
noise, especially for a narrow clutter spectrum. With the addition of noise the optimum
filter is no longer a 4-pulse MTL; it is seen that the peak response is moved closer to the
center of the detection region {zero doppler). If Fig, 24b, c, and d is compared with
Fig. 23b, ¢, and d, similar effects can be seen for filters 2, 3, and 4, The peak response
moves closer to the detection region and the sidelobe level increases (and the main lobe
level narrows) for a narrow clutter spectrum. These effects become more pronounced as
the fractional noise energy is increased, 0.01 for Fig. 25 and 0.5 for Fig. 26.

The results of this investigation show that the clutter-to-noise ratio is an important
parameter for determining the optimal N-port doppler processor.

CONCLUSIONS

An optimization procedure has been developed for the transversal filter using the
maximum-ikelihood-ratio criterion. When the interference has Gaussian amplitude
statistics, the likelihood ratio ie maximized when the output signal-to-interference ratio is
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maximized. Under these conditions, the optimum weights for the transversal filter can be
derived from the covariance of the signal and the interference.

If M, is the covariance matrix of the interference and Mg is that of the signal, the
maximum improvement in signal-to-interference ratio (the improvement factor) is given by
the largest eigenvalue of M"S where My is defined by Eq. (34). The set of optimum
weights is given by the eigenvector M g that is associated with this largest eigenvalue, With
the design procedure reduced to finding the eigenvalues and eigenvectors of a matrix, the
filter for a given application can be designed using numerical techniques to compute the
eigenvectors and eigenvalues. The optimal design can be computed with this procedure
and the improvement factor can be obtained with no additional computing. '

The covariance of a function of time is the Fourier transform of the power spectrum
of the function. Therefore, the spectrums of the signal and the interference must be
known prior to deriving the optimum weights, This optimization procedure has been
applied to the detection of a signal with an unknown doppler shift. Three cases were
considered in this research. These were defined in terms of the a priori knowledge of the
doppler shift, as follows: (a) the doppler shift is completely unknown, (b) the doppler
shift is known exactly, and (c¢) the doppler shift is known within a region.

It was shown that if the doppler shift is completely unknown this optimization
procedure gives the same results as the procedure of Emerson (3), which is to maximize
the rejection of interference. However, it has been shown in this research that his pro-
cedure is equivalent to one using the stronger criterion of maximizing the output signal-
to-interference ratio.

The procedure developed in this research is equivalent to that of Applebaum (4) and
Brennan (7) when the doppler shift is known exactly. For this condition a filter is
optimized to detect a signal at a given doppler shift.

When the doppler shift is unknown, it must be assumed to have equal probability of
occurring at any frequency within the analyzing bandwidth of the filter. However, this
bandwidth can be covered by several contiguous filters instead of a single filter. This in-
curs no additional data storage when several independent sets of weights are applied to the
data. In this way, each filter can be designed to detect a signal within a portion of the
total bandwidth instead of the entire bandwidth. The doppler shift of the signal can be
assumed to have equal probability of occurring anywhere within a region instead of the
entire doppler domain. This additional information about the signal has been used to im-
prove the output signal-to-interference ratio.

The results of this research were applied to a radar incorporating a single-port MTI
processor. In this, a single-filter output is used to detect returns from moving targets
which may have any doppler shift and to reject returns from fixed objects. These latter
returns are referred to as clutter. A zero-mean Gaussian clutter spectrum was used to
compare the improvement factor of the optimal MTI with that of the conventional MTI.
The results are shown in Fig. 8, which shows that the increased improvement factor is
affected only slightly by the width of the clutter spectrum or standard deviation of the
Gaussian spectrum. Typical values for this increase are 0 dB for a 2-pulse MTI, 2 dB for
a 3-pulse MTI, 3 dB for a 4-pulse MTI, and 5 dB for a 5-pulse MTI. The advantage of
using optimum weights is modest when the returns from only a small number of pulses
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are processed at one time, but it quickly becomes significant as the number of pulses for
which returns are processed is increased.

The techniques developed in research were also applied to a radar N-port doppler
processor in which N independent sets of filter weights were used to design N filters. For
this, the doppler domain was divided into N regions. Each filter was optimized for a tar-
get whose doppler shift has equal probability of occurring anywhere within one of the
regions. These results are shown in Fig. 11. Comparing the average improvement factor
of the N filters of an N-port processor with the improvement factor of the optimal MTI
shows that the optimal MTT approaches a 0-dB improvement factor when the clutter
spectrum is wide. The N-port processor provides an improvement in signal-to-clutter ratio
even under this condition. The value of this improvement factor depends on the number
of returns processed. Typical values are 2.5 dB for a 2-port processor, 4 dB for a 3-port
processor, 5 dB for a 4-port processor, and 6 dB for a 5-port processor.

