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PREFACE

* In a summer 1976 workshop at the University of Hawaii an international group met

under the auspices of the Deep Underwater Muon and Neutrino Detection Committee (DUR-

MAND) to discuss the detection of cosmic particles and their interaction byproducts by listen-

ing through hydrophones to the noises they make in the ocean. A full proceedings of their

work was published in early 1977 (cited as Ref. 1 in this report). Of particular interest were the

conclusions of the Acoustics Panel, which examined the acoustic aspects of DUMAND and

developed several acoustic models to serve as prediction tools. Although the models are accessi-

ble to advanced students of acoustics theory, they were not given in sufficient detail to allow
appreciation of their content. The purpose of this survey report is to place the models in per-

spective by showing their origin, derivation, and limits of validity.

The conclusions of the DUMAND Acoustics Panel covered many features of the acoustic

problem. Points most pertinent to this survey are briefly as follows:

* The cosmic particle deposits energy in the ocean as it decelerates. The spatial distri-

bution of this energy along the path of the resultant conical cascade is roughly Gaussian. The

length of track varies from 1 to 10 m, depending on the energy E0 of the incoming particle

and on the nature of the cascade. For hadronic. (massive-particle) plus electromagnetic
showers the full width at half maximum (FWHM) of the Gaussian distribution in the direction

of the shower is about 3.8 m at 1012 eVto 6.4 m at 1016 eV. The lateral distribution (across the

shower) is not specified but is expected to be similar to purely electromagnetic cascades. For

purely electromagnetic cascades the FWHM is 3.2 m at 10 12 eV to 4.5 mn at 1016 eV. In the

cross section the fraction (FE) of total energy deposition between r(r = 0 is the axis of the

cascade) and r1 (Moliere length, which equals 10 cm in deep sea) is FE 2.5 r/r1 if r < < r1.

* The ambient noise in the ocean is a minimum at 25 kHz, making it a good choice for

a listening frequency. At 25 kHz the ambient noise power (in SI units) is proportional to (10

IN/rm 2 ) 2 in a 1-Hz band. Since a bandwidth of some 10 kHz is needed to resolve the expect-

ed transients due to the acoustic pulses of the cosmic particles, the noise power in the receiver
is at best proportional to (10ANIrM2 ) 2104, so that the noise pressure spectrum level is

[(lOILN/rm)2104 = 10 - 3 (N/m2) = 10 -2(dyne/cm 2 ). This is taken as the lowest
DUMAND signal that can be detected in the band 15 to 25 kHz say.

* The mass of ocean water required to detect neutrinos must be very large because of
the extremely small scattering cross section of neutrinos. It is estimated that a volume of 10

by 10 by 1 km 3 is needed to detect 100 neutrino related events per day, each event having an

energy averaged over many of 10 13 eV. The number of hydrophones needed to make this

detection over the prescribed volume is estimated at 10 5.

One gathers from the DUMAND report that further progress in the prediction of noise
pulses from the deceleration of high-energy particles in the ocean must await more detailed ex-
perimental data, specially designed to display the impulse nature of the physical event and give
reasonable estimates of time duration and magnitude of heat generation. Although it has been
verified in the laboratory that high energy particles do make noise when they are decelerated
in liquids, the lack of good experimental data precludes any decision on which model is most

nearly correct.
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THEORETICAL MODELS AND NUMERICAL ESTIMATES
OF ACOUSTIC SIGNALS

OF HIGH-ENERGY COSMIC PARTICLES IN THE OCEAN

EXECUTIVE SUMMARY

High-energy physicists in the field of cosmic rays are faced with a difficult problem that is
blocking advance. They wish to clarify their understanding of the universe by probing into the
origin of neutrinos which reach the earth from outer space. In particular they wish to con-
struct a neutrino telescope that will pinpoint the angular distribution of these particles in the
heavens, and chart their temporal and spatial fluctuations. To date they have been unable to
do this in any practical way, because the scattering cross sections of neutrinos are extremely
small, even at high energies. Groups of scientists interested in this problem have assembled
themselves into a committee with the name DUMAND (Deep Underwater Muon and Neutri-
no Detection) and have met in the last few years at annual intervals to discuss advances to-
ward solution of their problem. The most recent meeting was at the U. of Hawaii, in the Sum-
mer of 1976. They conclude the following in their report: immense masses of matter will be
needed to detect these muons and neutrinos at some usable (practical) rate, say a few tens or
hundreds of events per day. This mass must essentially be free to all at no cost. Clearly the
only practical resort to get great mass is the ocean. Hence they visualize the neutrino telescope
to be an underwater detector. Furthermore, to avoid too many non-muon and non-neutrino
events per unit time, which could cause saturation in the detector they conceive the underwa-
ter detector to be deep in the ocean. Thus an immense structure of hydrophones and photo-
detectors estimated to be some 5 to 10 km square and 1 kilometer high is proposed, eventually
at a depth of 5 kilometers, in some favorable ocean far away from man-made activities which
create underwater noise.

The theory of the neutrino telescope is this: High-energy particles entering seawater give
birth to cascades of ionized collision products. These cascades can be detected by two effects:
they create a bow wave of light (Cerenkov effect) (similar to a surface "bow wave" caused by a
ship) which is visible as a flash of light, and they generate an acoustic shock pulse, theoretical-
ly detectable with hydrophones. The source of the energy in the acoustic effect is thought to
be the ionization energy loss caused by charged particles colliding with water molecules. The
energy ultimately appears as nearly instantaneous local heating of the water, in a time of about
1 ,As to 0.01 ns, over a volume of water at the largest of radius 10 nm but generally of the di-
mensions of a few molecules. The efficiency of conversion of kinetic energy of cosmic particle
into acoustic energy is estimated to be 10 -11 or less.

From the point of view of the acoustician the problem is posed as follows. Coming in
from the atmosphere, and ultimately from outer space, is a continuous shower of high-energy
particles, charged and uncharged, which collide with molecules of air to generate cascades of

Manuscript submitted July 20, 1977.
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collision products, ionized molecules, etc. In particular a large flux of massless, chargeless neu-
trinos enter the seas, where they in turn collide with water molecules and create additional cas-
cades. At the instant these cascades are formed, they radiate transient pulses of sound. Thus
the acoustician sees a volume of space randomly illuminated with bursts of sound (firefly
effect). The problem posed then is to create a mathematical model of this effect.

Several models of single cascades were initially made under the auspices of DUMAND.
These can be grouped into thermoelastic models and bubble models. In the group of thermoe-
lastic models are a heated-rod model, a heated-spot model, and a heated-filament model. In the
heated-rod model the cascade is considered to be a cylinder of water typically 3 to 10 m long
and 1 to 12 cm in diameter, heated in a time of 1 Ms to 1 ns, and coherently radiating a tran-
sient whose spectrum is roughly from 25 kHz to several hundred kilohertz. The radiation pat-
tern is thought to be pancake shaped, that is, sharply narrow broadside to the axis of the
cylinder. In the heated spot model a spherical volume of water of radius 10 nm or smaller is
heated in 0.1 ns to 0.01 ps., radiating a spherical shock wave followed by a tail thought to be
due to a heat diffusion effect. In the heated-filament model the local heating is confined to a
large number of fine filaments approximately 1 /im in diam. Each filament radiates a separate
acoustic wave, but all the filaments are considered to radiate coherently. In the group of bub-
ble models the principle effect is modeled as local boiling of the fluid medium into bubbles,
with subsequent collapse of these bubbles giving rise to acoustic transients. Not too different
are models which treat the phenomenon as local explosions, as if made of TNT, the equivalent
weight being 0.01 fig of TNT or less.

Both the thermoelastic models and the bubble models have been widely discussed. They
are reviewed in detail in the body of this report, and a number of calculations have been made
to illustrate the character of the predictions that can be made with their use.

Experiments conducted to date in laboratory mockups [1] show that the transient acoustic
pulse due to high-energy particles partakes of the nature of a wave called a bipolar, with an ini-
tial compression wave followed by a final rarefraction, as shown in the following sketch:

V~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
p(r,t)

Av_ 'N'iT

2



NRL REPORT 8150

This type of acoustic signal is predicted by a generalized thermoelastic model developed in the
body of this report. The model is obtained by solving the linear acoustic wave equation driven
by a heat source, namely,

2 2 82P, H
c at2 CP Ot'

where H is the heat flux. A typical transient solution of this equation has a form

p(rt) = T-T x const. x f(t),

in which E0 is the cosmic particle energy, T1 is essentially the time of heat expansion, and T2
is the interval between the peak of compression and the "peak" of rarefaction. When the gen-
eralized model applied to specific cases, the differences between these specific models is found
to rest on choices of T1 and T2. Actually, E0 /T1 determines the magnitude of the peak
compression, and T2 determines the dominant portion of the frequency spectrum of the radiat-
ed wave. Measurements in laboratory experiments show T2 to be 10 to 1 gs, leading to the
conclusion that the significant spectrum of p(r,t) begins somewhere near 25 kHz and extends
thereafter upward.

A crucial question is the range limit of detectability of these bursts of sound. Local noise,
frequency content of signal, incident cosmic particle energy, propagation attenuation, etc. all
must be considered in determining the limit of "audibility". Rough approximates have been
made in the body of this report. For example, if the pressure pulse is processed in a filter cen-
tered at 25 kHz and 10 kHz wide, then the limit of range in units of meters per electron-volt at
which the transient signal magnitude is equal to the local noise (also at 25 kHz) is given by a
particular model as 2 x 10 -13. Thus, in this model, a total cosmic particle energy of some
5 x 10 14 eV is needed to permit detection at a limit distance of 100 m. Other models yield
somewhat different (or vastly different) values, depending on their assumptions. The conclu-
sion is that several major problems in modeling remain to be solved:

* The basic physics of the conversion of cosmic particle energy into acoustic energy en-
visages the formation of a shock wave due to nearly instantaneous rise of heat deposition, yet
modeling to date is based on linear acousatic theory of small amplitude wave motion.

* In all mathematical models the key parameter of time estimation appears explicitly,
but the magnitudes of T1 and T2 to be assigned to the models are largely guessed at.

* Experiments conducted to date verify certain parameter dependencies which tend to
verify particular models. These dependencies show that the acoustic pressure is proportional to
the energy of the particles coming in from space, being proportional to the coefficient of ther-
mal expansion of the medium, inversely proportional to the specific heat of the medium, and
inversely proportional to the distance of the observation point (spherical spreading). In addi-
tion it is verified that the radiation is sharply pancake shaped normal to the axis of the cascade.
Still unknown however is the basic mechanism of energy conversion, the modeling to date be-
ing purely phenomenological.

