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ABSTRACT
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approximation to the distribution function.
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ANALYSIS OF ERRORS IN BUBBLE CHAMBER
TRACK MEASUREMENTS

I. INTRODUCTION AND GENERAL REMARKS

In the analysis of bubble chamber data, events are frequently subjected to tests of
consistency with alternative interpretations. In order for such tests on alternative
hypotheses to be meaningfully carried out, it is necessary to use reasonably accurate
values for the relative precision of various measurements. If one is to compare these
tests with standard measures of significance, it is also desirable to know the overall
precision of these measurements.

The measurements of points on the film are reduced to fitted values of the relevant
track parameters by various reconstruction programs. In this report the propagation of
errors will be based on the reconstruction program now in use at NRL and the University
of Maryland. This program is based on the Berkeley PACKAG program but has been
modified to use three views and allow for designation of corresponding points.

In the process of reconstruction, the points measured on the film with respect to
standard fiducials are transformed to an origin centered at the optic axis. The coor-
dinates of the measured point are then corrected for various optical effects. The effect
of this part of the reconstruction on the errors will be ignored here.

We use a somewhat simplified model of the reconstruction process, which serves to
allow the computation of the essential elements of the error propagation. , We neglect
all effects of the index of refraction. This principally means that all the distances used
normal to the fiducial plane have to be considered as optical path lengths rather than true
distances. All cameras will be assumed to lie in one plane.

In discussing measurements based on two cameras, we will assume that camera 1 is
at (-L, O, -Z) and camera 2 at (+L, 0, -Z) (see Fig. 1). We will assume, as given, coor-
dinates (i, hi) on the x-y plane. These will be assumed to be independent variables
with a common standard deviation A. The coordinates (bi, -7q) are measured with respect
to the intersection of the optic axis of camera i with the X-Y plane.

IL POINTS IN SPACE

Neglecting effects of indices of refraction, we can write for the reconstruction
formulas:

x + L L - x y y z + z

l -6:2 77, .72 Z

We first consider corresponding points with two cameras. If they truly correspond,
771= 772 . The difference mqI - 772 has variance 2A2. We have used this to estimate A.t
We use the average of 77, and 772 for their common value. Equation (1) for correspond-
ing points leads to

*See Appendix A for a brief discussion of the techniques of error propagation.
tAll discussion of the values of the constants is in Appendix B.
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Fig. 1 - Two camera coordinates

L(6, +!f,)
x =

All - 6f2

L( 77, + 772)

Y = e2

/= Z( 2L
5 1 - 6 2

1).

This leads to a variance matrix for x, y, z:

/1+X2

L2

V = A2 Xy

XQ

\L

Xy XQ

L2  L

y 2  Q
1 + 2 L }

L L
yQ Q
F-

10 0

A2  0 1 0

0 0

where A = [(z + z)/v/2 z] A and Q = (Z + z)/L. The second form in Eq. (3) exhibits explic-
itly the fact that all the difficult terms stem from changing from a conical projection to a
Cartesian projection.

To get an idea of the order of magnitude of the terms in this equation, some values
appropriate to the Brookhaven National Laboratory 30-inch hydrogen chamber may be
cited:

A 50 ,t

A = 37 lu near the front of the chamber

(2a)

(2b)

(2c)

L

+A2 Y X (

Q UI-

(3)
Q)
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A = 45,a near the back of the chamber

Q = 5 to 6

max (x 2/L 2 ) = 1.

3

If corresponding points are not measured, then the reconstruction program constructs
an artificial corresponding point by interpolation in measured points, say (6A' PA) and
(dBs 7OB) of view 2, using the requirement that 772 = 77,. The interpolation is not strictly
linear, but the calculation of errors as though it were is adequate. From (1) and the
interpolation, the values of x, y, z are

L(6, + 6f2)
6 1 - 2'

2L77,
x =

I 1 C2

2LZ

t1 - 62

(4a)

(4b)

(4c)

where

77B 71 
771 h 71A

2 A 
7 7

B 
7

A 
7 7

EB 7A

If we let

771 
7 7

A

77B 71A

0 tan- 1 77B - 77A

" B - A
A = 1 - E + e 2

then the variance matrix for x, y, z is

/csc29(1 + 2) e L (1- X csc20)2  ( L) ( (A CSC20 -1)
\ ( L)- (1 L (cs2-1)

*

2 + L ctn 0 + ALy2 csc
2

0
L + 2

Q (ctn 8 + -y X CSC2o)

We also construct a space point by constructing an artificial corresponding point in view
1 corresponding to the measured point in view 2.

