
NRL Report 5386

SHOCK SPECTRAAND DESIGN SHOCK SPECTRA

G. J. O'Hara

Structures Branch
Mechanics Division

November 12, 1959

/9
U. S. NAVAL RESEARCH LABORATORY

Washington, D.C.





CONTENTS

Abstract
Problem Status
Authorization

INTRODUCTION
Historical Background 

1

Shock Spectrum Definition 1

Combination of Shock Spectra 1

Purpose of the Examples 2

EXAMPLE 1 
2

EXAMPLE II 
6

EXAMPLE 11I 13

CONCLUDING REMARKS 14

REFERENCES 
15

i



W-



ABSTRACT

For some time workers in the field of mechanical
shock have been plagued with difficulties when combining
sets of shock spectra to obtain curves which might be used
for design purposes. The r e as on for this trouble is the
present p r a c t i c e of using all points on all the available
shock spectra when making a combinatorial analysis. A few
simple examples have been worked out which show that
such an approach cannot yield the proper design spectrum
curve. These examples demonstrate that, because of inter-
actions with nonrigid foundations, the values of interest in
a shock spectrum tend to lie in the valleys of the plot rather
than upon the peaks, even when the natural frequency of the
foundation coincides with a natural frequency of the system
as a whole. Thus an analysis based on the envelope of a set
of spectra is not valid, since the high values determine the
envelope.

PROBLEM STATUS

This is an interim report on one phase of the problem;
work is continuing.

AUTHORI ZATION

NRL Problem F02-05Project S-F009-006-5FR, Subtask 2

Manuscript submitted August 5, 1959-
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SHOCK SPECTRA AND DESIGN SHOCK SPECTRA

INTRODUCTION

Historical Background

For many years engineers have used "shock spectra" as an aid in understanding the

hdmaging potential of shock, and as a tool for stress-checking a structure whose founda-

iton was subjected to the transient for which the spectrum was found. That is to say, the

shock spectrum gives in convenient graphical form the maximum response of single-degree-

of-freedom systems to the applied foundation motion.

In 1943, Blot (1) attempted to clarify the then-present thinking among engineers inter-

ested in the effects of earthquake upon large structures by defining a quantity called "effec-

tive acceleration of the earthquake for the period T." This helped the present-day concept
of earthquake spectra to evolve. Sometime later, in 1948, Walsh and Blake (2) considered

mechanical shock using the concept of earthquake spectra, and the result has been gener-
ally called shock spectra. Since this time the use of shock spectra has spread, and many
definitions and theories for the use of these spectra have arisen.

Shock Spectrum Definition

Since shock spectrum is a term which various authors have used in different ways it
is perhaps necessary to state explicitly its meaning as used in this report. A shock spec-
trum is the plot of the maximum absolute values of the relative displacements multiplied

i by scaling factors if desired, of a set of either damped or undamped single-degree-of-
freedom oscillators with negligible mass which have been subjected to a shock motion,
the values being plotted as a function of the natural frequencies of the simple oscillators.
These graphs can be constructed with units of displacement, velocity, or equivalent static
acceleration by the choice of the scaling factors; unity, •, or W2/g respectively, where
is the angular frequency of the oscillator.

The reason shock spectra are based upon relative displacement response is connected
SWlth their ultimate use, the determination of the stresses or strains in the flexible members
SOf the system. In this report, undamped shock spectra in velocity units (relative displace-
-ment times frequency in radians per unit time) are used.

In contrast, a design shock spectrum is a plot of the values which would enable an
eialyst to predict the stresses, etc., in a contemplated structure for a specific type of
eitation such as depth charge attack. This special kind of spectrum is then a mathe-
111atical concept rather than an easily measurable quantity.