3
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INTRODUCTION

Processing of Signals From the Separate Sources

A continuous bombardment of cosmic particles strikes every unit area of the earth's sur-
face. Those that strike the sea penetrate into the water and generate a number of showers of
secondary particles along their tracks. These showers create acoustic noise. An illustration of
the process of noise generation is shown in Fig. la. Here cosmic particles Al A2 , etc. are distri-
buted randomly along the track AT, and radiate acoustic shock waves at time of birth.

As will be seen later the acoustic signal patterns SAI SA2 , etc. are sharply normal to the
track. In view of this sharpness of pattern one can reproduce the scene as a space and time
random distribution of showers, (Fig. lb). An omnidirectional hydrophone H will then record
the acoustic pulses (or spikes) due to contributing showers say 1, 2, 3, 4, etc. distributed in
time (Fig. ic). A directional (or searchlight) hydrophone will record only the acoustic spikes
directly in line with the beam, say spikes 2 and 5 (Fig. Id). The goal of acoustic analysis is to
determine the directionality and statistical properties of the noise made by these sources.

4

A,

Fig. la - Schematic of noise generation
by cosmic particles

H(t)
2

Ht)A
0 vr

Fig. Ic - Schematic of voltage re-
sponse of an omnidirectional by-
drophone

Fig. lb - Space and time ran-
dom distribution of showers
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Fig. Id - Schematic of voltage re-
sponse of a directional hydrophone
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Fig. 2 - Addition of random noise
Rik P from two showers

One must first construct an acoustic model of one shower. This is covered in the main
body of the report. Secondly one must find a way to add sources together. In view of the ran-
dom nature of the showers these effects must be added on a probabilistic basis. A schematic
way of doing this is as follows. Figure 2 shows two contributing showers radiating noise to
point r. Shower 1 is the jth random shower of the kth random high-energy particle, and
shower 2 is the Ith random shower of the mth random high-energy particle. Many more such
showers contribute. The total time record of reception at r from all contributing showers is a
simple sum of time-delayed elementary pulses:

-P(rt) =~ 2 S P~k t - |Ir Rjk (tk)I

Since P is a random function of space and time, we will attempt to construct its autocorrelation.
First, let exactly K contributing particles arrive in the time interval 0,T, and let exactly J con-
tributing showers of these particles occur in spatial volume V. Then the total pressure due to
these showers is

J K f r -Rik(tkI1
PJK (rt) = I Pjk t-c

j=1 k=I1 C

Now let g(J), and g(K) be the probabilities that exactly J contributing showers will occur in
volume V and exactly K contributing particles will occur in the time interval 0,T. The auto-
correlation tp of the received time-pressure record at point r is then

p(Ir) = X g(J)g(K) <KPJK(rt) PjK(r+l,t+-) >,
J=0 K=0

in which the overbar indicates the time average and the brackets indicate the ensemble aver-
age.

The probability distributions are not known. It is plausible however to assume that parti-
cles and showers constitute a shot effect and that g(J) and g(K) are Poisson distributions:

g (X) = NQ e -NQ,
Al2
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in which g(X) is the probability that exactly X events will occur in the interval O,Q and N is
the average number of events per unit interval. It is further plausible to assume that space and
time probabilities are statistically independent. Following Rice [2], we conclude that

+(lAT) 2 = NJNk C 0 p(r,t)p(r+l,ti+T) drdt + K P(rt)>2

where

<P(r,t)> 2 = NNk p(r,t) drdt.

The space and time averaged power spectrum W(K,o) is then obtained by Fourier
transformation of qj:

=4 f dT f d I <t(,T )> COS (IT Cos K I

=4 NjNkI S(K,co ) 2 +4<P(rt)>28(Ko ),

in which

S(Ko) = f f p(r,t)e i (K 'r drdt.

This means that one can obtain the power spectrum of the acoustic noise by first obtain-
ing the space-time spectrum S of the transient pressure p and the space-time average of the to-
tal pressure and then adding them with the coefficients as shown. Other signal-processing
schemes can be used to obtain further information on total effects in the ocean.

Models of the Separate Sources

The subject of this report is the development of acoustic models of the individual
showers generated by a high-energy particle. In the process of this development we will bring
out the important property of directionality of the acoustic signal which is a prime goal of
analysis.

High energy atomic particles are decelerated upon passing through sufficient thicknesses
of solid or liquid materials, losing 'kinetic energy as they do work on adjacent molecules of the
medium. The energy loss is assumed to-take place in the following steps: A fast moving parti-
cle strips off an electron at high energy, and then this electron strips off further electrons in
the atoms along its path, the process continuing in a buildup of a multitude of fast-moving ion-
ized atoms and electrons. These collision products distribute their energies among other
molecules of the medium by additional successive collisions. Each loss of energy reappears ul-
timitely as heat in the absorbing medium or as a change in the medium's momentum or local
chemical state. The energy transfer occurs quickly and is thought to be the origin of experi-
mentally observed acoustic transients.

There are several origins of high-energy particles. Man-made sources are nuclear reac-
tors, particle accelerators, atomic collisions, etc. In the natural world it is known that cosmic
particles pervade the entire universe. Those that find their way into the earth's atmosphere,
oceans, and crust are thought to originate from distant galaxies, supernovas, and the sun.
Their detection is of scientific and military interest. Several schemes of detection have been

6
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proposed, depending on the nature of the particles. If the particles are charged, one can detect
them in cloud or bubble chambers in the presence of magnetic fields, or by Cerenkov radia-
tion. If the particles are not charged (say neutrinos), their interaction with other matter may
induce formation of secondary particles which then can be detected. Finally, it has been pro-
posed that high-energy particles generate acoustic pulses in media and that these pulses are
sufficiently intense to be detected, the models of this acoustic pulse generation being the sub-
ject of this report.

Several theoretical models have been proposed to explain the mechanisms of acoustic
pulse formation by cosmic particles. The dominant models are thermoelastic models; in these
models kinetic energy is converted into heat, which raises the temperature of the medium
thereby altering the medium density on a short time scale which causes a pressure shock wave
to radiate outward. Three distinct heat models have achieved prominence among scientists
who have examined the problem [1]. These are the heated-rod model, the heated-spot model,
and the heated-filament model.

In the heated-rod model the cosmic particle is thought to generate a cascade of ionization
products that instantly heat a cylindrical rod in the medium of length L and diameter d (the
numerical values of L and d depending on the energy of the particle) to a fractional degree
above ambient (the temperature rise also depending on particle energy). Typical numbers are
L = 5 to 10 m, d = 1 to 12 cm, and temperature rise = 1 ,uK for the case of a 10 16 eV neutri-
no. The heated cylinder expands in 10 to 0.01 /s, radiating outward a transient shock wave
with an efficiency of.energy conversion of about 10 -11 to 10 -10. The radiation along the en-
tire length L is coherent over the range of the bandwidth frequencies of the transient and is
directional with angle of detection.

In the heated-spot model the kinetic energy of the particle is converted explosively into a
concentrated heat source (the hot spot), with the heat then diffusing outward in finite (but ra-
pid) time. This thermal shock results in an elastic stress wave which radiates outward as a
shock wave with a speed initially greater than, but eventually equalling, the speed of sound in
the medium. The pressure pulse of these waves exhibit compression only and the spectral fre-
quencies of the transient propagate independent of angle.

In the heated-filament model the heating is confined to narrow filaments (say 1 grm in di-
ameter), there being showers of them. The temperature rise in a filament (like that of the
hot-spot model) is 100 to 10,000 times higher than that in a rod. Each filament radiates a
separate acoustic transient, and it is assumed that all the filaments in a shower radiate
coherently. The heated-filament model (as well as the heated-spot model) predicts acoustic
transients several orders of magnitude larger than the heated-rod model because of the
confinement of heating to small volumes (with consequent greater temperature rise) and be-
cause of the much shorter time of heat deposition.

In addition to these three thermoelastic models, another model, not readily calculable but
of equal importance, is the microbubble model. Here the concentrated heat of a secondary
product particle quickly boils the liquid into a vapor bubble. The growth and collapse of this
bubble radiates sound in the form of shock waves.

Thus the complexity of cosmic particle showers makes acoustic modeling highly uncer-
tain. The most satisfactory approach is to simplify the final acoustic radiator to a collection of

7
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recognizable (and computable) acoustic shapes. In this survey we will deVelop in detail
cylinder, sphere, and vapor-bubble models, with the cylinder and sphere models being ther-
moelastic models. These models will be used to make numerical calculations.

Cosmic-Particle Showers in the Atmosphere 131

The dominant high-energy particle arriving from outer space is the proton. Approximate-
ly 1010 arrive per sec on a 1-km 2 area at the top of the atmosphere with energies equal to or
greater than 109 eV. Only the higher energy protons will reach sea level. The energy flux
spectrum of these high energy protons on the top at the top of the atmosphere is extensively
measured. A few entries are:

Energy (eV) Flux (s l1 km -2)
10 15 10
10 17 lo -3
1019 10 -7

Upon entering the atmosphere the proton collides with air molecules about once every 7 to 8%
of atmosphere thickness. Protons with energy of f 10 12 eV create about 10 pi mesons at col-
lision, and those with energy of - 10 14 eV about 20 pi mesons. A proton survives each colli-
sion with about half its initial energy. Pi mesons themselves undergo collisions, creating addi-
tional pi mesons in the same numbers as proton collisions. Thus a cascade of pi mesons is
created by each initial proton collision, the number sequence being one proton, then - 10 pi
mesons, - 100 pi mesons, - 1000 pi mesons, etc. Since the atmosphere is relatively thick,
most of the proton energy that goes into creating pi mesons is absorbed before sea level is
reached. However the newly created pi mesons are unstable and immediately decay. The
plus- and minus-charged pi mesons decay into plus- and minus-charged muons and neutrinos.
The neutral pi meson decays into two gamma rays. Decay products then interact with the at-
mosphere to produce a cascade of electrons and protons. Muons do not interact strongly as do
pi mesons and protons, so they penetrate to sea level and below. Neutrinos have even weaker
probability of interaction with the atmosphere. They too penetrate into the ocean.

If a high energy neutrino (say 10 14 eV) does interact with the atmosphere, about half the
initial energy goes into a hadronic cascade (a cascade of "hard" particles possessing significant
mass), the other half going into the creation of muons or electrons. The hadronic cascade has
the following history: The neutrino creates pi mesons. Of the total population of charged me-
sons within 50 cm along the interaction path about 10 generate (say) 10 mote, resulting in a
shower of mesons. Pi mesons with zero charge create a positron-electron cascade spatially dis-
tributed in a cone estimated to be 5 to 10 cm across and 5-10 m long. The number of particles
in this cone exceeds 104 .