Then for tracks with not too large a dip we get for the average variance of these two
points,

*Since V is a symmetric matrix, these values have been omitted.

*\

XQ2 csc 2O/
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X csc 2 9 (1 + ctn e + A XY csc 2 O
\1 L 2/

V = A2  ctn 0 +XA csc2O 2 + A 22Q L c 2 + L 2csc2

L L

XQ Lx csc 2
O

L

QLY csc2C6 l
L

XQ2 CSC2
O

(5)

The origin of the correlation terms is, as before, simply due to the conical projec-
tion except for the extra X-Y correlation. This is due to the interpolation. If we rotate
the variance matrix, but not X and Y, to a coordinate system parallel to the track projec-
tion, then we have

1 + csc 2O

V = A2 0

0

where

0 0

1 0 + A2 (- 1) cos
2

O

0 0

D

L

sin

sin

ctn 0

0

ctn 6 0

ctn20 0 + A csc20DD+

0 0

0 - Y Cos 8
L

9 + L Cos 0

Q

The main effect of using noncorresponding points as compared to the previously dis-
cussed case of corresponding points is then to make the error in position along the track
larger by the factor (1 + csc2 6) since A - 1 is small. Considering the restriction nor-
mally used that csc 0 < 2, the average factor is 1 + (3JT1/n) = 2.65, and the range of
values of this factor is 1 to 5.

If more than two views are used, then the problem of errors becomes more compli-
cated. We begin again by considering the case of corresponding points. Let camera i be
located at (Ci, Di, -Z). (We keep all cameras at a common Z just to keep the formulas
from becoming even more cumbersome.) The coordinate origin in the X-Y plane is chosen
as the center of gravity of the camera projections. Then the formulas corresponding to
(1) are

X - Ci y - Di z + Z
7i 7i z

(7)

It is possible to consider several approaches to the solution of (7). We may solve all
2N equations for the three unknowns x, y, z as a single overdetermined problem or solve
them view pair by view pair as just indicated. If we adopt the first approach, the solution
is

Z+ z 1
Z N z 1

2 2
I c1  + I:

-z LC i~l+ FDi 77i j (8)

(6)
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We get for the variance matrix

2 +2
N R 2

V = A 2 2-xy
R2

2 x(Z+ Z)

A R 2

A = ( - > A\ 2Z /

2 -y
R2

2+ 2y
N R2

2 Y(Z+ Z)
R2

2 x(Z + z)

2 Y(Z+ z)
R2

(R )/

and R2 = (Ci2 + Di2).

In particular for the case N = 3 with the cameras at the vertices
triangle, we can set R = 2 ,3L and Q = (Z + z)/L, and we get

2+ 1 (x )2V2=AL )

V =- A2 |1 xy

\2 L Q

1 xy
2 L 2

2 +

1 Y
2 L

of an equilateral

1 x Q

1 yQ
2 L

1 2

If we adopt the alternative approach we take the camera pairs and construct as done
before. For the three-camera case this gives three pairs which can be constructed. The
formulas are similar to (1) through (3). If we define x, y, z to be the arithmetic average
of the three sets thus generated, we get for the variance of these:

/17 1 x 2

24 +2 L0

V = A2 1 xy
V= 2 L 2

1 xQ

\2 L

1 xy 1 xQ

2 F2 2 L

17 1 y2  1 y

24 2 iX 2 L Q

1 yQ 1 Q2

2 L 2

The difference between (9') and (10) is small enough to justify choosing the recon-
struction procedure on other grounds than the fact that (9') is somewhat smaller than (10).
In particular the procedure for treating noncorresponding points is much more straight-
forward if done by view pairs, and the program structure is then simpler if all points are
constructed that way.

It would also be possible to use a weighted average of the results from different view
pairs, since the spatial dependence certainly gives different errors and therefore implies
different weights if the point is not at the center of the chamber. However, while this

where

(9)

(9')

(10)

5
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would improve on (10) it cannot be better than (9) and hence cannot be enough of an im-
provement to warrant the additional programming complication.