'Combination of Shock Spectra

In his 1943 paper, Biot wrote, "The envelope of the spectrum, or better still, the

01envelope of a collection of spectrum curves, obtained at the same location constitutes the

bic information for design purposes." Unfortunately Mr. Blot was taken too literally
'1When his ideas were incorporated into mechanical shock spectra.
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Inherent in the assumption that the worst possible shock that a class of structure willever have to undergo is the envelope of all possible shock spectra for that type of locationis the following: The impedance of the foundation is very large over the entire frequency
range, and the structure has very little impedance at its foundation over the frequency
range. This means that the dynamic reaction of the structure upon its foundation is unable
to affect the motion of the foundation, and that slightly dissimilar structures will have torespond to the same foundation motion. Of course this assumption is obviously not true,but only recently has it been explicitly shown (3) that the effect of such an analysis was
very greatly in error.

In a set of field trials data was collected for a number of shocks at a large number ofdifferent points in submarines. It was hoped that by classifying the type of location, typeof shock, and the equipment responding to those shocks, correlated groups could be formed4which would enable the analyst to produce a series of shock spectra which would be usefql
in design (4). It was decided to take a 10-percent chance on failure of elastic action, sothat all the available shock spectra for a particular class of location and shock were plot..ted on a single graph, fly-speck style, and a 90-percent fiducial limit drawn. In the corn-
putation of stresses which would be caused by this 90-percent fiducial limit curve itbecame immediately apparent that few mild steel structures would survive the severeshock described by the spectrum. However, the structures which were in place during thefield trials did survive, so something must have been wrong with the theory of combining
these shock spectra.

Purpose of the Examples

The problem of the overconservation of the fiducial limit curves was investigated (5)and it was noticed that normal-mode theory only requires the shock spectrum values atfixed-base natural frequencies* of the structure in place during the shock motion, tocompute stresses. An examination of individual shock spectra in this regard showed
large valleys in the region of these fixed-base frequencies. The further study of this
phenomenon led to experimental and theoretical studies to examine this problem. This
report discusses a few simple theoretical examples to acquaint the reader with the proil

Consider the problem of trying to formulate a design shock spectrum. Theoreticallythe only values of a measured shock spectrum which are valid for dynamic response cal-,
culations are those which correspond to the fixed-base natural frequencies of the structwhich was in place during the shock motion. In contrast a design shock spectra should
allow an analyst to design-check a contemplated structure which has never been subjecteto a shock and for which no measured shock spectrum exists. It would seem that the firt
step might be to compare the shock spectrlim values at the fixed-base natural frequenciesof structures in place during the shock motion with the general spectrum levels. This
comparison might then allow the designer to formulate a general spectrum which could b6useful in future designs. An attempt to do this on an imaginary class of structures sub-',
jected to the same type of shock is the subject of these examples.

II EXAMPLE I

To illustrate the difference between ordinary shock spectra and design shock spectra
the simple undamped free-free structure of Fig. 1 was chosen as the first example becauit is a system which can be readily calculated. Let M. be subjected to an impulse I,. IfM is considered to be the foundation, and M1 is the mass of the equipment structure, the
problem is, "What is the design shock spectrum for the equipment consisting of M1 and KI

fixed-base natural frequency is the frequency which would exist if the foundation were
infinitely stiff and heavy.

I.
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Fig. 1 - Undamped free-free system Tuneable

Massless
Oscillator

To

The differential equations of motion for the equipment and the foundation are

MI Y + KY - KZ - 0

-KY + M° Z + KZ 0

for which the initial condition at t = 0 is

. oM

With the notation

X =Y - Z

K

Mi

a2 + 62 = p2

the solution of Eqs. (1) and (2) become

V
X - sin pt

p

(1)

(2)

(3)

3
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Since the shock spectra under discussion are the velocity spectra mentioned before,
a nondimensional form of the design shock spectrum becomes

Xa1

VM
(4)

This spectrum is seen to be independent of frequency, and Fig. 2 is a plot which shows how
the design shock spectrum varies with the mass ratio. Figure 2 is in general not plotted
in the usual form of a spectrum; that is to say, it is not a plot of a quantity as a function
of frequency. However, once the mass distribution is known, Fig. 2 may be used to deter-
mine the value of xa/vo , which then becomes the design value. Since each of these values
is independent of frequency the design shock spectra would be a family of horizontal
straight lines in the xa/v versus frequency plane, one line for each mass ratio.

