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RAYLEIGH-SOMMERFELD DIFFRACTION VS FRESNEL-KIRCHHOFF,
FOURIER PROPAGATION, AND POISSON’S SPOT

1. INTRODUCTION

 The boundary conditions imposed on the diffraction problem in order to obtain the Fresnel-Kirchhoff 
(FK) solution are well-known to be mathematically inconsistent and to be violated by the solution when 
the observation point is close to the diffracting screen [1-3]. These problems are absent in the Rayleigh-
Sommerfeld (RS) solution. The difference between RS and FK is in the inclination factor and is usually 
immaterial because the inclination factor is approximated by unity. But when this approximation is not valid, 
FK can lead to unacceptable answers. Calculating the on-axis intensity of Poisson’s spot provides a critical 
test, a test passed by RS and failed by FK. FK fails because (a) convergence of the integral depends on how 
it is evaluated and (b) when the convergence problem is fixed, the predicted amplitude at points near the 
obscuring disk is not consistent with the assumed boundary conditions.
 
 Poisson’s spot, also known as the spot of Arago, is the name given to the bright on-axis spot behind a 
circular obscuration illuminated by a plane wave: on the axis of the disk, all light diffracted at the rim of the 
disk arrives in phase and interferes constructively. Consequently, even for angles approaching 90°, i.e., for 
observation points close to the disk, diffraction can result in a significant intensity. (In the overwhelming 
majority of optics problems, diffraction at angles of more than a few degrees leads to vanishingly small 
intensities and can be safely ignored.) Treatments of Poisson’s spot that make the Fresnel approximation [4,5] 

do not apply to the region close to the disk. Treatments that do apply close to the disk use the RS integral 
[6] or its predecessor, the Rayleigh integral [7]. The RS integral is derived from the Rayleigh integral with 
the additional assumption that the wavelength of the light is small compared to the geometric dimensions of 
the problem, an assumption that is made throughout this report. I refer to a calculation as exact to indicate 
that, while the short-wavelength approximation has been made, the Fresnel approximation has not. The other 
fundamental approximation made here is the scalar wave approximation, which means that the results apply 
better to acoustics than to optics, a point that will be reconsidered in the concluding remarks of Section 5.
 
 Fourier propagation provides an alternate means of handling diffraction problems. It can be used in 
computer software to calculate beam propagation problems, but in this report, Fourier propagation theory 
is used to derive solutions in integral form for the 2-D (long slits and strips) and 3-D (arbitrarily shaped 
apertures) diffraction problems. Standard Fourier propagation reproduces the RS diffraction integral.

2. THE BASIC DIFFRACTION PROBLEM

 Solving the basic diffraction problem requires finding a solution to the Helmholtz equation for a 
propagating wave encountering a partially obscuring planar screen. The Helmholtz equation is 

 
∇ +( ) =2 2 0k U x y z( , , ) ,

 
(1)
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where k = 2π/λ and U describes the amplitude and phase of the wave. U is a scalar, so only scalar diffraction 
theory is addressed. The boundary condition imposed on the solution to this differential equation is the effect 
of a diffracting screen in the z = 0 plane. Denoting by T the parts of the screen that are transmissive and by 
B the parts that block the beam, the boundary conditions used for the RS and FK solutions are   

 

RS and FK: forU x y U x y x y T
U x

( , , ) ( , , ) ( , ) ,
( ,

0 00= ∈
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(2)

where U0 describes the incident wave and ∂U/∂z is the derivative of U normal to the diffracting plane. 