If a high-energy muon (say 1013 eV) interacts with the atmosphere, it creates a particle
shower approximately every 100 m. These showers may begin as gamma rays, positron-
electron pairs, or pi mesons. The energy in a shower is about 1011 eV, there being about 100
particles in a cone a few meters long and about 10 cm wide. If the high-energy muon has 10
times the preceding energy (_ 10 14 eV), it will also generate showers every 100 m but which
will be 10 times more energetic with 10 times more particles. Along each 100-m segment of
the shower path there is a regular ionization loss of 2 x 106 eV per cm, or 2 x 1010 eV. This
is roughly 1% of the initial muon energy and can be assigned as a 1% energy feed into each
shower.

8



NRL REPORT 8150

Statistics of Particle Showers Reaching Sea Level

A useful model of an air shower reaching sea level is a thick rod of area 10 m by 10 in,
one rod occurring per square kilometer. The flux of particles in this rod is a random quantity
but can be modeled as follows:

* In every 100 s there will occur a shower of 107 particles. Of these some 99% are posi-
trons or electrons, which are stopped in approximately 10 in of water. About 1% are muons,
which penetrate deeper.

* In every 3 hours there will occur a shower of 108 particles.

* In every couple of months there will occur a shower of 10 10 particles. Of these some
108 are muons, 104 of which have enough energy to penetrate 5 km into the ocean.

Each particle has a mean energy of 109 eV. The particles which penetrate into the ocean
deep enough to be of significance in this survey are the neutrinos and the muons. The flux-
and-energy statistics for the neutrinos are briefly as follows:

* One per year interacts in 1 km 3 of water with an energy of 10 tS eV,

* 100 per year interact in 1 km 3 of 10 14 eV, and

* 104 per year water with an energy of 1013 eV.

The flux-and-energy statistics for the muons are briefly as follows:

* 300 per second arrive on 1 km 2 of ocean at 10 12 eV, each accompanied by 100 muons
at 10 9 eV,

* One per second arrives on 1 km 2 of ocean at 10 13 eV, accompanied by 1000 mesons
at 109 to 1010 eV.

* One per 100 s arrives on 1 km 2 of water at 10 14 eV.

THERMOELASTIC MODELS

Sound Sources and Their Governing Equations

The generation of sound by cosmic particles in the ocean may be investigated theoretical-
ly by adopting a reasonable model. Since the mechanism of energy deposition and acoustic
conversion is not known with certainty, it will be useful to review various potential models.

A first approach to modeling is to state the equation of state for liquid pressure p in which
small deviations from the ambient (or equilibrium) pressure po are dependent on changes in
density Ap and in extropy A&

9
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I ~~p11,"2pl'
P =P +I AP +2 I (Ap) 2 +0P J2 ap 2 JSS

A1S (AS) 2 +

For a heat-conducting viscous fluid the excess pressure (acoustic pressure) is

p' C P 2 P 2 - + 71 + X + Ix[ . -Ajdivv +

in which c is the speed of sound, -q and 7.1 are viscosity coefficients, X is the thermal conduc-
tivity (units: N/K s), C, and Cv are specific heats at constant pressure and constants volume
(units: m2 /K s2), and v is the vector fluid velocity. The simplest model of acoustic pressure
generation is the one-term statement

2 'p =c p.
This is the case of a linear nonviscous fluid in which the conduction of heat is negligible and
the mechanism of sound generation is exclusively a function of change in density. However,
the generation of sound pulses by cosmic particles is a complicated phenomenon. Hence a
more complicated model will be needed.

We require various more complex mechanisms for changing density in liquids. These
mechanisms are customarily listed as "sources" in writing the general linear equation of the
propagation of sound [4, p.324]:

~p -PK a p - -f(r, t) + div F -V T V +

in which thermal and viscous terms have been omitted on the left-hand side but are included
on the right-hand side as potential sources. Here f (r, t) is the sum of all monopole sources,
div F represents the dipole source terms, and V T . V is the quadrupole source. Our interest
will be focused on the monopole term. The general formula for the monopole sources is given
by Eq. 7.1.22 of Ref. 4:

f(r,t) =-a-- (pq) + c OP - a, ,j
C,, at ajt Ot CP 

-P[K I +I la C,, a 12

Here q is the volume flow (units: m3 /s im
3 ) and P is the equilibrium pressure. Other symbols

will be explained below. The first monopole term represents an introduction of new fluid into
the medium, the second term represents an introduction of time varying heat, and the third
and fourth terms are sources by virtue of the temporal and spatial nonuniformity the medium
properties. Although other sources are possible, most modelists of the acoustic effects of cos-
mic particles in liquids consider the heat source as the most appropriate:

f (r, t) = ayK aIt | '

.10
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in which

a CYv units : N | YK = 1 IdKL (units: m 
2 /N); C =

Since e is the heat added per unit mass per unit time, the factor PE is the heat added per unit
volume per unit time. The factor E/Cp is the temperature change due to the addition of heat.
Introducing the coefficient of thermal expansion /3 ( units: K l), one can write

aYK = -1-~ /a=3.

Thus, by regrouping all factors, one arrives at a more significant expression for the monopole
source directly attributable to heat:

6l H H =pi funits N |f (r, t) C=, Ot m3 .sEunts

The physical significance of the source is this: The addition of heat results in a change in tem-
perature, which in turn causes an expansion of fluid, thus altering density; and the change in
density generates an acoustic pressure, as indicated by the first equation of this section. The
equation of propagation of the acoustic pressure is therefore

V p -H-H---r , H P C2 a t2 = p atH H~,t

The negative sign appears on the right-hand side to insure a positive-sign source when the
temperature increases (if being negative).

It will be useful to picture the acoustic phenomenon described by this equation. In anal-
ogy with a siren which ejects puffs of air by chopping a steady air stream, the equation
describes a "heat siren" which ejects puffs of heat by chopping a steady deposition of heat. The
heat stream is H (calories/s per unit volume), and the chopping action is 0/at. If the chopping
is steady state, one sets a/at - -io. A "one-shot" siren generates a transient heat puff.
These heat puffs in turn generate density-temperature puffs (through multiplication by CP-'),
and the latter are converted to pressure (density) puffs by /l. The intensity of the sound gen-
erated will be directly proportional to the magnitude of the steady heat flux (= H) and to the
rapidity of chopping ( =/t).

This picture is common to all thermoelastic models. As we shall see, a different model is
constructed for each description of H and 0/Ot. Actually H is specified as the calories per
second per unit volume, making the developed pressure obtainable only by integrating over the
effective volume which carries the heat. The heat in question is of course not directly deposit-
ed by the cosmic particle, which carries kinetic energy only. However for making estimates
the magnitudes of kinetic energy and the developed heat are made equal.

We will now survey several useful models and will provide development of details when
it is judged useful to an understanding of the limits of validity.

11
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Heat Models Based on V2 p - (1/c2) (a2 p/at 2 ) = -(3/Cp ) (OH/lt)

We first enquire into the nature of H. Let the initial energy of a cosmic particle be E,
(units: N/m). We assume that when the particle enters the ocean, the heating effect on the
water becomes volumetric. We can represent this effect as AE'/A V, where EO is the state-
ment of the energy disturbance upon the water, as distinct from the particle energy Eo. Next
we assume that at any particular point ro along the track the water is at first quiescent, then
responds to the heat disturbance, and then is quiescent again. The heat description is

AH = pulse x - °

(units: Nm/s m3 ). Three specific forms of this function will illuminate the meaning of the
symbols.

For a point (or delta) deposition in space and time, the form is

A E0
AH = pulse x Eo 8 (ro 0 (to

For a deposition that is delta in time and uniform in cross-sectional area S, the form is

AH=1dE(z 0 )8()
AH S dzo (o

1 dE (zo)
AH 8(to),

S dZ0

which, if F0 (zo) = Eo e &Z becomes

AH = aI-#-J e -s y (to) (case I)

and, if E£ (zo) is Gaussian over volume VO, becomes

Eo [ (zo 8 |/2
AH exp1 -/2 a (to). (case II)

For a deposition that is delta in time and varies with zo and with S(rjO, r-L= +,the
form is

dE
AH= 0 (r z) s (t

which, if the variation with ris parabolic, becomes

AH = d II -| 121 8 (to) (case III)

and, if the variation with r is Gaussian, becomes

S dE(zo) 2
AH = ex. 8 (to). (case IV)

Sdz 2,

12
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In these three forms the pulse nature of AH is written as 8 (to). Other pulse expressions may
be more appropriate. Writing "pulse" as h(t) ( units:s -1), we list a few pertinent forms:

h, (t) = rect (0, T) or rect (-T/2, T/2),
h2 (t) = triangle (0, T) or triangle (- T/2, T/2),
h3 (t) =cos f t rect (- T/2, T/2).

Each pulse function has a Fourier spectrum of frequencies. Letting u and s be Fourier pairs,
we have

rect u - sinc s,
triangle u - sinc2 s,

cos 7r u rect u - 2 sinc S + 2I- + 2 sinc s -2 1

Since time is the analog of u and frequency is the analog of s, pulse descriptions and frequency
descriptions are interchangeable by means of Fourier transformation. It will be convenient in
the following analysis to consider both temporal and frequency descriptions. In all cases where
the steady state solution p(1(o) of the pressure has been calculated, the temporal solution will
be the standard one,

p(r, i) = f_ p(rjc) h(w) e -t ' do,

in which h(o) is the Fourier transform of the pulse h(t).

We will now survey useful models.

Let the initial flux of particles entering the ocean be a beam of intensity I, (units:
Nm s -t in - 2). The word initial means that we know I, at some particular field point be-
fore additional absorption takes place. We assume that the rate of absorption with distance is
exponential of form e -":, where a (units: m -1) is the absorption coefficient. This space rate
of absorption is precisely H, namely,

-d
H dz (1o e `z) = a1 0 e

The time variation of H is as yet unspecified. Initially we resolve the time variation into har-
monic components. Thus the complete specification of the energy deposition in the fluid be-
comes

H = a 10 e -iwf

Next we must assume a geometrical description of the space in which the acoustic field will be
generated. For our first model, which we call heat model I, the space is assumed to be infinite
in all directions. We will develop this model in detail.

