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surface. Terms beyond first order (second and third) are included in order to explain cross-
polarization effects, which have been observed experimentally. Limited results on fourth-order terms
are also obtained. However, when the analysis is carried only to fourth order and these terms are
averaged, they do not contribute to the cross-polarization and their effect is seen only if specular
returns are present.
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AN ANALYTICAL STUDY OF RADAR RETURNS IN THE

PRESENCE OF A ROUGH SEA SURFACE

INTRODUCTION

The analytical study described in this report was originally undertaken in an attempt at
a theoretical explanation of certain experimental results on radar return from ship targets
corrupted by sea return. In the process of carrying out the study, the author first reviewed
the literature with a view toward applying the existing theoretical results directly to the
problem at hand. Previous theoretical analyses by S. 0. Rice at the Bell Telephone Labora-
tories (BTL) [1], a group of investigators at the Naval Research Laboratory (NRL) [2
through 21], other investigators in the Soviet Union [22 through 30], and still others in
the U.S. and elsewhere [31 through 45] had produced results sufficient to provide good
estimates of equivalent radar cross sections of the sea surface that explained a number of
experimental observations [3,46,47].

The perturbation approach originally introduced in the radiowave context by S. 0.
Rice in a 1951 paper [1] was used in many of the subsequent analytical studies. It was
found that the first-order perturbation results did not explain cross-polarization effects in
the return.* These effects are present in second-order results, which were obtained formally
by Rice [1] and later by Valenzuela [6,20,21].

In evaluating the problem at hand, the author concluded that (if the perturbation
approach were to be used) second-order fields at the very least would be needed to explain
the experimental observations because cross polarization effects are significant in this
problem. It was also concluded that, in the presence of specular returns and ship target
returns, it might be important to have third- and fourth-order fields in some cases. The
reasons for these conclusions are indicated below.

The quantities calculated in this study are ensemble averages of: (a) twofold products
of field or received signal voltages (e.g., mean radar cross section, cross correlation function
of two received signal voltages corresponding to different polarizations or different delays,
etc.) and (b) fourfold products of fields or received signal voltages (e.g., cross correlation
of two received signal powers corresponding to different polarizations or delays, etc., or
the power fluctuation). We designate terms involving products of fields of orders j, k, Q,
m etc. by (jkQm) in fourfold products and (jk) in twofold products. We also note that
under the assumption of Gaussian statistics of the surface fluctuations, odd-order averages
are zero and specular and target returns are considered as deterministic and of zero-order
in the perturbation parameter. Based on all of this, the twofold product averages carried

*There are some exceptions to this statement; e.g., Wright [2,5] using first order theory, considers cross-
polarization due to surface tilt. That effect, which is also covered in the present analysis, is a type of
cross polarization from a different mechanism than the "quasi-crosspolarization" discussed later in this
present report.

Manuscript submitted October 12, 1979.
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to fourth order will contain terms (0000), (0011), (0002), (0013), (0112), (0022), (0004),
and (1111). In the absence of zero-order terms (i.e., return from regions with no specular
or target return) the twofold averages are confined to terms (11), (13) and (22) and the
fourfold averages to the single term (1111). In this case, if we were to carry out the twofold
product averages to second-order and the fourfold product averages to fourth order, then
the first-order fields would suffice. However, we could not expect cross polarization effects
from such an analysis. These effects would appear in the twofold product averages only if
we were to carry these out to fourth order (i.e., if we include the (22) and (13) terms) and
would be entirely absent from the fourfold product averages. Their appearance in the latter
type of averages would require at least inclusion of terms (1122) and (1113) which are
sixth order and obtainable from first, second, and third order fields.

If zero-order fields are present, then an evaluation of twofold product averages to
second order would include (00), (11), and (02). The (02) term, requiring a second-order
field, may be comparable in magnitude to the (11) term in the part of the return that is
parallel-polarized (i.e., the VV or HH return) and should be included. The HV and VH
return is eliminated in the averaging process for the (02) term; hence, no cross polarization
will appear if we truncate the series beyond second order. Again the VH and HV returns
average to zero in these terms, and hence, cross polarization does not appear. In the case of
fourfold product averages, all three of the terms (0000), (0002), and (0011) must be included
for second-order accuracy in the VV and HH returns.

Since the second-order fields must be included in order to capture the cross-
polarization effects, it is highly desirable to use them to calculate the fourth-order terms
(22) and (0022) in twofold and fourfold product averages respectively. If this were done,
however, then the calculation would not be complete without the inclusion of terms (13)
and (04) in the twofold product averages and the terms (0013) and (0004) in the fourfold
product averages. These terms, also of fourth order, should be comparable in magnitude to
the (22) and (0022) terms already included. Their absence would give an incomplete indica-
tion of fourth-order effects in the VV and HH returns and some of them would also contain
cross-polarization components (i.e., VH and HV).

Now let us proceed to a discussion of the analysis, which begins with an electro-
magnetic wave in free-space incident on a sea surface with two scales of roughness. There is
small-scale roughness ("ripple" or "capillary waves") and large-scale roughness ("swell" or
"gravity waves"). The true picture of a sea surface, of course, is a continuum of scales of
surface roughness. Examination of previous work [6,7,39] demonstrates that precise
analytical treatment of this entire continuum is extremely difficult. Hence a model account-
ing for the two limiting scales is the most general model for which numerical solutions can
be obtained without great difficulty.

The large-scale roughness, where the local radius of curvature of the surface is assumed
to be large in terms of wavelength, is assumed to obey the "Kirchoff approximation," i.e.,
in the absence of ripple fluctuations, return signals would only be seen from regions of
normal incidence, just as if the mean surface were an infinite flat plane.* Such an approach

*As already indicated, many previous theoretical studies have made use of this perturbation approach
or its equivalent.
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depends for its validity on the supposition that the mean surface is nearly flat over many
wavelengths.

The incident and scattered waves in both media are expressed as superposition of plane
waves. The boundary conditions are then written and the perturbation theory is formulated.
The electric and magnetic fields are expressed as superpositions of plane wave fields at an
arbitrary point in the free space medium and are then determined to fourth order in the
perturbation parameter. The electric field vector at the radar location resulting from illumina-
tion of, and consequently scattering from, a small region on the surface is thereby deter-
mined as a superposition of plane wave fields. It is recognized that the radar is well into the
far zone of the illuminated region (denoted by S) and, hence, the backscattered radiation
looks like a plane wave at the radar. Consequently, a single plane wave is extracted from the
solution, i.e., that wave propagating from the region S (subtending a sufficiently small angle
at the radar to be equivalent to a point scatterer). The field vectors from all such regions
illuminated by the antenna pattern are then superposed, i.e., the solution is integrated over
a set of spherical angular coordinates (0,O), the integrals being weighted by the complex
antenna pattern function and the product of spherical wave Green's functions e2ikrlr2 .

This approach accounts for low orders of local multiple scattering due to ripple
fluctuations. This is inherent in the perturbation theory. It does not account for large-
scale multiple scattering, i.e., the return from the region S is assumed to be entirely inde-
pendent of the illumination of other regions. The latter requirement of the theory would be
useful for treating a sea surface with a great deal of large scale swell. If the swell is small, it
should not be a very significant effect. If the slope of the swell surface were very small, then
illumination of any region by secondary radiation from other regions would result from
wide angle scattering, which should be small relative to direct illumination from the radar
transmitter. A large swell surface, however, might result in situations where a given region
S sees specular reflection from a number of adjacent waves. In this case, the secondary
illumination could conceivably approach the same order of magnitude as the direct illumina-
tion. Such situations should be rare except with an unusually rough sea surface and hence
the neglect of this effect is probably not a serious weakness of the theory in most cases.

The author investigated an alternative approach used by some workers [39] using the
"Stratton-Chu" or "Kirchoff-Huygens" integral equation form expressing the fields at a
point in space in terms of the fields on the surface. It was found that this approach gives
answers equivalent to those obtained by the direct approach outlined above once the
standard approximations are invoked. These integral equation forms are merely different
ways of expressing the field equations and not solutions of these equations. It is still neces-
sary to solve a boundary value problem in order to determine the fields on the surface.
Hence it is more efficient to solve the boundary value problem directly to find the field
at a point in space due to illumination of the surface by the incident wave. This was the
approach used by Rice in his classic 1951 paper [1], and the use of the integral equation
form does not really improve on that approach under the assumptions made in our model.

3



RAEMER

The approach used here is essentially that of Rice [1] which has been used by sub-
sequent workers (e.g. Valenzuela [4,6,20,21] ). The differences between the present develop-
ment and that of Rice are as follows:

(1) The Fourier integral is used directly instead of Rice's Fourier series with a later
approach to the continuous limit. In terms of results these approaches are identical,
although there are questions of existence of Fourier integrals of random processes. As long
as one understands and accounts for the specialized meaning of the Fourier transform of the
random process while carrying out the development, this is not an important distinction
between the development in this report and that originally used by Rice.

(2) The wave incident on the region S is assumed to approximate a plane wave with
arbitrary polarization. H and V solutions from Rice's work could be weighted and super-
posed to treat the case of arbitrary incident wave polarization. This could have been done
in the present work. The principal reason for not doing it this way is that it was desired
to express the final results in a coordinate system with origin at the radar and z-axis along
the antenna beam. Accounting for the large-scale swell necessitated the use of a complicated
transformation between the coordinate system used in the basic boundary value problem
and that in which the final results were to be expressed. In view of this coordinate trans-
formation, there was not significant labor-saving in treating horizontally and vertically
polarized incident fields separately.

(3) The fields are calculated to fourth order in the perturbation parameter. Most
previous work confined itself to first-order fields. Rice [1] and Valenzuela [4,6] calculated
the second-order fields and used them to evaluate the (2,2) term in the average power
(i.e., the average of the square of the second-order fields. Valenzuela calculated second-
order doppler spectra in later papers [20,211]. The reasons for our inclusion of higher order
fields were delineated earlier in this section.

Further extensions from most previous theoretical studies are as follows:

(1) The present work includes the effect of pulsing or other forms of modulation of
the transmitted RF wave. Previous treatments are generally confined to pure CW trans-
mission.

(2) The present work includes integration over all incidence angles weighted by the
antenna pattern shaping function.

(3) The present work includes calculation of crosscovariance functions of two (pre-
rectification) received signal voltages and crosscovariance functions of deviations of two
received signal powers from their mean values (where the two returns might correspond,
for example, to two different polarizations or two different radar-target geometries). As
degenerate cases, the two voltages or powers may be the same but with different delays,
in which case these expressions degenerate into autocovariance functions of received signal
voltage or power. With zero delay difference, the latter expressions degenerate into mean
power and "power fluctuation" respectively. All of these possibilities are contained in the
averages evaluated in this work.
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(4) The present work includes effects of target signals in the ocean environment, i.e.,
it considers the entire "system" problem and not merely the CW return at a single angle as
do most of the previous theoretical studies of sea scatter. The target return and sea return
can be considered as statistically independent; hence, in calculating return signal power
using only first-order fields, sea return and target return add incoherently and there is no
coupling between the two. In accounting for higher order terms or in calculating fourfold
product averages, terms arise that are products of sea return and target return. This sort of
coupling is accounted for in the present work.

To summarize these points of difference between this work and previous work, the
latter has stressed the calculation of the scattering cross section of a patch of slightly rough
sea surface. The present work should be considered as a "systems study" in which the
traditional theory with small modifications is applied to a system consisting of (a) a radar
whose beam illuminates a region of the sea surface, possibly a large region and (b) a target
which the radar may be trying to detect or locate. The analysis accounts for possible
pulsing or other modulation of the radar signal, the shape of the antenna pattern, and the
polarization of the radar signal. A certain form of correlation processing is done on the
received signal. The analysis accounts for this processing and focuses on calculation of
certain statistical averages both with and without the processing and both with and with-
out the presence of a target.

Previous theoretical analyses of scattering from a rough surface have been examined.
The author has concluded that much of the work reported in the literature has as its basis
the classical paper written by S. 0. Rice in 1951 [1]. If one were going to use the perturba-
tion theory approach to the problem, it would seem to be very difficult to improve in a
major way on Rice's basic work. Subsequent workers have usually made use of methods of
approach equivalent to that used by Rice. The present author has also followed Rice's
approach, with a few small extensions and variations which were described earlier. Instead
of using Rice's results directly or those of Valenzuela [4,61, the author has chosen to
rederive the results. This was a very easy (although exceedingly tedious) task and was for the
purpose of adapting the analysis to easy extension and casting it in a form that could be
readily prepared for digital computation. It would have been difficult to use Rice's or
Valenzuela's published results directly for the calculations to be made in this study.

Unfortunately, it is true that the third- and fourth-order field perturbations are very
cumbersome and may devour computer time at a prohibitively high rate. They are too
cumbersome for hand calculation within a reasonable time, although such calculation is
simple in principle. If these computations are prohibitively expensive, then a great deal of
significant information can still be obtained from the first- and second-order fields alone.
In the author's opinion, it is still worthwhile to have worked out and reported these
higher order terms because it may become important and economically feasible to compute
them at some later time. This would be particularly true in cases where cross-polarization
effects are very important. In such cases, the second-order terms are the lowest order terms
that capture these effects, and third-order terms would be required for any refinement
on the simplest results. All of this was discussed early in this section.

An effect not accounted for in the analysis presented in this report is that of shadow-
ing. This effect assumes increasing importance as the grazing angle decreases and the surface
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roughness increases [25]. Since numerical studies at near grazing incidence were not
contemplated by the author, no analysis was done to account for shadowing. However, if
such cases are to be studied based on the theory presented here, it will be necessary to
supplement the model with further analysis that includes this effect.

THE BOUNDARY VALUE PROBLEM; CALCULATION OF THE FIELDS

Consider a rough boundary between homogeneous medium #1 (free space) and an
arbitrary homogeneous medium called medium #2 (e.g., the sea). The mean boundary
surface can be considered as an infinite flat plane. The coordinate system to be used is a
right-handed rectangular system whose origin is on the mean surface, whose (x,y) plane is
the mean surface itself, and whose z-axis is directed into free-space. The geometry is
illustrated in Fig. 1, where the "mean" incident, reflected, and transmitted waves are
shown in the standard way for a case where the incident wave is a plane wave and the
fluctuations of the surface are designated by a function z = z(x,y, t) which is a random func-
tion of the three variables x,y and the time t and has zero mean. The incident wave,
although shown as a plane wave in Fig. 1, will be arbitrary and possibly pulsed in the
analysis to follow, but will be specified as plane at a certain point in the analysis. The
constitutive parameters of medium #1 (free-space) are denoted in the usual way by (eC duo)
and those of medium #2 are (ecco).

Medium #1

\ n = normal unit vector
True surface

Mean - Surface / Azt)

(Approximated as Medium #2
locally planar) e i2

\ (tC = t2~6 + C, ##)

Fig. 1 - Geometry of problem

Denoting incident, reflected, and transmitted wave fields by subscripts i, r, and t
respectively, we will represent all field vectors by column vectors and use matrix notation
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throughout, having found that this leads to a much more efficient and compact analysis than

longhand methods. The electric and magnetic field vectors are as follows: *

E(p,z,t) =

H (zz,t)

Eix(P,Zt)
r
t

Ei (~z ,t)

EjY (¢,z ,t)

Hiy -*'~t

r
t
i (p,Pz,t)

r
t

Hi ( 2,z,t)
r
t

Hiz(p,z,t)

r
t

where = (x,y) and

E ,zC) =gffd 7[UOpd

00

= J d&e 'ti (,PZw)
- 00

00

= dwe jC0 t-i (Z'C)

L, (01

AYz (i0)j

where

,YZ = Yz Q)=

+ g/ p2_ 3 p2

+ gV- 2 - )y2

+ P. (.0)

-yz (19)

*Note that some of our notation is patterned after that of Rice's classical paper [ 1 ].