The optimum weights, or filter shapes, vary as the width of the clutter spectrum is
changed. This is shown in Fig. 18 for a 4-port processor. When the width of the clutter
spectrum is very small, all four filters are the same. Furthermore, they are the same as
the optimal MTI with a single output. Therefore, when the width of the clutter spectrum
is very small, only one output is needed, and that output is the optimal MTI. Unexpect-
edly, the peak response of the filters was sometimes found to occur outside the detection
region for that particular filter. This implies that for clutter with a very narrow spectrum,
maximization of the improvement factor results mainly from minimizing the output
clutter.

For clutter with a large spectral width, the characteristic of each of the four filters
identified by triangles on the curves is very close to a (sin x)/x function in shape, and the
peak response is centered in the detection region of each filter. This implies that for
clutter of large spectral width, the optimal processor is a discrete Fourier transform with
no weighting of the input data.

In the transition region between small and large spectral widths of the clutter, the
peaks of the filter responses are closer to the center of the detection regions. In this
region, the sidelobes of the filter response are found to be very high, even higher than
those of the (sin x)/x filter shape. The shapes of the filters are controlled by weighting
the input data.

The optimum filter weights are easily computed when the clutter has either a very
narrow or a very wide spectrum. In the transition region, it is necessary to go through
the optimization procedure developed during this research. The design parameters of a
radar system must be chosen with many factors in mind. In general, they cannot be
selected in such a way that the ratio of the clutter spectrum and the PRF is either very
small or very large. For most applications, the doppler processor must be designed to
operate within this transition region. Furthermore, as the number of returns to be
processed is increased, this transition region becomes wider. That is, the clutter spectrum
must be much narrower before all the filters approach the optimal MTI, or the spectrum
must be much wider before the N-port processor approaches the discrete Fourier trans-
form. Therefore, for a radar system processing a large number of returns this optimiza-
tion procedure is necessary to ensure the best performance in detecting moving targets.
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It has also been shown by this research that neither the conventional nor the optimal
MTI provides any improvement factor when the interference corresponds to white noise,
Therefore, when the total interference consists of both clutter and white noise, the im-
provement factor is reduced significantly (Figs. 9 and 10). The N-port processor provides
a larger improvement factor against clutter plus white noise (Figs. 19-22). The shapes for
the optimal filters of a 4-port processor are shown in Fig. 23-26 for noise levels constitut-
ing fractions {0, 0.0001, 0.01, and 0.5) of the total inferference. As the noise level is
increased, the optimal filter shapes never approach the optimal MT] for narow clutter,
even when the ratio of the standard deviation of the clutter to the PRF of the radar is as
small as 0.005. However, the optimal shape approaches that of the {sin x)/x function
when the spectral width of the clutter is smaller than necessary for interference consisting
only of clutter, Therefore, the width of the transition region seems to be unaffected by
the addition of white noise. The transition region as a whole, though, is shifted down-
ward,

Since the shapes of the optimal filters are altered drastically by the addition of white
noise, the clutter-to-noise ratio is an important parameter for determining the optimal N-
port doppler processor. Therefore, the optimization procedure developed during this re-
search will ensure the best performance in the most important and general case, in which
a radar system must contend with both clutter and white noise.
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Appendix A
THEORY OF TRANSVERSAL FILTERS

In many fields of science and technology, signals are detected or analyzed on the
basis of their spectral content. In such fields as communications, radar, and sonar, the
transmitted signal is designed to have special spectral characteristics. These characteristics
are used at the receiver to detect and identify the signal. In such fields as medical
technology, radiometry, and passive sonar, the receiver designer does not have control of
the signal characteristics; however, particular spectral characteristics can be related to
particular physical occurrences. The fundamental theory used in these and many other
branches of science and technology is that associated with linear filtering and spectrum
analysis. A review of digital filtering theory can be obtained from the work of Gold and
Rader*. The most important difference between digital and analog filtering is that in the
former the input signal must be sampled. Assuming a constant sampling rate, the sam-
pling interval determines the highest frequency that can be analyzed. Frequency com-
ponents higher than this maximum are “folded” back into the analyzing bandwidth and
cause “aliasing,”

The canonical form for a digital filter is defined as that form which requires the
minimum storage, or memory, to perform a particular operation. From Gold and Rader
(A1), the canonical form for an Nth-order filter is shown in Fig. Al. The output y(¢) for
this filter can be described in terms of the input x(f) by an Nth-order difference equation,

N N
yT)= ) am(nT-iT)- ) by(nT -il), (A1)
i=0 i1

where T is the sampling interval. The input and output are defined only at the particular
times ¢ = nT. The form of Eq. (Al) shows the recursive relationship needed to derive
output y(t) at time ¢ = nT. The nonrecursive form of Eq. (Al) is obtained by setting

b; = 0, for all i. The canonical form for a nonrecursive digital filter is shown in Fig. A2.
All digital filters can be classed as either recursive or nonrecursive.