For some purposes it will be satisfactory to further simplify the formulas by replac-
ing the spatial dependence by averages over positions in the chamber. Assuming that the
volume is defined by x 2 

+ y
2 < L2 and 0 < z < L we get from (10):

5 0 0
6

V = A 2 6 ° 0 (11)

0 0 Q

For two-view corresponding points the values are about

5 0 0
4

V = A2  0 0 (12)

0 0 Q2

The addition of a third view has improved the precision in x and y by about 50 per-
cent and has doubled the precision in z.

For noncorresponding points we can approximate the error matrix by

- 0 0I

V = A 2 0 3 0 (13)

o 0 Q
2

where in this case x is meant to be perpendicular to the track.

In Eqs. (11) through (13) reasonable values for the constants (for the BNL 30-inch
chamber) are A = 40,L and Q = 5.5.

An additional remark must be made about correlations between different points con-
structed by the procedure outlined above when corresponding points are not measured.
In this case when a space point is constructed from a measurement in view 1 using two
points in view 2 to make the artificial corresponding point, then there will also be a point
created using one of these same points in view 2 and creating an artificial point in view 1.
The average correlation is 1/3 between such points. From the 30-degree stereo restric-
tion each point so constructed will on the average be correlated to 1-1/2 points from other
views. Therefore the average effective correlation will be 1/2. This means that if we
measure N points for some measurement, we should count them as equivalent to 2N/3
independent points.

Corresponding points will be created without such correlation. Also the error is
smaller (since all three views are used; see Eq. (11)). If we weight points inversely with

6
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their variance, then the weight of a corresponding point relative to the perpendicular
component of a noncorresponding point is 6/5 x 3/2 x 5/4 = 9/4. We approximately
achieve this result if we use each corresponding point twice in all solutions.

If one made an effort to measure corresponding points without so labeling them, then
the computation of the average correlation coefficient above, which assumed random
spacing of points in one view with respect to the other, would be invalid. The average
correlation would be 1/2 instead of 1/3, the effective correlation would be 3/4 instead of
1/2, the number of equivalent independent points for N measured points would be 4N/7,
and the relative weight of corresponding points would be 21/8 instead of 9/4,

Iml. TRACKS (MEASUREMENT ERRORS)

We are primarily interested not in the location of points in the bubble chamber but
in determination of the track parameters used in the kinematics routine. These are, for
PACKAG, k (the projected curvature), s (the slope, which is the tangent of the dip angle),
and rp (the angle with respect to the X axis of the track projection on the X-Y plane). We
also sometimes use the length of the track. It is the errors on these quantities which will
be discussed here. In this discussion we will in general use the simplified form (13) of
the variance matrix from measurement, assuming that the effect of corresponding points
has been adequately taken into account by the procedure described in the last paragraph
of Sec. II. In addition to measurement errors, there are several other sources of error
for track parameters. The essentially systematic errors will be discussed briefly in
Sec. V. The multiple scattering errors will be discussed in Sec. IV. Here we discuss
only the effect of the point measurement errors as derived in Sec. II.

The reconstruction we use is based on a parabolic approximation to the track projec-
tion and a linear fit to the depth as a function of track length. Corrections are made to
the fit for the change in curvature due to energy loss and nonuniform magnetic field and
for the change in slope due to the radial field, but these corrections do not involve addi-
tional fitted parameters and will be omitted here. We start from the fit to a curve of the
form

zi = a + sxi (14a)

Yi = 2 xi2 
+ xi + b (14b)

where it is assumed that the track has been rotated so that its average direction is along
the X axis. The parameters cp and s are respectively the azimuth and the slope of the
point x = 0. Corrections in Eq. (14a) for the difference between x and the track length
and in Eq. (14b) for the difference between a circle and parabola are made but will again
be neglected here. The k of Eqs. (14) differs from the k of PACKAG only in the factor
0.3B (B in kilogauss) used to convert from units of cm -l to Mev/c.