7

(2.1.a)

(2.1.b)

r
t

(2.1.c)

(2.1.d)Z ] Pi 4 i(1 )
r r
t t

jw- [(,O.-P+)
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�p = I



RAEMER

Pi(nt l) ) = = 1 -VX (2.1.e)
r -0y g3y °

Pt(!x) = -'z ] zPX (2.1.f)
-Py O., °

P complex refractive index of medium #2

The local normal to the rough surface at a point (xyz(x,y,t)) and at time t is denoted
by on(g~z,t). or as a column vector by

n(n (,Z ,t) 12
n(,z,t) nY -p )(t) (zpt * [ -2.2)

az az az az
ax ay Z oX ax sY ay ;(XX y I iz) unit basis vectors.

In standard vector notation, the tangential boundary conditions are:

nx[E1 +Er- Et = z0~st (2.3.a)

n rz X[,+H +H - Htt] 0 ~(t ( 2.3.b)

In matrix notation with the aid of (2.1.a,b), Eqs. (2.3.a,b) take the form

q1 (f ~ N( j-- a', (,O)z (P, 
_JdQ(,z~gt)[E Q) (2.4.a)

+E (9)e C z4 ') -[kt(2)e i-zg)~t]ei--- ct 
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(where 2Q shorthand notation for (O' P'y lw))
-+ xy

+/J~~dQ N(pg,z(p, t)) }[Pij(92E i (Q)e-
1+ 1 VJ172 

+P (p)E (f2)e C 2]

[Pt (mT )Et(n)e eCZ ()c 0 et] 0

where

N(,p,z,t) =

[0
1

_ Y

At this point (following Rice's treatment) we invoke the divergence equation for the
electric field, as follows:

(2.5)V * E = 0

Using the electric field representations (2.1.a,c), Eq. (2.5) takes the form

[ I[O.,Z.., (t) + (n)I
t t

w) e exp

t
L Z (O Zj Pt 

Multiplying (2.6) by

e iW p (p Q- ctO
i rC I¢ a

integrating over all pand t and invoking the relation

ff dR. e(/3/3)p p - > = (22 ()2 6(p1 - ')6(gy - py)

9
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00

Jfdte -j('w - w')t = 27r w5( - w')

we obtain

Ei (en)= +
r
t

6z r
t

1

1

'yz

We can now construct a new matrix relationship, i.e.,

EiX
r
t

Eiy
r
t

(I 1)3~

= M E
Mi >~i
r r
t t

(2.9)

where

E i= [ 4 ]

r a rt

I[4Yz) (4zZ)jI

10
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+ P3Ej.y 

r
t

(2.8)

E. =
r
t

+/y Eiy I
r
t

I 0

�M = 0 1
r -ox � � -OY

-�_- ) � -0,z z
L- -1
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From (2.1.a,b), (2.4.a,b) and (2.9) we construct the following matrices,

(1 xzx Ay 1z (2.10.a)

_zY -zxL

NxM Y .y ZY\

NMr = (1 +3xzx ) Pyz (2.10.b)

zy p x

(1 

NMr = (1 /3xzx) gy zx (2.10.c)

zy ~ x_

NMt (+/3Z) /3z 2.0c

At this point we adopt a notational convention which will be used many times throughout
the development to follow, wherein a prime will be used to indicate an interchange of
x and y components, e.g., if a = OxzyI then a' = zx Continuing the construction of
needed matrices with the aid of this notational device, we have

NPIMi= = = [1 2' Iil (2.10.d)

I31 I3i
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where

ill = ozy

12 Ox=

I3 ( = ( 3) (1 z )

N~r r 1 111l 2 21
113 1 I3 

where

1111 pz
=-112I

pyf 

HI31 )

1-- py 2

NPMt =III

12

(2.10.e)

(2.10.f)
IIII 1 ill 1 2

= Hi ' ,Ill'12

1II3 1 III3 1'
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where 1 (

=i 1 + sYZ Y

11112 = k(+- - -)

1113 1 =(z ZZY + ( ZX-

We can now use (2.10.a, ..., f) to construct a 4 X 4 matrix equation consisting of the
x and y components of Eqs. (2.4.a,b) (with the factor

1'+ ,v2
removed) as follows:

ffdn A(Rpt) E(n)e C - ct] =f~dQ B(t,)t) E1[(a)-ct

where Q2 symbolizes the set of variables (Px ,gy~ ,c) and where

All A1 2 A13 A14

A(Q~pt) = 1-A 1 2' -All' -A1 4 ' -A13 ' (2.11.a)'
A 3 1 A 3 2 A 3 3 A 3 4

AA3 2 A3 1 A3 4' A33

B1 l B1 2

B(Q,9.) 12 -B1 • -B1 1 (2.11.b)'

[B31 B32
B. ' B.1'

El t (2.11.c)'
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E = gYi(2.1l.d)'

and where

ox~ j5 9 /zz

A = e C Z

A - (l-p )eCz

13 T
pyzjyz za

1 (4 ( YZY)eJS) Z

A 3 1 = - [(i 2) ] j z

A3 2 = - [ Z +/xzyl e4 z

A33 -[(PA.432)]

A3 4 = - [ lIY - oxz] e c zZ
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B1 1 e C Z

12

B31 =pZ 

B32=- 0L - /3xZy] e cz

We now invoke our perturbation theory, in which terms of A and B not involving
Z, ZX or zY are considered zero order. Thus, using ¢ as an ordering parameter, we have

A(92,p,t) =A(0 )(/,,) + tA(' )(3,copt) (2.12.a)

B(np,t) =B( 0)(/3) + rB(1 )q3,wept) (2.12.b)

0 -1 0 1

1 0 -1 0

A( )(g.(D) =A(3°) A3°2) A( 3) A(O°) (2.12.a)"
31 32 33 34

AM02 A(0 )' A(°) A(0 )'
32 31 34 33

where

31 0Z

A(O) _ = -xY
32 0Z

, (V 2 - PY2 )
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A(°0) = -
34

B(°)(/3) =

-z

A(')11

-A('l)'
12

31

0

-1

A(30)31

32

_A()'

1

0

A(° )32

A(3)131

where

A( z e~c ' z1 =z,,e C 

A( I )= fly Z ed z -

12 z y

zx -j-yz
A~l) = z e C Z

13 YZ 

A( 1) =_py
=-zy

e- c z + (e czz - 1)

( = /3z,, e c 1 - ) e c z31 gy y oz- 3z - 1)

A32 = -ox [zy ec z eC 3zz 1)1

16
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(2.12.a)"'

12 13 14

-A(' )' -A(' )' - 4(l)'
1 1 1 4 13

A( I ) A(' ) A(' )
32 33 34

A(1)' A(')' A( )'
31 34 33_

A(l)(owpt)

- ze�c- Oz - 1)
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/v232\ / 
A(') z e- C- i i i

33 Y ( zy y (-)

A(1) = ;3 EZ. e~ic-z Y (e'IcfzZ - 1)]

B(1) B(1)
11 12

B' -B~l)

12 11 (2.12.b)

=B'~
1 ) B~')
31 32

B(1 )' B( ')
32 31

where z~~~~
y( -jB z )

B(l1) z j iz ( )( j Z 

-Xz ej~ C ~ Z -W0

12 ~z__ .j!# fz +IP-eJ Prz~

B31 F z e C Z - II1e -1)
32 -I x 

Expanding E in a perturbation series,

- =(O) + .(1) + '2g(2) + (2.13)
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and employing (2.12.a,b) and (2.13) in 2.11), we can write (2.11) in the form

J/~jfdfofd ec [dwP) - ct [A(O)(B,)E(o)q,) -q

+ j[A( ° (f,,o) 1)(l3,cv) - (B(1)(lcpt)E'(jw) -A

+ t2[A(O)(g,)E(2)(p,,) - (- A + (2.14)

+n [A(°)(4 + - (- A((, ,t)E(n - '(,@))] +0(rn + 1))

Multiplication of (2.14) by

e-ji [(,B p)- ct]ek 

and integration of product on p and t from -oc to +oo, with the aid of (2.7.a,b) yields the
following set of perturbation equations (after interchanging (,3',J) and (B,w) and changing
order of integration)

A(°)(#,,)E(°)(0,,co) fBl)(/3)E (/3,w) (2.15.0)

1 0°° 0o co 00

= fJ~d/3'fd c if _p teC '<e c(w- wO)t] .
(27r)3 J J - -J (2.15.1)

(B( 1 )(/c',o',pt)E.(j3',w') - A( 1 )(/',cow',p,t)E(0 )(/3,co'))

-* Jl J~ JfJ f0 Jff (2.15.2)
(- cc)p'@ cp ccl): X
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00 00 00 00

A(0 )(l},w)E(n )(/3,) =- f f f c[(7r - wjt).- c(c- d )t]

(- AE1 ) j d - t 3,4,.

Solution of (2.15.0) yields

E'(O)(/3,w) - R(0 )(/3 &.o)E.(/3 w), (2.16.0)

where

R(°(,S@)= [A(°)(/,B <)1] -1 B°((,o

and the inverse of A(M) is given by

b1l b12 b13 b14

[A(°)(,~ -1 - b (/3) = 1 -b 12 -b11 b14 b1 (2.16.0)'
-+ o* ~( + )(1- p2 + zy) bl, b32 b13 b14

-b3; -bl, b14 bl; 

where

b =l - M/y(oz Yz),

b1 2 = PzV 2 - (,z -y)py 2,

b1 3 = - (gy' + py 2),

b14 = Mx/y and

b32 = - yz - (gz - y 2 

Solution of (2.15.1) follows from (2.16.0), i.e.,

)JJfdl dw1 da, dt ec[(W20- @)-eI -co)t I
(2.16.1)

k(1 )(g@/3,col 1 +p1 ,t1)E. (/31'W1 )
-* -~-~-,-+ )
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where

1
(4 X1(g) F1 tl) = - [A(° )Q,co)] -1: Bf l )( W1 t

-AM (l.10 1clel)Y[AM )(2,AlW)] -1 B(°) (gl Ici).
From (2.15.2), (2.16.0) and 2.16.1),

j(2)(p&) =ffdfl dw dp1 dt1 d/2 dc 2 dP2 dt 2

w e 11 - 1 1 1 2 r2 2 2 t2]

e~~R ...X21w/2@2eX1/PX2 Ei2.16.2

where

R( g/g+1 'w1 /22 'W!±tl /t'e2 ,t2 ) =

- (2) 6 [A( )qo)] 'AtP(/1 ) ,"Ppl,tl)[A( 0 )(11 1,w)] 'B('1)( 2, 2 p2,t 2 )

AM (1pc2 (o2 2t2( [A( )(,22sW2)] -lB(° )(,2IC02) .

The general (nth) term of E is (from (2.15.n))

Rn)(g c) =ffdP1 dc1 dg1 dt1 dQ2 dwJ2 de2 dt2 ... dnn dj d-n dtn ...

/[C3 0 Coo) .p C(p )tI +(w 2032 -c1 3)*p2 c(W2 - W)t 2

+ (con-10n- 1 on-21- 2),Pn- 1 - C(n- 1 (n- 2 )tn- 1 (2.16.n)

+(@nn (n- 1 1 ).g - C(con - n- )tn 

R oc~91I )((l1C1 102 I21 *-- "jn Pl tl /T,2 t2 / ... <Pln Itn) l~(n'n)'

20
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where

R (#')/gI '1 l0,2 W2/ .. /nl fin;,P t2 I'2 / P ifw Itt)
1~~~~~/

_ (-1)n 1 [A(0 )(3,c)I - A(l)(/3Lopt)
(2iT)3 n ,w1~ ,j

[A(O)(A (z)-1AGl)(-2W2i);e21t2) .. [A(O )(12 x2)] -A (1)3I Cj3;, i3)

[A(O)(9 -n~ -') A(' co -l'n- 1;Cn- 1tn-1)

[A (g-12(<-1)] B(1 )(C~i n~tst A(1)(,B ,Cne t

[A(0 ° )(- ' )1~1B( °)(.0 n 

The vector F is not ofdirect use to us. It would be preferable to have the reflected
wave vector Er. To obtain Er we invoke (2.9) and note that

1 0 0 0 0 Erx

ErMrEr = (- 0 1 (w] iL° 1 0 E0ry = l).(17

where

1 0 0 0
0 1 0 0

E =ME QPEx 2y 01.
-(-) -0(- 0 0

The unit vectors corresponding to horizontal and vertical polarization are defined in

Appendix I (Eqs. (I-24.a,b) and (1-27)) and are denoted by Q V and QH respectively. The
specialized meaning of horizontal and vertical polarization in this report, different from
the standard meaning, are explained in Appendix I.
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The vertically and horizontally polarized components ofPr are denoted by

E v E and (2.18.a)
rV * +

Er tHEr (2.18.b)

In all that follows we will adopt the notational convention introduced in Appendix IV
wherein all explicit indications of dependence on w are dropped.

We now relate Ei to Eiv and EiH, the vertically and horizontally polarized components
of the incident wave vector &j. From (2.8) and (2.9)

E) (/) = L(3,)Ej (f), (2.19)

where

EVz

>Q Q E x

y y /3 k~

x VY kZ x

kzy

Vx Vx x

Y Y Y

The remaining analysis, detailed in Appendix IV, results in expressions for vertically
and horizontally polarized electric field components at the receiving point, given both
vertically and horizontally polarized transmitted fields.

THE RECEIVED RADAR SIGNAL

We denote the received signal at the radar by the symbol uAa(t). This represents a
quantity proportional to the electric field component along the direction of polarization
selected by the receiver. The subscripts A and a denote received and transmitted polariza-
tions respectively. We can use the standard representation for narrow band signals, i.e.,

UAa(t) = ReIUAG(t)e [ (3.1)
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where UAG(t) is the complex envelope of uAa(t), co is the central frequency of the signal
spectrum and UAa(t) varies slowly compared with

e

The most general quantity that will ultimately be needed involves the product of two
signals possibly with relative time displacement At and different polarizations, time-
averaged over an RF cycle (where an overline indicates the time averaging process, and of
course

+2jwo t
e =0.

This is given by

jG~, A t
UAOBb(tAt) = 2 Re(UABb(t,At)e 0 ), (3.2)

where

UABb(tAt) = UAa(t)UBb(t + At),

and where B and b represent received and transmitted polarizations that may be different
from A and a.

A special case of (3.2) is the signal power, or equivalently (if proportionality constants
are set equal to unity) the quadratically rectified signal voltage,

UAaAa(tO) =- Re(UAaAa(t,0) = - UAaAa(tO), (3.3)
2 2

where

UAaAa(t,O) = IUAa(t) 12.

Another quantity of interest, in its most general form, is the product of two
quadratically rectified signals with relative time displacement At and possibly different
polarizations. This is obtained from (3.3) and is given by

UAaBb(tAt) = UAaAa(tO)UBbBb(t + At,0) = IUAa(t) 12 IUB b(t + At) 12, (3.4)

neglecting the factor 1/4 which does not affect the results significantly.

We now invoke the simplifying assumption that the incident wave is a CW signal,
amplitude modulated by a pulsing waveform of arbitrary shape, but whose bandwidth is
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small compared with RF. More accurately, we should solve the boundary value problem for
each frequency co contained in the incident waveform and integrate on c over the entire
spectrum. This process can be approximated for practical purposes by treating the signal
as if the incident wave were CW with frequency w = wo and multiplying the resulting
scattered CW field by the pulsing function. This implies that, within the small band covered
by the pulse, the scattered field waveform is approximately independent of frequency.

This simplified model is implemented through the introduction of a function g(ro)7
which weights different contributions to the return in proportion to the delay, which in
turn is proportional to ro, the distance from the radar to the illuminated point on the
scattering surface.

Another weighting function on the signal is the antenna pattern function f(03 ,03 )
which weights contributions from different angular positions (O' 0 )*. Still another is
the factor

2jw r
(e C 0/r2

present in any two-way radar signal return from a point target.

