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ABSTRACT

In applying the Wiener-llopf technique to practical problems, the
central difficulty is in properly factoring h(w), the Fourier transform
of the kernel. This factorization is sometimes made practicable by
replacing the variable w with a new variable, z, in such a manner
that the form of h(w(z)) is factorable by 'inspection' in the z-plane.
The Introduction contains a more general statement of this idea, and
Section I, an application to the well-known problem of straight-edge
diffraction.

In Section II, a rough-surface reflection problem is formulated.
The surface consists in randomly spaced, parallel, conducting half-
planes, with edges lying in a 'reflecting' plane on which is incident
a plane wave with electric vector parallel to the edges. A self-
consistent formulation of the problem of finding the current-distribution
in a typical half-plane results in a Wiener-Hopf integral equation.
The general method of Section I is applied, and a formal process for
'inspection' leads to factors having the suitable analytic properties.

Section III deals with some results valid when the half-planes
are perpendicular to the reflecting plane. When the grazing angle,
AL, is small, and when S, the average distance between edges, measured
in wavelengths, is large, the approximate reflection coefficient R of
the reflecting surface is given by

R = - { 1- 2iz2  (z + iz}2  A)

where z 2 = Tt 7i 2S is a measure of the number of Fresnel zones enter-

ing a physical-optics calculation of the field illuminating the edge of
a typical half-plane. A highly implausible alternate derivation of (A)
is also presented, as well as a formula for back-scattered power density.

The problem considered in Section IV is that of diffraction by a
conducting half-plane which lies in the plane interface between two
different media. The present factorization method is applied to obtain,
in principle, the factors required in solving this problem by the Wiener-
Hopf method.

PROBLEM STATUS
This is a final report on one phase of the general problem of wave

propagation over a rough surface; other work continues.

AUTHORIZATION
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Manuscript submitted February 26, 1954

ii



APPLICATION OF A WIENER-HOPF TECHNIQUE
TO CERTAIN DIFFRACTION PROBLEMS

INTRODUCTION

The now familiar Wiener-Hopf method has been found a powerful tool in the solution of certain
diffraction problems. (See the paper of Carlson and Heins 1 for an example and a comprehensible
discussion of the method.) Generally speaking, the Wiener-Hopf method is used to solve an integral
equation of the Faltung type having the following structure:

I F(y) H (x-y) dy (x)x< ( 1)

Here F(x) vanishes in x < 0 and is unknown in x > 0, 0 (x) is known in x > 0 and vanishes in x < 0,
a (x) is unknown in x < 0 and vanishes in x > 0, and H is.known. Taking Fourier transforms of each

side by multiplying by exp(-iwx) and integrating over -a <x < co, we get

2 Rf (w) h (w) = q(w) + W (w). (2)

Here the transforms f(w) and q) (w) are R in L (regular, zero-free, and of limited growth in Im (w) < 0),
ip (w) is R in U (regular, zero-free and of limited growth in Im (w) > 0), and h (w) generally has singu-
larities in both half-planes, but (for simplicity) none on Im w) = 0. Then one writes

h (w) = hL (W)hU (w) (3)

where hL is R in L, hu is R in U. If the singularities of qp are simple poles in U then q (w) can be
expanded in partial fractions as

C.
q)(w) =Ei i ; Im (Pi) > . (4)

W-pi

1
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From (2) we readily obtain

NJIV(w) Lu CP)2 nlf (w) h (w) ~ i = w Ci + E. (5)
L i (w-pi) hu (p) hu(w) W - pi 'hu(w) ho(Pi)

Here the left side is R in L, the right R in U. Now, if it is assumed or somehow proved that neither

f(w) nor iy(w) have singularities on Im (w) = 0, then the two sides have no common singularities,

and there is a 'common strip of regularity' containing Im(w) = 0, in which neither side, or in fact no

term on either side, has a singularity. The two sides are then equal in this strip, and therefore both

represent the same function z(w). But z(w) has no singularities and grows too slowly with 1w I
to be other than a constant C. Thus both sides of (5) may be equated to C, giving two equations, the

first containing f(w), the second MI(w). One then evaluates C by a discussion of the asymptotic

behavior of either of the two equations, or otherwise, and solves the two equations for the Fourier

transforms f(w) and MI(w). Taking inverse transformations then yields F and Vf having the originally

prescribed properties.

In applying this Wiener-Hopf method to a physical problem, we are entitled to dispense with

analytic rigor in performing the various steps, provided that the final formulation of the s lution is

rigorously shown to obey the required physical conditions. In using the method to suggelt the form

of the answer to a physical problem, the only step that is not routine is the factorization of h (w) into

hLhU. Given the 'common strip of regularity,' each factor can be expressed through a contour integral

containing a logarithm in the integrand. 2 Generally speaking, these integrals seem difficult. Perhaps

some study should be given to their asymptotic evaluation, which may be all that is required in certain

problems. Certain forms of h(w) can be factored by inspection, or by development as an infinite pro-

duct (as in Reference (1)).

The diffraction problems to follow are formally of the Wiener-Hopf type, but the factorization

problems appear practically insoluble by any of the stated methods. An alternative procedure will be

presented. One starts, conceptually, at the end of the problem, where the inverse transformation is

being taken to obtain F(x). For this purpose, one multiplies f(w) by exp (ixw) and integrates along

the real w-axis, in the common strip of regularity. One is entitled to transform the integration into a

contour integral in a complex z-plane through the substitution w = w(z), dw =w' (z)dz. The form of

w(z) can be chosen so that h(w(z)) has a convenient behavior as function of z. One can perhaps factor

h in the z-plane, so that the z-equivalent of (3) is at hand; but then the problem is to show that the

z-integral, equivalent to the inverse Fourier transformation, has the correct properties as function of x.