We fit the data to Eqs. (14) by least squares. The solution to Eqs. (14) is

S = - ' Z (15a)

2-
y x 1

k xy x2 R (15b)

X2 y X3 x2

7
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1

'v 5D

x2

x 3

x4

xy

x~y

1

x

x;2_

(15c)

where

X2

D = 3

x;4

x 1

x3 _x2

The dependence of the s, ap, k error matrix on the point errors is, of course, dependent
on the exact pattern of points measured for a given track. We can see the main features
by assuming that the points are measured at equally spaced intervals. Let

Xi = (2i-N-1) L i = 1, 2, .... N,

where L is the projected length of the track. We get then

x = x3 = 0

12
x2 = L

12
N+ 1
N - I

= L4 N+1 N 3I

80 N- 1 (N-i) 2

The effects of errors in x on the fit is small except for very steep tracks or tracks
which curve through a very large angle. We will neglect this contribution except in V(s).
Then,

V(k) = 4V() _ _

N(x4- x22)

720A2  (N- 1)3

NL4 (N-2) (N+1) (N+2)

V(q)) = V(Y) 2 N -I V(y) (16b,
Nx T 2 N +lVY1(6

V(s) Nx2 V [2 N+ 1 (Q2 + s 2) V(y). (16c'

The correlation terms all vanish. This conclusion depends An the approximation of neg-
lecting the contribution of the x dependence and on the equal spacing of points, but even
without these the correlations will be small.

The quantities involved in the above computation are all evaluated at the midpoint of
the track. We deal generally in the fitting process with quantities evaluated at the end-
points:

(16a)

8
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L/ 2

ke = k ± f,

L/ 2

T Ie = (P + f

L / 2

se = s + f.so

dk L dk
dR e k ± 2 < dR

kL
k dR cp (p+ -

k H dR -- s .
Hz

From these we obtain, assuming that dk/dR is approximately constant and that the error
in L is negligible,

V(ke) = V(k)

V( Pe) = V(p) +-LV(k) = 12
4 =L 2i

V(Se) = W~S)

+- V(k) = + 3
2 NL3

N-I 1

N + I
+15 (N - 1) V(y)

N 2 - 4j

(16a')

(16b')

(16c')

(16d')N- 1 (N- 1)2 v2
N+ 1 N 2 -4

The sign of the variance term is the same as the sign of ((Pe (P).

More generally we can replace Eqs. (14) by an expression of the form

(17)Yi= a1 g- 9(xi)
j~ 1

where the a, are the R parameters of the fit. In Eq. (14b), we had a1 = b, a2 = , a3 =

9, = 1, g2 = xi, g3 = (1/2) xi 2 . The least squares equation then appears as

Gij aj = Mi

where

Mi = T gi(xk) Yk -

Again neglecting the small contribution from errors in x,

V(ai, aj) = (G-'SG-1 ).j

where

(18)

Sij = L gi(xk) gj(xk) V(yk) -

V(pe, ke) =

9

Gij = T gi(xk) gj(xk)
k
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If all of the Yk have the same variance, then we get

S = V(y)G

V(ai, a0j) = V(y) Gi i (19)

If we use the assumption of equal spacing, then (19) is equivalent to Eqs. (14). We use
(19) to get the errors, since Gi, is available from the fit. V(y) is estimated by aver-
aging the values over the track from Eq. (6). Since only the V(y) enters in (19), aver-
aging over 0 gives

V(y) = A + 2 2 (L-)

We may also be interested in the error in the length of a track. In this case there is
little contribution to the error from any source other than the measurement of the two
endpoints, since straggling and rectification will produce negligible errors. Thus (using
R for length to avoid confusion with L above for projected length),

R = J(XN X1) + (ZN- Zl)

V(R) = 2 (1 + Q2 S2) V(y)
1 + S2

V(R, s) = 12(N-l) sA (Q2 1)N (N +l) R

IV. MULTIPLE SCATTERING ERRORS

Assume that we have a particle scattering while passing through a set of thin foils
(numbered for reference from 1 to n). The initial direction of the particle is 0 and its
displacement (we consider only the one-dimensional problem) also zero. The figure illus-
trates the problem for five plates:

Figure 2

Denote the lateral displacement at the i + 1th plate produced by the first i plates by
xi, the total angle of scatter after the ith plate by hi, and the angle of scatter in the ith
plate by 6i (the small angle approximation will be used throughout). We will use the
symbol E(A) for the expected value of a statistical variable A. E(oi) = o by symmetry.
E(6i2) will be the same for all foils, since the thickness is the same. Also,