M,

Mo

Fig. Z - Variation of the design shock spectrum with mass
ratio for the undamped free-free system of Fig. 1

Now suppose by means of the theoretical massless tuneable oscillator, an ordinary
shock spectrum was obtained for the motion of M.. The relative displacement of this
oscillator times the angular frequency divided by the initial velocity of M. becomes

rw _ /32  
sin pt + (a 2 - 2 ) sin t

V. p(&(
2

- p
2

) (o
2

- p 2
)

(5)

where co is the frequency of the tuneable oscillator and'r is the relative displacement.
This equation was derived by noting that the massless oscillator will not affect the founda
tion motion, and by solving the following Duhamel integral:

t o
r = - f Z (T) cos & (t-T) dT.

7q

I]

a

I

l!i!
(6)
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It is of immediate interest to examine Eq. (5) closely. The oscillation is composed
of two components, one of frequency p (the natural frequency of the system as a whole),
and one of the frequency co (the frequency of the massless oscillator). When &) equals a
the oscillation at frequency w (that is, the second term in Eq. 5) vanishes. That means
that the massless oscillator undergoes the same motion as the mass M1 , and in this case
even though the massless oscillator has frequency a, it has no component of frequency aC
in its motion. It is also seen that this is the only frequency at which this occurs.

Since the shock spectrum is the envelope of Eq. (5), it may be written as

r•c = -_2 (7)

V.• p(w2-p2+ co p2

For the region o -• co - a, Eq. (7) may be written as

V~ 42 + -,
Sp~p -i 2

) '(p 2
-,I 2

)

The points of interest are I!

Limr _ 1

W-0

o-0 p2 M1

and
Lima 1
ar-*a P •/1+M

Mo
N0

To show this is a function monotonically increasing with co:

d/rci\ '82

do \V./ p(p+&j) 2

For the region a < w < p, Eq. (7) may be written as

r~j M W2-,2
-- 2 + ( ")(,

V0  p(p
2
ci)

2
) p

2
-aw

2

SThe Points of interest here are

Limr

and

IL V.~ P ( p-c) 2

I d
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which is always positive and approaches +0o as i -• p. For the region ,- p, Eq. (7) may
be written as

rci ,2 02 -a
2

+ _ . (7")
V0  p(i

2-p
2 ) W2 _ 2

The points of interest here are
I = +coSLira

Lim
a_00=1.

Note that although the limit goes to I the value is always greater then (I + M!•/o K-1/2.
To show that this is a monotonically decreasing function:

p ( ,-p)

Figure 3 is a superposed plot of the design shock spectra for a specific mass ratio,and of the theoretical shock spectra of Eq. (7), obtained for the same system. The curve
labeled F. S. is the plot of the maximum value of the sin w~t component of Eq. (5). The
design shock spectrum is a horizontal line of height (1+, 1 /Ao)-I/2 , while the theoretical
shock spectrum for the system obtained on the foundation Mo is below the design shock
spectrum to frequency a, and then is always above it. It should be noted that the design
shock spectrum and the theoretical shock spectrum meet only at one point, the fixed-base
natural frequency a of the upper equipment system. This point occurs where the coefficien
of the frequency term of the massless oscillator vanishes (curve labeled F. S.). In any
system with damping the large peak would have a limit, but it could be several times
higher than the design value.

Figure 4 is a plot of two theoretical shock spectra for two systems having the same
mass ratio. The spring in the higher frequency system was chosen in such a fashion that
the fixed-base natural frequency of the simulated structure a', coincided with the natural
frequency of the lower frequency system, p. The envelope line for the two spectra is
marked.

It should be noted that such a combinatorial analysis would say that it would be neces-
sary to use a very large shock spectrum value for the stiffer system a'. However, it is
clearly evident that the design spectrum is not this very large value.

If many shocks were superposed in this fashion and an envelope or high fiducial limit
curve drawn, then it is apparent that this would represent a totally unreasonable approxi-
mation to the proper design shock spectra.

EXAMPLE II

As a second illustration of the difference between design shock spectra and ordinary
shock spectra the system of Fig. 5 will be discussed. It is assumed that MN and K, is the
foundation of the "equipment" F2 and M2 , and that the base of the combined structure under"
goes a step change in velocity.