As w(z) is at least partly determined through the singularities of h(w), we tend to lose the

common strip of regularity as a-domain for analytic argument, and must useother properties to show

that the results have the desired analytic or physical behavior. In the examples to follow, odd and

even properties of various z-integrands will be used to guarantee the correct analytic behavior of
the resulting expressions.

Without the common strip of regularity, there is further difficulty in proving analytically that, in

the z-analog of Equation (5), the two sides may be equated to a constant. An alternative is presented

by the physical origin of the subsequent problems. One sets the left side of the analog of (5) equal

to some constant C, solves algebraically for f(w) and W(w), and shows that the resulting FRx) and

lk(x) satisfy all the requirements set by the physics of the problem.

2
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SECTION I - DIFFRACTION BY A HALF-PLANE

Now we formulate the first of three two-dimensional diffraction problems which can in principle
be solved by the Wiener-Hopf method. This is the well-known problem of the perfectly conducting
half-plane, introduced both in order to have a solved problem and as a limiting case of the two prob-
lems to follow. We consider a metal half-plane lying in the region y = 0, x > 0 of a rectangular
coordinate system, and plane wave, (po (x, y) = A exp (ikx cos 60 - iky sin 00), Im(k) > 0, incident

on this half-plane from x < 0, y > 0. (The time factor exp(-iwt) is suppressed here and in the formu-

lations to follow.) With the electric vector of this wave assumed parallel to the z-axis, i.e., to the
edge of the half-plane, there is a current density F(x) induced in the half-plane. Suppose the total
field radiated by all currents is (P (x, y). Then,

(1.1)P1 (XyY) =f F(x )H0(1) [k (x-x) 2 + y2]dxt.
0

To satisfy the boundary conditions, we must have (Po (x, 0) + (P 1 (x, 0) = 0 in x > 0. Thus, with

F(x) = 0 in x < 0,

F(x- ) H-(1) (k x-A XIJ) dx = {
- -cx

ikx cos >
-A e 0 < (x), x .>

*.xx <0O

It is well-known that

FrHo1() (k/ x 2
+ y 2 ) = K

J

ixi fk 2 _ ,2e 1Ke -Iy I
dw (1.3)

J-M \Jk2 W2

and that, with (x) = 0 in x < 0

@() iA co
2 a

eiw-

w - At

where ji = k cos 000, and the constant K is nonessential. Letting

co

F(x) =

-a,

eiwr iV(w) dw

ew f(w) dw

we have from (1.2) and (1.4) an algebraic relation among the Fourier transforms,

2itK f(w) _

qk2 w2 _-W

iA
2i _ + T (w).

2n(w- E)

(1.2)

dw (1.4)

(1.5)

(1.6)

(1.7)
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With Im(k) > 0, there are no singularities on the real w-axis, and the previously described procedure

leads to the correct solution without difficulty, since h(w) = (k2 - w2)- = (k - w)- X (k + w O

=hLhU and h(w) is split into two factors with the required analytic properties. We thus obtain the
equivalent of Equation (5),

2itKf(w) iAV + 1k iMw +A [k+w - Ak + (.
k wi (w) +.18

/- w 2nt(w-ll 2n1 w-

For f(w), the result of equating each side of (5) to C is

27tKf(w) =iA k + fk +- + C '1k- w. (1.9)
2 it w -p.

When this f(w) is substituted into (1.6), the integral vanishes for x < 0. Here the contour of integra-

tion can then be removed to infinity across the Im(w) < 0 half-plane, where the integrand has no

singularities; for x < 0, the integrand vanishes with Im(w) - - a, and F(x) = 0, x < 0 follows.

On the other hand, when x > 0, the integrand increases exponentially with Im (w) -- a, but the

integral can be evaluated as a residue and a branch-line integral in Im(w) > 0 (in U).

With C / 0 the C-dependent term of F(x) is proportional to

ceiks J e- ii du =Ce x P(3/2) x 3/ 2 .

The similar term in 1>(x) is

Ceikx eU1 U - Ceikir (1/2) x%.

Thus $'(x), the scattered field, is infinite at the edge of the plane when C f 0, a physically unac-

ceptable conclusion. Secondly, -if C k 0 and A = 0, we have a source-free solution of the problem,

with the total field (calculated from (1.1)) properly 'outgoing' and vanishing on the sides of the plate

but not vanishing for y = 0, x/'O-. This standing wave is not excited by (P, and would soon radiate

away if present at any time. Hence we may take C = 0 in (1.8) and (1.9).

Now let us examine the case Im(k)*.O. Here the contour in the w-plane is deformed according

to the scheme of Figures la, lb, into portions of the real axis connected by three semicircular arcs,

one lying in U and centered on w =- k, two lying in L and centered on w =k and w = p.. This contour

can be used in both (1.5) and (1.6). The singularities are now on Im(w) = 0: a pole of (Pat w = p. and

branch points of h at w = ± k. Here we have no 'common strip of regularity,' but continuations of the

solutions F, AJ, already obtained from an argument using a 'common strip,' must be solutions over the

new contour in the limit Im(k)O*.0.

For guidance in what is to follow, let us assume that we have obtained the transform relation

(1.7) and the deformed contour applying to Im(k) = 0, but do not know how to factor h(w) = (k2 w ,)-K

If we let w = k sin 0, all of the known functions of w in (1.7) transform into periodic functions of

for which the only singularities in the finite e-plane are simple poles. Thus the transformation

4
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Figure 1 - Contours and singularities for simrg6-plate diffraction

achieves an apparent simplification in removing branch-points. In making the inverse Fourier trans-
formation to find F and 4r, we would now multiply 'solutions' of the factorization problem in the
9-plane by exp (ikx sin O) cos 0 d 9 and integrate, in the (-plane, over the contour r which
corresponds to the deformed contour in the w-plane. The contour and the location of the known
poles (0) of p(k sin 9) are shown in Figure 1c. Here the regions in the (-plane for which Im(w)
=kIm(sin 9) >0 are marked U, and the regions for which Im(w) =kIm(sin 9) < 0 are marked L.