 With reference to Fig. 1, the RS diffraction integral [1,2] for U at distance z behind an aperture in a 
planar mask is

 
U x y z

i
U x y

ikr
r

dxRS ( , , ) ( , , )
exp ( )

cos′ ′ = −
λ

χ0 0 ddy
Area

∫ ,
 

(3)

where r = [(xʹ - x)2 + (yʹ - y)2 + z2]½ is the distance between (x, y, 0) and (xʹ, yʹ, z), χ is the diffraction angle 
at point (x, y, 0), i.e., the angle the diffracted ray makes with the normal to the plane (not with the direction 
of the incoming wave) and the integral is over the area of the aperture. The FK integral [1,3] is

 
U x y z

i
U x y

ikr
rFK ( , , ) ( , , )

exp ( )
cos′ ′ = −

λ 0 0
1
2

ζζ χ+( )∫ cos ,dxdy
Area  

(4)

where ζ is the incidence angle at point (x, y, 0). The exp(ikr)/r factors in Eqs. (3) and (4) express Huygens’ 
principle: each point in the aperture acts as a source of spherical waves that combine to give the diffraction 
pattern. The cosine factors are called the inclination factors and constitute the only difference between RS 
and FK. For most diffraction problems,  the inclination factor is approximated by unity, causing the difference 
between RS and FK to disappear. 

 Goodman [1] gives a succinct derivation of both RS and FK and discusses the difference between them. 
The derivations use different Green functions, which require different boundary conditions to reduce the 
Green’s theorem integral to the familiar diffraction integrals given in Eqs. (3) and (4). The basic problem with 
FK is that the Green theorem integral can’t be evaluated unless the values of both U and ∂U/∂z are assumed 

z

x x'

rp
Fig. 1 — The basic diffraction problem: a point source p 
illuminates an aperture and produces a diffraction pattern 
on an observation screen. The distance r is the distance from 
a point in the aperture to a point on the screen. The angles ζ 
and χ (not labeled in the figure) are the angles the incident 
and the diffracting rays make with the z axis.
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to be zero on the obscuring part of the diffracting screen, but we know from analytic function theory that if 
both U and ∂U/∂z are zero over any region, then U ≡ 0 everywhere. Thus, the FK solution cannot be fully 
mathematically consistent and must therefore be suspected of not always (at least) giving the right answer. 
In Section 3, I use Poisson’s spot to show explicitly that the FK solution can violate the boundary conditions 
that were assumed for its derivation. 

3. CALCULATING THE INTENSITY OF POISSON’S SPOT 

 For the simple case of a plane wave impinging normally on a circular disk of radius a (Fig. 2), 
cosζ = 1 and cosχ = z/r. I calculate the on-axis amplitude and intensity behind the disk by doing so for an 
annular aperture and letting the outer radius of the annulus approach infinity: 

 
U z

i
U

ikr
r

c c
z
r

( , , )
exp ( )

0 0
1
20 1 2= − +



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→∞
∫ ,2πρ ρ

ρ

ρ
d

a  
(5)

where c1 = 0, c2 = 2 for RS; c1 = c2 = 1 for FK; and ρ is the radial coordinate in the (x, y) plane. In order to 
evaluate Eq. (5) without using the Fresnel approximation, I follow Sommerfeld [2] and Harvey et al. [6] in 
changing the variable of integration from ρ to r. On the z axis, r = (z2 + ρ2)½, so a ≤ ρ ≤ ∞ ⇒ r0 ≤ r ≤ ∞, 
where r0 = (z2 + a2)½. Now r2 = z2+ ρ2, so rdr = ρdρ, and the integral in Eq. (5) can be put in the right form 
to be evaluated via the Sommerfeld lemma given in Appendix A:

 

U z ikU ikr c c
z
r

dr
r

( , , ) exp ( )0 0
1
20 1 2

0

= − +





rr

r r
ikU

ik
ikr c c

z
r

→∞

=

∫

= − +



0 1 2

1 1
2

exp ( )
00

1

1
2

2

0 1 2
0

r
O

k

U c c
z
r

→∞
+ 



















≈ +








 exp ( ) exp [ ( )].ikr U

c
ik r0 0

1
2

− → ∞
 

(6)

The RS version of Eq. (6) is

 
U z U

z
r

ikrRS ( , , ) exp ( ),0 0 0
0

0=
 

(7)

while the FK version is

 
U z U

z
r

ikr UFK ( , , ) exp ( )0 0
1
2
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0 0= +