0
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Fig. 3 - Theoretical shock spectra and

design shock spectra of the free-free

system of Fig. 1 for a specific mass

ratio

Fig. 4 - Envelope of the two theoretical
shock spectra for two free-free systems

having the same mass ratio compared

with the design shock spectrum
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Fig. 5 - Two-degree-of-freedom
system

The differential equations of motion are

Z+ (a
2

+g182)Z - M2y = a
2

Vt

-_ 2Z + j+S 2y = 0

where

2 = K1

K2
'82 ý 2

M2

12

By the usual processes the angular natural frequencies can be shown to be

W1,2 2 [262(1+) +a2] - 4a2/82.

It is of interest to note:

a282 = <2,2

UwI <: 0, <. CO2
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Y4

.7r

ZI4

Tuneable

Massless
Oscillator

Vt

(8)

(9)

£1
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A<

(A 2 12 (1+4) + 2

W2 - -I = a-3)2 + 2

The solutions of this pair of differential equations are

V (c2 sinw, t + -- sinco2t + Vt

( .( J W
2

Z = Y + Va2  sinlt S-- sin 2 t

X = Y-Z= - phs Sii t inr sinw2t r
W2_ W2 a)2

To find the design shock spectrum, phase is ignored and this results in

X_ _ a2 ,3 ( 2 + l) 1

V (2•22-c) W•2

This reduces to

V 2-'l

Which leads to the final form

V (1- + _/2
a-2

(13)

'Which is a nondimensional design shock spectrum for the equipment system, and dependsUPon two parameters, the frequency ratio and the mass ratio.

This function is plotted in Fig. 6 for several values of the mass ratio 4 = M2 /MI.
Again this is not in the usual form of a design shock spectrum, but if a frequency ratio
2and a mass ratio for the system were selected this would define only one design value.T'his again is independent of frequency and would plot as a horizontal line in a design

JhOck spectrum.

9

(10)

(11)

(12)
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.1 .2 .3 .4 .5 6 7 .8.9 1.0 2 3 4 5 6 7 8910

Fig. 6 - Variation of the design shock spectra
with mass ratio and frequency ratio for the
two-degree-of-freedom system of Fig. 5

The peak of the shock spectrum occurs at /a 1/(1+,u) and has a value of (1+1/)I/
This equation is plotted in Fig. 7, and it is clearly demonstrated that even in this 'tuned'
case that the large peak falls off rapidly in magnitude with increasing mass ratio. Retur
to Eq. (13), if 8//a is chosen greater than 2/(1+,) the upper system tends to be isolated'
from the shock, since X/3/V < 1 in this case.

The next step in the analysis is to compute the theoretical shock spectrum which wou
be obtained if it were measured by the massless tuneable oscillator shown in Fig. 5. The
equation of relative displacement for this oscillator becomes

Va 2 
(612-,82) sin &1 t Va 2 

(C22 - 3
) sin co2 t

±2

W10 2w 1? 1w-
2  

&2 2 1 2

r V
2- W t2 6 W 82  

- 2 1 ' 11

,2-2 .
2 

(w
2

-,,
2  

2 2.22) 22
2 1 1 1 W~2 ~~'2 W a

K

W

sl

I

i!
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0.o

0
0,

r:1

12

I0

6

4

0'1

IxBI I--
-IV I MAX MAXýV 1 +

M,

.2 A 6 .8 1.0 1.2 I 1.6

IL

Fig. 7 - Largest value of the design shock spectra
for the two-degree-of-freedom system

where w is the massless oscillator frequency. The nondimensional form of the shock

spectrum becomes

rw 1- 2)

V (w2-,ý,2) 2-,)2) co2 (w2_-) (,,
2 -co

2
)

1~ ~2 12

To sketch this shock spectrum, note that

Lim
W-0O

Lim
CO- 6) 1

ao

Lim - - design shock spectrum value
wc-j w2 -W21

Lim

Lim

(')_ 00

00

I'

11

I,

1�
'I

a2,2 (,A_,8 2 )