Momentarily overlooking the singularities marked in Figure 1c, let us find some (-analog of the
following statement: if g(w) is R in U, and has no singularities on Im (w) = 0, then f X exp (iwx) g(w) dw
= 0, x >0. The conclusion follows because the integration contour can be removed across U, and the
exponential factor vanishes in the process. In the (-plane, the integral becomes k fr exp (ikx sin 9)
g (k sin 9) cos O d O. When x >0, P can be deformed across Uointo 9 = I/ E + it, t real. As
function of t on the new contour, sin 0 is even, cos 9 is odd, and dO is even. Thus the integral
vanishes when g = constant, as the integrand is an odd function of t. If g(w) is R in U and on the

.U .. -u --- r-- nr , Ac - -
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real w-axis, then g(k sin 6) is even in t. But the integral (assumed to converge) vanishes if g has
more general properties, i.e., if g(k sin 0) is R in -A2 Tt <Re (0) .C 2 it, Im (6) > 0, and is an even
function of t on e 'A V2 11 + it (here we say that g is R in U0 ). Thus the properties of g in other
U-regions of the 0-plane are not important, even though g (k sin 6) may not be R except in U0 (and
therefore in U1 , by the even property). Of course, the same argument can be carried through in the
w-plane if the original contour is thought of as lying on a certain sheet of a Riemann surface, g(w) is
R in U on this sheet, and the contour avoids the singularities of g on Im (w) = 0 by semicircles lying
in U. By passing to the 6-plane we unfold the Riemann surface and perhaps have a clearer idea of
the structure of the integrands than if we tried to argue from a Riemann surface in the w-plane.

In applying this analysis to (1.7), we start from

2itKf(k sin 6) iA 1

k cos 6 2it k sin -ILL
+ w (k sin 6) .

Here the denominator k cos 0 is an odd function about both A iT and -A2 it; by the foregoing argument,
W (k sin 6) must be even about 6 =-i2 t. The known function q(k sin 6) is even about both -Y2 iand
Y2 i. The factorization problem becomes one of splitting h = cos 0-1 into two factors, one even about
-%/ i, the other even about '2 n The structure of the product cos 6-1 is indicated in Figure Id, where
the symbol e marks 'even points' of cos 6-1, about which cos 0 is even and where the 6-derivative
vanishes, and (-) indicates a pole. The structure of the two factors is indicated with the same
symbolism in Figures le, if. One can obviously choose periodic factors with period 4 it, whereas
cos 0 has period 2 Tt. Factors of (k cos 6) -l with the requisite zeros, even points, and periodicity
are

sin(2)}2Eo sin (+ -)]hu

The w-equivalents are respectively (k - w)-'A, (k + w)'A. Carrying out
two equations we get:

2 it K f (k sin 6)

V- sin (---)

(1.11)

the separation of (1.10) into

iA Vii sin [+- sin-i (±)]
2 it(k sin 6- 0l)

= w(k sin 6) V/2k sin + +

iA Vk {sin(- + 2> sin[7 + sin.1 .' ]}

2 Tt(k sin 6 - ILL)

Here the heuristic argument is that the two sides are representations of the same function of period
4 it, and since the regions of regularity of the two sides overlap in the period, the function must be a
constant. By a version of the previous argument, this constant must be zero, so that each side of

(1.10)

hL = O

(1.12)

6
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(1.12) can be equated to zero. The two resulting equations can then be solved for f (k sin 3),
y(k sin 0). For f, the result is

i Ak sin r- +-sing -k sin(4--
2itKf(k sin k) sin4 2 [k 2 . (1.13)

it (k sin a - 0l

The constant-determining argument is based on the rate of growth of the part of v which is odd
about -i It. We assume that *P(x) must be bounded in the limit x A' 0. The part of v which is even
about-/ it produces no contribution to W, and the behavior of ik is determined primarily by the
behavior of the odd part of Ml near t = ± - on the vertical line e = it -% iT. Here the odd part must
vanish with t - at such a rate that allo fo ef MI (0) dt exists. This is seen to be true
(or at least possiLle) only if the constant, to which the right side of (1.12) is equated, is zero. The
argument is analytically slipshod, and we should show that we have been led to a correct solution of
the physical problem by examining the resulting electromagnetic field. This verification is straight-
forward, and will not be reproduced here.

For this half-plane problem, Sommerfeld's original solution 3 was a contour integral in a similar
(-plane. A good reason for the fact that the present contour cannot be deformed into that used by
Sommerfeld is that he started with an exponent (ixk sin 00+ iyk sin 00), whereas the corresponding
exponent in (1.3) is not analytic in y at y = 0.