−
11
2

exp [ ( )],ik r → ∞
 

(8)

which shows that the FK integral fails to converge in this case. The reader’s attention is called to the fact that 
if a is set to zero (i.e., r0 = z), there is no obscuration and the right side of Eq. (8) should be just U0exp(ikz) 
– which, because of the second term, it isn’t! The FK integral, when evaluated in this straightforward way, 
doesn’t give an acceptable answer.
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 Eliminating the second term in Eq. (8) can be done in various ways. An artificial way would be to make 
the outer edge of the annular aperture an ellipse instead of a circle. Then the rays diffracted from this edge 
do not arrive on the axis in phase and do not interfere constructively. But the most sensible way is to impose 
Babinet’s principle as a separate requirement (separate, because, as we have just seen, FK doesn’t satisfy 
it unless the integral is done the right way). Babinet’s principle requires that the sum of the obscuration 
diffraction pattern (Fig. 2) and the aperture diffraction pattern (Fig. 2 with the transmitting and blocking 
regions reversed) be the uninterrupted plane wave: Uob + Uap = U0exp(ikz). Thus Uob = U0exp(ikz) – Uap , 
which can be seen from Eqs. (5) and (6) to be Eq. (8) without the second term: 

 

U z U ikz
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U
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(( ).ikr0
 

(9)

 The remaining, and more serious, problem with Eq. (9) is that it doesn’t satisfy the boundary condition 
under which it was derived. As z → 0, we should find U(0, 0, z) → 0 in Eqs. (7) and (9), since, from Eq. (2), 
that is the boundary condition originally assumed. Eq. (7) satisfies this condition, while Eq. (9) doesn’t. Also, 
omitting the exp(ika) phase factor, ∂U/∂z = U0/a at z = 0 for RS and half this for FK. The non-zero value of 
∂U/∂z is consistent with RS, for which only U need be zero at the disk, but not for FK, which began with 
the additional boundary condition ∂U/∂z = 0. 

 Eqs. (7) and (9) are squared to obtain intensity and are plotted in Fig. 3. The predicted intensities begin to 
differ appreciably at z/a ≈ 4, where the diffraction angle is χ ≈ 15°. Note that the exactly on-axis intensity of 
Poisson’s spot doesn’t depend on wavelength because there is no wavelength dependence in the inclination 
factor. Wavelength dependence enters in the radial intensity distribution, which, for the central region defined 
by r⊥/a << 1, where r⊥ is the 2-D radius measured from the z axis, can be shown to be [4]

 
U r z U z

i r
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(10)

The first zero of J0 is at 2πar⊥/λz = 2.4, which shows that the diameter of Poisson’s spot is proportional to 
λ, so the spot’s area and the power contained in it are proportional to λ2. 

4. DOING DIFFRACTION WITH FOURIER PROPAGATION 

 In Section 4.1, I invoke the basic principles of Fourier propagation, and then use these principles in 
Section 4.2 to derive the RS diffraction integral. For ease of presentation, I address the 2-D diffraction 
problem: long slits or strips illuminated by plane or cylindrical waves that can be described by U(x, z). In 
Section 4.1 the generalization to 3-D is obvious; for Section 4.2, it is done in Appendix B.

z
a

x'

r

x
Fig. 2 — The diffraction problem for Poisson’s 
spot; a plane wave falls on a circular disk. The 
distance r = (x2 + y2 + z2)1/2 is the distance 
from a point in the plane of diffraction to a 
point on the axis of the disk.
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4.1 Fourier Propagation

 The Fourier transform over x of U(x, z) is called its angular spectrum, defined by 

 
A z U x z ik x dx( , ) ( , ) exp ( ) .α α≡ −

−∞

∞
∫

 
(11)

Fourier propagation rests on the premise that, as shown by Goodman [1] for example,