Heat Model Ia On Unbounded Space) [Westervelt-Larsen-Hanishi

The transient problem to be solved is

2 , a2 d {:! t )rO o aH GV p (r, t) _ 0prt -- q (roto), q LL=-
C

2 lit 2 q alt CP

13
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The solution of

Vp 2 2 0tq = q =q147r,

is known to be

47rp(r, t) = 47r f dt0 f d Vo G(r, ro It, to)q *(row t),

where Gis the Green's function of the scalar wave equation [5, p. 834]. For unbounded space

G 8 [R/c - (t -to)I
R

where

R = Jr -ro1

and

R2 (x -xo) 2 + (y -yo) 2 + (z -Z) 2 ,

Thus the solution of the transient problem is

p(r, t) C _ Jf +dto f dV [R/C - (t -to t) aH (ro, t)
C 47T ~d0 jdR dt

4irC f dV0 H'(rO, t - R/c)

in which the prime signifies differentiation with respect to the argument of H (namely
t - R/C). Let the volume of integration be a cylinder of area S, length I. Then, substituting
the previously derived form of H in which the transient state, is replaced by the steady state
we arrive at

i(O a 1 SO I dzo e e -i(t-RIO
p(r,W) = 4 7r Cp f R

p 0

In the far field

Rz rI -zo cosO,

where I rl is the distance from the origin to the field point. After a certain length I a - a

the function e az' = e -1 is effectively negligible in its contributions to the value of the in-
tegral. By making I > I*, one can extend Ito infinity and thus approximate the integral to read

p(ra) = "Wa IO 5 )S el r e k = W
47r CPlI rd +ik cos O' C

The magnitude of pressure has a directivity F(O), where

IPI = F(O), F(O) = 1 +
4v CP~~~rI 0~~~k l*2Co s2 0

The maximum occurs at broadside (0 = 900). (See Ref. 6 additional details.) Although the ex-
ponential heat depostion is plausible, other types of track-dependent deposition are equally so.

14
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An example is the Gaussian dependence on penetration length (= zo), which earlier was la-
beled case II. Thus we use the earlier equation

AH -VO exp [ - ° (toI
0I L

and consider only a single frequency. Defining the intensity flux as IO (r1) (energy flux per
unit cross sectional area), we write

AH -exp [ _ -L/2)28] e

This implies that the "Gaussian length" of deposition is L, that deposition is a maximum at L/2,
and that the standard deviation of deposition is o- = A(1/2) (L2/8) = L/4. The radiated
acoustic pressure is

exp _ (z L/2) exp

p(r,w) -= TL ex1 J exp L- R Ic) dV0

For simplicity we take I, (r1) to be a constant independent of the cross sectional area variable
r,-. Thus, dV = dzo dS(ro), and

-iw/310 5 L exp{- ~(z0 - L/2) 2 8 eikR

p (r, W ) = -~~Rdz 0 , k ~"w/c.p(r co) = it'C a elo S , {f L/2

In the far field

R I I -zo cos 0,

where 0 is the angle of the observation vector with the z (or track) axis. Let y = zo- L/2, dy =

dzo; then, extending the limit of integration to infinity,

p~~r, ) -=co '8 '0 C e 28/L2 iycs y
1P (rj ) = L C eikiri e -i(k/2)Lcos0 -) e -iA

4i7r L C,, I rf

Let 8/L 2 = a and ik cos 0 = /3. Then the integral reduces to

e [Y +(p/)l dy = e'`(9/a)2f e -)'+P/2a)
2 d + 2a 

= ea (0/2c)2 2__:

24
L /7 e R-2 L2 COS20/32
4 _\/2

From this the magnitude of pressure is

Ip(r, w)I| - °1 0 S5 e -r7 2 L2cos20/8X 2 A = c
jpr,01 16 r Cp |Irl 27rro

In most cases LA >> 1, so that the directionality of the pressure is sharp in the broadside
direction (0 900). The quantity 1,S is again equal to E0 /T1 , the "time" T1 being an estimate.

15
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A second example of a spatial deposition of energy which is other than exponential is the
uniform deposition in which dE0 /dz is constant. Thus

AH = 1 dEo (t ) - 1 dEo e -i0 tI
S dzo TeS z

so that

-iw/3 1 dE F eikR , :
p~~r, w 4iT CP T1 -dzf R d 0

In the far field

I (dEo/dz) 1 ' eik°os9zo dz0I
4,ff C, T1 Inrl

or

c /3 (dE 0 /dz) sin (A -cos oJ
IpI 47r CD T I rl rrL - A

Here again T1 is unknown. The radiation pattern is sharp at broadside, just as in the case of
the Gaussian deposition.

Heat Model lb 6n Unbounded Space)

When the heat deposition is transient and there are no preferred frequencies, we replace
e 1w1 by "pulse" h (t). The solution is

p(r, t) = 1_ J_ dVo a e R h'(t - R/c)

Since all physically compatible transients h(t) start and end in finite time, the time derivative
will have both positive and negative values (h' = dh/d(t - R/c)). Hence the sound radiated
will exhibit both compression and rarifaction.

A simple application of this formula is to assume the heat deposition is a delta function
in space and time:

H(rO, to) = Eo 8 (to ) 8 (ro) lunits: . J 3

Then the radiated transient is

p(r, t) = / °
14 7 C

R - - t
t,~~~~ I c ::( to)|

, dt, J dVo R 8'(t,)8I(ro)

Eo 4 Ic
47T Cp Irl

16
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0 T12 T j-~ 

Fig. 3a - A double impulse of pressure Fig. 3b - Pressure impulse

This pressure history exhibits a double impulse at point IrI (Fig. 3a). The first or compressure
pulse is physically due to the shock of expanding heated fluid acting against the inertia of the
stationary non-heated fluid; the second or rarifaction pulse is due to the "vacuum wave" creat-
ed by the sudden cessation of expansion of the heated fluid while the inertia of the non-heated
fluid continues its outward motion (Ref. 7,8). As a second example we assume a time history
of deposition to be a sinusoidal pulse:

h(t) = (sin £ltln T 1

Here 11 is a rectangle function of unit height and of base T s centered at T/2 s, which is zero
outside the range 0 to T. The radiated pressure for exponential deposition of heat is

p(r, t) = 4~ C f dVo a e (t (t R/) 1t R/c) - T2
RI [ T

+ sin fi (t - R/c)F1f (t-/) / 1

The second term on the right-hand side represents a pair of impulses generated by the step
functions appearing inn. We shall neglect them here, but will consider them later. Setting
the limits of integration to infinity, we find the pressure at distance R > > 12/X to be

p(r, t) = /3fla la cos 0 It -rl X -Kcos 0 sin fl t 7
4 iTC (a 2 + K 2 cos2 )IrI cJ c j

x n I R/c) T/2] K=W

At 0 = 90 0 the shape of the impulse pressure is shown in Fig. 3b. We see again that the pres-
sure is a maximum at 0 = 900 (broadside). This model is analogous to a "one-shot" siren. It
will be used in a later section on numerical calculations.

Heat Model II On Semi-Infinite Space)

In heat model II one again assumes that the cylindrical shower in the liquid due to the
interaction products of a cosmic particle is caused by an external beam of the same cross-
sectional area. This time however the beam enters a semi-infinite space (z > 0) from a

17
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:I x

0 -

Fig. 4 - Laser beam entering an
absorbing half space

nonabsorbing medium (region 1) into an absorbing medium (region II) (Fig. 4). The energy
deposition rate is again taken as

H = a IOe e -w

in which the units of Hare again N . m/m 3 s and the units of lo are N . m/m2
. s. Each

point in region II along the centerline of the beam is an elementary point source of spherical
waves. Corresponding to it is an image point source in region I. The sum of these two waves
integrated over the length of the real beam gives the field pressure at r. Using the basic equa-
tions of model 1, one finds the solution to be

-/ a 10 Si I' eirr ikj r - + 1
p~~r) = fe~-az ±e

p~r) 4ir CP f e In-nil I nIr-r21 I dz.

For an acoustically soft interface one chooses the negative sign. In the far field, where R > >
12/X (l being the length of the beam, taken as a -1), one can write

Ir -n1 zz R -zcosoandI r -r 2 l 1 R +zCos0.

To simplify the analysis, the integral over z is extended to infinity. Thus

-co w/ a , Se ikR -it Xkr -ks os

47TrCp R f e -C: [e - ekeossl dz

or

-c lo S eikR -ht 2 k/cos.

47r Cp R 1 '+ k2 /2cos 2

(Kozyaev and Naugol' nykh ref. 7). The amplitude of radiated pressure is then

w/31Io S 2 klcos 0
IPl = -C R F(I), = 2 2 C 2

The significance of this result is now examined. First, the amplitude depends directly on the
power of the beam 4oS, where S is the cross-sectional area. This is actually the energy deposi-
tion rate in units of N-m/s. Second, the amplitude depends on the frequency w, which, in the

18
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time domain, represents O/Oit. This is the rate at which the energy, once deposited, is released
to the medium. Third, the amplitude varies inversely as R, showing that the far-field radiation
is spherical. Although the beam itself is a cylinder and the near field is cylindrical, the finite
length of the radiation eventually appears as a poinrt source to a distant observer. Fourth, the
pattern function is a strong function of angle 0: at 0 = 900 , (in the plane z = 0) F(90') = 0, as
required for a pressure-release interface. The pressure reaches a maximum at an angle 0 such
that

cos o = or 0 = cos I (a/k).ki'
If k1 is large (I/X > > 1), the angle 0 lies near 90°:

IT 10- - __ 

2 kI

Thus the maximum radiation occurs near 900 (horizontal direction). At 900 the radiation van-
ishes. The amplitude of pressure in the direction of the maximum is independent of kV. In
contrast, along the beam in the direction of the z axis the pattern amplitude is

FM ~ 2k 2 _2 2a
1 + (k) 2 k' k'

showing that the pressure amplitude for l/A > > 1 is determined by the absorption a.

A parameter of importance in the detection of cosmic-particle noise is the total power ra-
diated (an integrated effect):

W =2iTR2f 2( sin O d O

8 C ( (o2 12[ a k --_

1 C | 3IC SJo k. arctan k l

Again if //X > > 1, this reduces to the simple form
/32 (lo )2

16 p C2

The halfwidth of the main lobe of field intensity is then

2 = 2a
-k1 k

Until this point one has assumed that the incident beam's effective cross-sectional diameter is
small in comparison with the acoustic wavelength generated. If the two are comparable, there
is an additional directivity arising from diffraction: Thus in place of F(0) one has

F(0,k) =F() t (O),
where

2 JJ (ka sin )

ka sin O

The maximum value of this function is unity (at 0 = 0). Hence the diffraction due to large
beam diameters reduces the amplitude in all.other directions.
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image /

image

0=900 .g- 0=90
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Fig. 5 - Pressure patterns of a laser beam in an absorbing half space

A sketch of F(61) (no diameter - diffraction effects) is shown in Fig. 5 for ki small and k1
large. The directionality closely resembles a dipole in which the beamwidths depend on kO.