Allowing for the possibility that the pulsing function and antenna pattern function
may differ for different polarizations we will place subscripts Aa on them and construct an
overall weighting function

, s g~A,(ro(0s3103t))fA,,(0'3103)e eo(3'3tF~a0,st (3.5)
[ro(O 31,0,t)] 2

where the radar-surface geometry fixes the functional dependence of ro on the angles
(03 ,03 ) where fA a (0' 03' ) is the one-way field pattern of the antenna for the polarizations
denoted by Aa, where k is a constant containing radar parameters, and where the
possible time dependence in ro arises from the expression (Appendix III, Eq. III. 24),

ro -ro + Aro X (3.6)

where ro is the distance from the radar to a point on the horizontal (calm) sea surface,
given (through manipulation of (111.25) in Appendix III) by

hR

r° cos O' cos y - sin 03 sin y cos 3' (3.6.a)

*See Appendix I (beginning below Eq. 1.14) for definition of the angles (0'3 A).
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where hR is the radar altitude and y the beam angle relative to vertical, and where (from
(III.24) or (III.26))

hR
Ar = H(x',y') -. (3.6.b)'

ro

H(x',y') represents the mean sea surface as a function of the horizontal coordinate (x',y'),
hR is radar altitude and rO is given by (3.6.a)'.

If H(x',y') * 0 in (3.6.b)', i.e., if the mean sea surface is not perfectly horizontal
everywhere, then, since (through manipulation of (III.15.f) in Appendix III)

(sin 0 cos q5 cos y + cos 0 sin y)

R R (cos 03 cos Y - sin 0 sin -y cos &) (3.6.c)

and

hR sin 03Sin

R (cos 0 cos y - sin 0 sin y cos 0D) (3.6.d)'

where 4 and yR are the horizontal coordinates of the radar relative to a fixed origin of
coordinates.

The time dependence in Ar0 arises from a possible time-dependence in x4 and y4
which would appear in x', and y' through (3.6.c,d)' and hence would appear in H(x', y')
and in (3.6.b)'. This would occur through horizontal motion of the radar. Vertical radar
motion would manifest itself in time dependence of hR. which would render r0 time-
dependent through (3.6.d)' and would also appear in Aro through (3.6.b,c,d)'. Another
possible source of time dependence is a time variation of the beam angle Ay, which would
appear in r. through Eqs. (3.6) and (3.6.a,b,c,d)'. If the mean-sea surface were perfectly
horizontal everywhere and the beam direction fixed, then ro and hence FAa would be
independent of time.

We now specify the form of the radar return signal as a superposition of returns
from patches at position (ro, 03 , 03b) relative to the radar, each return weighted by the
function FAa(03, 03, t) as given in (3.5) and a factor SAa derived from the perturbation
solution of the boundary value problem. The results of this line of reasoning are

iT 27r

UAaO(t) =Jd03 sinf 0 d& FAa(0'313t)SAao(&Qo(03'43't)), (3 )
0 0
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17 27r

UAal(t) =Jd0 sin 0 Ofd& FAa(04J3¢t)SAal(,o (03X43t)) ...
0 0

(3.7.1)

2co
Z(--cx (0'

Ir 2 1r

UAa2(t) ?fd03 sin 0fJd ' FAa(03, '3 tjfdkSAa 2(&o (0344,t),9k)
0 0 (3.7.2)

2co
ZQ~>)Z(---o-&0 (03 ,,t) - k),

C 

iT ~~~2ir

UA a 3 (t) =fd0 3 sin 03 fd '3 Aa(°3 ,;,tffdk-Afdk2SA a 3
0 0 (3.7.3)

( 6;, (03,,t),.k 1 ,k2 )Z(9Z(kJ 2) *-- Z(- & (0' ¢, t)- k1 - 2), andc -

7r 2 ir

UAa4 (t) =jfdO sin 03'fdO3 FAz( 537(tffqklffAa4
0 0

( ~ O ( 0 3' '0 ' 't) ' ~ V k '~ O Z (~ 1 P Z ( ~ 3 ) ... ( 3 .7 .4 )

Z(- c e(3',t) -<1-k -k3)

where go is defined in Appendix I, Eq. (I.27.a), as the projection on the x-y plane of the
unit vector &,O directed from the radar to the illuminated surface point.

Note that the &O in (3.7.0,1,2,3,4) is indicated as a function of the angles (03,03) and
a possible function of time. The time-dependence arises again through possible motion of
the radar and beam and departures of the mean sea surface from perfectly horizontal. To
show this, we invoke (I.27.a) and (1.28), dropping subscripts in (I.28) and also Eqs. (I.8.a,b)
and (I.10.a,b) with the results

°= (a° o, ) (3.8)

26



NRL REPORT 8369

where

,=,2 sn(3.8.a)'
1o + / I. sin 03 cos 03[cos scos y - IV'Hl|sin'yI 38.)

- sin 03 sin 03 sin 4) + cos 03[cos 4 siny + IV'H cosy] ,and

U =- sin 0 cos O3 sin 4 cos y - sin 0 sin O' cos 4

(3.8.b)'
- cos O' sin 4i sin ^Y 3.

(Where IV'H I and ^y were defined above in connection with Eqs. (3.6) and (3.6.a,b,c,d)',
and where cos 4 = (aHlax')l IV'H 1, sin 4 = (aH/ay')l IV'H 1, and the coordinate systems
have been defined such that 4) is equal to zero for a perfectly horizontal surface.)

We have referred to polarization in this section only implicitly. The subscripts Aa
and Bb used in (3.1) through (3.5) and (3.7.0,...,4) refer to particular polarization situa-
tions. The equations in Appendix IV from which (3.7.0,...,4) are justified contain
quantities with subscripts VV, VH, HV, and HH, where the first subscript indicates
received polarization and the second subscript indicates transmitted polarization. Thus,
e.g., if the transmitted and received polarizations corresponding to UAa in (3.1) were both
vertical, then the subscripts Aa would be indicated as VV. If the transmitted polarization
corresponding to UB b (t) were vertical and the received polarization were horizontal, then
subscripts Bb would be indicated as HV, If the transmitted and received polarizations
were circular, then the subscripts Aa or Bb might indicate (for example) LR, implying
that the transmitted polarization is right-handed and the received polarization is left-handed.
In this case (3.1) would be written as follows:

ULR(t) = Re ULR(t)dj ', (3.9)

where

ULR (t) = UVR (t) + jUHR (t),

where the subscripts VR and HR imply respectively vertically and horizontally polarized
received radiation with right-handed circular transmitted polarization.

ENSEMBLE AVERAGES OVER SURFACE FLUCTUATIONS

The quantities used in the final results will be ensemble-averaged over small-scale
surface fluctuations. This averaging process is discussed in Appendix II and results given
there are used as a basis for much of what follows.
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Averages of Voltage Products

If we expand UAa(t) as given in (3.1) through fourth order, we obtain

UAa(t) = UAao (t) +UAal(t) +... + uAa4(t). (4.1)

The averaging of (3.2) with the aid of (3.7.0,...,4), (11.4), (II.13) and (11.16) leads to

<UAaBb(t At)> = lAaBbo(tAt) + <zAaBb 2 (tAt)> + <liAaBb4(tAt)>, (4.2)

where the subscripts 0, 2, and 4 refer to perturbation order and where (it is understood that
the argument of all Aa factors is t, that of Bb factors is t + At and all quantities UA aB b
have arguments (t,At))

UAaBBo -=-Re (UAaBbo e ° (4.2.a)'

where

~~~~*
UAaBbo = UAaoUBbo'

1 jWAt (4.2.b)'
<UUAaBb2> -Re (<UAaBb2>e

where

<UAaBb2> UAa, <U UAa2>Ubo + <UAal UBbl>'
(4.2.c)'

1 AjX /t<UAaBb4>=-Re (<UA.Bb4>e 0)

where

<UAaBb4> =<UAa2 U~b2> + <UAal Ub 3> + <UAa3U~bl>
(4.2.d)'

+UAa <U b4>+<UA.4>U~b,
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Averages of Power (or Quadratically Rectified Voltage) Products

The ensemble average of UABb(t,At), obtained from (3.4), is:

<UAaBb(tOAt)> = <UAaAa(tI0)><UBbBb(t + At, 0)>

+ <[UAaAa(t,O) - <UAaAa(t'0)] ... (4.3)

[UBbBb(t + At, 0) - <UBbBb(t + At, 0)>] >,

where each of the factors in the first term can be considered as specializations of factors
in terms in (4.2.a,b,c)' and the second term, expanded to fourth order, with the aid of
(3.2), (3.7.0,...,4), (II.13) and (II.16) is

<AUAaBb(tAt)> <[UAaAa(t,°) - <UAaAa(t'O)>I

[UBbBb(t + At, 0) - <UBbBb(t + At, 0)>]> =

<UAaAa1(tMO)UBbBb1(t + At, 0)>

<UAaAa1(tI0)UBbBb3(t + At, 0)> (4.4)

<UAaAa3(tO0)UBbBb1(t + At, 0)>

+ <UAaAa2(t0)UBbBb2(t + At, 0)>

- <UAaAa2(tI0)><UBbBb2(t + At, 0)>,

whose individual terms are (where it is understood that arguments of Aa factors are
(t,0) and those of Bb factors are (t + At, 0)):

* U <U~~~
<UAaAal UbBbl> 2 Re [UAaU Bb<UAal UBb>

(4.4.a)'

+ UAoUBbo <UAalUBbl>I

<UAaAa1UBbBb3> 2 Re [UAaUBbo<UAalUb3>

+ UAaoUBbo< UAa aUBb3>

(4.4.b)'

+ U~ao<U:alUBblUBb2>

+* *>]+ UAaoOU~blU~aIUBb2>I
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<U U~~~~Re U<AaAa36BbBbl>=2 Re [UgboUAao<UBblU~a3>

+ U~boUUao<UBblUAa3>

+ UBbo<UBblUAalUAa2> (4.4.c)

+ UBbo<UAalUBblUAa2>],

<UAAa2UBbBb2> 2 Re [UAaoUbo<UOa2UBb2 >

+UAaoU b<UAa2UBb2>

UAao<UBblUBblUaO2>
(4.4.d)'

+ UBbo <UAal1U~al UBb2 >1

+<UAalUAalUBblUBbl>

<UAaAa2><UBbBb2>

<UAaA,2(tO)><UBbBb2(t + At,0)> =-2 Re [UAGO<Ua2>]

+< |UAal 12>t .. 2Re [Ugbo<ULb2>1 +<|UBbl12 > W (4.4.e)'

From (3.7.0,...,4), (4.2), (4.2.a,b,c)', (4.4), (4.4.a,...,e)',Aand a number of results in
Appendix II, we can express <UAaBb(t,At)> and <AUAaBb(tAt)> in more compact
approximate forms. First, from (4.2), (4.2.a,b,c)', (3.7.0,...,4), and (11.17, 18, 19, 20, 21),

1
<Aab (t2At)> = -Re (<UAaBb(tAt)>eiC') A),

where

<UA Bb(tAt)> UAaoU b, + UAoI<U b2> UBh4 >

+ UboI[<UA2> + <UAa4>]
(4.5.1)'

+ <UAal U ba > +<UAa2Ub2l>

+UA a U b 3 > + <UA, 3 U~b >
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where it is understood that the argument of UAO is always t and that of Ulb is always
t + At, and where (from 3.7.0)

Tr 2 Tr

UA.. =fd0'3 sin 03 fdo.4 FA3 ' t))'

0 0

(4.5.2)'

From (3.7.2) and (II.18)

c
<UA2>= (2wo ' F(0'&t)ffdkW(k)SA,2(0)( ̂  Aa3k'3'2 O ) I2t

(60 =0)

(4.5.3)'

where W(k) is the spatial spectrum of the fluctuations. From (3.7.4) and (II.21,18,9)

<UA,4>=(2 )2 k FAa(03kk 33kI tfffdklW(!l ffqk 2WW(2)...

((= =0)

(4.5.4)'[SAO4(O, t1' k + SAa4(Q'!kj' ,2k j)

+ SAa4(Q' kl'k2' -k2)] -

From (3.7.1) and I1.19,14),

t T~~~~~~~~~~~r

< Aa1UB b 1 > = ( 2@ ) Jdo <UA.1U bl>= I3
0

2 TI

sin 03 d0j3 W(- a J )

0

FAa(03, 0,3 t)Fgb(03, 'ks, t + 3 t)

SAal(%(0'3, 03', t)(Sbl(&,,(03, 03 t + At)).

From (3.7.2) and II.21,19,14),

<UAa 2 ULb 2 > =

Tr

<UA.2><U~b2> + (2 JdO'i sin 03 ..
0

Tr

fd/¢)FAa(.0V 0', t)Fgb(031, OI t + AtffCdkW(!W...
0
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2w II
(--- (3O 3, t) -Q)SAa 2 (&2(O 03, 3') ... (4.5.6)'

[ISb2(%(90'A ,3 t + At), k)

+ SBb2(L(0o33 03, t + At), ---- ,(0, 43, t + At) - k)]

where <UAa 2 > and <UBb2> are specializations of (4.5.3)'.

From (3.7.1,3) and (II.21,18,19,14),

7T 2 Tr

<UA,1U~b3 = ( W2)dO3 sin O' 0o w(- -- &(03 , ot)) ...
0 0

FAO(0i3 /) t)Fb(O, 313, t + At)AAal

(V (310 3,O ffdkw(k) S~b3 (4-5-7)'

((2O(f93 (g), t /t); u (x0 ;, (t3 t + Aot;k)
2w

+SBb3(6 o(03' 03, t + At);k, - 60( t3 3 -+ c -+ 303 4,-t + At))

+ SBb3 ( o (03, 03, t + At);jk, -k,))].

From (3.7.0,...,4), (4.4), (4.4a,...e)', and (11.17,18,19,20,21,23,24,25,26),

<A UAaBb(t,At)>- 2 Re [U~ oUBb<UA.U~bl>

+ UAoUBbo<UAalUBb3 >+ UBbOUAao<UBblU~.3 >

+UAaouBbouAa2 >Bb2 2+ I<UAaluBbl>1 (4.6)

- UAaoUBbo<UAL2><UBb2>- UAaoUBbo<UAU2 ><UBb2 >

+* <U >
UAao Bb2 UAalUBbl>+ UBbo<UAa2><U b1UAa1>] 

where all factors in terms of (4.6) are specializations of (4.5.2,...,7)'.
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In the special case where no zero-order terms exist (i.e., no specularly reflecting
surface and no targets), then (4.5) and (4.6) assume much simpler forms. In this case
(from (4.5) with all zero-order terms set equal to zero)

<UAaB (tAt)> = -Re [<UAa1UBb1>+ UA2 Ub 2>
Ao~b 2 (4.7)

* ~~~*>1
+<UAlU Bb3> + <UA,3UBbl>I,

and (from (4.6) with all zero-order terms set equal to zero)

<AUA.Bb(tAt)>- I<UAlUbl> | (4.8)

Applications of Averages

Let us now consider the applications of (4.5). With the aid of (4.5.1,...7)', it can be
used to obtain the following quantities of possible interest.

(1) The crosscovariance function (or crosscorrelation function; abbreviated as CCF
in what follows) between vertically (or horizontally) polarized return signal voltages with
possibly different incident polarizations. If the incident polarizations are the same and
At = 0, then this quantity is the average power in the vertically (or horizontally) polarized
return.

(2) The CCF between right-handed (or left-handed) circularly polarized signal
voltages with possibly different incident polarizations. If the incident polarizations are
the same and At = 0, then this quantity is the average power in the left-handed (or right-
handed) circularly polarized return.

(3) The CCF between vertically and horizontally polarized signal voltages, with
possibly different incident polarizations.