 
A z A ik z( , ) ( , ) exp ,α α α= −( )0 1 2

 
(12)

where α is not restricted to -1 ≤ α ≤ 1. The Fourier transform variable in Eq. (11) is α/λ, so the inverse 
transform of A(α, z) is 
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(13)

The second equality shows that U(xʹ, z) is the sum of plane waves of amplitude A(α, 0), propagating at 
angle θ = cos-1α with respect to the x axis. When |α| > 1, the plane waves are evanescent, with exponentially 
decaying z-dependence given by exp[-(α2 - 1)½z]. These waves do not propagate a significant distance from 
the aperture but are needed to give a complete Fourier decomposition of U(xʹ, z) at, or near, z = 0. 
 

Fig. 3 — Intensity of Poisson’s spot at on-axis distance z behind 
a disk of radius a, according to the Rayleigh-Sommerfeld and 
Fresnel-Kirchhoff diffraction theories.
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Since the dependence on xʹ and z is all in the exponent on the right side of Eq. (13), it is easy to see 
that  

 

∂
∂ ′

+
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

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U x z

k U x z2
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which shows that U(xʹ, z) is a solution to the 2-D Helmholtz equation, and Eq. (13) shows that the solution 
depends only on the value of U in the z = 0 plane. For the diffraction problem, the standard procedure is 
to use U0(x, 0) for U(x, 0) in the transmissive parts of the screen and zero in the blocking parts. (Goodman 
loosely states that “Kirchhoff boundary conditions” are applied [1], but actually only the RS conditions are 
needed.) Thus, Fourier propagation and the RS integral are solutions to the same differential equation with 
the same boundary condition, hence must be the same function, a fact that is shown explicitly in the next 
section.

4.2 The RS Integral Derived via Fourier Propagation

 Returning to Eq. (13), interchanging the order of integration and using the RS boundary condi-
tion,
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(15)

where the last line defines the function F(α). The α integral is done by the stationary phase method: the 
function F(α) is expanded in a Taylor series about the point α0 at which its first derivative is zero. Using 
the notation Fα ≡ ∂F/∂α, we require

 

F
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which can be solved for α0,  
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The second derivative of F(α) at α0 is 
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Since the first-order term vanishes by construction, the Taylor series expansion through second order of 
F(α) about α0 is
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A standard Fresnel integral is now written in a form that will be useful below:
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where A is positive definite. 

 The integral over α in Eq. (15) can now be evaluated. For ease of notation, drop the α0 argument from 
Fαα and observe that Fαα = -|Fαα| (Fαα is always negative). Eq. (21) is inserted into the exponent in Eq. 
(15) to obtain:

 

exp ( ) exp ( )ikzF ikz Fα α ααα0 0
21

2
[ ] − −



















= ( ) −

=

∫ d

ikr
i

z F
D

α
λ

λ

α

αα
exp

ex

2
1

2
1

pp .ikr
i

r
z

rD
D D

2
2 2

1
2

1( ) −
λ

 

(23)

Therefore
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Eq. (24) is the 2-D version of Eq. (3) and contains the 2-D Huygens’ principle: each strip in the aperture acts 
as a source of cylindrical waves, for which amplitude falls off as r2D

-½. The interested reader may want to 
make the normal approximations [cosχ2D ≈ 1, r2D ≈ z + (xʹ - x)2/2z in the exponent, r2D ≈ z outside it] and 
show that Eq. (24) reduces to the standard form that is evaluated with the Cornu spiral. 
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 Extending Eq. (24) to the 3-D problem will, first of all, add a dy to the integral. Keeping in mind that 
all the units of length must cancel out on the right side, inspection of Eq. (24) suggests that the effect of a 
3-D calculation is to replace r2D and χ2D by r and χ, to replace cylindrical waves by spherical waves, and 
to square the factor outside the integral. This intuitive argument is confirmed in detail in Appendix B, with 
a result, Eq. (B14), that matches the RS form of the diffraction integral given in Eq. (3).