SECTION II- DIFFRACTION BY RANDOMLY SPACED, PARALLEL HALF-PLANES

We consider diffraction over tile 'rough surface' shown in Figure 2. The surface consists in a
randomly spaced array of parallel, perfectly conducting half-planes (plates) lying in x > 0, the edges
lying in x = 0, parallel to the z-axis. The plates make an angle 13 with the positive y-axis. Let the
plane wave

wo = exp (ipy + ix \/k 2  p2 ) (2.1)

be incident on the array. Let u measure distance from the edge of a plate, and assume that the
induced current-density in the plate with edge at y is given by exp(ipy)I(u). That is, the same
current is induced in each plate except for the phase factor, exp~ipy), determined by the location of
the plate's edge on the y-axis. The currents between u and u + du in all strips radiate a field
W(u, du) which, at least on the average, is expressible as an integral,

W(u,du) = NI(w)du dy' eipy IHi1) (k p)
ma0

p = [ (x - u sin 1)2 + (y _ y I _ u cos 3) 2
] (

7
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where N is the average number of plates per unit length of y-axis. Now, with

HO(l) (k FX2 + y 2 ) =Kc I e
d (a

where K is a nonessential constant, and with I (u) = fcc f(w) eiWu dw we have

w (u, du) = du 2 EN K
r f(w)dweiWu eip(y U Cos P ) ei Vk 2 _p2 |x-u sin /3

J (k 2
_ p 2 ) Y (2.4)

If we take x < 0 and integrate this expression over the length of the plates, we get the average
reflected field R exp (ipy - i k2 

_ p
2 x), where R is the effective specular reflection coefficient

of the 'rough surface,' regarded as lying in the x = 0 plane:

R =4t 2 NKf(p cos 3'- I -i p sin r3)(k2 -p2 Y~ (2.5)

Thus the reflection coefficient R is directly obtained through the Fourier transform f (w) of the current
density, and the current itself becomes of secondary interest.

iPY + ix fk2 -p2
Wo=e

REFLECTING \
PLANE

Repy ix 62

PLATES

Figure 2 - Parallel-plate surface

(2.3)

8
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Hence we are directly interested in finding f(w). Toward this end, we need to know the average
field W1 scattered to a point u in a plate with edge at y. Here we assume that W1 is independent of
the presence of the particular plate, and is the average field found at the particular point in the
absence of the plate:

W1 (u) eiPY =
T2 IT NKf (w) eipy eiWu 2i sin 3 dw

Co k2 sin 2 3- p2 + 2 pw cos 6- w 2 (2.6)

Finally, we assume that the currents in this plate radiate fields which
WO + W1 on the surface of the plate. Using the fact that, in x > 0

W= 1
° 2lti

-oo
co

cancel the total incident field

ei(wu + PY) dw

w- (p cos , + \/k 2 p 2 sin 1) (2.7)

we have an algebraic relation among the Fourier transforms:

2itKf(w) [I +
2Ni

k2 sin 2 13 - p2 + 2pw cos a3 W2

i

21t(w - p cos 1 - k2 -p 2 sin 1) a
- 2itKf(w)h(w) + (p(w) = (w)

where M(w) is the transform of the unknown field scattered by the plate along its continuation into
u < 0. (We set N = 0 to verify that Equation (2.8) becomes essentially the same as Equation (1.7)
of Section I.)

Now f(w) must be R in Lo as there are no currents in u < 0, and 4 w) is similarly R in UO.
To find f and xV with these analytic behaviors, the problem is to factor h(w), the coefficient of f w).

By combining terms in h, one sees that to find the roots of the resulting numerator requires
the solution of a fairly general quartic equation in w, unless 6 = A2 7t. We continue with the detailed
discussion of the latter case only.

If N > 0, h(w) gains two additional poles, owing tc the denominator of the second term, and
four additional zeros, as one sees by combining the terms and regarding both signs of (k2 

-

as possible. Of course, two of the added zeros of h lie on the 'wrong' leaf of the two-sheeted
Riemann surface required by the presence of the radical in the first term of h(w). All zeros must be
accounted for in a factorization.

1]

(2.8)
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To locate zeros and poles of h, we first find the poles due to the second term, namely, those at
2 _p

2 . Taking p k cos [i( , > 0), say, asbefits the plane incident wave, we see that these

poles lie symmetrically with respect to the origin on the line segment connecting w = k and w = - k.

Thus the contour (the real w-axis) passes below the pole on the right, above that on the left, as in

Figure 3a. Now let Im(k)NO , and let w = k sin e, as in Section 1. In the 0-plane the contour, F,

avoids the poles (-) as shown in Figure 3b. The form of h is now (with Q = N/k)

cos2 0 + 2iQ cosO- cos2 .9

k cos e (cos 9 - cos II) (cos 0 + cos L) (2.9)

The zeros of h are found through

cos 3 = -iQ ± cos2  Q- 2 . (2.10)

(These zeros are indicated by (0) on Figure 3b.) For small Q, the zeros lie near the poles of the

original second term of h. In the factorization, each zero must be contained in the same factor as the

nearby pole, so that when N-N 0, the zeros move toward the poles and cancel them in each factor,

and the factorization of Section I results. By examining (2.10) one verifies this behavior.

(The argument for ,13 / ' it is more complicated. It will, however, be assumed that the discussion

applies to this case, i.e, that the zeros and poles of h, migrating in the 0-plane under change of N

and 13, always lie with respect to the contour as shown symbolically in Figure 3b. This cannot be

proved, apparently, without a formal discussion. Here one determines signs of such forms as

(N2 - p 2 ) by the fact that N > 0 and Im(p)N. 0.)

Now we factor h into two factors, h = hUhL, t here huis R in U and even about /A 7t, and h L

is R in Lo and even about -'A Tt. (The expressions R in U0 and R in E0 will be understood hence-

forth to include the foregoing evenness properties.) First (in Figure 3c) we label the poles on the

real 0-axis, those with the notation U belonging in hut and those with the symbol L belonging with

hL. This can be done almost without thought. Then we label the zero in U0 with the symbol L,

since this zero cannot belong to h U. Similarly, the zero in Lo is labeled U. Now there is no zero

in U1 symmetric at the image point (with respect to -'A iT) of the zero in U0; we place a zero (0)

here, and label it L, since such a zero is required in hL' Since h lacks this zero in U 1 , we cancel

it with a pole (aM), Aiich must belong to hu, for if this pole is in h a similar pole must cancel the

the zero in U0. (The dashed arrow represents the argument connecting the new zero and pole with

the zero in U0, and is a first step in a 'zig-zag' argument specifying the poles and zeros required

by the presence of the zero in U0.) If the new pole in U_1 belongs to h , a similar pole must be

found at a point symmetric with respect to A2 it, i.e., in U2. Placing a pole of h. here, we find a new

zero of hL required to cancel it, etc. (Thus there will be a double zero of -hL at the point at the end

of the second dashed arrow, since there was already a zero of h at this point.)