Transversal Filters

A transversal filter is a nonrecursive filter as shown in Fig. A2, The input/output
relationship for this filter is

N

y(rT)= ) aix(nT - iT). (A2)
i0

*B. Gold and C. M, Rader, Digital Processing of Signals, McGraw-Hill, New York, 1969,
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Fig, A2 — Canonical form for an nth-order nonrecursive digital filter

This equation can also be expressed as either of two matrix operations,

y(nT} = apx
or
ynT) = xpa,
where
"y _] Cx(nT) ] ETER
Gs x(rT-T) xg
a=|" and x=| = ’ .
| %+ I_x{nT —NT}_ RISt

Subscript T represents the transpose of the matrix.
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The output power, as shown by Applebaum*

= ly(nT)I? = yyy.
The asterisk represents the complex conjugate. If Egs. (A3) and (A4) are used,
P=ayxxpa . (AB)

Expected Output Power—The expected output power is found by taking the ex-
pected value of Eq. (AB):

* % — % *
P —E{aTxxTa } =apXXpa .

It

_ ®
M = xxp,
then
P=a,Ma", (A6)

where M, the covariance matrix of the input, can be derived from the Fourier transform
of the normalized input power density spectrum. The normalization is such that

G

f Tw(t)2dt = 1

- 00

or, using Parseval’s theorem,

o

S p(Pdf=1,

=

where p (f) = IX(f)I2 and X(f) is the Fourier transform of x(t).

Power Transfer Function—The power transfer function is usually found by taking
-the ratio of the output power to the input power as a function of the frequency of the
input. With the normalization described above, the power of a single-frequency input is
unity, and it is only necessary to compute the power at the output as a function of
“frequency. Also, since the filter characteristic repeats at multiples of the sampling fre-
“quency (1/T), it is only necessary to compute the output power for frequencies between
ero and 1/T. Consider an input:

x(t) = cos (2nfyt + ¢). (A7)

S. P. Applebaum, “Adaptive Arrays,” Syracuse University Research Corp. SPL-769, June 1964.
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If N is the number of delay lines (or memory elements) in the transversal filter and T is
the time interval between samples, NT is the total processing time of the filter. N + 1
samples are taken during this time. When sampled at ¢ = iT, Eq. (A7) becomes

N

x(t) = Z 8(t - iT) cos (2mfyt + ).
i=0

The covariance of this input is found by

oo

Y(r) = S x(t)x(t - T)dt (A8)

-0

k=0 i=0

—o0

o0 N N
=g [Z 6(t-kT)cos(27rf0t+¢)} [Z ,B(t-r—iT)cos(21rf0(t—r)+¢;Jdt.

The integral is zero except whent -kT=0and t -7 -iT=0Qor7 = (B - i)T. Therefore
the (i, k) term of the covariance matrix is

m; ), = cos (2nfo kT + ¢) cos (2nfyiT + ¢), (A9)

where i =0,1, ..., Nand k = 0, 1, ..., N. To normalize M, it is necessary for

wa(t)zdt = Smx2(t)dt =1

—o0 -0

When 7 = 0, Eq. (A8) becomes

CJ

v(0) = g x2(t)dt.

But 7 = 0 implies & = i'in Eq. (A9), and therefore M is normalized if
¥(0) = m;; = cos®(2nfiT + ¢) = 1.

Since phase ¢ is arbitrary it is chosen to be ¢ = -27f,iT. Then M is normalized and m;p
becomes .

m; ,, = cos 2mfo (R - i)T. . (A10)
In summary, the power transfer function of a transversal filter can be derived by
using Eq. (A6) with a real input from Eq. (A7), which results in a covariance matrix de-

fined by Eq. (A10).

Complex Filter Weights—For most applications of digital filters, it is desirable for the
spectrum being filtered to be at “baseband.”; that is, the bandwidth should span a region
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Fig. A4 — Compiex transiation of a real spectrum to baseband.
(a) Complex exponential reference signal. (b) Spectrum of Fig,
A3(a) times complex reference signal (a).

from zero to some maximum frequency. The maximum frequency determines the mini-
mum sampling frequency to meet the Nyquist sampling criterion. If the signal spectrum
of interest is not at baseband, it is usually multiplied by a sinusoidal signal of appropriate
frequency to translate the spectrum to baseband. This is shown in Fig. A3a, b, and ¢. If
the spectrum is translated more, then aliasing occurs as negative frequencies interfere with
positive frequencies, as shown in Fig. A3d.