(4) The CCF between left and right-handed circularly polarized signal voltages with
possibly different incident polarizations.

Eq. (4.6) with the aid of (4.5.2,...,7)' can be used to determine the following
quantities of possible interest:

(5) The CCF between deviations from average power (or quadratically rectified
voltage) in two vertically (or horizontally) polarized return signals with possibly different
incident polarizations. If the incident polarizations are the same and At = 0, then this
quantity is the variance of the vertically (or horizontally) polarized signal power.

(6) The CCF between deviation from average power (or quadratically rectified
voltage) in vertically and horizontally polarized returns with possibly different incident
polarizations.
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(7) The CCF between deviation from average power or quadratically rectified
voltage in two left-handed (or right-handed) circularly polarized returns with possibly
different incident polarizations. If the incident polarizations are the same and At = 0, this
quantity is the variance of the left-handed (or right-handed) circularly polarized signal
power.

(8) The CCF between deviation from average power (or quadratically rectified
voltage) in left-handed and right-handed circularly polarized returns with possibly different
incident polarizations.

Transmit-Receive Polarization Modes

There are 16 transmit-receive polarization modes, any one of which may be of
interest in a particular application. These are given in the chart below.

The factors appearing in the terms of (4.5) and (4.6) are all either average voltages
<UA 9> or <UB 9>, where k = 0,2, or 4 (the case 2 = 0, of course, does not require
ensemble averaging), or averages of products of two voltages, of the form <UAQU m> or
complex conjugates of such quantities. We note that in a quantity <UAL> (or <UB2>),
A (or B) can represent any one of the 16 polarization cases listed in the chart. In a
quantity like <UAQU m>, A and B can represent any of the 16 cases listed in the charts;
hence, there are a total of 16 X 16 = 256 possibilities for such a term. The ability to choose
the desired case, of course, can easily be programmed into a computer. The quantity SAQ
appearing in (3.7.0,...,4) is calculated for Aa = VV, VH, HV or HH. Extension of these
results to include circular polarization can be accomplished through an extension of (3.9)
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Receive Transmit
polarization polarization Designation

(1) Linear-vertical Linear-vertical VV
(2) Linear-vertical Linear-horizontal VH
(3) Linear-vertical Circular-left-handed VL
(4) Linear-vertical Circular-right-handed VR
(5) Linear-horizontal Linear-vertical HV
(6) Linear-horizontal Linear-horizontal HH
(7) Linear-horizontal Circular-left-handed HL
(8) Linear-horizontal Circular-right-handed HR
(9) Circular-left-handed Linear-vertical LV

(10) Circular-left-handed Linear-horizontal LH
(11) Circular-left-handed Circular-left-handed LL
(12) Circular-left-handed Circular-right-handed LR
(13) Circular-right-handed Linear-vertical RV
(14) Circular-right-handed Linear-horizontal RH
(15) Circular-right-handed Circular-left-handed RL
(16) Circular-right-handed Circular-right-handed RR
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and the observation that the linearly polarized response to incident circular polarization
is given by

UvR(t) = Uvv(t) + jUVH(t)
VL VV - VH (4.9)
HR HiV + HH
HL HV - HH

The circularly polarized response to linearly polarized incident radiation is

ULv(t) = UVV(t) + jUHV(t).
LH VH + HH (4.10)
RiV VV - HV
RH VH - HH

From (4.9) or (4.10),

ULL(t) = UVL(t) +jUHL(t) =ULV(t) -jULH(0)

(4.11.a)

= [UVV(t) + UHH(t)] +j[UHV(t) UVH(t)].

URR(t) = UVR(t)- jUHR(t) URV(t) URH(0)
(4.11.b)

[UVV(t) + UHH(t)l +j[UVH(t) - UHV(t)l,

ULR(t) = UVR(t) +jUHR(t) =ULV(t) +jULH(0)
(4.11.c)

= [UVV(t) - UHH(t)] +j[UVH(t) + UHV(t)], and,

URL(t) = UvL(t)- jUHL(t) UR v(t) - URH(0)
(4.11.d)

+ [U VV(t) - UHH(t)I - j1UVH(t) + UHV(t)I

Equations (4.11.a,...d) can be used to form the averages needed in (4.5) and (4.6) from
the basic calculated quantities UVi, UVH, UHV, UHH.
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Inside the integral in each of these quantities (see 3.7.0,...,4) is the quantity SAaQ,
where Aa = VV, VH, HV or HH. On the computer, cases such as LL, LR, etc. will be
implemented by programming the statement

SLLQ = (SVVR + SHHQ) + j(SHVi - SVHR).
RRQ + (4.12)
LRQ - + +
RL9 - - +

This is the easiest way to handle cases involving circular polarization on both trans-
mission and reception. The averages required in (4.5) and (4.6) could be (and have been)
calculated explicitly for these cases but most of the expressions obtained for them are very
long, are not needed in subsequent calculations, and do not lend themselves to easy physical
interpretation. Hence, they will not be included in this report.

RESULTS WITH FIRST-ORDER FIELDS ONLY

In this section we will summarize and discuss the results obtained in Appendix IV
for the case where only the first-order term in the polarization matrix is considered.
Specular reflection terms, target returns and second, third and fourth order terms are not
included.

We can obtain a certain amount of information from these results but unfortunately
cannot really address the problem of cross-polarized components. However, a certain
"quasi-cross-polarization" effect exists and can be studied through these results. This
point will be elaborated upon later.

Polarization Matrix Element

The polarization matrix element corresponding to a [1] is calculated in Appendix IV.
The result, given in Appendix IV, is

2j-4!a0 (v2 - 1) ~ ,a v y

VH [A( Lgo~l 2QV X; {(<H VZ U2 cz)V2 + 72]

Hi H H
HH V H

I ) ~~~~(5.1)
-2,y(oz + 'yZ)(OEXQVZ(610QH} 

V V

H H
H V
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(Note that the first subscript V or H refers to received signal polarization and the second
subscript refers to transmitted signal polarization, where V and H denote vertical and
horizontal respectively.)

The quantities in (5.1) are defined below:

v = complex refractive index of the medium (5.2.a)

X = (angular) radar frequency (5.2.b)

c = free space velocity of light (5.2.c)

A(I&1 ) (y0)1. 2 -5cx d)/I(-o) = YOZ %ZX( -UOZ -ROZOZ)

(to =.4r'~ = (from 1.22) (5.2.e)

Cto 0 (from 1.27.a) (5.2.f)

o= sin 0'3 cos O' (cos 6 cos y cos4Ž- sin 6 sin'y)

+ sin 0 sin 03 (- cos 6 sin 40) (5.2.g.x)

+ cos 0; (cos 6 sin ^y cos <D + sin 6 cos y); (from 1.28)

ogy sin 03 cos 03 (- cos y sin c>) + sin 0'3 sin O' (- cos 4))

(5.2.g.y)
+ cos 03 (- sin 'y sin 4Ž); (from I.28)

cxz 11
=Z - < v- (°au + ,oj) (5.2.g.z)

toz

where cox and afy are defined in (5.2.g.x,y)

-y = angle of peak of antenna beam relative to the vertical (5.2.h)
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(03 ,0) = spherical angles of the illuminated point on the surface relative to the radar in
the SI system (whose z3 axis is along the peak of the antenna beam)

Cos 6 = (from III.15.a) (5.2.j.1)
1h -+ jVH 12

IV'H Isin8 = (from III.15.b) (5.2.j.2)
/1 + IV'HI12

H'x
cos 4' = (from III.15.c) (5.2.j.3)

H'
ysin 4Ž = Iv'HI (from III.15.d) (5.2.j.4)

where

H= H(x', y') = Mean surface as a function of (x', y'), the horizontal
coordinates in the S' system (whose z' axis is
perfectly vertical and whose (x', y') plane is along (5.2.j.5)
the horizontal sea surface)

Rx = yaH (x' y') (5.2.j.6)

aH
Hy, = ay Wlx'y') (5.2.j.7)

V'H = V(Hx ,)2 + (Hy )2 (5.2.j.8)

Qx QVx - 9Qvzx (from I.28 with= -& , O =a-ac) (5.2.k)
Vy Vy °z V oy
Hx Hx H ox
Hy Hy H oy

QVx = cos 6 cos y cos 4) - sin 6 sin -y (5.2.Q.1)

Qvy = -cos 'y sin 4Ž (5.2.2.2)

QVz= sin 6 cos ^y cos 4Ž + cos 6 sin ^y (5.2.Q.3)
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QHx - cos 6 sin 4Ž

QH = - cos 4)

QHz = - sin 6 sin 4Ž

(Eqs. (5.2.Q.1,...,6) are from (1.27))

The vector and scalar products in, (5.1) are as follows:

I AjxQ' ) - (Q' xQ' ) = QQ - 2' 2'(HXV z -.V 4H z Hx vy Hy Vx

(QA' X) = (Qx2H)z =0

H H H&0 Q' i'= a0 Q'i + 2'k

o0 Q'+V z~ox Qvx oy Vy
H H H

(5.2.Q.4)

(5.2.Q.5)

(5.2.Q.6)

(5.3.a)

(5.3.b)

(5.3.c)

(5.3.d)

In the degenerate case where the mean surface is perfectly horizontal, some of the
quantities defined in (5.2.a,...Q) and (5.3.a,...,d) are significantly simplified. In this case

H(x',y') = 0. (5.4)

Choosing to set Hy, identically to zero and allowing HX, to become arbitrarily small
(just an arbitrary choice of coordinate orientation which does not affect the end results), we
obtain from (5.2.j.1,...,4):

cos 4Ž = 1 (5.5.a)

sin 4Ž = 0 (5.5.b)

IV'H I = 0 (5.5.c)

cos 6 = 1

sin 6 = 0

(5.5.d)

(5.5.e)

Using (5.5.a,...,e) in (5.2.g.x.y.z), (5.2.k), and (5.2.2.6), we obtain

a = sin 0' cos O' cos y + cos 0' sin ^y

00y = - sin 03 sin 03

(5.6.a)

(5.6.b)

39



RAEMER

- [sin2 0o (cos2 ' cos2 y + sin2 03) + cos2 03 sin2 Y...

(5.6.c)

+ 2 sin 0 cos 0 cos cos -y sin y] }

VX = cos 'Y

VY= 0

(5.7.a)

(5.7.b)

QVZ = sin -y

QHx = 0

2Hy = - 1

kHz = 0

(5.7.c)

(5.7.d)

(5.7.e)

(5.7.f)

To check our results against those previously obtained by other workers, we further
specialize to the case where the surface is perfectly horizontal and illumination is in the
(X3 - Z3) plane and along the peak of the beam, corresponding to the conditions

03 = 0

(5.8)
of= 0

Using (5.8) in (5.6.a,b,c), (5.2.k), (5.7.a,...,f) and (5.3.a,b,c,d), we obtain:

(5.9.a)°aox = sin y

0y =
z= - 1 - sin2 - = - cos -Y

-Yoz = / sin2 Y

QVX = cos y

QVY 0

(5.9.b)

(5.9.c)

(5.9.d)

(5.9.e)

(5.9.f)
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QVz = sin y (5.9.g)

QHX 0 (5.9.h)

QHy = 1 (5.9.i)

QHz = 0 (5.9.j)

= sec y (5.9.k)

='Vy 0 (5.9.2)

QHX = 0 (5.9.m)

Y =- 1 (5.9.n)

40vz = 0 (5.9.0)

(&o2'V) = tan y (5.9.p)

(IaIXV Hz =~ sinyz (5.9.q)

(00 *QH) = ° (5.9.r)

(QH ) =k' sec y (5.9.s)

A( I|o ) (CYoz 0 1- )(- - aOZ2 _a-z c oz) =[v 2 -_sin2 y + cosS y]
-sin -sin ~y. (5.9.t)

[sin2 y + cos y j,2 2 -] Cv2 cos Y + \ 2

Substitution of (5.9.a,...,t) and (5.3.b) into (5.1) results in:

2jo(v 2 - 1) os 2 ( 2 1) sin2 y + p
[Svv(- &+o)i i)- (1) si 2I (5.10.a)

(v2 cos Y+ ,v 2 -sin 2 y)2

[SVH( °o)]a(l)=0 (5.10.b)

[SHV(_ 4O)'.(') = 0 (5.10.c)
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- 2j" (v 2 - 1) COS y

ISHH(- oXada(l) (= 2 2 (5.10.d)(cosyz+ /v 2 - sin2 a)

The results given in (5.10.a,b,c,d) are consistent with those reported in the literature,
e.g. Barrick and Peak [46]; Guinard and Daley [10]; Guinard, Ransone and Daley [14];
and Valenzuela, Laing and Daley [13]. Notation and definitions of angles differ from those
used here but when the meanings of the symbols in those papers were interpreted in terms
of the author's notation and definitions, the results were found to be in exact agreement
with those reported previously.

Let us refer back to the definition of vertical and horizontal polarization used in this
report. We define vertically polarized transmission or return (labeled V) as that whose E
vector is in a given direction on the antenna aperture and horizontally polarized transmission
or return (labeled H) as that whose E vector is perpendicular to the V direction. But the
E vector corresponding to a plane wave of either V or H type (according to the above
definition) launched at the aperture and striking the sea surface at a given point has
components both vertically and horizontally polarized (according to the standard defini-
tion of vertically polarized radiation as that whose E4 vector is in the plane of incidence
and horizontally polarized radiation as that whose E vector is normal to the plane of
incidence) and these components are acted upon differently by the surface reflection.
Hence the return corresponding to a V-type transmitted wave has an H-component and the
return corresponding to an H-type transmitted wave has a V-component. If the return is
considered as a superposition of plane waves from all angles contained within the antenna
beam pattern, then each such plane wave has both V and H components regardless of
whether their corresponding transmitted waves were of V or H type. The total E field on
the aperture resulting from this superposition of returns has a different ratio of
V-component to H-component than that resulting from the superposition of I-fields of all
the transmitted waves. This constitutes a kind of "quasi-cross polarization" effect which
appears in the return even in first order, although it is very well known that no real cross
polarization (defined in the standard way, i.e., referred to polarization at the sea surface,
not at the antenna aperture) exists in first order return.

The exception to this is the case where all of the radiation goes out in a single
direction, i.e., along the antenna beam axis, in which case the components of the {-vector
of the transmitted or returned plane wave correspond to the components of the E-vector
on the antenna aperture. This is the case covered by Eqs. (5.8), (5.9.a,...,t) and (5.10.a,b,c,d).

As soon as a small departure from this simple situation occurs, then the return has the
feature indicated above, i.e. its "polarization" as defined at the antenna aperture is
different from that of its transmitted wave.

This is true even for a perfectly horizontal mean sea surface. Of course, the wider the
beam, the greater is this "quasi-cross polarization" effect, because a wider beam has much
more wave energy propagated at angles far off the beam axis. With a narrow beam, e.g.
only a degree or two wide, there should be very little of the effect, because at small
angles off of the beam axis, the 4-field components defined as vertically and horizontally
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polarized at the antenna aperture come much closer to being the vertically and horizontally
polarized components at the reflecting surface.

For any given beamwidth, "quasi-cross polarization" effect would be further enhanced
by a rough mean-surface, because waves propagating out at different angles would encounter
a wide range of angles of incidence at the surface and hence the probability of a vast
difference between the polarization defined at the antenna and that defined at the surface
would be much greater, even at angles not far off the beam axis.