It is instructive to compare these results with the steady state model 1. The average in-
tensity of sound generated over one period 27r/ow of model I is

1 t p2(rt) 1 ( a)3io S 2 a2

a0v (27r/co/) J 2 p c 2 p c 4IRCJ a2 + k2 cos 2O

Assume the effective depth of penetration is I = a 1; then the directivity factor F(0) be-
comes

F(O) 2= O 
1 + k 212 cos 0

The maximum intensity of sound occurs at 0 = 900 (broadside). The angle at which the inten-
sity is reduced to 1/2 of its maximum is

7r+a
01/2 2 k

The total power generated is
a Co /2 12 S2

(X = ) 03 2 So0 [arctan ki - arctan (-kl)]
16 7r p C 2

p
in which for ki > > 1 (I/X > > 1) the bracket has value 7T, so that

a co 62 (10 S) 2

16 p C2

A sketch of F(H ) for the two cases ki small and k/ large is shown in Fig. 6.

Heat Model III (Heated-Rod Model)

In heat model III the entire shower of interaction products from one cosmic particle is
considered to be an elastic rod L cm long and a cm in radius. A mathematical model of such a
rod may be constructed as follows: The equation to be solved is

V 2 P- 1 02 P = -q(roto)47r, q = aQ Cp 1
c2 lit 2 lit C,, 4IT'
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Fig. 6 - Intensity patterns of a laser beanm
in infinite space

in which Qis the heat flux (units: N *m/s-m 3 ), with the symbol Qreplacing Hof the previous
sections to avoid confusion with the symbol H(1 ) for Hankel functions. We shall be interest-
ed in time harmonic solutions q(r0, t ) = q(r )e _ito, so that the above equation reduces to
the inhomogeneous Helmholtz equation:

io2 Q/
V 2p + k2p -47rq(ro), q(r0 ) = -4C

The solution is easily obtained by use of the appropriate Green's function G:

pO (r) = f q (r ) G (rJ r ) d V0 ,

in which Vo is the volume of the source. Because we will employ cylindrical coordinates, it is
convenient to replace both p and G by their Fourier transforms, p (r,n) and Ft{G)

__ r, 7)e dq = fV q(rO) fW iv HO"1 (k*P)ei 2(7o) T adV

P = Jr -rI = (x-x 0) 2 + ( -yo )
2, r = (raz),

k*V k2 - 2 , i1 =ksin 0.
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Here, 0 = 0 is broadside and i7T HO( )(k*P) is the two-dimensional Green's function. Thus

p(r1,2) = 4' q(r0 )i7T Ho$l) (k*P)e 'l' dV0.

We next assume the heat deposition Q is uniform in Z over the length L of the rod and zero
outside:

q (r) = Q (ro0 ) rect |--'L-J.

Now

ILe/2 R~ rect I LL| = L i L sin W('), W(q) = L kL sin 0
- L12 I 2 2J W(-) Z 2

We must next evaluate the expression,

| Ho() (k*P)Q(r0-)dS(r±).

Only the asymptotic field will be of interest.

lim- o Ho'l (k*P) = v k*- eik Pe -i7rl4,k* = k2 2 and P = Ir± 'ol

In the far field

P- lrl -r 01cost,
where < is an azimuthal angle. The absolute value of the pressure field is then

p (r sin W LA (r A

where

A (r, k ) = T \/717O ' e - A Qrl)dS s

We next recover the field in z by taking the inverse transform in z:

p(r ,Z) = sn W LA(rL,k*)ei- 21 .
W 2

IT

Since the first zeros of sin WIW are t = +27T/L, we simplify by taking A to be constant
between these limits with a value of A (rL, k) (i.e. 17 = 0); thus

pQ,0) = LA(r ,k) dq =-2A (rok),
P E2~~-TIL 2

7T

A (r ,k) = 7T 2, 4' e -iA/rjcs k Q (ro, ) dS(r0 1 )

Noting that Q(ro0 ) is constant across the endcap areas of the cylinder, we approximate the in-
tegral (and the absolute value of it) by QS. From the definition of Q we then multiply p by
L/L to obtain

Q 4ITCp and QSL = -- 4ITCI ,
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so that

P~r,0) =IV /7 2 E(" I 9
p~rl,°) =27T A/r, Cp L

The choice of X is somewhat arbitrary. Let us restrict attention to frequencies 25 kHz and less,
so that the smallest wavelength X = 1.5 x 103/25 x 103 - 0.06 m. Since the length L of the
shower is about 10 m, it is seen that X - L/160. This choice is equivalent to stating that the
radius of the first Fesnal zone at a distance equal to L is taken to be RF = (XL ) 1/2 = L/4rT, or
X =L/16 7 2. Thus the field will be measured in the Fesnel diffraction zone. Hence

0-o =1 / L Tc 2 El 1 13 I f2Eji/3
2IT - 16T 2r : CpL 2 C- V~r,

Finally,

- f 2 Effi sin W

11rX ) =2 CP A/Ji -W
In the DUMAND Proceedings [11 Dolgeshein took fj =f/ and ascribed this form of the radi-
ated pressure to Askarian. It is called the Dolgeshein-Askarian formula. From its derivation it
is seen to be valid only when k, > > 1 or ri > > L/327T 3. Although sin WI W is a Faunhofer
pattern, the factor i-1 is added as a Fesnel (or near-field) correction.

Heat Model IV lHeated-Spot, or "Spike" Model)

Let a particular volume VO in infinite space suddenly receive a quantity of heat which
then flows outward at the rate H = pCp ,V, where the units of H are calories per unit volume
per unit time (N nm/mi3 . s), p is the density of the medium (N s/mi4 ), CP is the specific
heat (m 2 . s/K ), and U1 is the flux of temperature (K/s). The equation of heat conduction to
be solved is then

lT = DV 2T + U
ait

or

V2 T 1 liT _ _ H
D lt D PCpD'

in which D is the diffusivity constant (units: m 2/s) and T is the temperature (K). To solve
this equation, one uses an appropriate Green's function GD which is the solution of the auxili-
ary equation

V -GD - D = -47T8 (r -rO 8 (t-to).V2GD ~D lit 

Thus the solution of the inhomogeneous temperature equation is

T = 4 C D' J dto J GD(r, roIt, to) H(ro, to)dVo(ro)
4
7T pC,,,D o G

Now [91

GD (R, ) I D I e-R'/4D R = -r, andT = t -to.
2 V~ (D T)3 2 e DR- r0
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Thus

T = 7S p-31 I dt0 4 1 e R /4D H(r, t )dV.

In conformity with the model we choose H to have the special form of a point source in shape
and time,

H(ro, to) = E0 8 (r -ro )8 (t -to),

in which the units of Eo are calories, i.e. (N -m), and we take r0, to to be at the origin. Then
the history of the temperature distribution at space point r( =1 rl ) and time t is

T~rO =Eo -r2/4Dt
pCp (4IrDt) 3/2

We now turn to the propagation of a thermoelastic wave. In the immediate vicinity of
the origin the temperature rise due to Hcauses an expansion of the medium in the amount /3T
(units of /3:m/m- K). This expansion propagates away as the thermoelastic potential 'I (units:
m 2), governed by the equation

v2 at = _47ITT*, T* = T/41T.

This is a small amplitude linear equation of motion in which c is the speed of propagation of the
disturbance. Since the Green's function of the scalar wave equation is well known, the solu-
tion is easily derived to be

1 4' I' ~8 [R/c -(t -t0 )Cl, f dto J dV, R /3T(ro, to)

'I) f 4 J dV0 ro, t Rlc)

or

/3E d e-R 2/4D(t -R/C)

47rpcp JO R[47TD(t-R/C)] 3 / 2 , Ir-rol.
The integral is taken over a volume of radius R =ct, with center at r.

As it stands the form is difficult to evaluate. Nowacki [10 has circumvented these
difficulties by solving the problem in a different way. He begins with the thermoelastic equa-
tion of motion,

, V2 u + (X +p)V (divu) -yVT = pu

(units of each term, N/m 3 ), in which u is the displacement (m), fi is the second Lame' con-
stant for an isotropic elastic continuum (units: N/m 2), X is the first Lame' constant, y is the
thermoelastic constant (N/Kmi2 ), and p is the medium density. He then seeks solutions of
two scalar potentials tF, and f such that

u = Ve + curl+.

Substitution leads to an equation for mD:

(A + 2/i ) V (V 2D )-yV T = p a-2 V4),
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or
? 24 = mT,

where

]2 = 72 1 a 2C2 = X +21'L a =
I C 2 lit 2 IPX+j

Since the heat-conduction equation for Tis

- Uf 2 = V 2 1 a
it issD Dtth'

it is seen that

mU,

D

Formally this can be written as

El?2-F rj2k 1 U m(T S),
1 3 D 2C 3 3 2 

where

T 1 and S - D-
D 3

2

Hence

11~~~ a _ 2| (TS

ID lit C2 lit2 I

Assuming the thermoelastic continuum was free of all strains and stress for
take the Laplace transform (written with an overhead bar) and obtain

1± 521- , =m(T-S).

t < 0, one can

Since C] 12 I V2-(1/c 2 ) l 2 /at2 and 1 = v 2 - (1/D) a/at, the Laplace transform
can be obtained from the Laplace transform of Tby replacing s/D in the latter with s2 /c2 :

T-= Q+ -RD~~e
47rDR

so that
'~=Q + e Rslc,c.