10
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n

= z 0

i=1

n i

i=l j =1
s E (n-j +1)9j -

j =1

E (,7 2) =

j =1

E (O j2 ) = nE( 0 2 ) (20a)

(20b)

(20c)

2 _ n(n + 1)E(7?nxn) = E (n- i + 1) sE (6 82) = sE(02 )
j = 1

E(x n ) = (n- j + 1)2 s2 E(0 j2) = s'2 E(02 ) n(2n+ 1) (n+ 1)
j = 1

Equation (18a) confirms the intuitively obvious fact that E(7 2) is proportional to n
and independent of the spacing; that is, in more physical terms, the angle of scatter de-
pends on the amount of material traversed and is independent of the density. We are then
justified in setting the expected square of the angle of scatter, E(772), equal to

K2
fd = K d(p/8c) 2

where d is the thickness of the foil and the constant (K/p,8c) has been chosen to give the
conventional result. We have not, of course, derived here the p and 3 dependence.

Now let the numbers of plates in the above example tend to infinity, keeping the total
amount of matter the same and the distance t constant and also the total thickness of
scatterer D constant:

t = ns

D = nd

E(772 ) = nfd -* fD

E(,7) = n(n + 1) fd - ftD

E(2c) 2 sd 2

E(x 2) ,= n( 2n + 1) (n + 1) s2 fd - ft2 D
6 3

We might as well now make t
f, and we have finally

and D equivalent, taking the density into the constant

E(z72) = ft

E(77x) = ft

E(X 2 ) = 1 ft3

3

(2 la)

(2 lb)

(21c)

11
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Now consider a particle measured at three points along its trajectory. The meas-
urements are assumed equally spaced. The figure illustrates the situation:

X2 = X1 + 771t + y

t -I

Figure 3

Since y is the additional deflection due to scattering in the second part of the trajectory,
it will be independent of the scatter in the first part. We have then from Eq. (2):

E(x1
2 ) = 1 ft 3

E(xlx 2 ) = E(x 2) + t E(7 1,x) + E(xly)

= 1 ft3 + 1 ft 3 + o
3 2

- ft
3

6

E(x2
2) = E(x1

2 ) + 2t E(x1 771) + t 2 E(771
2 ) + E(y2 )

= ft3 + ft 3 + ft 3 + I ft3
3 3

8 ft3  = - ft (2t) 3

It is informative to calculate the correlation coefficient of xl and x2 :

5/6
p 5/ = 0.88.

,(8/3)(1/3)

(22a)

(22b)

(22c)

We can now use these points to measure the apparent position of the track. Let us meas-
ure the three parameters x0 , p', k' , where x0 is the starting point of the track, q' is
the initial direction, and k' = 1/p is the curvature. In terms of the coordinates,

X0 = X0

-X2 -2 2X + x0
k' -

t2

I 4x 1 - x2 - 3xo
2t

12
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Straight propagation of errors leads to the variance matrix for k' and q' (x0 , by assump-
tion, has no error associated with it):

(P

2 f/t

1 f

if
6

1 ft TI

TI

4 f/L f/6

- f/6 L

where L = 2t is the track length. The above considerations were in the plane of the track.
If the track has a dip A with respect to the plane normal to the magnetic field, we are
interested in the azimuth angle p and the curvature k projected on this plane. The trans-
formation is

k = k
cos 2

X

(PI

cos A

and the resulting error matrix is

k

k

4 f

3 L cos 4 A

-f 1
cos 3X

-f 1
6 cos 3 k

fL

6 cos 2 k

There is also an error induced in the dip determination by the multiple scattering, but
this is uncorrelated, in the first approximation, with the results of scattering in the plane
and the magnitude of the errors is twice that for the azimuthal angle. After including this
error the final result for the error matrix is

k

G = X

(p

k

4 f

3 L cos 4 X

0

f

6 cos 3
X

X

0 - f
6 cos 3k

fL
3

0

0 fL
6 cos 2 X

The correlation coefficient between k and p is 1/2\/2 = 0.353.