5. CONCLUSION

The fundamental flaw in the FK diffraction integral and the superiority of RS have been demonstrated 
with exact calculations of the intensity of Poisson’s spot. Fourier propagation has been presented as an 
alternate means of deriving the diffraction integral. Compared to the usual approach via Green’s theorem, 
this derivation has the advantage of rendering obvious the proper choice of boundary conditions. It has the 
disadvantage of requiring knowledge of Fourier propagation and, for the 3-D version, more complicated 
math, but the 2-D version is not bad and the generalization to 3-D by inspection is intuitively appealing.

As noted in the introduction, the argument has been confined to scalar wave theory, which will not be 
completely adequate for describing Poisson’s spot in optics for points near the disk. (The contribution of 
those rays not polarized parallel to the diffracting edge should be multiplied by the sine of the angle between 
the polarization vector and the direction to the observation point.) But it should be entirely adequate for de-
scribing Poisson’s spot in an acoustics experiment because acoustic waves are scalar (pressure) waves. Also, 
because the wavelength is much longer, diffraction phenomena can be more easily studied in an acoustics 
than in an optics laboratory. This experiment was done many years ago with somewhat equivocal results 
[8]. With modern equipment, it should not be particularly difficult to repeat, and could settle the conflict 
between RS and FK diffraction by direct measurement. 
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Appendix A

THE SOMMERFELD LEMMA

Following Sommerfeld [A1] and Harvey et al. [A2], we perform a series of integrations by parts (only 
the first two are shown) to expand the integral of a function multiplied by a complex exponential in a series 
of terms:

 

f x ikx dx f x
ik

ikx
a

b

a

b

a

b

( ) exp ( ) ( )
exp ( )∫ = −

′′ + ′′f x
ik

ikx
ik

f x i( )
( )

exp ( )
( )

( ) exp (2 2
1

kkx dx

f x
ik

ikx

a

b

a

b

)

( )
exp ( ) ,

∫

≈
 

(A1)

where the approximation is justified if f (x) is a slowly varying function, or, equivalently, in the limit k → ∞ 
(λ → 0). When applied to diffraction, the approximation in Eq. (A1) holds when the geometric dimensions 
of a problem are large compared to a wavelength of light, otherwise f (x) may not be sufficiently slowly 
varying. 

The integral in Eq. (A1) has exactly the form of the k-frequency coefficient of a Fourier series expan-
sion of the function f (x) over the interval (a, b). This shows that for large k, we need know only the values 
of f (a) and f (b) to find the value of the coefficient. I have searched more than a dozen Fourier series books 
and have not found this lemma in any of them.
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Appendix B

DERIVING THE RS DIFFRACTION INTEGRAL VIA FOURIER PROPAGATION

Proceeding in analogy to Section 4.2, the 3-D version of Eq. (15) is

 

U x y z
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x y  
(B1)

The function F(α, β) is expanded in a Taylor series about the point (α0, β0) at which its first derivatives are 
zero. Setting
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(B2)

and similarly for β, leads to  
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The second derivatives of F(α, β) at (α0, β0) are 
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F
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and
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The following quantities will be needed below:
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and
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The Taylor series expansion through second order of F(α, β) about the point (α0, β0) is
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The α and β integrals in Eq. (B1) can now be evaluated. Observe that Fαα = – | Fαα | (Fαα is always nega-
tive) and, for ease of notation, drop the (α0, β0) argument from the quantities Fαα, Fββ, and Fαβ. The first, 
second, and fourth terms in Eq. (B11) are inserted into the exponent in Eq. (B1), and the integral over α is 
evaluated by completing the square in the exponent (the symbol ± in Eq. (B12) means add and subtract, not 
add or subtract):
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The integral over β in Eq. (B1) can now be carried out by adding the third term in Eq. (B11) to the exponent 
in Eq. (B12), and again using Fαα = – | Fαα | :
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Eq. (B1) can now be written in the desired form: 
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