In Figure 3c the zero of h in L must belong to hT, since otherwise h would require a new zero

in Lo; similarly the zero of h in U 1 elongs to hu. 'ie zeros in L and U 2 are assigned in the

same way, except that one step in a zig-zag argument is required. e then carry out the zig-zag

arguments, starting from each of the above zeros. The resulting structure of h L is shown in Figure

3d; rotating the structure 1800 about the origin gives the structure of h (Figure 3e). In fact, we

may set

hu (0) = hL (-0)

10
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0

(3a)
0

-kk \
0

(3 b)

h (0)

(3c)

(3d)

hL -

(3e)

hu3)

(3f)

0/hu -

Figure 3 - Contours and singularities for parallel-plate diffraction

after making proper choice of constant factors (or, more generally, exponential factors). One readily
verifies that the product of hU and hL is h (assuming correct 'constant' factors) and that the behaviot
of each is correct when N-a*O.

From (2.8) we now have, with w = k sin 0,

U L 2 7tk(sin 0 - sin ,ll) U L + = (2.12)

a

11
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The next step is to divide through by hu, which results in

2ltKfhL + - -T.= (2.13)
h h

The first term on the left is R in LO' the term on the right is R in U0 , but the second term is of a
mixed character. Its structure is shown in Figure 3f.

We note that (P is even about both -% 71 and %'A ; (P is R in Lo but not in U0, having a pole at
0 = 11 on the UO side of the integration contour. The form P/hu is even about /2 AT, but retains the
pole at 0 = p, and hence is not R in U0. We now write

( F 1 (O)(2.14)

hu(e) ) Lhu(O) hu( ± +l ((

Here the first term on the right is even about l 2t and contains no pole in U0 , and hence is R in UO
(zeros in UO may now be disregarded). The second term is R in Log since it differs from (P by a
constant factor. We can therefore set

(P~h + i _2.112mlKfhL (9) - [ - (2.15)
hu([I) hUM h 7Ue) h [

The left side being R in Lo, the right R in U0, the function represented by each side is even about
both '/2 1T and -'A 1t, and hence has period 2 it, and has no singularities in U0, U1 , Low and L 1X or on
the boundary, r, between these regions. Thus the periodic function represented has no finite singu-
larities in one full period, and therefore has no singularities in the finite O-plane. Finally, if the
function grows sufficiently slowly with Im(9 ), the function can be only a constant. As to these rates
of growth, one sees from Figure 3e that poles and zeros of h - may be paired in such a way that one
pole is left over at each of the points it(2n - 'A). Therefore 1/hu must grow like cos( 9 /2) (the
'exponential factor' being a constant). The same growth holds for 1/hL by virtue of (2.11); hence
1/h grows like cos 9, as may be verified by inspection of (2.9). Since (P vanishes for Im (9) - + ',
the rate of growth of the right side of (2.15) is 'sufficiently slow' if MI grows more slowly than
cos(0/2). The IV of (2.16) will be seen acceptable in this regard.

Again we determine the constant (represented by both sides of (2.15) ) by appeal to the physics,
concluding that the constant must be such that the rate of growth with t > 0 of Mi('A TE + it)
- (i/% IE - it) is minimal. The part of iv(-'2 E + it) which is even in t produces no contribution to the
part of the scattered field Vf found from MI by integration over -<x < t < 00. Owing to its poles at
-' 7t + 2n t, hu is essentially odd as function of large t > 0; the remaining poles and zeros pair up
to produce an asymptotically even behavior as function of t. Equating the right side of (2.15) to a
constant K " and solving for MV, we have, using the fact that p is even in t:

Part of v which is odd in t -______ + K Uhu(9)
hu (p.

12
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Since q - 0 with t - c, we obtain the minimal rate of growth by setting K ' = 0. We therefore have

cP(0)
2mKf(k sin 0) = ___ h____

hU( )hL(O)

, W=Lh. (0)
11 -':(P hu'(P) I

The poles of p and hL at 0 = S cancel, and the zero of hL in the interior of UO becomes the pole of
f which determines the magnitude of the currents at large x. When N'N0, this zero migrates to 0 = p.,
and the current distribution in the single plate of Section I is achieved in the limit.

With cp given in (2.12), we can say that the problem is formally solved by substituting an analytic
expression for the hu, hL of Figures 3d and 3e in (2.16). Toward this end, we can write (see Figure 3b)

Rae c

sin sin sin[ j

r 0 + n+-l rl[01 +n + r[2 +n +- r 3 + n +-
2it 2L2 T 2 2t 2J 2 2

P r - + ni r [e12 + ri p[022 + ni r [ 0 + ni
'7<

n = + - -) - - - - En0 0 n 1 re 1 +o+ ro2 o 1 Fr 3 n +
-2 7t -2 I 2 Tt - 2 g -

p 0 +n+1 Pr +n+1 P2 +n+I 3 ir +n+LI~0+0 n +-1F 0 0 +-1~1 n0± ++1 pe+0
2J L 2 2] L 27L 2 L22 n22-

The convergence of the infinite product is required only in the strip - It/2 < Re (0) c -Y2 it;
we do not explore this question, but it seems apparent that rapid convergence can be achieved by
properly grouping factors after removing certain of the gamma functions with low n-indices from the
product. That is, after removal (from the denominator) of the gamma functions containing the zeros
of hL in UO, U 1, Lp, andL -2' the remaining gamma functions may be grouped four at a time in a
manner producing factors rapidly approaching unity in the strip of interest.