The error matrix was
based on three points only.
matrix smaller, but not by

derived here from the assumption that the measurement was
The measurement of more points certainly makes the error

much. For example, if one calculates the correlation of an

I

l

13
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intermediate point halfway between two of the points just considered and the points already
taken, it is 9Fo/. Thus, only a minor decrease is expected and will be neglected here.

For tracks on which energy loss is significant, we can modify the derivation above.
In Eqs. (20) let f depend on the cell (that is, let E(e 2) = f. d ); then we have

n n

E( _7,) 2 E(6j 2 ) = E f d (20a')
j=l j=l

E(x 2) = T (n-
j = I

n

= L
j =1

j + 1)2 s2 E(O?) =

(n - j + 1) sf id

(n- j + 1)2 s2 f d.
n

j =1

Going to the continuous limit as before,

E(,72 ) = f

0

E(T7x) =fr

E(x 2) = r

In the limit f(s) = constant,
point measurement,

f(s) ds

(t- s) f(s) ds

(t- s)2 f(s) ds .

Eqs. (21') reduce to Eqs. (21). Again considering a three-

E(x 2) = f
0

E(xIs 2 ) = f
0

E(X 2) = f
0

[(t- s)2 f(s) ds

[( t- S) 2 + qt t- s)] f(s) ds

(2t- s) 2 f(s) ds .

Transforming to k' and pv',

2 t

s 2 f(s) ds + f (2t - s) 2

Ft (t
E~k'(p) = 1 (2t -3s ) 2 f(s) ds +1E~', =2t 3 Jo

E(nxn) = (n- +1) sE(j 2)
j = 1

(20b')

(20c')

(2 1a')

(21lb)

(21c')

(22a')

(22b')

(22c')

f(s) ds
t

E(k 1 2) =1 0

(2t- S)2 f(s) ds
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E(Q'2) = (2t- 3S)2 f(s) ds + f (2t- S)2 f(s) ds]

For a track where f can be considered constant these agree with the relations derived
previously for f constant. Now let f be changing and suppose f(s) = f,(2t - s)- 7 , which
might be appropriate, with e = 0.6, for a stopping track. Then we can determine a posi-
tion so such that when k is evaluated at that point, the formula for constant t gives the
same value of the scattering. This number will, of course, be different for the three
moments. We find so for E(k2 ) is 0.6L, for E((p2) is 0.4L, and for E((pk) is essentially
indeterminate since the correlation is negligible (due to an accidental cancellation). Since
this is an extreme case, it will never be very bad to evaluate the multiple scattering
errors at the midpoint.

V. REMARKS ON OTHER CONTRIBUTIONS TO THE ERRORS

We have assumed in Sec. II that we can neglect errors in optical constants, etc., in
the propagation of errors. This is because such errors will have a systematic effect on
the measurements and will not give rise to the kind of errors which can be removed by
averaging. We should pay a little more attention to the measurement of fiducials, how-
ever. For each view we measure the position of three standard fiducials and refer all
our measurements to these as a reference. If one of these is off, then as a result (for
example, in (2), assuming all 6i are off by the same amount) the Z coordinates of all
points will be changed systematically within this picture. The effect on the X and Y coor-
dinates is mainly through the conical projection. When only two views are used, all points
are systematically affected by about the same amount, and except for steep tracks the
effect will be negligible on all computed track parameters. Steep tracks will be system-
atically made still steeper, however, and this may be desirable to watch out for as a sys-
tematic effect. A mistake in the value of the lens-to-chamber distance would have simi-
lar effects, but in this case the effects would be constant over the entire experiment rather
than changing from one frame to the next.

In computing the errors we have used a simplified model of the track fitting process
because it is analytically solvable. This should not strongly affect the discussion of the
errors, since we are concerned with the random perturbations from the true curve and
the fourth-order fit in PACKAG is adequate. We have not explicitly assumed the errors
are Gaussian, since we dealt only with moments, but if the errors are not approximately
Gaussian, we cannot expect the quantities computed and called X' to have X2 distribution.
There is probably no solution to this problem while we depend on human measurers, other
than the standard practice of remeasuring events and then looking carefully at the second-
time rejects for nonhuman induced sources, such as turbulence, kinks, and odd track
structures.
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APPENDIX A