This aliasing problem could be overcome by multiplying the signal of interest with a
complex exponential signal. The spectrum of this complex signal is not an even function,
and positive frequencies, therefore, can be distinquished from negative frequencies as
shown by Fig. A4,

A transversal filter can be designed to have a complex impulse response simply by
using complex weights a;. In this way, a filter can be designed which discriminates be-
tween positive and negative frequencies. An example of this is the discrete Fourier trans-
form, which can be considered a contiguous bank of transversal filters. N filters are
formed when N samples are taken. The effective weights of the kth filter are

@y, =eVI-DE-DIN -y oq 9 N (Al11)
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where & = 1, 2, ..., N. Using the weights defined by Eq. (A11) and a complex signal in-
put, we have

x(t) = ! 20 {A12)

the power transfer function of a discrete Fourier transform can be derived using Eg. {AG).
The autocorrelation of Eq. (A12) is

y(my =07,

which results in a covariance matrix defined by

e G 2rfoli-k)T

The power transfer function for 9 of the 16 filters generated by a 16-sample discrete
Fourier transform is shown in Fig. A5. The filter characteristics shown in Fig. Ab repeai
with multiples of the sampling frequency f,. Therefore the filter response to negative
frequencies from zero o -f; is simply the shapes of these filters translated to the negative
frequency region. In this way, an unambiguous analyzing frequency bandwidth can be
defined either from -f /2 to +f;/2 or from 0 to f,. These filters can diseriminate between
positive and negative frequencies over the region from -f,/2 to +f,/2.

Complex transversal filters can be implemented with real operations. Consider real
input signal x(#) which has a spectrum and center frequency f,, as shown in Fig. Ad. The
spectrum is translated to baseband, so that

x'(t) = x(t)e 270!,

When an input signal is sampled, a vector can be defined,

-
1
1]
Xg
¥
X3
K=1 .
xf
|
where
F2nfoli-1)T

x;=x[{i -1)T]e
= x[{i - 1)T}{cos 2afyli - 1)T +J sin 2afy{i - 1T}

= B 3 gad
= ;.
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The real component of the input is
xf = x[(i - 1)T] cos 2afy (i - 1)T.
The imaginary component is
xl=x[(i - 1)T] sin 2nfy(i - 1)T.

The complex transversal filter is formed by the matrix multiplication of this input
vector by the transpose of the complex weight vector:

.

a aft +ja:"r
R oyl
a2 a2 +]a2
a= = =af +jal.
R, 0
N TN TN

The output is

y =apx = (af +jap)(xF +jx)

where

oF f
R I

X9 )

xF = ’ and x! =

R I

N XN

y = (affxf - ald) +j(alx® + alixl) = y& +jyl. (A13)

The complex transversal filter described by Eq. (Al13) is shown in Fig. A6.

Doppler Filtering

It is well known in the fields of optics and acoustics as well as electromagnetics, that
if there is relative motion between the source of oscillation and the observer, an apparent
shift in frequency will result. This is the doppler effect that is put to use in many fields,
such as radio astronomy, coherent communication, radar, and sonar, Each field has a
need to measure accurately the doppler caused by relative motion. The doppler shift Iy
of a frequency f, is
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Fig. A5 (Continued) — Transfer characteristics of
a 16sample discrete Fourier transform. Of the
16 filters, 9 are shown; the remaining 7 filters are
the mirror images of filters 2 through 8.
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fv fe+v
fd:E (c—v)_l

where ¢ is the speed of propagation and v is the relative velocity between source and
observer.

Complex Demodulation—Consider a signal at the source,
u(t) = m(t) cos 2xf 1, (Al4)

where m(t) is the modulation and f; is the carrier frequency. With relative velocity v be-
tween source and observer, this signal appears to the observer to be

u(t) =m(t +t;) [cos 2n(f, + [;)(t +1,)]
where t, is the propagation time.

For many applications of this waveform, such as in radar, sonar, and communica-
tions, the modulation bandwidth is small as compared with the carrier frequency. In this
case, the modulation spectrum is altered very little as compared with the shift in fre-
quency of the carrier, so that the receiver spectrum can be considered to be the same
shape as that of the transmitted spectrum but translated by the carrier doppler shift. The
received spectrum is approximately

v'(8) = m(t +1,) cos [2n(f, +fy)t + 6]
where ¢ = 27(f, + f; )t ;.
The attenuation due to propagation loss has been ignored since it does not affect
the design of the optimum receiver for detecting this signal. As described above, this

signal can be translated to baseband by forming the product x(t) = v'(¢)e/2™tf and filter-
ing out the difference frequency,

x(t) =m(t +t;) [cos (2n(f, +f;)t + &) cos 2nf,t +j cos (2n(f, + f3)t + ¢) sin 2nf,¢].
After filtering, we have

x(t)= < m(t +t;) [cos (2nfyt + $) - j sin (2naf,t + $)]

P~ bk

m(t +t)e VEiate), (A15)
The demodulated complex signal, Eq. (A15), has been translated to baseband and is
now of a form to be processed by a digital doppler filter.
Pulise Doppler Radar—The doppler shift created by a moving target can be measured

with a pulse doppler radar. Although many transmitted waveforms are used for this put-
pose in radar, most of them can be related to conventional scanning pulsed radars. These
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radars transmit a carrier frequency that is gated on and off by a sequence of puigses, The
envelope of the basic pulse is

v,

p)= ar 0 OSESAT

0, otherwise,

where Ej is the energy per pulse and AT is the pulse width. The transmitted waveform
is therefore

ca

u(ty=ef2fet 3" p(t-nD),

n=-o

where f, is the carrier frequency and T is the interpulse period. The composite returmns
from these transmitted pulses are made up of moving target retums and usuafly much
larger returns from fixed objects (clutter). The objective is to design a processor that can
pass the moving fargets and reject the clutter by processing the returns from a fixed num-
ber N of puises.