To summarize this point, our concept of polarization, which defines vertical and
horizontal polarization in terms of two mutually perpendicular directions of the :-field
on the antenna aperture, does not necessarily correspond to the standard definition of
vertical and horizontal polarization, which relates to the A-field in the plane of incidence
or normal to the plane of incidence respectively. Suppose we think of the return as a
superposition of plane waves reflected from the random surface. If the mean surface is
horizontal, the only one of these waves for which these two definitions coincide is the wave
along the beam axis. In the case in which the results (5.10.a,b,c,d) are obtained, that is the
only wave propagating; cross polarization terms vanish. It can easily be shown that the VH
and HV terms also vanish (with a perfectly horizontal mean surface) in the case where
the illumination is in the (x3 - z3) plane (0'3 = 0). In this case, a V type wave (our defini-
tion) has no components that are horizontally polarized (standard definition) at the sea
surface and an H-type wave (our definition) has no components vertically polarized
(standard definition) at the sea surface. This is a degenerate case in our analysis because it
covers only one plane of illumination and we wish this analysis to cover a superposition
of waves from an arbitrary solid angle.

To show the vanishing of VH and HV terms in this case, we need only observe that
setting 03 equal to zero in (5.6.a,b), and (5.7.a,b,d,e) and invoking (5.3.b) results in:

etx = sin (03 - 'y) (5.11.a)

lOY = 0 (5.11.b)

sin -y sin (0 - 'y)
QVX =cos - (5.11.c)

oz

QY= 0 (5.11.d)

RIX 0 (5.11.e)

Qj1Y = - 1 (5.11 .f)

(axxQV)Zok Q.) = (5.11.g)
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(a ~X2H) (&O-2 =, O. (5.1 Lb)

Eqs. (5.3.b) and (5.11.g,h) imply that

[S VH(o)'a(lY [&HV(- )](l) = 0 (5.12)

for the special case where O3 = 0.

Averages Involving Only First-Order Terms

The generic average of the product of two polarization matrix elements each of which
contains only first-order terms is the term < UA a 1 UB b 1> in (4.2.b)', which is of second
order. The generic average of power (or quadratically rectified voltage) products in the
case where the polarization matrix contains only first-order terms is the term
< UAa 1 UAl a1 UB b 1 UB b 1 > in (4.4.d), which is of fourth order.

Summarizing the applicable results in the previous section, we have (from (4.2.b)')

<UABb2>=2Re(<UAlUBbl>e ) (5.13)

and from (4.8)

<AUA.Bb(tAt)>= l<UA1lU.bl> 1 (5.14)

where (from (4.5.5)' with a slight notational change)

7T 2 7r

<UAG1L~b1>=(2 )2jfd0 Isin O 1fdok' W(- 2cj<UA.lUbL1> (2w ) d3 3i o3d3 w(- (03 03 0)..
0 0 (5.15)

FAa(03031,t)FBb(0s,'Ot + At)

[SAo&(- &2o(03103,t))]G(l)[SBb(--&,o(0'31,3,t + At))]:a(l).

Here FAa and FB b are given by (3.5); the various constituents of FAa and FB b are in
turn obtained from (3.6) and (3.6.a,b,c,d)'. The quantities [SAa] and [SBb] are of course
the polarization matrix elements (5.1), or combinations thereof. The pairs of subscripts
(Aa) or (Bb) on the [S] i's may be (VV), (VH), (HV) or (HH) if attention is confined to
linearly polarized transmission and reception. They may also denote (LL), (LR), (RL) or
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(RR) if circularly polarized transmission and reception is of interest. In the latter case,
we would invoke (4.12), noting that

[S LL(- °4o]a0)M = SVV(- &Mo)aMl + [SHH(- A*o)]a(l)) ...
RR
LR
RL

(5.16)

+j([SHV( (t)]a(l) [SVH-(- fl)](1)).

+ +
_ ~~~~+

If linearly polarized response to circularly polarized transmissions is of interest, then
from (4.9), we can write

[SVR(- o)]M = [SiV(- .tO)]%(M) + i[SVH(- ° )] (1)
VL VV - VH (5.17)
HR HV + HH
HL HiV - HH

Finally if we wish to study circularly polarized response to incident linear polarization, we
can use (4.10) to obtain

[SLV(- 4o)]a(l) = SVV(- -&+)]aM + j1SHV(- &°fo)%M-
LH VH + HH (5.18)
RV VV - HV
RH VH - HH

The subscripts (Aa) and (Bb) can each denote any of the possibilities covered by
(5.16), (5.17) and (5.18) as well as the standard cases involving only linear polarization
in both transmission and reception.
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Appendix I

COORDINATE SYSTEMS

The basic coordinate system used in solving the boundary value problem is a right-
handed rectangular system S = (x,y,z), with basis vectors ( i X, , 'z). The system's (xy)
plane is tangent to the tilted mean surface at its origin of coordinates, denoted by 0. We
define another coordinate system S' = (x',y',z') with basis vectors (i I' I' y I 'IZ), its
(x', y5) plane along the horizontal "perfectly calm" sea surface, its origin at an arbitrary
point O' on that surface, and its z' axis vertically upward. We are interested in the trans-
formation between these two systems.

Given that the origin 0 of the (x,y,z) system is located at a point (x0 ', yo', zo') in the
(x', y', z') system (see Fig. I-1), we can construct an intermediate system S" = (x", y", z")
with basis vectors (;x" iy, o , z"), whose coordinates are parallel to those of system S'
and whose origin is at 0. A point with coordinates (x', y', z') in system S' will have
coordinates (x' - xI', y' - yI ', z' - zI1 ) in system S", i.e.,

x = x - x0 Y

(1.1)Y" y'- yo, and

z = Z - Z 0

z11

4I

0

x
0'

Fig. I-1 - Systems S, S., S
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Referring to Fig. 1-2, we construct a second intermediate system S'" = (x"' , y1 ", z"' )
with origin at 0, whose z'" axis is parallel to the z" axis of system 5" and that is rotated
by an angle 4Ž with respect to S" such that the x'" axis is in the direction of the local
tilt, i.e., by rotation in the (x"', z"') plane we will be able to transform to the system S.
The transformation between S"' and S" is (from Fig. I-2)

x = x" cos 4Ž + y"sin 4Ž,

yl1 = - x" sin 4) + y" cos 4(, and (I.2)

I Pt ?Iz =z .

y" 

0'

Fig. 1-2-Systems S', S ,S

To transform from S'" to S, we now tilt along the (x' ", z "') plane (see Fig. 1-3)
through an angle a, leading to

x = xi" cos 6 - z"' sin a,

y = y"', and (1.3)

z = xi" sin 6 +z"' cos 6.
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I I z

Fig. 1-3 - Systems S, S'

To obtain the transformation between S' and S, we first use (1.2) and (1.3) to express
(x,y,z) in terms of (x", y", z") resulting in

x = x" cos 6 cos DP + y" cos 6 sin 'I) - z" sin 6,

y = - x" sin '1) + y" cos 'P, and (1.4)

z = x" sin 6 cos (I) + y" sin 6 sin 'I) + z" cos 6.

We then use (1.1) and (I.4) to obtain (x, y, z) in terms of (x', y', z'), as follows:

x = (x' - xo ) cos 6 cos 'I) + (y'- yo') cos 6 sin (1) - (z' - z0 ') sin 6,

y = - (x' - x0
1 ) sin 'I) + (y' - yo0 ) cos '1), and (1.5)

z = (x' -x 0 ') sin 6 cos ') + (y' - yo') sin 6 sin (1) + (z'- z0 ') cos6.

Inversion of (I.5) is straightforward and leads to

x' xo + x cos 6 cos P' -y sin 'P + z sin 6 cos c),

= y + xcos 6 sin 'I) + y cos 1) + z sin 6 sin '1), and (1.6)

z' z0 ' -x sin 6 +z cos6.

It is important to have the transformation between the sets of basis vectors (4x, jsy I
jo) and (4x', iy', _jx'). These are obtained by writing

r =xx + iyY + iz= ix (x - xo) + iy (y - Yo) + i (Z' _z (1.7)
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and then using (I.5) or (1.6) to solve for ( i X I y X i ) in terms of ( I', 1,, i '), or vice
versa. The results are

i = i 'Icos 6 cos 4 + I' cos 6 sin D - I' sin a,-+x -,+x -+y -*

= -i I sin 4' + I' cos 4', and

Liz = i 'sin6cos4Ž+ i 'sin sin4Ž+i 'cos6,

or the inverse of (I.8),

'= i cos6cos4Ž- i' sin4 s+i~ sin6cos 4,

y'= cos sin4Ž+ i cos4Ž+ i sin sin 4Ž, and (1.9)

i = i- sin 6 +iz cos6

We now construct another coordinate system S2' = (X2 ', Y2" Z2 '), whose (X2 ', Y2
1)

plane is parallel to the (x', y') plane of system S', whose origin is at the radar, and whose
Z2 ' axis is vertically downward. (See Fig. 1.4.)

Radar Position

0'yI

Fig. I-4 - Systems S' S2

The transformation between S2' and S' is

I =I
x 2 -XRI

(1.10)Y2 ' yR y' , and
Z2 = R Z.I i I

2 R

where (XR'1, 3'R"1 ZRI) are the radar coordinates in S'.
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Inverting (1.10) we have

xi = X 21 + XRI,

Y = - Y2 +YR ,and (1.11)

ZI z2 +Z RI

From (1.11), (1.5) and (1.6);

x = (x 2 ' +XR I x I) cos 6 cos (y2 '- Y' +YO) Cos 6 sin 4Y

+ (z2 ZR + z ) sin 6,

y = - (X2' + XR I X0
1) sin 'P - (Y2' YRR + YO ) cos 4F, and (1.12)

z = (X2 I +xR - X I) sin 6 cos 4P - (Y2' YR +yo) sin 6 sin 4

- (Z21 ZR +z ) cos,

or

X2 = (- XR + xo') + X cos & COS 4) - y sin 4P + z sin o cos (')

Y 2 ' = (YR' - yo) - x cos 6 sin 4I - y cos 4' - z sin 6 sin 4), and (1.13)

Z2= (ZR' z°) + x sin 6 - z cos6.

It is evident that

ii = 1

2 iy ,and (1.14)
i =-i an
-+Y2 oZ

Let us now construct another coordinate system (X3
1 , y3 ', Z3'). The origin is at the

radar and the Z3 ' axis points in the direction of the antenna beam. (See Fig. I-5.) We can
construct this system by a rotation about the Y2 ' axis. The coordinate transformation is

X3 X2 Cos 'Y - Z2 sin y,

Y3
1 Y2 ', and (I.15.a)

Z IX2 sin 'y +z2 cos -,3 22
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b X2'

03

\a'

y

Z2 Z3

Fig. 1-5 - Systems S2' S3

or

x = x3 'cos Y + z3 sin y,2 33

Y2 Y3 and (I.15.b)

z x 3 sin -y + z3 cos Y,2 33

and for the unit basis vectors

11 3 iX cos ,Y- Iz 'sin y,

' i ',and (I.16.a)

i ' i ' sin y + C Cos Y,
-+Z 3 x2 2

or

2 iX cos Y + ' sin -y,
2 - 3 3

'=i 'and (I.16.b)
o'2 +'3
I ' I 'sin -y + i Cos -Y.
-+Z 2 -X 3 _,3
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From (I.16.a,b), (1.14), and (1.8) or (1.9) we obtain

- = ' (cos 6 cos ycos 4 - sin 6 sin y) +, '(-cos 6 sin (')

+I ' (cos 6 sin y cos 4) + sin b cosY)

i = i X (- cos'y sin (D) + i 1 ( cos (F) + i ' (- sin -y sin (D), and (I.17.a)
-+ y X -+y 3 3

i = i (sin 6 cos -y cos 4F + cos b sin -y) +i '(-sin 6 sin ()

+ i z (sin 6 sin y cos (F - cos 6 cos y),
-+ z 3

or

i = i (cos 6 cosycos ( - sin 6 sin -y) + i (- cos y sin ()

+ i Z (sin 6 cos y cos l) + cos 6 siny),

i i (- cos 6 sin (D) + i -(- cos 4) + i sin 6 sin 4F), and (1.17
-. y 3 -*x-) > 

i Z '=i X(cos 6 sin y cos + sin 6 cos -y) + i (- sin -y sin ()

+ i (sin 6 sin y cos + - cos 6 cosY).

From (I.17.a,b) we can obtain the relationship between the (x,y,z) components and
(X3 ', Y3 ', Z) components of an arbitrary vector. We begin with the observation that

aa = +a i +a i ax +a 1 +aZ3 . (.]X -IX y -*>y Z-I+Z -+X 3 y 3 *y 3 z 3 -*Z3

Substituting (I.17.a) into the LHS of (1.18), we obtain the matrix equation

a (cos 6 cos -y cosF (- cos y sin 4) (sin 6 cos y cos 4I a
- sin 6 sin -y) + cos 6 sin y)

aY3' = (- cos 6 sin (') (-cos F) (-sin 6 sin (D) a . (I.1l
ay 3 y

I (cos~~~~~~~~~~sinycos(F (- ~~~~~~~~~~~~~~sin y sin (1) (sin 5sin y cos (D 

3 + sin 6 cos y) -Cos 6 Cos 'y)

'.b)

18)

9.a)
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Substituting (I.17.b) into the RHS of (I.18) or equivalently inverting the 3 X 3 matrix
in (I.19.a), we obtain

(cos 6 cos -y cos (F
- sin 6 sin -y)

= I (- cos -y sin (F)

(sin 6 cos y cos (F
+ cos 6 sin Py)

(- cos 6 sin (F)

(- cos 4))

(- sin 6 sin 4F)

(cos 6 sin y cos (F
+ sin 6 cos -y)

(- sin -y sin (F)

(sin 6 sin y cos (F
- Cos 6 cos 'Y)

It is of interest to have the transformations between the (x,y,z) system and the
(X3 ', y3 ', Z3O) system. To develop these transformations, we first invoke (1.12) and
(I.15.b) to obtain

(cos y cos 6 cos 4)
- sin y sin 6)

(- cos y sin (F)

(cos y sin 6 cos (F
+ sin y cos 6)

(- cos 6 sin (F)

(- cos (F)

(- sin 6 sin 4F)

(sin y cos 6 cos (F
+ cos y sin 6)

(- sin y sin (F)

(sin -y sin 6 cos 4)
- Cos Y cos 6)

(cos 6 cos 4)) (cos 6 sin 4F) (- sin 6) (XR -XI 1)

(- sin 4F) (cos (F) 0 (YR -Yo ) .

(sin 6 cos 4F) (sin 6 sin 4F) (cos ) (ZR -Zo )

Then from (I.15.a) and 1.13), we obtain

(cos 'y cos 6 cos I)
- sin y sin 6)

= I (- cos 6 sin 4)

(sin 6 cos 6 cos (F
+ cos y sin 6)

(- cos -y sin (F

(- cos (F)

(- sin -y sin (F)

(cos r sin 6 cos (F
+ sin y cos 6)

(- sin 6 sin (F)

(sin ry sin 6 cos (F
- Cos Y cos 6)

- cos 'y 0 - sin y (XR' -

+ 0 1 0 (YR'j L
- sin rr 0 cos B (zR
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The unit basis vectors along the spherical coordinate axes in the S3 ' system are
given by

1 ' ' sin0 'cosO '+i y sin 0 sin '+i 'cos 3
-*r3 -*X3 3 3 4y 3 03 +-+z 3 3

iL ' =i 'cos 03 cosC 3 +i yCOS0 3 sin 3 '-i 'sin 0 and (1.21)
0 a 3 3CS0'-'>y? 3 03 3',

= -i sin '+ i Cos3 '
i* 53 i** X3 3 +y 3 3

Substituting (I.17.b) into (1.21) we have

i ' = [sin 03 ' cos k3'(cos 6 cos -y cos (F - sin 6 sin y)

+sin 03 sin 03' (- cos 6 sin (1)) + cos 03' (cos 6 sin ' cos '1)

+ sin 6 cos y)] + i [sin 03' cos 1 3( cos -y sin 4()

+sin 03 ' sin 03 '(- cos (F) + cos 03'(- sin y sin 1))] (1.22)

+ i [sin 03 cos? 3 '(sin 6cos -y cos q( + cos 6 sin y)

+ sin 03 ' sin 03 (- sin 6 sin 4)

+ cos 030(sin 6 sin y cos (F - cos 6 cos y)].