PROPAGATION OF ERRORS

Throughout this report we have used the standard formula for propagation of errors.
The general form of this formula can be sketched as follows. Let zi = fi(xi), where x;
are random variables such that E(xi) = ,i and V(xi, xi) = Gij . Then,

E(zi) = fi(gj)

a) 2 af (Al)
V(zi, zj) = E -~ x Gk f

k De
where E(A) is the expected value of A and V(A, B) is the variance of A and B. If the f
are linear functions of xj, then (Al) is exact. However, this is almost never the case.
In a more general case (Al) can be considered an approximation based on an asymptotic
series. Consider for simplicity the case of a single function of a single variable. Then
z = f(x). Assume that f is analytic in a neighborhood of x = a, and write the power series

z = ju + E aj x-) i . (A2)

Taking the expected values in (A2) we get

E(z) = u + E ajE(x-Th) (A3)
j=l

and subtracting (A3) from (A2), squaring, and taking the expected value, we get

a:n- 1

V(z)= 1{ aZ an- [E ((x- _£)) - E ((x- -p)j) E ((x- )n-j)]} ' (A4)
nlj=l

Both (A3) and (A4) are usually only asymptotic series, unless f(x) is a polynomial.

A few specific examples may clarify the situation. Let x have a Gaussian distribu-
tion about 0 with standard deviation a. Then if z1 = ax + bx2 , we can write

E(z,) = bcr2

V(z,) = a2 c 2 + 2b2 o-4

If bo- << a2 , it will be adequate to use E(z) = 0 and v(z) = a2cr2 . Any time bac is com-
parable to a, so that the pair of formulas given above are necessary, the distribution of z
will be significantly non-Gaussian. A rough criterion is then: the linear propagation will
be inadequate whenever the derivative of.f changes significantly within the region of var-
iation of x.
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Whatever the values of a and b, however, the bias of z is less than its standard
deviation, so it would not normally be considered significant. However, since the bias is
always in the same direction for all measurements, if one were to average many meas-
urements of z, so that the variance of the mean value became much smaller, then the
value of the bias might become significant compared to this. This situation is met with,
for instance, in the case of missing mass computations where significant shifts in mass
values can occur, small compared to the error of an individual measurement, but large
compared to the error in the central value of a mass distribution.

As a second example let z = a2/(X2+ a 2 ), where x is as before. Then

n ( 2n)! ( 2 = 1 - 2 +34E( z) =I-- 3---I , 2n n! (a 2 I a2  a4

.2n ~ 2n! 4' Cr6

V( z) = (-)n ( 2n)! K 2 - - 6 - +IT, 2n n! a4  a6

where

Kn= (n + 1)- Z '
j=o (2)

are the asymptotic series. Comparison with the exact solutions, which exist for all-
values of a, shows that the asymptotic solutions are indeed good when they exist; for
example, for a = 2cr the first three terms (the third is the smallest) gives E( z) to 1/2%.
For smaller a the series is useless and the distribution of z is extremely skewed. By
the time a = 2, however, the expansion is a reliable guide.

APPENDIX B

VALUES OF THE CONSTANTS

The size of measuring errors, the numbers represented by A (see Eq. (3)) will
depend, of course, on many factors. Using film plane digitizing machines with stage
accuracy of 2 M and digitized to 1 A, the actual errors induced by the stage and digitiza-
tion have always been negligible with any of the film we have used. The finite size of the
bubble image and the setting inaccuracy on it are the limiting factors. Examining the
distribution of differences between the values of the coordinate perpendicular to the
stereo axis for points measured as corresponding (see remarks after Eq. (1)), we find an
approximate Gaussian with a long tail. The tail is presumably due to misidentification of
the point, digitizer failure, etc. We throw out the large values in computing points. From
the central peak we estimate A to be of the order of 5 , on the film, or about 60 A. in
space for the BNL 30-inch chamber. This is similar to the figure obtained for both the
30-cm and 80-cm CERN chambers.

For the value of K we have (Rossi, "High Energy Particles," p. 70)

K 0Es Mev 0.48 Mev-cm -1/
VX V990 cm
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This value is valid only if the Gaussian approximation to the scattering is valid; where
plural scattering is important, as it usually is in hydrogen, this value will underestimate
the effective coulomb scattering.

* * *