If a moving target is at azimuth « with respect to the axis of the antenna pattern
G(B) and if the antenna scans at a rate of w, rad/s, the detailed model of the signal re-
turn for the conventional scanning pulsed radar is

N
x(t) = aG?{w,t - a)e’zwfd(t_td) Z plt - nT -1,).

n=4

The carrier {requency has been removed at the receiver. The term o = Ae/® represents the
unknown amplitude and phase of the carrier signal return; (j27f,t) is the doppler modulation
due to the target motion. The delay £, corresponds to the distance from the radar to the
target. Signal parameters a, o, f;, and {, are not known a priori.

If it is assumed that the modulation of the returned signal by the anterma pattem
G(8) is small and that the received complex amplitude ¢ is not significant to the receiver
design, then the signal to be processed by the doppler filters becomes

N
agty =T aD 37 pt-nT - 2y), (A16)
n=0

which is of the same form as Eq. (A15).

The time duration AT of the modulating pulse is usuaily very short as compared
with the period of the doppler frequency. Therefore, the demodulated signal is essen-
tially a sampled version of the doppler-shifted signal where the sampling rate is the radar
PRF. Thus, digital filfering technology is directly applicable to radar doppler processing.
For analysis, the pulse duration can be considered to be zero, and the input signal to the
doppler filter becomes
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N
x(ty= e 2 37§ -nT - ty). (A17)
n=0

With Eq. (A17) as an input, a transversal filter can be designed to detect moving targets

and reject returns from fixed objects (clutter).




Appendix B
OPTIMUM WEIGHTS FOR MTI RADAR PROCESSORS

Table B1
Two Cancelers (Three Pulses)
o T Improvement Factor Optimum Weights
¢ (dB) Real Imagining
1,0000 0.0000
=0,.5002 0.0000
n.00%6 62,8868 -0.5003 -G.0nQ0
1.,0000 0.0000
-0.5003 0.00010
n,0063 60,8876 -0.,5004 -0.,0000
1.0000 0.0nQ0
~0,5004 0.0000
nN.0071 58,8881 =0,5005 -0.0nQ0
1.0000 0.0000
~0,5005 0.0no00
1.0000 0.0000
-0,5006 0.o000
0.0QR9 54,8897 «0.5008 =0.0np0
l.0000 g.onoo
r0.5008 0.0n00
0.0100 52,8989 ~0,5010 =0.0000
1,0000 0.0000
=0.5010 g.0n00
n.ait2 50,8924 =0.5012 -3,0n00
l1,0000 0.0000
~0.5012 0.0000
N.0126 48,8943 “0.,5014 -0.,0000
1.0000 0.0000
~0.5016 0.ong0
N.o141 46,R946 =0.5020 =¢.0000
1.0000 0.0000
~0.5020 g.0n00
0.n158 44,8996 =0,5025 =0,0n000
i.0000 0.0n00
-1,5025 0.0npo
n.0177 42,9034 =0.5031 ~0,0000
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Table Bl—Continued

o T Improvement Factor Optimum Weights
¢ (dB) Beal Imagining
1.0000 0.o000
~0.5031 g.on00
0.019¢9 40,9081 -0,5039 =0.0n00
1.00400 0.0080
-0.,5039 g.0npo
0.10223 38,0141 «0.5049 -3.0000
1.0000 g.onp6
~3,5048 p.onpn
f1,0251 34,8218 -3.5061 p.ongh
1,0000 p.0000
~0.50614 -0.,0000
n,0gsi 34,9314 =0,5077 0.0000
1.0000 g.0000
=-3,5877 g.0000
n,0315 32,9437 03,5097 o,0000
1.0000 g,0n00
n,.n354 30,9594 -0,.5121 g.0000
1.,0000 g.0ngo
-§,5121 §.0000
n,n3vg7y 28,8744 «0,.5152 =0.0000
1,0000 8.0000
f,n446 27,0051 -0,5190 g.0a008
i.06080 0.0000
n,neog 25,0381 =0,5235% 0.0000C
1.0000 6.0000
0.n561 23,1807 -3.5294 -0.0000
1,0000 g.0n00
={,5294 n.0n00
0.7629 21,1360 =0,5365 =0.0000
1,0000 0.0000
~0,5345 0.0nG0
86,0706 19,2080 =0,5451 g.0000
1,0000 g.0000
«0,5451 0.0000
0,0792 17,3022 ~{,55%54 p.0000
1,0000 0.0000
-0.,5554 -0.0000
n.0E8RY 1%,4258 ~0,5677 p.0000
1.0000 p.0n00
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Table B1—Continued