47rDR

m Q +
.w47rR

2 + =- (units:m 3 K).
pCP

e-RvsD -e
R
CI

C2
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Laplace inversion leads to

= R I { (Rt) + K (R t),t>R/cJ.i

Here, .ti (Rt) describes the heat diffusional effect in producing displacement potential, and
I2 (Rt) describes the wave propagation effect (time scale much faster than IJ ). Using jf only,

one can directly show that the displacement potential of elastic waves produced by heat is

q) wave e -I -R/c)(2/D -], 

The pressure wave (shock wave) due to this potential is

C2
: ~ ~ ~ ~~~ ~ ~~~~~~~~ :C - 2 

P -P 2 - -+ e D e -C2 tD tR/C.
a2 47TR D2

Since this is a transient, it will be convenient to form first the pressure impulse (units:
N . s/in 2) and then divide by some average time AT to obtain the time-average pressure, Pal,.
Thus

00 1 -A 00

4' p(t)a't = pmQ e C2/D(R/C) C4 e -C 2 i/D
Of 47YR -Do

p niQ + C 2

47rRD

Since 1? = X/ (y + 2p.), and X has the units N/m 2/. K, m has the units of K l; that is, im is
identical to ,3, the coefficient of thermal expansion. Similarly, since Q + EoIp C,,, one can
write

f p(t) dt 4TC DR;

Thus the time-average pressure will be

3E0 c2

Put, 47rCp DR AT

The crucial parameter in this model is AT, the duration of the transient. A discussion of AT is
reserved for the section on numerical calculations.

The preceding model was originally derived by Bowen [1], and is'called the Bowen "hot-
spot" model.

In a later paper (ref.11) Bowen reexamined his basic formulation in the light of contra-
dicting experiments on received acoustic waveforms which displayed "bipolar transients" (name-
ly plus and minus spikes) rather than a mono polar transient (or plus spike only). He conclud-
ed that the particular solution Ip ( = 4)) already given by him above must be extended to a
more general solution containing complementaty solutions (called i1+) i.e.

1otal ,P, (rt) + ' (r - ct) + qI (I + ct)
r ~~~~~~r
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in which ;/i + is an outgoing wave, and i/i - is an ingoing wave. The solution is subject to the
boundary condition that at the origin (r = 0) the displacement potential 4),,,,/,, must vanish for
all time t > ta/c, viz.

cI (o,t) + qJ + (0 -COj '>'/c + c/i -( + ct)II).)I =0

in which ),, = (K/,) i1p. In addition the solution must satisfy a set of initial conditions,

4) 0 (rO) I /,<;,6, =; aal ( ,0) Ii =°

By use of this formulation Bowen made several improvements to his earlier theory: (1) the
infinity at r = 0 in the particular solution q) = aq, was removed (2) the discontinuity at r = Ct

in 4)p (or in its derivatives) was removed (3) the radiatedpressure impulse I(r0i) (-4 p(r, 0)

E0 /3 c 2
0

dt'=p li4/6) became I(rt) = 4 p dR [F(ct -r,0)]

I C ~ ~ ~~1I (ci - r) + 2c(b + t)F - 2 exp D [c(b) + (ct -r) Ie +2 D N~Cter lD (b + t) ] 1 2

in which b is the "initial time" (not zero) related to the initial size < r2 > i=0 of the heated
sphere by the formula <r 2 > i =O = 6Db. When c(b/D) 1/2 >> 1 it can be shown that the
time variation of I(rt) is Gaussian,

F c exp[- (ct -r) 2/4Db i.

As a result, the acoustic pressure is bipolar, i.e.

_ al aF 2 2c(ct -r)
at at 4Db

This result agrees with experiment. The first moment of the radiated pulse, namely

J=_ pt'p(rt')dt = 4' t (t') dt'

can be shown to reduce to the value

E0 /

4IT Cp r

if (again) C(b/D) 1/2 >> 1. This agrees with the magnitude of the generalized :Westervelt-
Larson-Hanish model explained below.

These improvements by Bowen move his model in the'direction of the generalized model
used in the calculations noted above. Bowen notes again that the pressure itself because of its
ultrashort time duration is essentially undetectable directly if a single hot-spot is in question.
However J itself (as defined above) is finite, and certainly the superposition of many hotspots
is detectable if E0 is large enough.

Far-Field Patterns of Pressure Radiation

It was shown in the section on heat model III that the far-field angular distribution of
pressure p (0 ) is proportional to the Fourier transform of the spatial distribution of heat deposi-
tion (designated here h(z)); that is,
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L
2

hzlW

u /

L

2

z,,

Fig. 7 -- Definitions of aperture 'function
and far field pressure pattern

p(u) 4' h(z) e ik dz, k = 27T/X, and u = sin 0.

The angle 0 is defined in Fig. 7.

Several distributions h(z) may be pertinent to this survey. We list them here, together
with facts on sidelobes of the developed patterns. In each case we take the'length of the depo-
sition track to be L and choose the center of the pattern to be at z = 0. Patterns other than
the following can similarly be constructed as needed to conform to experimental result, or to
additional modeling.

Exponential Heat Deposition

Let h (z) be proportional to e - and for ease of computation shift the line z =0 to z.
L/2;. that is, take h(z) = e z, z> 0. Then, as sketched in Fig. 8 the normalized radiation
pattern is

p(u) = 1
+ k

1 +/- k sinO
a

This pattern has no zero crossing.

Im p(u)

Fig. 8 - Radiation pattern caused by
exponential heat deposition
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Uniform Heat Deposition

Let h(z) = rect L, having unit amplitude between -L/2 and +L/2 and being zero else-
where. Then, as sketched in Fig. 9, the normalzied radiation pattern is

p(U) sin (7r Lu/X)

The first zero crossing is at' u = X/L, and the first sidelobe is at u = 3X/2L. The 3 dB
beamwidth is 0.88 X/L, and the first sidelobe is -13.4 dB down. This is the case of heat
model III.

u Fig. 9 - Radiation pattern caused by
uniform heat deposition

Cosine Heat Deposition

Let h(z) = cos 7-Z rect L, for L I Z L, with h(z) being
L ' 2 *<1<~2

sketched in Fig. 10, the normalized radiation pattern is

p(u) =T|sin W + sin Y

where
0

W = 7rAL u - 2L and Y = A Lu + 2L|

zero elsewhere. Then, as

PMu

2X/L

I /

3X

2L

Fig. 10 - Radiation pattern caused by
cosine heat deposition

h3X 2X 
The first zero crossing is at u =-, and the first sidelobe is at u =- and has a magnitude of

2L' L
-23.5 dB.

Gaussian Heat Deposition

Let h(z) = e -2:2/L2, and assume no limits in z. Then, as

sketched in Fig. 11, the normalized pattern is .

p ) = e 2 2L2&12 /2A 2

l0 U

Fig. 11 - Radiation pattern
caused by gaussian heat depo-
sition

in which or is its standard deviation, namely crI = X/7rL. There are no zero crossings.
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Parabolic Heat Deposition i

Let h(z) =I (2z/L) rect L, - 2L < Z pu) 7(Z -2 2 41

0 U

Then, as sketched in Fig. 12, the normalized beam pattern is

p(u) = 3 1sinck -Cos qs = kLu Fig. 12- Radiation 'pattern caused by
qJ 2 1lq JI 2 parabolic heat deposition

The first sidelobe occurs at u =7 and its magnitude is -22 dB. The 3-dB beamwidth is
4L'

1.16 X/L.

Impulse Response

As was noted earlier, the transient acoustic pressure given by

p (r,t) = J p(rob ) h (o) e

The steady-state pressure is a directional function of the spatial coordinates. A discussion of
spatial dependence has just been presented. We are interested now in the temporal aspect and
omit details of spatial distribution by assuming the radial pressure to be spherically symmetri-
cal:

p~~r~~w e ikr

p A-
r

To find A, we shall specify some radial surface velocity of a fictitious sphere (radius a). Let
this be v,. and let the medium of propagation be homogeneous and isotropic. Then

V M 2 |1 - idr e ik'; k = W/C,kp cr2 p-k e

and on the surface of the sphere

A(a = , (aa )) kp ca) 

Hence, the acoustic pressure anywhere is
kca2 eikA'(r-a)

p(rw) = k ca e (aM( - ika) r vra&)
If we choose a surface radial velocity vr (a,t) then

v r(ao) = 'v, (a,t eit )dt.

Thus the transient acoustic pressure radiated into the far field is

f- i (I -ika) Ir 2v (' J * e T
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As an example, let the impulse of heat deposition be a rectangle:

|V,.(t = V |°<, o
l =°0 J elsewhere.

The Fourier spectrum is known to be

v,. (aw) =-IV -e

By direct integration one obtains the transient radiated pressure to be

p(i~t) = 0, < r - a/c,

= pcVo a e (r/a) [-(r.-)/Cl -a < .< r-a + Trc 'ec C

=pV0 a le -(tia) -- a)/e] --(ca) (.-(I) + T,]| > -a
=cV,-I' U e I i-,/c 7J 0

Clearly the nature of the response will depend on the ratio T,,/ (a/c). Three conditions of this
ratio, and the consequent pressure plots are shown in Fig. 13. In Fig. 13a the signal p travels a
distance cT0 much greater than the radius of the sphere; both positive and negative impulses
are widely separated in time and are therefore equal. In Fig. 13b the signal p travels a distance
cT0 which is approximately the same as radius a. The positive impulse overrides the negative
impulse, reducing the latter. In Fig. 13c the travel distance cT, is smaller than a. This
corresponds to a spherical radiation suddenly increasing in size from small to large. The nega-
tive pulse is due to the fluid inertia (moving radially outward) at the time of cessation of ex-
pansion. It is much larger than the positive pulse, because the larger sphere is a more effective
radiator.

p p

O I r-

(a)

p

t

(b)

(c)