To evaluate the remaining constant c, we set hu(0) = hL(- G0), equate the product hUhL to
the h of (2.9), and find, using the identities

r (z) P (1. z) = -, sin k] sinI-I=
sin it z L2j 2

cos y - cos x

2

thatc2 =2t 4 /k.

(2.16)
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Through the logarithmic integrals, Bazer and Karp3 were able to factor an expression having
many of the difficulties presented by the h(w) of (2.8) in the present case 1 = 'A it. Their factorization
may possibly be adapted to the present case, but the case 6 /i 'S Tt would probably present additional
difficulties.

We conclude with some remarks about the uniqueness of the factorization. The zig-zag argument
seems to lead to unique factors insofar as the zeros and poles are concerned. For if we introduced a
zero of hL at some new point in the O-plane, there would have to be a compensating pole in hu.
Furthermore, there would be a zero and a pole at points symmetric with respect to -'A Tt and 'A2 x,
respectively, and these new singularities would require compensating zeros and poles, etc. Eventu-
ally a pole or zero would have to be located in the strip -/2 it < Re (9) < '2 it. Such a pole or zero,
not being found in h, would have to be compensated in a manner resulting in (say) a pole in ho and a
zero in hL at the same point in this strip. Thus the factors could not have the desired analytic pro-
perties in U0 or Lo, and the introduction of new poles or zeros is impossible. We then have the option
of multiplying the present hu by eq(G) and hL by e( 9 ). Here q must be an entire function and even
about both -' A and %Ait; q is therefore periodic with period 2it and must be of the form q' (sin 9),
where q is some entire function. If qt is not identically a constant, q'(sin 0) grows at least as
fast ax q% Isin 0 1, for some finite constant q0 along some vertical line in the foregoing strip. Here
the location of the contour integrals would be determined by q0 rather thanxwhen jkx I < q0 ; this
is physically inacceptable and we must have q ' = constant. Such a constant would not appear
explicitly in the present results, and so it may be taken as zero.

SECTION III - SOME QUANTITATIVE RESULTS

This section is devoted to the consideration of some of the reflecting properties of the parallel-
plate medium of Section It (Figure 2). The plane x = 0 may be regarded as a rough surface, a surface
which can be described only statistically. The complete statistical description of the surface is con-
tained in the following statement. Let L be the distance (along the y-axis) between the edges of
consecutive plates. The probability that L lies between L, and Li + dL is given by exp (L 1 /S)dL,
where the average separation S is connected with the N of Section II through S = 1/N. The tact that
only Q = N/k (or, equivalently, S) appears in the results of Section II might suggest that some of
the statistics of the surface have been ignored in the self-consistent formulation of the scattering
problem. On the other hand, S (or N) is the only arbitrary quantity in the statistics of the surface,
and any average or statistical description of the scattering properties of the surface should be
essentially in terms of S.

The parallel plates of Reference 1 are regularly spaced with a pommon spacing which we may
call S.. The scattering properties of the 'surface' of Reference 1 depend on SO in somewhat the
same way that the present properties depend on S; differences in the functional dependencies on
SO and on S would shed light on the extent to which the randomness of the present surface actually
affects the deduced scattering. Unfortunately this comparison is not easy, owing to the fact that the
mathematically convenient case in Reference 1 is SO = 0(1), whereas the presently convenient case
is S > >1 and the grazing incidence (Vk2 p- 12 = k sin I; < < k in Equation (2.1)).

We now obtain an approximate expression for R, using Equations (2.5) and (2.16). With 3 "A x,

we have

R = 4t2 NKf (-k sin (A)
k sih 1i

14
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We bypass most of the material of Section II, resorting to an approximation valid for the case
Q = N/k <<1 and 1i «1, i.e., for large spacings between the plates and for nearly grazing incidence.
Here in Figure 3b the poles and zeros in the interior of the strip UO, Lo lie close to the origin, and
those in the interior of the adjacent strips lie near + it, well away from the contour of integration.
The outlying poles and zeros are important only in their effect on the behavior of various functions
in the strip UO, Lo (- % iT < Re (0) < /2 %t ); under the present assumptions, the close grouping of
poles and zeros outside of the strip means that their effects cancel in the strip. Thus, to some
approximation, R depends only on the poles and zeros in the strip Lo, U0 . Instead of evaluating Ri
through the formal procedure of Section II, we now reapproach the factorization problem from the
point of view just outlined.

With f3 = /2 1it, p = k cos 1I, w = k sin 0, Q = N/k in Equation (2.8), we may write down the
result of expanding the various trigonometric functions in power series, obtaining, to a first
approximation

2 tKf(k sin e) (0 _ g12 + 2iQ)(0+ 11,2 + 2iQ)

k(0- i') (0 + 1A) 2itk(0- 11) + 'Y * (3.2)

Here (p has been expressed as a simple pole, so that the general procedure of Equation (5) is
immediately suggested. We obtain

271Kf(k sin 0) (0 -112 + 2iQ)

(0- 11)

i2 11

2 n ( 03- A) (11 + VI,2+ 2iQ)

2 it 2 Kf (-k sin 11) = - i _1 i 11
[11k /112+ 2iQ 1 2 4Q 2

[ f L+2 2iQ

R = - -2iQ

[A + 112 +2iQ] 2

[ C11 + 2iQ _ 11]2

-2iQ

This clearly gives the correct R - -1 when 1i - 0.