o T Improvement Factor Optimum Weights

e {dB) R -
eal Imagining
n.n598 13,5883 ~0,5819 -0.0000
1.0000 0.0000
-0,5819 0.0000
n,1119 11,8021 n,5980 =~0.0000
1,0000 0.0noo0
=0,5980 0.0000
0.1256 106,n824 ~0,6157 -0.0N00
1,0000 g.0000
~0.,6157 g.0n00
0.1409 8,4477 -0,6342 -0.00800
1.0000 g.onoo0
-0,6342 0.0000
N.1%81 6,9188 ~0.6525 -0.0000
1.0000 g.0n00
-0,6525% 0.0noo
0,1774 5,5175 ~0,6694 -0.0000
1.0000 g0.0000
-0.6694 o.o0n00
0.1991 4,2642 -0,6B836 ~-(.00400
1.0000 p.o00n
~0,6836 o,onpn
N.2233 3,1756 ~0,6942 -0.,0000
1.0000 0.0n00
~0.6942 0.0000
n,.2506 2,2616 ~0,7011 -0).0000
1.0000 0.0000
=0,7011 0.0000
n.2812 1,5246 ~0.7048 -0.0000
1.0000 0.o0000
*0.7048 0.0000
1.3156% 0,9588 =0,7064 -0.0000
1,0000 0.0000
~0,7064 0.0n00
0.3%40 0,5513 ~0.,7070 -0.0n00
1.0000 0.0000
-0.7070 0.0000
0,372 f,2819 =0,7071¢ -0.,000N
1,0000 D.0000
»0,7071 g.ango
N.4456 0,1236 =0.7071 -0.nngo
1.0000 og.0no0
~0,7071 0.0n00
0.5900 N,n444 =0,7071 -0.0000
1.0000 g.onpn
~0.7n071 0.onoo
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Table B2
Three Cancelers {Four Pulses)
6 T Improvement Factor Optimum Weights
L]
(dB) Real Imagining
0.0050 98.6728 =0,3337 g.0000
1,0000 g,onos
-1,0000 -3.0000
‘ 00,3337 p.o0000
8.0056 92,1967 -0,3337 ~0.0000
1.0000 G.0000
=1.,0808 g.0n8n0
0,3337. 0.000%0
0N.0063 89,4701 -0.3339 0.0000
1.00808 p.0n0d
*11%3%5 Q‘gﬁﬁﬁ
_ 0,3339 g.anon
0,0071 86,4063 0.3348 0.0000
=3,0000 g.ongt
1,0000 0.0000
=0,3340 -g.0n00
N.0079 83,4174 =03,3342 -0,0000
1.0000 g.on00
=1.0000 g.angh
0.3342 0.00080
0,008% 80,4001 0.3344 -3.0np0
=1.0000 0.0noo
1.0000 8.0000
«§,3344 =0,0000
G.QlOQ ??14124 613346 '8-0835
1.40000 g.,0000
~0,3344 -5.0000
n,.niiz T4,4093 «0.3350 g.,0n08
1.00040 4.0000
'i;ﬁﬁﬁﬁ ‘3.3885
0.3350 6.0000
0,0126 71,4135 0.3354 -0,0000
«1,0000 p.on0o
1.6000 8.40400
=0,.3354 =0,0008
0,0141 68,4158 0.3359 =0.8008
1.0000 0.0000
93;3359 *3-5%39
0.0158 85,4193 0.3366 -3,4000
«1,0080 g.0nG0
i.0000 6.00060
w0 ,33685 -0.0000
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Table B2—Continued

T Improvement Factor Optimum Weights

% (dB) R -
eal Imagining
0.0177 62,4244 0.3375 -0.,0000
"'1!0000 0.an00
1.000vu 0.,0000
) -0,3375 '000&00
80,0199 59,4311 0,3385 -0.0000
-1.0000 0.,0000
1.0000 0.0000
"0.3385 'DoDOOﬂ
N.,0223 56,4392 =0.3399 0.0000
1.0000 0.0000
=1.0000 =-0.0000
0.3399 o.,o0000
00,0251 53,4498 =0,3416 0.0000
1.0000 0.anoo
=1,0000 ~0.000p0
D.3416 0.00n00
D.0281 50,4632 »0,3437 o.0n00
1,0000 0.0000
31.0000 "U-OHUU
0.3437 0.0000
0,0315 47,4804 0,3463 -0.0000
=1.0000 g.0000
1.0000 0.0000
'013463 '0-0”00
1,0000 0.,0000
»1,0000 -0.0000
0,3497 0.0000
0,0397 41,5309 »0,3538 0.0000
1.0000 0.4000
=1.,0000 -0.0n00
0.3538 0.0000
N.0446 38,5678 «0,3590 c.0000
1,0000 0.0np0
=1,0000 -0.0n00n0
) 0.3590 0.0000
0,0500 3576160 00,3655 -0,0000
-1,0000 0.0000
1.0000 0.0000
=0,365% =0.000N
0.0561 32,6793 0,3736 =0.,0000
~1.0000 0.0np0
1.0000 0.0000
'003736 -0-0000
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Table B2—Continued