Fig. 13 - Impulse response caused by rectangular heat deposition
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Another time impulse is the triangle

* ~~~v Wt Mt, 0 < t < . ;. 

=-mt + 2 V0 , 2 < t < To,

= 0 : elsewhere.

The radiated transient appears as sketched in Fig. 14. (Reference [121 gives additional de-
tails.)

p p

0 t t

(a) (b)

P

: ~~~~~~~~~~~~~ A~~~~~~~~t

(c)
Fig. 14 - Impulse response caused by triangle heat deposition.

Estimation of Time Durations

In all heat models the estimation of time durations of impulsive heating and acoustic ra-
diation is most important. Loosely two types of time-dependent processes must be considered:
the heat flux itself (calories per second) entering the energized volume of the liquid and the
rate at which the thermoelastically induced shock waves cross the heated region and are radiat-
ed outward as sound. The two time durations are explained by a simple mathematical model.
It was noted earlier (for heat model Ib) that if the heat source is a delta function in space and
time i.e. E, 8 (t) 8 (r) ), the acoustic pressure developed is a shock transient:

p(rt) = 1 CI 86c - tj

The rate of energy deposition is E0 8 (t) or E0 /T,. The acoustic time history is a/lt [E0 ° (t)]
or ! EI/TI T2. Our goal is to find estimates of TI, and T2.
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It is simplest to estimate the "acoustic time" characteristic of the radiation process. Let d
be a characteristic dimension of the heated volume (e.g. diameter of a cylinder or sphere). By
analogy with traveling waves in a parallel-plate duct we seek a cutoff frequency of such waves,
that is, the frequency associated with a mode which just fails to propagate down the duct. If I
is the width of the duct, the first transverse mode (defined as reinforcement of incident and
reflected waves one wavelength X apart) travels at an angle 0 such that 2/ cos 0 = X(or such
that X < 21). Each X is associated with a particular 0. The largest wavelength for the first
transverse mode is X = 21 at 0 = 00, which means the wavefront is parallel to the duct wall and
forms a standing wave, bouncing back and forth between walls at one wavelength reinforce-

ment and not propagating down the duct. The cutoff frequency is then f = Af=M - = In a
X 2 1

similar way acoustic reinforcement in a heated volume at one wavelength separation occurs
when X = 2d, and the cutoff frequency is f,,1 = c/2d. The choice X = 2d is equivalent to the
wavenumber-diameter product kd = 7r ( or k = 2IT/X). In acoustic theory of radiating surfaces
this product is favorable to radiation of wavelength X (favorable in that the normalized radia-
tion resistance is near unity and the reactance is low). Alternatively expressed, it is favorable
to radiation of wavenumbers near 7r/d.

The cutoff frequency may be taken as the bandwidth Af of the radiated acoustic power
spectrum. The time duration of the associated transient is At _ (Af) -1. Thus, roughly, T2
- J;1, lThe estimation of Ti is uncertain, the varying values put forth being the principal
difference between models. All models in which heating of the fluid is the source of sound can
be reduced to the schematic formula

IPI /3 47ECp [I rl C|

in which the subscript 1 refers to heat deposition time and the subscript 2 refers to acoustic
transient time. We assume T2 f2- _-- f,,7 1 , 'Thus T2 is fixed by the speed of sound in the
liquid and the characteristic dimension (= d) of the model. The value to be assigned to T.
depends on the model. Four models and their assigned values are as follows:

* Heat model Ia (infinite with space, steady state), with

/3 E, I2IT
1I 4Ir Cp I rI T /f2|

so that

T:

= 2 1, where Ti is unknown;

* Heat model lb (infinite space, transient), with

I =4,,r CiI rl |T | 2T 

so that

T. =-, where Ti is unknown;
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* Heat Inodel III (Dolgeshein-Askarian, or heated rod, model), with

/3 E, (2IT/ /2
I~I -4IT C, Ir±I .,]ZI -, 2 / .47r Cp | rol El Jq | i t

so that

* _ T2 VL1 r
T1* 27r

* Heat model IV (Bowen, or heated-spot, model), with

/3 E0 C2 I

4wr Cp R LDT2 j T2 =ArT

so that

D
TIO = 2'

Thus in both the Dolgeshein-Askarian model and the Bowen model the value of T1. can be in-
terpreted as being assigned. For the other models we can estimate T1 in the following (some-
what arbitrary) way: We assume that the cosmic particle on entering the liquid is decelerated at
a constant rate from a maximum velocity v to zero, making the average velocity v/2. The time
required to complete the transit over a length I of the shower is therefore

2/

v

For a relativistic particle of energy E and rest mass mocL, CL being the speed of light, the
velocity is

v cL I o C2 1 

A typical application is for muons, for which '7no C2 1 x 108 eV. Since cosmic particles of
the heavy nuclei type have energies that exceed cosmic-ray protons (E - 2.5 x 109 eV), the
speed of muons is approximately the speed of light. Thus

21T.--
CL

In each model in which T. is not assigned we choose some characteristic length Ito estimate
'T1 by this formula.

The arbitrariness of this estimate is apparent. From tentative experiments [1] and other
models [71 it seems more plausible to take TI, to be about Ijts, which is some 2 or 3 orders of
magnitude larger than the values predicted above. This estimate is sharply different from what
is predicted from bubble models, from which, as discussed latter in this report, T1 appears to
be of the order 10 -lls.

Numerical Calculations

The models listed above will now be numerically evaluated. In each case we will present
the absolute magnitude of the pressure field in the direction in which it is a maximum, at a
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nominal distance of I m from the origin' (or radiation; center), and per' unit energy input (in
electron-volts). When, as discussed in' the preceding subsection, the deposition time is not as-
signed, we will assume the interaction shower to be a cylinder a cm in radius and L m long,
the values of a and L being assumed in particular cases.

Model la

In model la

We take I,,S
at broadside,
[1]. Thus

("',I 5, 1. .
hA = 4w T C', ,I r 1 + k

2 I2 cos 2
0}

= W = E,,/T1 , and 0, = 2T . where .12 = T2 -l , and we calculate the maximum
which is at 0 = 900. To calculate T,, we assume the shower length L to be 10 m

T 2L 2 X 10 m -67

CL 0.3 x 109m i/s

To estimate T2 , we will take f = c/2d, where d is t'he diameter of the cylinder. The diameter
depends on the energy and is estimated to be between I and 12 cm. Let us assume d = 3 cm,
so that

=1.5 xl cm/s
* J2 =_ 2 - = 25 kH :'2 2 x "3cm25H

and

* T2 = 12 1 ~~~~~=40/,s.
Thus at I m

E 4i -c T. T, IrT
1.4 x 10 -4 K -I x 1.6 x 10 - 19 ,J/eV 

47w x 4.18 X 103 ( m 2/s 2 K) x 40 x 10 -6 s x I i x'67 x 10

1.6 x 10 -16 N/m 2' eV -1.6 x 10 -15 dynes/cm 2 * eV

Hence for Model la

I pi/E,, = 1.6 x 10 -16 Pa/eV rrns at 1 m from the axis of a rod 10 m long and 3 cm in di-
ameter, for steady-state conditions at 25 kHz, with T. = 67 ns. ' ' I

The total power radiated in the case kA > > I is

a /32 (IS) 2

acoustic 16 c2

Setting I,,S = E,/T,, - = L, we estimate

W ( I,,, 1 2rJI /32 2wn- x 2.5' X 10 4 x (1.4 x 10 -4)2

(E,,/T, )2 'L 16 t, C2 10 X 16 x 103 x ((E(I T, ) 2 p ^ (4.18 x 103)2~/
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Hence for model la the total radiated power is

Wa~ousc '= 1.10 x 10 -15 (EI/T') W rms from a rod 10 meters long at 25 kHz.Wacoustic ~01

Model lb (One-Shot Siren)

For model lb the time history of the transient radiation is

p(r,t) = 1a cos t -Kcos 0 sin 11
47T C,, (a 2 + K 2cos 2 0)IrI | c I t c

'X n1[ ( R/1 T/2 JK =11/c.

At broadside 0 = 900; Hence the maximum amplitude is

- /E0
I PI 4

IT C,, Irl T1

As before we take fi T2 = 7T, so that

1PI 4C,,IrI E T. T2 1

This is 7 times larger than model la; that is, for model lb

Pnmax = 5.03 x 10 -16 Pa/eV at 1 m from the axis of a rod 10 m long and 3 cm in diameter,
for transient conditions at center frequency of 25 kHz, with T1 = 67 ns.

Model III

In the Dolgeshein-Askarian model

P (1r 71) = Ji /3E sin W

On the axis at broadside sin W/ W = 1. Taking.j =.t, and T. = T2 , one arrives at

E, 2 Cp jI, 2 T2T

In the near field, at r1 I m,

jr 1.4 x 10 -4 (K) 'x 1.6 x 10 - 1 9 J/eV
E,, 2 x 4.18 x 103 (m 2/s 2 K) (10 x 1)1/2M (4 x 10 -5)2s2

Hence for model III

I piI/E1, = 5.2 x 10 -19 Pa/eV rms at 1 m on 'the axis of a rod 10 m long for steady-
state conditions at 25 kHz.
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Model IV

In the Bowen model the average pressure radiated is

/3 E,, c.

PaV 4irC,)DRAT

Th us

E0 4rrC1 ,T1 T 2 RX T. = C and T2 ATr.

The effective deposit time is given by

= D - 1.43 x 10 7 m/s 2 -635 10 -14 S,

C2 (1.5 x 10 3)2 in/s 2

and the interval between compression and rarefaction is

T2 =4 x 10 -5 s.

Hence

PV 1.4 x 10 -4 K -I x 1.6 x 10 1 9 J/eV

E,, 47T x 4.18 x 103 (m 2 /s 2 K) 'K x 6.35 x 10 -14 S x (4 x 10 - 5 ) s X 1 1

= 1.67 x 10 -10 N/mi,2 e/V.

Thus for the Bowen model

p,,,I/E, = 1.67 x 10 -10 Pa/eV at I m from the origin of a spike, averaged over 40fis,1
corresponding to 25 kHz.

Ambient Noise and Molecular Agitation Noise

Below 35 kHz the noise in the ocean at the lowest measured level is the ambient noise,
in distinction to molecular agitation noise. The lowest limit of prevailing (ambient) noise has
been compiled for all the oceans by Wenz [ref. 13]. Table I is a brief listing of sound-pressure
spectrum level in a 1 Hz band in various units taken from this reference. Above 35 kHz the
noise L, (units: dB) due to molecular agitation is predominant. It can be calculated from an
empirical formula at frequency.f'(units: Hz),

Li -75 + 20 logl 0 ,j/ dB re 1 ,lPa

[141. At 25 kHz

LI -75 + 20 loglo 25,000 = 13 dB re I ,uPa. -87dB re ,bar

This is 5 dB less than ambient (Table 1). In making our calculations we will use the (rough)
noise figure of 7.9 x 10 -6 Pa in a 1 Hz band.

To process the acoustic transients in their entirety, one must arrange to have sufficient
bandwidth in the receiver circuit. We noted earlier that the smallest time intervals to be
recorded are of the order of 40 ,us. Roughly we take the required bandwidth to be 104 Hz

37



: S. HANISH

Table I - Ambient-Noise Sound Pressure

Spectrum Level in a 1-Hz Band

itf | 8 Pa dB re dB re

(Hz) p ____a 2Op Pa I lgbar

1 28,300 63 -11

10 1,120 35 -40

100 100.2 14 -60

1,000 22.4 1 ' -73

10,000 10 - 6 -80

25,000 7.9 - 8 -82

30,000 6.3 -10 -84

Hence the total noise spectrum level against which the signal spectrum level to be detected is

(again roughly) 7.9 x 10 -6 x 104 = 7.9 x 10 -4 Pa at 25 kHz (say approximately 10 3

Pa). Here the spectrum level is assumed flat over the band. However, if we do not desire to

know the entire signature of the transient radiation, the receiver bandwidth can be much

smaller. The theory of signal detection in noise allows the choice of receiver bandwidth to op-