The radiation from each plate is symmetric about the plane of the plate, and each plate is
perpendicular to the plane x = 0. Thus the power scattered back along the direction of the incident
wave is readily calculated from f(-k sin 11). We use (2.3) and the subsequent expression for the
current I(u) (u ax with B =/2 it) to determine the field radiated by a plate with edge at x = 0, y = 0,
to a point x = r sin 11, y = -r cos 11. Taking the absolute square of the result and multiplying by
N, we conclude that the power back-scattered in this direction, per unit length of surface, is, at
range r,

8 K it 2  
2

N If(- k sin1)
kr

or

Hence

a ] 2 (3.3)

(3.4)

15
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Substituting the f of (3.3) we obtain

'back-scatter' = 2- I 2 4 (3.5)

li- 16+ -1 +2iQ I

The constant factor on the right is not guaranteed, and the whole calculation would have to be

repeated in any event to obtain any correlation with the practical radar case with point source, and
with appreciable scattering in the z-direction. Nevertheless, the formula may be compared with

other two-dimensional back-scatteringformulasas they may occur. Finally, the dependence of the

back-scatter on Q and gL is of primary interest; for fixed Q, the back-scatter varies as .i. for small 1L.

Now we wish to discuss the physical significance of the approximate results (3.4) and (3.5),

both obtained in the mathematical approximation that all but the most important features of the material

of Section II have been neglected. Although the problem ostensibly contains two parameters, Q and
PI, one can set z = i'Q 4 ' and obtain, from (3.4)

-2 2
R =-[z-iz + F1- 2iz2 ] - [ 1- 2iz2  z+ iz]. (3.6)

Similarly (3.5) yields

'back-scatter' = - z2 | R 12 (3.7)
Trr

In Figures 4 and 5, these quantities have been plotted against the single parameter z. The physical
significance of z is as follows. If one calculates by physical optics the field illuminating the edge
of one plate in the partial shadow of a plate at distance S, one finds that z2 is a measure of the
number of complete Fresnel zones entering the calculation. Thus in the limit z >> 1, there is very
little shadowing effect and R and 'back-scatter' should be computable as superpositions of fields
scattered by the single, isolated plates discussed in Section I. The asymptotic forms

R -v i/8z 2 , 'back-scatter' = C/z 2 , z >> 1 (3.8)

are also those found in the manner just suggested; here the simplest verification is to see that the

f (-k sin 0) of (3.3) is asymptotically equal to that of (1.13).

We have already discussed the case z << 1, which led to R ' -1 and 'back-scatter' a i 2 or
az 2  The singularities in the principal strip of the 0-plane migrate with change in z in such a

manner that various singularities cancel to give the simple results found in the limiting cases. We
may perhaps regard the present results as first terms in expansions obtained by taking into account
the groups of poles and zeros found in the successive strips in the 0-plane of Section II. The terms
contributed by these poles and zeros in the nth strip are perhaps interpretable as arising from fields
diffracted and reflected n times around the edge of a plate.

16
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Figure 4 - Complex reflection coefficient, R, of the parallel-plate medium for large

average spacing and nearby grazing incidence
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In connection with the foregoing approximations, it is interesting to consider an analogous
problem, the propagation of a plane wave through a large region D, containing, per unit volume, N'
large reflecting disks of area A. Suppose all disks are parallel to the yz-plane and that a plane
monochromatic wave U0 = exp(ikx) is incident, where k is the propagation constant of the air, or of
the disk-free space. If the field incident on one disk is uniform over the disk and is represented in
phase and amplitude by U, then a unit area of the disk acts as a source of a spherical (scalar) wave
given by U(ik/2 Et r) exp (ikr), where r is distance from the unit area to any other point in space.
(Choice of the proportionality constant is determined so as to give complete shadow immediately
behind a sufficiently large disk.) Thus, neglecting edge effects, we may express the total field at
a point in space p by

U(p) U0 (p) +f NI (ik/2 E I a, p |) exp(ik I a, p |) U((o) d area (a) d vol (q) (3.9)
JD Jdisk with center at q

where U0 is the incident field radiated from some source.

Now we are going to take a time average of the total field, under the assumption that the disks
are swirling randomly about in D, remaining always parallel to the yz-plane. Toward this end, we
further assume that the field incident on a particular disk is the average field at the location of the
disk which would be found in the absence of that disk. (This is a 'self-consistent field" assumption
similar to that made in atomic physics, and made in the Section II.) With these assumptions and the
well-known property of the Green's function exp(ikr)/4 fir, we apply the operator V 2 + k2 to both
sides of (3.9) and get, in D,

(V 2 +k2 ) U =(-2ikN'A)U,

or

V2 U + [k2 (I + iN'A/k) 2 + N'2 A2 ] U = [V2 + k' 2 ] U =0. (3.10)

Thus, in D, for small N ', the effective propagation constant k' is given by k ' k(1 + iN 'A/k).
Hence, the average plane wave behaves like eik e-N Ax; its power falls off like e- 2N'A, so that,
in agreement with well-known theory, one large disk of area A effectively removes from the average
transmitted field twice the power incident on it. (The general mathematical approach used here
is that of L. L. Foldy, Phys. Rev., 67, p. 109, 1945.)

Now we consider that D fills the space y < 0, the disks remaining normal to the x-axis. With
the plane wave exp(ikx cos ki - iky sin Li) incident on D from above, we have some wave with
amplitude T transmitted into D, and some wave R exp(ikx cos A. + iky sin p.) reflected into y > 0 at
the y = 0 interface. We calculate R and T on the assumptions that the total wave and its y-derivative
are continuous across y = 0, use k' =k ( 1 + iN 'A/k) as the propagation constant applying in y < 0,
and obtain

- 2 i QI
R si +22iQ' (3.11)
[sin A. + 22iQ' + sin2 p.]2
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where Q' N 'A/k. With the obvious identification N 'A = N (the N of Section II), so that Q' = Q
(the Q of (3.4)), we have an apparent generalization of the reflection coefficient formula (3.4), for
which validity was claimed only in the case L << 1, Q = N/k << 1. The two formulas become
identical only at grazing incidence (pl << 1). Here the most important currents must lie in the
exposed edges of the disks near y = 0, but the propagation constant k ' was derived on the premise
of a negligible effect of the disk's edge on the currents induced in it. Thus whether the agreement
of (3.11) with (3.4) lends more or less credence to the latter equation is not clear.