Improvement Factor

Optimum Weights

g, T
(dB) Real Imagining
f.0629 2977630 §.3835 ~0.0000
=1.0000 g.00080
1.0000 0.0000
=0.3835 -g.0000
n. o706 26,8744 00,3957 -0.0000
-1.0000 g.o000
1.0000 g.ongld
~0,3957 -~3,0000
0.0792 24,0237 0.4105 -,0000
1.0000 g.000¢8
=0,4105 -0.0000
G,0uR% 21,2248 ~0,4282 §.0000
1.,0000 0.0n00
*115333 'ﬁ;ﬁﬁﬁﬁ
0.,4282 8.0008
0,n598 18,4964 «(,4488 g.0n00
i,0000 g.08408
'1.5@99 'ﬁsﬁﬁﬁﬁ
0,4488 0.0000
0,1119 15,8628 «3,4723 p.0ng0
1,0000 00,0000
=1,0000 -0.0000
D.4723 o.0000
N.1256 13,3541 -0,4978 0.000¢0
1.0000 g.0000
*1:3{333 "gigﬁgﬁ
0.4978 g.0000
0,1409 11,0048 05242 g.00080
1.0000 p.0o00
=«0,5242 g.0n400
0,1581 B,8511 =0,5497 g,00400
1.,0000 0.,0008
=1,0000 -0.0000
§.5497 0.0ngo0
01,1774 6;9257 =0,5722 0.0000
1.0000 0.0n0o
-1.0000 =5.4000
g.5722 0.0000
0,1991 5,2523 =0,5903 g.0000
1,0000 g.00008
=1,0000 =-0.,0000
0.5903 0.0000
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Table B2—Continued

o T Improvement Factor Optimum Weights
¢ (dB) Real Imagining
i1,0000 g.0000
-0.6032 ~0.0000
0.2506 2,4936 0,6112 -0.0000
=1,0000 6.0000
1,0000 0.0000
-0,6112 =0.0000
0,212 1,7920 0.6155 -0.0000
=1,0000 g.0000
1.0000 p.onpo
'0-6155 -0-0000
n,3155 1,115% 0.6173 =0.00010
-1,0000 f.0000
1.0000 o.o0nQon
=0,6173 -0.0n00
N,3540 D,6367 -0,6179 0.0n00
1.0000 g.o0npo0
=1,0000 -0.0n00
0,617¢9 o.onpeo
n.3972 0,3244 0.6180 -0.0nQ0
=1.0000 0.0nQ00
1,0000 0.4anan0
=0,6180 -D.0000
N.4456 0,1417 0.6180 ~0.0000
1.0000 G.onQo
=0,6180 -0.0000
0.5000 0,0508 -0,61810 0.0n00
l1.,0000 p.oapo
»1,0000 -3.0000
6.6180 B.0000
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Table B3
Four Cancelers (Five Pulses)
o T Improvement Factor Optimum Weights
Fid
(@B) Real Imagining
0.01600 02,7361 0,1680 g.a000
w(,5580 g.0000
1,0000 g.0000
20,6480 p.onoo0
G,1680 g.00080
86,0112 96 ,R687 §.1683 8.0000
=0, 6683 -8.8048
i1.9000 D,0Noo
20,6683 =0,0000
0.1683 g.onge
08,0126 93,0812 0.1487 «0,0n00
1,0000 0.0000
20,6687 0.0000
0.1587 §8,.8n00
§.0141 88,5459 0.1493 0,0000
«0,6493 p.0000
1.0000 0,0npo
SQféé?S 3;3985
0.1693 -0.0n000
1.0000 g.0000
»n(,669% ~0.0008
0.,1700 0,000
3.91?7 3319015 011738 *U'Qﬁﬁﬁ
00,6708 g,ongh
1,0903 g,on000
=0,6708 ~0,00080
0.1708 g.0npo
0.,0199 76,9232 0.1719 =0.0000
o, 5718 g.0n00
i1.00080 p.onpn
Q0.1719 O.UHQQ
0,0g2d 72 ,528% 0.1733 p.ongn
"3 ;ﬁ?:’:z *g!gﬁgﬁ
1.00080 g.onpn
=0,86732 -0,0000
§.1733 g.0n00
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Table B3—Continued