Defining x3 ' and y3 ' as the electric field directions for vertically and horizontally
polarized waves respectively, and denoting X3 ' and y3 ' components with subscripts
V and H respectively, we can write

Eiv(3,w) = QV ToKCw) = kv * Ei, and

r r r
(1.23)

EjH(0,c) = H oE i (, c) =H * Ei
r r r

(where the scalar products on the left are in vector-matrix notation and those on the right
are in standard vector notation) where (from (I.19.a))

QvX (cos 6 cos -y cos () - sin 6 sin y)

=v Qvy = (- cos y sin (F) , and (I.24.a)

kvz (sin 6 cos y cos (F + cos 6 sin 7)
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QHx (- cos 6 sin (F)

QH QHY = (- cos (F) . (I.24.b)

QHZ (->sin 6sin F)J

Using (2.8) in (1.23), we obtain the matrix equation

FEi V (VX Oz Vz (k zy 1z Vz r1(I25

where QVX and QHX are given in (I.24.a,b).

y y
z z

Inversion of (I.25) results in

-EiEi (9 x± H Hz1i
r ox r z rxg

r vx aVz)(dHy - HZ) (aHX -ge Hz)(iVy (-o Vab

Iy yZO zO
r j

Inversion of (1.25) results in ~ ~ ~ ~ ~ ~ 1.26

(QH QHZ ) (x 'HzyVy -Ei V 
(QHy ±-kQHz) 1 (Vy - 1 3 QVz) r

(kH ±13 Hz (kV + ~Vz) EiH
Hx0 z VX-Oz r
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The matrix Y introduced in (2.18.a,b) is (from (1.24.a,b))

QVx VHx (cos 6 cos y Cos 'I (- cos 6 sin (I))
- sin 6 sin y)

7 =Q y 9HY = (- cos y sin (I)) ( cos (F). (1.27)

QVz Hz (sin 6 cos y cos (1) (- sin 6 sin (1)
+ cos 6 sin 7)

The matrix L(qO) appearing in (2.31. 0,1,...,4) is obtained from L( ) as given in (2.19)
which is equivalent to the 2 X 2 matrix in (1.26), whereby &g and d. is obtained from

r3 (given by (1.22)), i.e.,

aox-
a O , (1.27.a)

where

aOx = sin 03S' cos 03S' (cos 6 cos a cos -sin 8 sin 7)

+ sin 03S' s 03S (- cos 6 sin (I))

+ cos 03S' (cos 6 sin y cos (') + sin 6 cos y), and (1.28)

aOy = sin 03S' Cos 3S (- cos -y sin (I))

+ sin 03S' sin 03S' (- cos (F) + Cos 03S' (- sin y sin (1)),

and where subscript S' refers to the illuminated point on the mean surface.

For some purposes (e.g., characterizing target position), it is desirable to have direct
transformations between the S' and S3 ' systems, which do not involve the angles 6 or '1).
To develop these transformations, we first invoke (1.10) and (I.15.a), from which we obtain

3= (X- XR) cos 0 + (z - ZR) sin 7,

Y3= - ( - YR s), and (I.29.a)

Z 3= (X - XR ) sin y - (z - ZR') Cos 'Y.
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From (I.11) and (I.15.b),

x =x + Xcos Y + Z sin y,R 3 3'
Y = YR -Y3, and (I.29.b)

Z= ZR +X3 Isin -Z 3 cos Y.

The transformations of unit basis vectors are obtained from (1.14) and (I.16.a,b) and
are as follows:

L 4 =4 Io Y + 4 'sin y,*x 3 4z3

I =. I I, (I.30.a)

i sin y -Z34 Cos 'Y,

and

£X3 = ' Xcos y + iz' sin y,
3

Y' - i Y'and (I.30.b)

1z = lX sin7y- iz cos Y.
.3

Transformations between the spherical coordinates of the S3 ' system and the
rectangular coordinates of the S' system are obtained from (I.29.a,b) through the standard
rectangular-to-spherical relationships. From (I.29.b)

I I + sn i )x =x +r3 s 03 cos 03 cos ' + cos 03sn

Y YR r3
1 sin 03 sin 0 3 , (I.31)

Z = ZR +-r '(sin 03ucos Jsin7-cos 03cos sinzR 33 3s 3' o Y,

and from (I.29.a)

r sin 03' cos ¢' = (x' - xr) cos y + (Z' - ZR ) Sin y, (I.32.a)

r ' sin 03
1sin 03' = - (Y' - YR '), and (I.32.b)

r3 cos 01 = (X - XR ) sin 1f (Zy ZR ) cos y (I.32.c)
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Substituting r 3 ' obtained from (I.32.c) into (I.32.a,b) we obtain

tan 03 cos 03
1[(x' - XR') sin y- (Z' - ZR') Cos 7]

(I.33.a)
(X' - XR ) Cos 7 + (Z' - ZR') sin y, and

tan 03 sin 03 1[(x'- XR') sin7 (Z'- ZR) cos 7] - (Y' YR') (I.33.b)

Summing and squaring (I.33.a) and (I.33.b), then taking the square root and the
arctangent of the result, we have

n [(X' - XR') cos'y + (Z- ZR') sin -]2 + y" - YR ]324.

I[(X - XR') sin y - (Z' ZR )cos a] t'

Taking the ratio of (I.33.b) to (I.33.a), then taking the arctangent, we obtain

03 tan (X'- XR' cos Y + (Z' ZR sin 7l (1.34.b)

Solution of (I.32.c) for r 3 ' gives us

(x x)siny- (z' - ZR ') cos Y
r3 Cos , . (I.34.c)

cos O3

It is useful to have the x' and y' coordinates of a point S on the surface (denoted by
xs' and Ys') in terms of the spherical angles 03' and 03' of that point (denoted by 0 3 S,
03SI) and the radar altitude (ZR' - zs') -- hR.

We obtain this relationship from (I.31) and (I.34.c) as follows:

XS , + hR cos y [tan 0 3S cos 03S cos 7 + sin 7] (I.35.a)

xS - XR [1- sin -y (tan 03S cos 03S cos 7 + sin 7)]

hR cos y tan 0 3S sin 03S

YS'YR' -[1- sin -y (tan 03S cos 03S cos 7 + sin y)] (I.35.b)
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SMALL-SCALE SURFACE FLUCTUATIONS

The averages over small-scale surface fluctuations are calculated in this appendix. We
note in the second section that the ripple surface is given by z(p ,t), where p (xy) =
position coordinates on the mean surface, considered locally as planar

The triple Fourier transform of z(p ,t) is

Z(2) =JJ de fdt z(_,t)eij&t - jA , (1.1)
-00 - 00

where 92 = (ken)) = (k ky w).

We assume that z(_ ,t) is a sample function of a zero-mean, statistically homogeneous*,
wide-sense stationary Gaussian random process. From the "zero-mean" assumption it
follows that the ensemble average (denoted by < >) of Z(p ,t) is

<Z(_Pt)> 0. (II.2)

From the assumptions of statistical homogeneity and stationarity, it follows that

<z(p,t)z(p + Ap, t + At)> = R(Ap At), both independent of p and t. (II.3)

Using (II.2) and (II.3) in (11.1), we have

<Z(n)> =ff dpf dt <z(p,t)>ej't - jk -P = 0, and (11.4)
-An -at o m e t so00

*An alternative terminology might be "spatially stationary."
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00 00 00 00

Z(Ql)Z(2)> =JJdp Jdtl J d¢ dt2 <zt ltl)z(p 2't2)>
- 00 - 00 c - 00

-J(wl tl +i 2t2 + k k = jfdI.5dt)d@P)d~tR( ,At)

e-i[(wl + W2)tl + (kl+ k2) P 1 1-uGW 2 At k2 AP]

We note that (See (2.7.a,b))

co -j(k _ 

ffdPi e- I k 2) P1 =(2r)26(klx +k2 x)6(kly +k2 y),and (1*.6.a)
- co

f dt, e-(w I 2 )t1 = 2v 6(w1 + c2)- (II.6.b)
- 00

Using (II.6.a,b) in (11.5), we have

<Z(gI1)ZQ2)>

[27r)31f dp'f dt'R(p',t')e'( 1 t + k ) 6(21 +Q2 7
- 00 00o

where

5pQ1 + Q2 = 6(kIx + k2X) 6(kly + k2y) 6(c1 +

The integral in (II.7) is the power-spectrum (in both spatial wave number k and

frequency w) of z(p ,t), which may be denoted by W(2) or W(k ,w); thus,

+1)Z(QZ2) = W(E+21 ) 6(Q1 + Q3 2) (II .8)

where Q1 = (k ,W1) and W(Q) has the property W(Q) = W(-Q).
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Because z(p ,t) must be real, it is evident from (11.1) that

00 00

Z (92) =J~ depfdt z~p~t)ei"'t + jA X Z-SP(I9
- 00 -To

As a consequence of (11.8) and (II.9),

<Z(&21)Z*(&2 2 )>=<Z(j2>1 )Z(->2 2 )>= W(n21 ) (Q211->2)- (1.10)

A general property of zero-mean Gaussian random functions X1 2 ,3 ,4 is

<xlx 2x3x4> = <xlx 2> <x3x4>

+ <X1 X3 > <X2 X4 > + <X1 X4 > <X2X3>.
From (11.11) and the fact that Z(Q) is a zero-mean Gaussian random function since

z(p ,t), its Fourier transform, is such a function and it is a well known property of Gaussian
random functions that their Fourier transforms are also Gaussian, we obtain

<Z(S21 )Z(_ 2 )Z(E23 )Z(&24 )> = <Z(Q 1 )Z(-2 2 ) > <Z(&i23 )Z(M24 ) >
(11.12)

+ <Z(Q21 )Z(_23 )> <Z(g+2 )Z( 24 )> + <Z(+21)Z(E24 )> <Z(f2 2)Z(Q23)

Another property of a zero-mean Gaussian random function is that its odd-order
averages vanish; consequently,

Z >eQ1)Z(n_2)Z(E>3)>= 0. (1.13)

We make the assumption that the small scale fluctuations on any part of the mean
surface are only very weakly correlated with small scale fluctuations on another part of the
mean surface. We use the extreme limit of this condition as an approximation on integrating
over the mean surface, i.e., we assume that

(Z(ua),ra)g(Z(n-*b -b)>= 0 if I!ra - b l <C

O ifI ra - b 1>eX

where e is a small positive real number that limits the correlation region to a very small
patch such that the tilt of the mean surface remains uniform throughout the patch. If e is
large enough to allow correlation between two points on parts of the mean surface with
different tilt angles, then a condition that will later follow from the ensemble averaging
process (namely a correlation only between two points with the same % ) could possibly
apply to two points on widely separated parts of the mean surface but with the same t0.
This would not make sense physically. Since the scale of mean surface tilt is large compared
with the scale of the small scale fluctuations, this assumption is easily justified.
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Another assumption we make is that the fluctuation height z(p ,t) varies so slowly that
we can neglect its time variations during illumination of a patch by the radar, i.e.,

Z(p,t) = Z(p). (11.15)

It follows from (11.1), (11.15) and (2.7.b) that

Z(9i) = Z(ke,) = 27r Z(k)6(w) (11.16)

where

00

Z( k ) = (ffd e )ehIk¾ .

From (11.4), (II.8), (II.10), (II.12), (II.13) and (II.16), we can write

<Z(k)>= 0, (11.17)

Z(k 1)Z(k 2)>= W(k 1) 6(k1 + k2)k (11.18)

<Z(k 1 )Z*(k 2 )>=W(k 1 ) 6(k1 - k2), (II.19)

<Z( k )Ze k 2 3 ) >= 0, and (11.20)

<Z(k1)Z(k2 )Z(k3 )Z(k4 )> Z(k)Z(k)><Z(k)Z(k
(11.21)

+ <Z(k1)Z(k3)><Z(k 2 )Z(k4 )> + <Z(k1 )Z(k4 )><Z(k2 )Z(k3 )>

where W(k) is the spatial spectrum of the small fluctuations on the surface and each of the
two-fold product averages in (11.21) may be obtained from (II.18) or from (11.19) and
(11.9) when appropriate. More generally, if complex conjugates Z (k) are involved in any
of these averages, then (11.9) can be invoked to convert Z*(k) into Z(- k) and then any of
the rules given by (II.17) through (11.21) can be applied.

The ensemble averages needed in the text can be obtained by straight-forward
manipulation from (3.7.0,...4) and (11.9, 14, 17, 18, 19, 20, 21). Note that those of (4.2)
or (4.5) are all either averages of a voltage, such as <UA a2 > and < UAa4 > (or complex
conjugates of these) or two-fold product averages involving a voltage and its complex
conjugate, namely < UA a 1 U*B b 2> and < UA a 1 U*B b 3 >. The first two of these, by
virtue of (11.8) and (11.21), contain a factor 6(&O) within their integrands that limits
contributions to points of normal incidence, i.e., those points for which 40 = 0; thus, they
become summations of contributions from such points as given in (4.5.3)' and (4.5.4)'. The
two-fold product averages <UAa9U*Bbn2 > by virtue of (3.7.1, 2, 3), each contain a
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factor FAa(03 ¢03 ',t)FBb(0 3 ',03,t), which in turn by virtue of (3.5) and (II.16) contains a
phase factor

e±2jic-[,(03',03',t) ~ r-(03 ,t 3, t + At)]

Another type of two-fold product average, not appearing in (4.2) or (4.5) but appearing
only in (4.4.a,...,e)' and conspicuously absent from (4.6), is <UA aUBbm> or its complex
conjugate; specific examples being < UAa 1 UB b 1> as in (4.4.a)', < UAa 1 UB b 1 > as in
(4.4.b)', <UAa3 UB b1 > as in (4.4.c)' and <UAa2UBb2> as in (4.4.d)'. This type of
average, again by virtue of (3.5) and (11.16), contains a factor FAa(03',03',t)FBb(03',0 3

',
t + At) implying a phase factor

e ±C [r0 (0 3 '43
1 ,t) + r0 (0 3 ,¢\3

1 ,t + At)]

Finally, there are the three-fold product averages of the type

<UAa1 Ubl UCc2>

2 1

and their complex conjugates; specific examples being <UA* a1 UBb1 UBb2> and
<UBbl UAalUBb2> as given in (4.4.b)', <UBbl UA.l UA.2> and <U~al UBbl UAa2 >
as in (4.4.c)', and < UBbl UB1b UAa2> and < UAal UA.l UBb 2> as in (4.4.d)'. These
averages, again because of (3.5) and (II.16) contain a factor FA 0 (03',0 3 ',t1)FBb(03',03%t2)
Fcc(0 3 ',¢3

1,t 3 ), where two of the tk's inside the arguments of these functions are equal
while the other is in general different; e.g., t, t, t2 = t, t3 = t + At. The phase factor, then,
has the form

±2jŽ- [ - r( 0 + re C [0 ( 031 p3 ",t) r0 (03 31, 3 ,t2) r(03(,4 3 ",t3

The eventual neglect (in (4.6)) of the averages <UA aUBbm> and all terms of the
three-fold product averages except the term of the form <UAa 1 Ub 1>< UCc 2> is based on
the nature of the phase factors mentioned above. The time separation At is sufficiently
small to allow the approximation

e 2jC [r(O 3 ,¢3
1 it)- r0 (03 '43 ",t + At)] 1 (11.22)

Note that (except when At = 0) (11.22) is not meant to imply that the phase factor is
actually or even approximately replaceable by unity; it implies only that it is not so
oscillatory as to "wipe out" the (03',03') integral. On the other hand, the phase factors
that appear in the averages < UA a 1 UB b 1 > and the three-fold product averages are much
more oscillatory because the values of ro in the exponents (which of course must be
positive) are added rather than subtracted; hence, the integrands in these averages are
products of relatively smooth functions and highly oscillatory phase factors and should
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be extremely small. Based on these qualitative arguments, the following approximations
will be made:

<UA UI3bf,,bl> ~ O for Q,m = 1,2,3 (11.23)

<UAalBblUCc2>a < UA1Ub 1>< UC,2 >, (11.24)

(with the aid of (11.21))

*
<UAalUBbl1C(, 2 > 0, (11.25)

(with the aid of (11.21) and (11.23)).