W
2 

(wj2_W
2

) (W2_Cw
2

)
2 2 1 2

- 1. (15)
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Fig. 9 - Envelope of three shock spectra compared with
the design shock spectrum for the two-degree-of-freedom
system
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4

,L2

Fig. 8 - Comparison of theoretical
and design shock spectra for the
two-degree-of-freedom system
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NAVAL RESEARCH LABORATORY 13

It is also important to note that the coefficient of the sin ct term in Eq. (14) vanishes

when -= P - Figure 8 is a plot of a comparison, for a system, between the theoretical
shock spectrum and the design shock spectrum.

Figure 9 is a sketch of the superposition of three shock spectra for the same mass

and frequency ratio; a comparison with the design shock spectrum for this condition is

included. The solid line is the approximation to the design shock spectrum which would

bW found by an envelope type of analysis. It is evident that the over conservative assump-
tions inherent in such an analysis yield a spectrum which is in no way representative of
a design shock spectrum, and is extremely severe.

EXAMPLE Ill

There is an important elementary question left to be answered in this simple treat-
ment of the problem. What would happen to the shock spectrum peak of a system in which
the fixed-base natural frequency of the structure coincided with a natural frequency of the

system as a whole? Consider Fig. 10, and assume that a record of the motion of Y2 is
made when the point Y. undergoes a disturbance. In terms of the parameters

K 3N13

K2
M•2

K3 M3 0 2

M2 M2

M1 M1

Fig. 10 - Three degree-
of-freedom system

the differential equations can be set up for application of normal-mode theory (6) and the
'lode shapes can be written as

X2 p2

x 3 W2
alid

x 2  N 1  (p2_¢ 2 _- X2)

X1 M2 Xk
2 ' 1 j /

(16)

(17)

15

02 - K1
M1
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where p is a system natural frequency. The frequency equation is

22 ' 2+\2-P2)
L\ N. 2 V 1 Nj :

M23  (M 2\21
- -60 >X+,p-p2) ý 0&1 l 2I

By the hypothesis that one of the p's coincides with an wv, then from Eq. (18)

k2 + ý2 - p
2

= 0

when

p = &.

Applying this to Eq. (16) and (17),

X2 
X2

X -- 0, and --=-- 0
X3 X1

indicating a node exists at Y2 for this frequency. The response recorded at Y 2 becomes

X21 f Mj Xj3 I 1

2 = M -- 2

X23 f M3 X 3  f t

2M X 2 3
j 1 3

tf yo (T) sin P, (t-T) dT

Yo (T) sin P 3 (t-T) tIT + Yo (t)

and the frequency P 2 = - does not appear. This means that no large transient -buildup
would occur and there would therefore be no large peak at this frequency if Yo is not vei
frequency selective.

CONCLUDING REMARKS

By means of these few elementary examples it is hoped that some insight has been
gained by the reader concerning the problem of using shock spectra for design purposes.
It has been shown that design shock spectra and theoretical shock spectra can be quite
different, and the error involved in using one for the other can be appreciable.

(18)

"I!I

14
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The use of an envelope (or high fiducial limit) type of analysis leads to results as

shown in Figs. 4 and 9, giving a false impression as to the severity of the shock for which

the system must be designed. This happens because the use of the large peaks tends to

control the final position of the curve in the fiducial limit type of combinatorial analysis,

and it was demonstrated that these peaks at the combined system's natural frequencies

do not enter into design shock spectrum considerations. This was shown to be true even

when the "equipment" fixed-base natural frequency coincided with a natural frequency of

the system as a whole in Example Ill.

The other major point of interest is that the component of response of the massless

oscillators at their natural frequency disappeared when it coincided with the fixed-base

natural frequency of the equipment structure. In a fashion the plot of this component is

akin to the Fourier spectrum of the foundation motion, and in the case where the motion

ends in finite time, the "after shock spectrum" is truly the Fourier spectrum of the

foundation velocity forcing function.

Perhaps this report has raised more questions than it has answered. However, the

proper evaluation of design shock spectra is of extreme importance and is worthy of

serious consideration.
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