T Improvement Factor Optimum Weights

e (dB) R N
eal Imagining
0,02%1 68,9416 0.14750 0.a000
w0,6748 o.0n00
1.0000 g,0n0n
w(,6748 0,0npn0
0.1759 0.0npo
0,0281 64,9587 0.,1771 -0.0000
n(),676%9 0.0000
1.0000 0.0nQ0
n(.,6769 -0.0N00N
0.1774 g.onan
0.0315 60,9817 0.1799 -0.Qn00
«,6795 0.0nQ0
1.0000 o.o0noo
-0.,6798 -0,0000
0.1799 0.0000
00,0354 57,0111 0,1833 =0.0000
«0,6827 0.0000
i1.0000 a.0npo
w(,6827 ~3.0000
0,1833 o.onoo
0,0397 53,0496 0,1877 ~0.0000
=0.6868 g.0non
1.0000 p.onpo
00,6868 -0.0000
0.1877 g.onQn
0.0446 49,1001 0,1932 =0.0000
v0.6918 p.o00o0n
1.0000 g.onpe
nl),6918 -0,0000
0.,1932 o.onpo
00,0500 45,1669 g.2002 -0.00Q0
w(,6979 o.00QN
1.0000 D.ongQo
»(,6979 -0.0000
: g,2002 0.0000
=0,7054 20,0000
1.0000 o.0npn
'0:7054 *0-0000
0,2090 p,ongn
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Table BS—Continued
Improvement Factor Optimum Weights
o T (dB)

Real Imagining

0.0629 37,3763 g.220n -0.0000
ol ,7146 0.0000

i.0000 g.0np0

s{,7146% -3.00080

g.,2208 g.0not

0.0706 33,8394 0.2338 -0.0000
«0,7255 g.4n4a%

i1.00080 g.ange

=0,7255 -0,0000

0.2338 p.ongn

n.73684 2.0000

1.0000 6.0000

w(,7384 «3.0000

f.2510 n.onpt

0.,088¢% 26,0480 B.2720 -0.0000
»0,7533 0.0n00

i,0000 g.0000

=0, 7833 ~g.0000

g.2720 p.0000

H,.0698 22,4881 §.2971¢ -0.0000
=0,7499 0.0N000

1,0000 0.0n00

=0,7499 «0.0000

84,2974 g.0000

0.1119 19,0624 0.3260 -0,0008
e(,7874 g,.0n00

i,0000 g.0000

=3,7874& -0.000D0

0,3260 g.onn0

0,1256 15,8386 0,3%79 -0, 0000
»3,8055% g.0n000

1.0080 g.0000

«{,805% =0.0000

0.3579 g.0000

00,1409 12,8681 0.3908 =0,0000
1.0000 p.onpn

'613223 *3;%5%&

g.3908 B.oneo
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Table B3—Continued

Immprovement Factor

Optimum Weights

o T
‘ (dB) Real Imagining
0.1581 10,1984 0.4219 -~0.0000
«0,8368 n.ongo
1.0000 n.qano0
=0,8368 -0.0000
0.4216 0.0000
s(0,8481 g.anpo
1.0000 0.0n00
”098481 "B.Bnﬂn
0.4489 0.0000
0,1991 5,8846 0.,4697 «0.0n0R
n(.8561 g.0n00
1.,0000 c.onon
n{},8561 =0.0000
0.4697 0.0000
80,2233 4,2538 0,4841 -0.0000
»0,.8611 ¢.0n00
1,000n 0.0no0
«0,8611 -0.,0n00
0.4841 o.0noo0
0,2506 2,9522 0.4928 -0.0000
=0.8639 p.onoo
i1,0000 0.0n0N0
=0,8839 =0,0000
0.4928 o.0np0
«0,8652 0.00Q0
1,0000 0.0n00
50.865? "0.0ﬁUU
0.4973 0.0n00
n.3155 1,2056 0.4992 ~0,0n00
1,0000 g.onon
=0,8458 -0.,0000
_ “ 0.4992 0.0n00
0.3540 0,6853 0,4998 =~0.,00Q0
i1,0000 0.0n0n
»n0,8660 -0.0n00
0,4998 0,0n00
n,3972 0,3478 0,5000 «0,0nQ0
»(,8660 0.0n00
1,0000 0.0000
n0,8660 =0.0000
0.5000 0,0n000
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Table B3—Continued
o T Improvement Factor Optimum Weights

< {dB) R . .
eal Imagining
0.4456 04515 g.,5000 =0, 0000
a( 8680 .0n00
1.0000 g.0n00
33.8665 ’Uigﬁgn
3.5000 g.ongh
0.5000 0, 0544 p«5000 «(, 5000
=0 B660 o.0nN00
1.0000 0.000"
*ﬁfﬁéﬁﬁ "ﬁeﬁﬁﬁg
0.5000 o.0000




Appendix C
FILTER CHARACTERISTICS OF N-PORT PROCESSORS
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(0,7 = 0.016), A represents the filter sha

the filter shape for 0.T
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