A final average that appears in (4.4.d)' is (from 11.12) with the aid of (11.23)),

AAa AalBbl > = <UAaI UAal><UBblUbl>

+ < U >+U U' < *UU> (11.26)UA.lUBbl><U AlUBbl>+<UAal.Ubl>A al BbII

I<UAal | I<UBbl | +lUaU~bll-
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Appendix III

THE MEAN SURFACE

The mean surface or "swell" surface is characterized by specifying angles 6 and (F as
functions of 03' and 03'. We will first specify the mean surface as a function of x' and y',
denoted by H'(x',y').

Referring to Appendix I, we note that a point on the mean surface must by definition
fulfill the condition z = 0, because the mean surface is explicitly defined as the z = 0
surface. We set z = 0 in (1.6) and note that z' in (I.6) is functionally related to (x',y')
through the equation

z' = H'(x',y') forz=O. (111.1)

Referring to Figure (I-2) and Eqs. (I.1) and (1.2), we note that

X= (X - x0
1) cos 4F + (y' - yo0 ) sin (F

(111.2)

y"= -(X-(x x0
1 ) sin (F + (y'- y ') cos (F

Representing x"' and y"' as functions of x' and y' through (111.2), writing H'(x',y') in
the form H'(x"'(x',y'),y"'(x',y')), and applying the chain rule, we obtain

aH' aH' ax"' + aM ay"' and (I.3.a)
ax' ax"' ax, aymI axt a

a~' aH' ax"', aH' ay"'
ay' = ax"t! a' 1 VII + a y 1 (III.3.b)

But from (II1.2)

ax"'
_ = cos () (III.4.a)
ax,

-" = sin (F (III.4.b)
ax'

_ = - sin (1), and (III.4.c)
ax,

_ = cos (F. (III.4.d)
ay,
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Since x"' is the direction of the local tilt of the surface relative to the horizontal
and y"' is the direction normal to that tilt, it follows that

3H'
-- ,,= tan a, and (111.5.a)
ax~l

=H,0. I.5b

It follows from (III.3.a,b), (IIJ.4.a,...,d) and (III.5.a,b) that

aJH
HX' = -a, = tan 6 cos (F1), and (III.6.a)

H = - - tan 6 sin (1). (III.6.b)
Y ay

Squaring (III.6.a,b), adding and taking the square root, we have

tan 6= V'H (HX)2 + (Hyl)2, (111.7)

or equivalently,

cos 6 = - _ , and (1II.8.a)
1+ IV'H 12

IV'H I
sin 6 = (III.8.b)

1 + IV'H 12

Dividing (III.6.b) by (III.6.a),

tan 'I) = , (111.9)

or equivalently,

HX,
cos '1) = , and (III.10.a)

IV HI

H,
sin ') = V'H (III.l .b)
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We choose as a model for H(x',y') a sinusoidal function of the form

H(x',y') = C cos (Klx' + K2 y' + '). (111.11)

Differentiating (111.11) with respect to x' and y', we have

H, = - K1 C sin (Klx' + K2y' + 4), and (III.12.a)

H = - K2 C sin (Klx' + K2y' +) (III.12.b)

Using (III.12.a,b) in (III.8.a,b) and (III.10.a,b),

cos 6 , (III.13.a)
V, + C2(K 2 + K2) sin 2 (K x' + K2 y' + 4)

C K2 + sin (Klx + K +2 )
sin 6 = , (III.13.b)

1 + C2(K2 + K2) sin2(K x' + K2 y' + 4)

-K 1

cos (F = , and (III.14.a)
IK2 + K 2

N/1 K2

-K 2
sin (F = (III.14.b)

K 2 + K2
1ri 2

To obtain cos 6, sin 6, cos (F and sin 4( as functions of 03' and 03' for fixed values
of y and hR, we use (I.35.a,b) in (III.8.a,b) and (III.10.a,b). If we employ the specialized
model (III.11), then cos () and sin () as given by (III.14.a,b) are independent of x' and y'
and cos 6 and sin 6 can be expressed as functions of 03' and 03' by substituting (I.35.a,b)
into (III.13.a,b). Summarizing these results, first for the general case, we write: (from
(III.8.a,b) and (III.10.a,b))

cos 6 = , (III.15.a)
1, + IV'H~12

IV'H I
sin 6 = - 1 (III.15.b)

V 2 ,H 

68



NRL REPORT 8369

H.,
Cos - -IV'H I and (III.15.c)

Hy,
sin I) = -V - (III.15.d)

where (from (I.35.a,b), with removal of the subscript S)

aH aH
H ,= --- H =--1115e'X' ax, nsy ay,,(I.5e

hR cos y (tan 03 1cos 03cos r + sin 7)
x =xR+ -. sn 03

= R +[1- sin y (tan 0 cos 0 cos 7 + sin 7)]
(111.15.f)

hR cos 7 tan 03' sin 03
= R

[1- sin - y (tan 03 cos 03'cos 7y + sin y)]

and H(x',y') is an assigned real function of x' and y'. For the case where (111.11) is used
(from (III.13.a,b) and (III.14.a,b)),

cos 6 = 1 (III.16.a)
V1 + C2(K1 + K2) sin2 (K x' + K2y' + 4)

C K sin ++ K+ 4)1 rK K'.si (Klx'+ K2Y'
sin 6 = , (III.16.b)

1 + C2 (K2 + K2) sin2 (K x' + K2y' + )

-K 1

cos - , and (lII.16.c)
VK 2 + K 2

1 2

- K2
sin 'I) = , (III.16.d)weK+ Kx

1 2

where x' and y' are given in (III.1 5.f).
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Some of the terms in our final results, (UAaO, <UAa2> and <UAa4>) contain the
condition g0 = (ao ,%y) = 0. From (1.28) (dropping subscripts) this condition is
equivalent to

tan 03' cos 4'3' (cos 6 cos 7 cos () - sin 6 sin y) + tan 03' sin 03' (- cos 6 sin 4))

(III.17.a)
= - (cos 6 sin y cos (F + sin 6 cos y),

tan 03 COS 03' (cos y sin (D) + tan 03' sin 03' (cos (F) = - sin y sin (), (III.17.b.)

I (sin 6 cos y cos () + cos 6 sin y)
tan 0 cos = -

3 1 03 (cos 6 cos y- sin 6 sin By cos (F)

(III.18.a)
(tan 6 cos (F + tan y)
(1-tan 6 tan y cos4) ,and

tan 0 3 sin 03' (sin 6 sin (F)
n3s w 3 (cos 6 cos 7 - sin 6 sin -y COS 4))

(III.18.b)
(tan 6 sin (F sec y)

(1- tan 6 tan y cos 4))

Squaring and summing (III.18.a,b) and then taking the ratio of (III.18.b.) to (III.18.a)
we obtain

= V(tan 6 cos -y cos () + sin y)2 + (tan 6 sin 4)) 2
(03 )a = 0 =(cos y- tan 6 sin c }4and (III.19.a)

| O - t (cos z-1 tan 6 sin (Ics ))
(03 = 0 = tan- _ tn- tan 6 sin 4s i (III.19.b)

00 tan 6 cos yos 4' + sin y

If the surface is perfectly horizontal, i.e., 6 = 0, then Eqs. (III.19.a,b) degenerate into

(03') = tan = y, and (III.20.a)

=0

( 83 0_ = "tan 1 sin y (III.20.b)

The implication of (III.20.a,b) is that the angle 03' corresponds to the vertical direc-
tion (see (I.15.a,b) and Fig. I-5). This makes physical sense because the condition ,0 = 0
corresponds to normal incidence on the surface, which would obviously occur only with
vertical incidence if the surface were perfectly horizontal.
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The condition on the angles (03',03') corresponding to 60 = 0 can be determined
from (III.17.a,b) or (III.18.a,b) or (III.19.a,b) combined with (III.15.a,...,f). The results in
the general case are: from (III.18.a,b) and (III.15.a,...,d)

(tan 03 cos 00 = °= (1-Hxr tan ay), and (lII.21.a)0cos( ) it , tan y)o 

(H ~)a =0 sec7 yII21

(tan 03 sin 13'. -0 = (1- Httan) _ =°.)

where (from (III.15.f)) Hx and Hy are functions of the two variables

I hR cos y (tan 0 3 Cos 0 3' cos 7 + sin y)a = 

-0 R [1- sin h y (tan 03' cos 03' cos y + sin a)] =0 and (111.21.c)
-0 

hR cos 0y (tan 03 sin ( 3 )& = 0

-,, o R [1- sin y (tan 031 cos 03 cos y + sin y)] =0 

In the special case where the model (111.11) is used, with the aid of (III.16.a,...,d),
Eqs. (III.21.a,b) have the form

(CK1 sin (Klx' + K2 y' + 4) - tan y)& = 0

(tan 03 Cos O3')6( = C 1 sn( x+~'+4)a~c and (111.22.a)( 3 3 )a. = 1 + CK1 sin (Klx' + K2Y' + ;) tan y] GA= 

- CK2 [sin (Kx' + K2y' + 4)] =o sec y

(tan 0 3 sin 03 )a ,, = ° [1 + CK1 sin (K x' + K 2 y' + 4) tan 7] a = 0(11.22.b)

where x' and y' are given by (III.21.c,d).

In describing the position of a point on the surface illuminated by the radar, one can
consider this surface as perfectly horizontal except where phase differences are involved.
The quantity (ZR' - z') has usually been considered equivalent to hR, the radar altitude,
because the difference is usually negligible. If the highest swell were 30 m (100 ft) and the
radar altitude were 1.6 km (1 mile), the error in considering (ZR' - Z) equivalent to hR
would be about 2 percent. In most cases the error would be even smaller.

The phase factor ejkro which appears in the field is "washed out" in all of our
averages exept UAao, <UAa2>, and <UAa4>. Thus, we need only consider the effect of
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this factor to calculate those terms. Referring to the diagram of Fig. 111-1, the vector r . is
that from the illuminated point [x', y', H(x',y')] on the mean surface to the radar. The
vector r-jo is that from the point (x',y',O) (directly below the illuminated point) to the
radar. The vector fH' is equal to 4zf'H'(x',y'), where _.z' is the unit basis vector in the z'
direction. It is evident that

IHI«<< Ir I rL I (III.23)

from which it follows that

ro= 14. l = 14o -Ho I (4 X +z,,H ) - (N i i,H')

/2(H )22(?~ iz,)H' = i 1 

- -H(x',y') cos OR = - hR H'(x',y'), (111.24)
0 R~~~~~~

where OR' is the polar angle of the radar with respect to the point (x',y',O), described in
the (x',y',z') coordinate system.

zI

Radar

Mean Surface

Fig. III-1 - Mean surface geometry
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To express the phase factor entirely in terms of the coordinates (03',03'), we note
that (with the aid of (I.35.a,b) removing the subscript S)

0O= (XR -X) + (YR' - y') hR

hR cos y sec 03' (III.25)
=~~~~ 3

[1- sin 7 (tan 03' cos 03' cos ^y + sin 7y)]

It follows from (111.24) and (III.25) that

hR cos y sec 03'
r -

° 1 sin - (tan 03 Qcos 03' cos y + sin -y) (III.26)

- sec y cos 03 ' [1- sin ^y (tan 03' cos 03' cos 7j + sin y)] H(x',y'),

where x' and y' in H(x',y') are given by (III.15.f).

The factor ejkro /rO which appears in our averages can be approximated through (111.26)
by

(Ik jkhRcos y sec 0 O3
*kr [1- siny /(tan 0a cos 0 'cos ' + sin y)]I

rO hR cos -y sec 03

[1- sin -y (tan 0 3
1 cos 03' cos 7 + sin y)] (111.27)

-jk sec 'y cos 03 [1- sin ^y (tan 03' cos p3 COs^ + siny)]H(x ,y')

where

hR cosy (tan 03
1 cos 03'cos Y + sin y)

x x + ,and
R [1 - sin Py (tan 0 3 cos 03' cos y + sin -y)]

hR cos -y tan 03 sin 03'

[1- sin y (tan 03 cos 03' cos y + sin 7y)]

(again with the aid of (I.35.a,b)).
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In the special case where (III.11) is used, (111.27) has the form

jkhR cos y sec 03 P

ejkro ( [1- sin y (tan y3 cos 03' cos y + sin -y)] /
e e

rO hR cos y sec 03

[1- sin y (tan 03' cos 03' cos y + sin -y)].

{ -jk sec y cos 03' [1 - sin y (tan 03' cos 03' cos y + sin )] (11.28)

c cos ([K1XR + K2 YR' 4

hR cos -y [K1 (tan 03' cos 03' cos -y + sin y) - K2 tan 03' sin 003'] \)

[1- sin y (tan 03' cos 03' cos y + sin y)] 

In the terms where the factor ejk rO /rO is not washed out in the averaging process,
i-e- UA., <UA 2> and <UAa4>, the condition &0 = 0 prevails. Consequently, when
(III.27) is used in these terms, the angles 03' and 13 obey the conditions (III.21.a,b,c).
When (III.28) is used in these same terms, (i.e., when the model (III.11) is applied) then
03' and 03' obey the conditions (III.22.a,b) and (III.21.c,d).
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Appendix IV

CALCULATION OF FIRST-ORDER RESULTS

To obtain the result (5.1), we first specialize to the case where z(p ,t) does not vary
significantly with time during the period of illumination; hence, we can denote z(p ,t) by
z(p) and its Fourier transform by Z(1), having eliminated by this specialization the
necessity of Fourier transforming with respect to time as well as the spatial variables.