SECTION IV - DIFFRACTION BY A HALF-PLANE BETWEEN
TWO DIFFERENT MEDIA

We now consider the factorization encountered in the problem of the diffraction of a plane wave
by a perfectly conducting half-plane which lies in the plane interface between two electromagnetically
different media. When either the electric or magnetic vector of the plane incident wave is parallel
to the half-plane's edge, the equivalent of h(w) in (2) or (2.8) turns out to be of the form

h(w) = 1/(C 2- w2 + k2 
- w2 )1 2

where ki and k2 are the propagation constants in the two media and C is a constant depending on
the four complex electromagnetic constants effective at angular frequency W. We shall now take
k2 > k1 > 0, on the grounds that the case of lossy propagation constants may eventually be
obtained b analytic continuation. Writing kA/k2 = k, we have the problem of factoring h ' = 1/h
=C' 1-w' 2 + 1 -k2w 12 w' w/k 1 where C ' is again a constant. As function of w ', h '
has branch points at w 1, w' = 1/k, as shown together with the integration contour in Figure 6.
To remove the branch points we make the transformation w' = sn(u, k). (The function sn(u, k) is a
Jacobian elliptic function; for this and subsequent elliptic functions, the reader is referred to
References 3 and 4.) The structure of sn(u, k) in the u-plane is shown in Figure 6b, where poles,
zeros, and even points (points about which sn is an even function) are marked with the symbols
co, 0, and e, respectively. The S-shaped integration contour into which the real w-axis maps is
indicated by r, and, over this contour, the Fourier inversion integral J(x) co g(w)exp'iwx)dw

transforms essentially in J(x) Jr g(klsn(u,k))exp(ixsn(u,k)cn(u,k)dn(u,k)du.

The structure of cn is indicated in Fig ure 6c and that of dn in Figure 6e.

?henif g(k1 sn) has the even properties of sn on ] (say), and x> o, the contour

may be transformed into 3 and thence into a diagonal connecting WK' with 2K - WK'

Aus a horizontal connecting 2K - iK' with -iK'. On the diagonal, the integrand is

an odd fuction of position with respect to the midpoint K owing to the fact that cn

lB odd about K; similarly, on the horizontal, the integrand is odd about the midpoint

I iK' owing to dn. Hence, under the assumptions, J(x)= o.
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marked 0 and - . The fact that zeros of h t are missing in the regions U 2nln and L 1 (as seen
by comparing Figure 7a with Figure 6b) means that 1/h(w) has no zeros in two of the four sheets of
the Riemann surface into which the w-plane must be developed because of the four branch points of
Figure 6a. The periods of h ' are 4K and 4iK' (see Figure 6d for K, K ').

The factor hU is even about the even points K, K + iK, K - iK T, of sn(u, k). It might be assumed
that hU is therefore periodic in u with period 2iK ', but branch cuts are required and the period is
4iK ', the 'vertical' period of h '. The same conclusion holds for hL, and because h r conveniently
has an even point at u = 0, we may take hL(u) = hu(-u). The zig-zag argument must be invoked
because of the lack of zeros of h ' in the odd-numbered vertical strips; for clarity we show the structure
of one period of the factor hL in Figure 7b, that of hU in Figure 7c.

The zero of h r in U0,0 belongs to hL' and is the start of a zig-zag argument as indicated by
the (1) at the top of the figure on the vertical through the zero in question. The even property of hL
implies zeros in the next strip to the left; this deduction forms step two in the argument, as indicated
by (2) on the appropriate vertical at the top of Figure 7b. These zeros were not found in h ', so that
cancelling poles must be found in hu. This third step in the argument is indicated by (3) on the
appropriate vertical at the top of Figure 4h. Corresponding poles must be found symmetrically disposed
with respect to the even points of hu, along the vertical marked (4) in Figure 7c, etc. The zero of it
in L 0, 0 startn a similar zig-zag argument which can be followed through the numbers (1'), (2 '),....

The poles of h ' are symmetrically disposed with respect to the even points of the factors; the
resulting singularities in the factors are marked with heavy dots. In the neighborhood of the dot at
u = iK' (say) both factors are asymptotically proportional to (u - iK ')-; this is the behavior requiring
branch cuts in each factor, cuts which may be taken to avoid the contour and which cause the periods
of the factors to be 4iK '. It seems simplest to regard each of the total structures in Figures 7b anm
7c as a product of two factors, one having the structure given by the dots, the other containing no
branch points and having the structure arrived at by the zig-zag arguments. The two structures shown
in Figures 7b and 7c clearly have the requisite even properties, and their product has the structure of
h' as indicated in Figure 7a.

Under variation of the physical parameters, the zero of h ' in U0 10 may migrate into L1 ,0 and
then, perhaps into Uro1 . It is seen that this zero must remain in h LI so that factors and subsequemt
results will vary analytically throughout the migration. Corresponding to a plane incident wave, tin e
present analogue of the q'of (2) or (2.8) will have a single pole in the w-plane (about which the contour
in Figure 6a is properly deformed). In the u-plane, qp will then have the even properties of sn so tMat
the separation of p/hU into a term R in U0 ,0 and a term in L should be essentially as easy as
in the previous cases.
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