From (2.16.1) (with the assumption indicated above)

r r ~~~i [(Cl COO -U P 1 - c(Co - W)t ]
E(1(g f=fJd~dwdqp dteC 1, >1 1 1 (V1

R~(P)(g,/01, Wj'4Pj'tj) Ej(Pj'wj)

where

t )= ab(1)a(,k1 )

and where b(1) is the 4 X 4 matrix given in (2.16.0)'; A( 1 I) = (g + Yz) (1 _g2 + 03 y"),
and a(0,k 1 ) is a 4 X 2 matrix defined by

b(o 1)
a(g, k1) B (1,k) A1() k-) A (1 I) B (01), (IV.2)

where B,(131) is obtained from (2.12.a)" and (2.12.b)" with 13 set to . 1 ,and the elements
of the 4 X 4 matrix Al(Pk 1) and the 4 X 2 matrix B1(O3,k1) are obtained from (2.12.a)"'
and (2.12.b)"' respectively. The latter elements are the first order terms of the series
expansion of (2.12.a)"' and (2.12.b)" '. The first order terms of (2.12.a)"' are as follows:

13

(A M~)) = Y (IV.3.a)

(A 12
0 ))1 = P Zy - icozz (IV.3.b)

(A 13 (1)) =- Zy (IV.3.c)
13 'Y7 Z 
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(A g(l) =- Zy -i • Zz (IV.3.d)
7z

(A31 ))1 = 13z - jIOZ(1 - 1 2) (IV.3.e)

(A3 2()l = - x[Zy +iy 1Z] (IV.3.f)

(A33(1))l = -yz +jL9Z(£-2 - 1 2) (IV.3.g)

(A34(1))1 = ox[Zy +ic jZgI (IV.3.h)

The first order terms of (2.12.b)"' are:

(B1l~l)l = O-zy I(IV.4.a)
z

12 = y - z (IV.4.b)

(B3 1))1 = - 1yZy +j•~z(l- P1 2 (IV.4.c)

(B32(1))1 = 3 [Z, +jiC0 Z (IV.4.d)

To obtain the first order results, we follow the analysis using (2.15.0), (2.15.1),
(2.16.1), (2.17), (2.18.a,b) and (2.19) with the aid of (2.16.0)'. Expressing z(¢),
Zx (p ) and zy (p ) in terms of its Fourier transform, we have

Z(p) =|f dk edk * Z(k), (IV.5.a)

zx ( P) = ffd k ekx eiL * Z(k), and (IV.5.b)

Z (p)= ffdikjky eik * Qp Z(Q). (IV.5.c)
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From (IV.5.a,b,c) and (IV.3.a) the element A( ) could be expressed as

(A (1)), = f |fdk ej' e jk Z(k)
0z 

= ffdk ejA -P Z(k) (A 11 (1,k)) 1 , (IV.6)

where

ox
(A 1 1 (131 ,k)) 1 jky 

y z

The elements of (Ajk)1 and (Bk ,) 1 obtained from (IV.3.a,...,h) and (IV.4.a,...,d) as
indicated in (IV.6), are as follows:

( (Xk 1))1
(A1 2(!e ))

(13(0+ ))

(A 4(k 1)),
A14(,g ))

(A 1 gk 1)) 1

(A 33(2 1)) 1

(A3(k1))

(Al(0,kj1)),

(B 2(k 1))1

(B3(, k 1)) 

(B2,kj)),

= j0Xklyz-1

= joy kiyoz -1' &!z

= jixkly1z-1

ylyz C Z

=jkly -3 i (1 _y2)

=o ipklyz

- joxklyzl - jc' 7z- ~ C 

- - j3k~+4jW (v2 -12)

- - j3k 1y +j C (1- 1y2)

- i13~k 1y + 1--1Xg
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The other elements of A and Bare obtained through the relationships implied by
(2.11.a,b)', i.e.,

A2 1 = - zA, 12's(IV.7.a)

A2 2 = - A 1l, (IV.7.b)

A2 3 = - A14 (IV.7.c)

A2 4 = - A 13
1 (IV.7.d)

A4 1 = A 3 2, (IV.7.e.)

A4 2 = A 3 , (IV.7.f)

A43 = A34', (IV.7.g)

:A44 = A33, (IV.7.h)

B2 1 = -B12 (IV.8.a)

B22 = - B1 ;, (IV.8.b)

B41 = B 3 ,and (IV.8.c)

B42 = B 3 , (IV.8.d)

where the prime indicates that x and y components are interchanged in the corresponding
original element, e.g., if Xjk = 1k 1 , then Xjt = 13k 1 x.

We now invoke (2.17), (2.18.a,b) and (2.19) with the aid of which we can use (IV.1)
to express the horizontally and vertically polarized components of the electric field of the
reflected wave to the first order of perturbation. The result of this operation is:

[E (IV.9)
H H
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where

T = transpose of Q V

H H

Q(0) is given in (2.17), and [E(g)1 is the first order term of g(o,C) as given by (IV.1).
From (IV.1), (IV.9) and (2.19),

[EV()] EC (IV.10)
H H

where

1
[SVQ;,9)] 1 = 2S V QQP)bQ0)(a)L(_0 IVl)

H H

and where (a) is the quantity a(1 ,k1 ) defined in (IV.2).

Examining the definition of a(pk) in (IV.2), we note the matrix product
(AjQ(;k)b (f3)), which is a 4 X 4 matrix. The first step is the calculation of that product.
Calling this matrix product d, using c to denote the matrix A 1 , and invoking (IV.3.a,...,h),
(IV.4.a,...,d), (IV.7.a,...,h), and (IV.8.a,...,d), we obtain

C1 1 C1 2 C13 C14 b1 l b12 b1 3 b1 4

-C 2 -C 1 C 4 C 3 -b 1 -b1 b 4 b'1 j[djk 
d = - -cl2 -C1l -C14 -C13 1bl2 -b1l 1l4 1l3 = -- (IV.11)A C3 1 C32 C3 3 C3 4 b1 l b3 2 b 13 b 14 A A

C32 c31 C34 C33 -b3 2 -b 1 1 b1 4 b13

where j[djkI = jd = dA, A is A( 131) as defined above (IV.2) and, because of the special
properties of the matrices c and b, we have (Note that b1i = b1l, b14 = b14 )

id b11(C11 + C1 3 )- b12 C1 2 - b32c1 4,

jd12 = - b1l(c 12 + C14) + b2C I b32C13

jd 13 = b13 (C11 + C1 3) + b14 (C1 2 +C 14 ),

1d4 = b14 (cl1 + C1 3 ) + b13 (C12 + C14)1
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d2 = d'l2

d22 =dll, 
d

d d~1'd23 = d41

d24 = d3,

jd 3 1 = b11(c31 + C3 3)- b' 2 c32 - b?2 C3 4, (IV.12)

jd 3 2 = - b, 1 (C3 2 + C3 4 ) + b1 2 C3 1 + b3 2 C3 3 '

jd 3 3 = b13 (C3 1 + C3 3 ) + b14 (C3 2 + C3 4 ),

jd 3 4 = b14 (c 3 1 + C3 3 ) + b'13 (C3 2 +C 3 4 ),

d4 = - d32

d42 = 31,

d4 3 3d34 , and

d d' 3d44 = 33.

Calculating the elements of the matrix d from (IV.3.a,...,h), (IV.1.4.a,...,d), (IV.7.a,...,h),
(IV.8.a,...,d) and (IV.12), we obtain (explicitly indicating the arguments of the functions):

dik =-A~l~l) dj'k (,k

C~O2
d, 1(,,k) =dlja(+ + dll((111)],

d1 2 (1,Ok) = di2a(IJ)hy 1 x + kO dl2 b(1,01)1X1Y

d1 3 (,k) = di3 a(la I)ky1x + L S13b(14)0xgy,
C

d. 4 (1,k) = d44 a( IiO)hy1y +--[d 1 ,j +I)11 +4db4(( 14c )],

d3 1 (13,k) = d3 la(jll)hy,, + -- d31b(II)Ox1yIc
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d3 2 (kk) = d32 a( II1)ky1y + -[d 3 2 b( [PI)y +d3 2 (I1(1I)I,

d 3 3 (,k) = d33 a(IOI)ky 3 + - [d33 b(I ))y +d33 (f1j)],

d 3 4 ( ,k) = d3 4 a(I1J)kyO3x + -d 3 4b(Ig3)1X1Y,

11d'

d23 = -l2d22 ll,

23= 1d4 ,

d 24 =- d'13,

d42 = -(131 2

d43 d34, and

d44 = 33, (IV.13)

where

dlla ( Ja) = V- 2,

b

d 1lcf 1,1) = °l

dl2a(|,jai) = V2-1
b

d 13a 1) = di 4a(Ii1) ( Z
b b

d1 4 c(II3) A(111),
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d'31A0,I) d'32a(11 [A(W) 2

d3 2cF -= - 2v (II + A 1),
d33ab = 1- V2_ +

d 33c =1Y,(l - .2 ), and

b3 4a 21 (IV.13)'

bLV
Denoting H, by e and BO by f and invoking (IV.12), IV.13) and (IV.13)', we obtain

da =j(e - -- f)=

t11 e12 11l 1l2 d 1 3 d 1 4 0 1'-'l 1 -'Il2W al a' 2a Wl -114
1e2 -ell 1'_ 2 ll -d14 1 3 -1 °

A- !, (IV.14)

A e31 e3 2 331 d32 d33 d3 4 f31 f32

e3 e3 -d3 -d3l d3 d33 f2;3 2 3 1 = 2d~ ~3 4ff3 2G1

where

ell= jiell = iP:ZlkyOx
WO21lk 13

e12= jel12 = j:z A yp c 
COO

e3 = je 3 1 = - j z-L[k0y yz -- (1- p2)]

e32 = je3 2 = j13, -'.[kyoz + Cf ZPY], (IV.14)'

[31= 1 - ) \and

f32= MY_ Jan

f = - 9z xp3 -- J
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Expanding (IV.14), we have

Ac11 = j[l 11A + d12 - d13 f31 - dl4f32])

Aa21 = j[- ' 1 2A + dWl + d14 f31 + d13 f32},

Aa3l =j[ 31 A + d32 -d 33 f31 - d34f321 

Aa41 = j[e 32j 2 W'31 - -34 d3 3 f3 2 ] ,
(IV.15)

Aal2 = el2A - di1 - dl3f32 - dl=461 Aa2-

Aa22 = - el 1 A- dl 2 +dr4f3 2 +d'3 -31 = a-

Aa32 e3 2 A - d31 - d3 3 f32 - d3 4 f 3 = Aa4 1 and

Aa42 = e3 1A + d 32 - d 3 4f32 - d33 f 3 A3

From (IV.13), (IV.13)' and (IV.15) we obtain, after considerable manipulation (again
explicitly indicating function arguments),

1
%ik(,k) k (IV.16)

where

a 11 Oa1IPI)ky x +-Ca, l 11Ib(0)13x1Y

a~i~f3,L) +-[a~lb(13)1X 2 a
a 21(gk ) a21a( Ql)kh X + -- [' a 1b(Il:X+a21cf 411a k a k +C 2131b y +! Xb)]'

Cj

a4l(l,0k) = a4 1a(I.0,)kxpy + a4lb(I13)131y,

a12 = - a21 ,

a2 2 = - all,

a = a' 1,and

a 4 2 = a 3 1l
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and where

a 1ia(fdI) = 2(V2- 1),
b

a 2 1a (I11}) = - 2(V2 - 1),

b

a3la(I-0,) 1
b L2(P2 -1)(Z -PZ

a331(c( ) = L2V2- 1) Z
a~i~(If3I) -2(v2 - z (IV.16)'W41a(lG( ) =1

b 1-2(P2- l)(z- pz)

a12(jgk) (=-

a22(,) = 

W3 2 >k) = (W4 1(1,k))' and

a42(g,k) =(a,,(,k

Using the above results we can write (IV.16) more compactly as follows:

I.lJ'k) =(IV.17)

where

a ,k) 13x a1(!|)hy + a11 b(IfI)y ,
C

21(f ) - [a(,'1)] + C 21c(1,l)

a (Ak) =- y a4l(a,k)]' + calll)and

a 43(1~) = -3yCa 3 ia(IgI)hx +a31b(Ic I)xV
41(,01)' - Oy 1 '3 la(C
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To specialize the results to the backscattering case, we first note that the unit vector (e
is defined as that directed from the radar to the illuminated patch. In vector-matrix notation

(x o a°Y, (IV.18.a)

az

where ao0 - /1 - °OX2 -ay 2.

We now define a two-dimensional unit vector &, , the projection of a 0 on the x-y
plane, as

Fox
-o ox . (IV.18.b)

tay

For backscattering of an incident plane wave or plane wave pulse, the unit vector
corresponding to the direction of the incident wave is + g O, while the unit vector
corresponding to the direction of the backscattered wave is - a (see 2.1c). Then,

[py [X &Oland (IV.19.a)

[ y [ o (IV.19.b)

Continuing the specialization to the backscattering case, we invoke (IV.19.a,b) in the
expression (IV.10)' resulting in an expression of the form

- ~2w
[ErV( §o)] 1 = [sv(& &_;&O)] 1 Ei(& O)Z(- c a,) (IV.20)

H H

To continue the specialization to backscattering, we invoke (IV.19.a,b) in the
expression (IV.9) and carry out the matrix operations

[ErV&°o)] k = QV Q(&)bo(- eO)B(&o )L(&,), (IV.21)

H H
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where B(o; .) is a 4 X 2 matrix which will be specified below, where V and . H are given
by (I.24.a,b) or (I.27), Q(- of) is given in (2.17) with

ox =x OXI

y y

9Z = - aoz9 b,(- 60) is [AO(3 1 ,w)] -1 as given in (2.16-0)' with

a3x Boxy

y y

0Z = - oz 1 and L(& 0 ) is given in (2.19) with

x ox, P aoz-
y y

The indicated operations lead to an expression of the form (3.7.1). The E 's appearing
in (IV.9), (IV.10), and (IV.20) are designated are U's in (3.7.1) and the quantities

SV, etc., appearing in (IV.20) are the quantities SA I

H

as given in (3.7.1), where Aa = VV, VH, HV or HH, depending on incident and received
polarizations.

These quantities SA a 1 are obtained by carrying out the calculations indicated in
(IV.21) with the aid of (2.16-0)', (2.17), (2.18.a,b) and with the appropriate specializa-
tion of

13X as follows:

z

[SV- A ( 1 V1 (IV.22)
VH > + H V
HV HV lV
HH HH HH
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where (primes on the elements (Bkk)m indicate x-y interchange)

(SVV) X(- + 7 ):@o(B)11 +c,(R)2it
VH V V

HV H H
HH V H

+ >0x(B)3- aoy() 4A) °o2 Qi(Y)' - QaVI(B)2i
V V

H H
H H

- o0 zy0 JQVI(B)31 + 9Vx(B) ,

V V

H H
H H

(Svv) = same as (SVV)

VH VH
HV HV
HH HH

except that x and y are everywhere interchanged.

(%xC ')z = z component of cross-product of ca and 9.', equal to (a(oxQ a -o

(Q~xQ~)~2 9'o Q'AI& 1
A' (YOZ az )( 1 -az - GZe )=Ala l)

(Q XV XQ )z = Vx AH Q VI VIX H Vx Hy -Vy Hx'

The quantity [Svv(- o)] given in (IV.22) is the element of the first order "polariza-
tion matrix" corresponding to vertically polarized reception and vertically polarized
transmission, where the illuminated surface patch is at an angle a 0 with respect to the
radar. The subscript VH indicates vertically polarized reception, horizontally polarized
transmission, HV indicates horizontally polarized reception, vertically polarized trans-
mission and HH indicates that both reception and transmission are horizontally polarized.

We now turn to the evaluation of the matrix element B appearing in (IV.22). In the
first order case, these are the elements of the matrix a given in (IV.17) with h set equal to
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- 2wU 0O and/set equal to x. From (IV.16)', (IV.17), and (IV.22) with the above
specifications of the variables, we have

[SVV(- &b)] =
VH
HV
HH

j( )
C

[A( 1+ 1 + G H

(+ -+oXH)z(c'o * kV)°aozV I- 2a la + alb] + (aoXk'),(°&o QH9
V V V V
H H H H
V H H V

(- + a31b] [1 01 - OZ7OZ + [a31c - (a°z + oz)aN21c] )

P a2 1c - -Yoza3 1c]

where
4,

+(4HX2VZ [ aOzE

al la = 2(V2 - 1)
llb
21c
31a
31b
31c

1
1

0
0
(7OZ +cOz)

- :OZ

2a 3 la + a 31b = 2(V2 - 1)(7Oz + °o' )-

We can arrive at the result (5.1) by substituting (IV.24.a,b,c) into (IV.23) or
alternatively by using (IV.16)' in (IV.17) to obtain the a elements directly with

k - C O ° ° ,
C -+ -+ 0

88

(IV.23)

(IV.24.a)

(IV.24.b)

(IV.24.c)

- 2a-1 la +a, llb �- 2( V2 _ 1), and



NRL REPORT 8369

and substituting those results directly into (IV.22) in place of the elements BIk. If we choose
the latter course, then the resulting elements are:

B~=a.k a- w _= I (&6 ;- 2wao
Bik aik(-&; c Al (I& I) -ik( °o C

where

2w 2w 2 - 1)%,

2cj 2w

-a )=- (V2 -1)[(a + )cxa ]-

21(&+;- C 0 C ox, ZOXo

Substitution of (IV.25) into (IV.22) or the alternative approach through (IV.23) and
(IV.24.abc) yields (5.1).
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