timize the probability'of detection against the probability of false alarms relative to a threshold.

Thus the bandwidth is fixed only to the extent that probabilities and thresholds are selected

subject to the goals of the signal processing itself. We continue the analysis on the arbitrary

basis of a 1-Hz band and a flat 104 -Hz band.

Limits of Detection Range

Local noise (ambient or molecular) limits the detection of a distant signal to certain

ranges. We choose a criterion that a signal is detectable if its absolute level is equal to or is

above the sound pressure spectrum level of local noise over the bandwidth of the receiver. In

practice the threshold is set higher than the local noise level, but here we are seeking orders of

magnitude. Applying our criterion, we see that the limit range of detection (Rj,,,.,) in units of

meters per eV may be obtained from the previous numerical calculations by use of the formula

X BW 1 /2 = Ip/Eo I R=l
PNoise>

:H~,1/2

in which n depends on the model and BW is the bandwidth of the receiver in hertz (relative to

power). We choose the local noise to be in a 1-Hz band at 25 kHz: 7.9 x 10 -6 Pa/ (Hz) 1/2.

Applying the formula to selected models we have the following. In these calculations we as-

sume attentuation is due only to spherical spreading and neglect absorption.
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Model Ia

In model la, mn = 1 and IP/E,,I R =1 = 1.6 x 10 -16 Pa/eV. Thus

Rlij.,j, x B W} = 1.6 x 10 16 Pa/eV x I m
7.9 x 10 -6 Pa/Hz 1;'2

= 2.03 X 101 m (H)
e V

from which we obtain

Rlj,,,j = 2.03 x 10 m1 V for BW = 1 Hz
eV

and

Rj, ...it= 2.03 x 10 -13 m for BW = 104 Hz.
eV

Model lb

In this model lb n = 1 and the maximum amplitude of transient pressure measured at 25
kHz is 5.03 X 10 -16 Pa/eV. The range limit is therefore

Rj, x BW -2 = 5.03 x 10 -16 Pa/eV x Im
7.9 x 10 - 6 Pa/Hz 1 2

= 6.37 X 10 - m Hz 1 /2
6.37 x eV

from which we obtain
RIM71j = 6.37 x 10 -11 m/eV for BW = 1 Hz

and

R j,,,,,= 6.37 x 10 -13 m/eV for BW = 404 Hz.

Model III

In model 111, n =- / and E,,I =5.2 x 10 -'9 Pa/eV x m1 2. The range limit is

1i2li X BW 1 /2 = 5.2 x 10 19 Pa/eV x m 1 2

7.9 x 10 6 Pa/Hz' 2

6.58 x 10 -14m1.2 . HzI ;2/eV,

from which, for points of observation in the near field,

illin =6.58 x 10 14 nV for BW= I Hz

and

limi,,= 6.58 x 10 16 V for BW = 404 Hz.

In the far field r] replaces ml/2.
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Model IV

In model IV, n = 1, and pV/E 0 = 1.67 X 10 10 Pa/eV x 1 in. The range limit is

R xlpli BW 1/2 = 1.67 X 10 10 dynes/m 2 /eV x 1 i
7.9 x 1 Pa/Hz 1 1

= 2.11 X 10 - 5 m * Hz i/2 /eV,

From which
Rl,,,.j, =2.1 1x 10 -5m/eVforBW=l Hz

and

Rh,,,n, =2.11 x 10 7 m/eV for BW= 10 sup 4 Hz.

MICROBUBBLE MODELS

The mechanism of the generation of sound by high-energy particles in water described in

the preceding section is that of a thermal shock of an elastic medium. We consider next a

different mechanism, in which sound is produced by formation and collapse of microbubbles.
The theory of this process originated with Sette [15], who hypothesized that cavitation nuclei
in liquids may be formed in part by irradiation by cosmic particles. In several subsequent arti-

cles Sette and Wanderlingh, [16,17] elaborated on this hypothesis both with theory and experi-
ment and applied it to explain the phenomena of bubble chambers. Although they did not

discuss the connection between microbubble formation and collapse to acoustic noise genera-
tion, it is a direct matter to relate these two. We will make this connection later, but first we
will review the theory of bubble nucleation to lay the basis for numerical calculation.

Bubble Nucleation

Historically the first significant paper on bubble nucleation by high-energy particles in
liquids was that of Seitz [181 in connection with the theory of bubble chambers. He hy-

pothesized that most of the bubbles are nucleated by energetic free electrons resulting from
collisions of the particles with the molecules of the liquid medium in the bubble chamber.
These electrons are decelerated with extreme rapidity, producing localized hot regions or "ther-
mal spikes" which explode into bubbles of larger than critical size (that is, the minimum-size

bubble is not in equilibrium with its surroundings, which permits growth by vaporization from
its walls into in cavity at the temperature of the cavity). The time of bubble creation by explo-
sion he calculated to be of the order of 0.1 to 0.01 ns. The bubble, after being created, is
thought to expand by withdrawing heat from the immediate surrounding fluid. The maximum
bubble size attained is limited by the initial energy of explosion, by heat diffusion away from
the bubble, and by depletion of local permanent gas (air) in equilibrium with the surrounding
medium.

The energy for growth of bubbles in the the bubble chamber is wholly supplied by the

medium. In contrast to the theory of bubble chambers the production of microbubbles in or-
dinary liquids by high-energy particles requires, that both creation and growth be energized by
the kinetic energy of the particle; no energy is supplied by the medium. In bubble chambers
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the temperature of the medium is locally near the boiling point. When a high-energy particle
ionizes the medium, the particle supplies energy to create an embryo of critical size. Growth
then proceeds by evaporation of the medium at the bubble wall, the heat being supplied by the
medium to the embryo in an isothermal process. In contrast, when a high-energy particle
enters an ordinary liquid whose temperature is well below the boiling point, there exist no em-
bryos with critical radius. First a limited region of medium must be heated above the boiling
point, and in it an embryo must be formed which has the critical size as determined by the ini-
tial temperature of explosion. Then, as the embryo expands, it draws heat from its heated sur-
roundings, cooling down a local heat pocket ("spike") in the medium. As the temperature of
the heated pocket falls, the theoretical critical size of a microbubble increases (Fig.'15) at the
same time as the radius of the actual expanding bubble (of initial energy E,) increases, the
latter being larger, but the difference between them eventually growing smaller because of ex-
haustion of the original heat of deposition by heat transfer and gaseous diffusion At some
lower temperature the bubble radius becomes critical, then growth ceases (point A). If E, is
large enough, the critical radius is not reached at any lower temperature: the bubble keeps on
expanding (curve Eo) until stopped by exhaustion of the initial energy.

550 E

500 %E

Wu 450 -THEORETICAL

Critical Radius

Lu 400

350

300

10-7 10-6 io-
5

10-4 10- 3

RADIUS icm~

Fig. 15- Theoretical critical radius vs temperature of medium
(Fig. 7 of Ref. 16)

A more intimate description of bubble nucleation has been developed by Sette and Wan-
derlingh [11]. From various experiments and thermodynamics they have constructed the fol-
lowing theory of the energy balance in bubble formation. The generation of a bubble of ra-
dius R requires an energy E(R) which is the sum of two terms: the energy required to form
an interface of given surface tension fixed by the temperture of the bubble and the energy re'-
quired to evaporate water from the interface into the bubble. Thus

E(R) 4=47R2 a-* + mAH,

in which (a * is the surface energy density J , mn is the mass of liquid (water) evaporated in
grams and AH is the heat of vaporization in J/g. A calculation based on this equation shows
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that hundreds of millions of electron-volts (1 eV = 1.6 x 10 -19 i ) are needed to produce
bubbles of raduis 10 -4 cm and larger and R is the radius in in. Experiments show that only
10 MeV (approximately) are needed, thus contradicting the calculation. The disc&repacy is ex-
plained by noting that the role of dissolved gases has been neglected. Actually the heat AH is
the sum of the heat associated with the transition of dissolved gases from the liquid into the
bubble cavity and the heat of evaporation of water from the bubble wall. The first heat is
negative (energy is released when gaseous air comes out of solution), and the second heat is
positive. E(R) is always positive and goes to zero at the critical point of the liquid. Below 450
K the gas diffusion predominates and AH is negative [Fig. 5 of Ref. 16]. The importance of
this case requires additional comment. If one rewrites the energy balance in the form

E(R) = 47rR2{(r* + AH[(RPO + 2ar)/3RTI}

in which the braces include the total surface energy, AH is the sum of gas and vapor heats,
and (RP,, + 2cr)/3RT is the mass in grams, assuming a perfect gas (R being the gas con-
stant), and if this equation is plotted as the expression in braces vs absolute temperature, it will
be seen [Fig. 6 of Ref. 16] that the unit surface energy (the entity in braces) required to form a
bubble of radius R = 100fint is negative below 410 K and positive above it. This means that
below 410 K the heat generated by the freeing of permanent gases from solution into the cavi-
ty is more than adequate to evaporate the medium at the wall and sustain surface tension of a
100Am bubble and above 410 K it is inadequate and energy must be supplied from the cosmic
particle. Thus at 600 K, which is the threshold for the sure formation of a cavitation nucleus,
an external source of energy will be required to form a 100gmn bubble. In Ref. this energy is
estimated to be 4 to 5 MeV for a 70mni bubble, both as to its initiation and its "indefinite"
growth. Energies less than this create bubbles of lesser size whose growth ceases when a criti-
cal radius is reached. This phenomenon of bubble growth and cessation is vital enough to re-
quire additional comment. It can be pictured as follows (Fig. 16). A marble is pitched up the
slope with an initial energy El, < 4 MeV. This brings the marble to radius RI, where motion
ceases (the bubble stops growing). If the energy is E2 , also less than 4 MeV, the marble stops
at R2 . However, if the energy is 4 to 5 MeV the marble rolls over the threshold and continues
on "indefinitely" (the bubble expands indefinitely by absorption of heat, if available from its
surroundings).

The phenomenon of zero or negative energy required to form bubbles at particular tem-a
peratures may lead to the conclusion that there is no limit to the number of bubbles that can
be formed. However each bubble formation is based on the availability of an embryo or nu-
cleus. The probability of finding such a nucleus depends strictly on the initial temperature of
the heated region. Above 600 K this probability is near unity (assuming atmospheric pres-
sure), and below 600 K the probability becomes negligible [171. Hence there must be enough
energy to bring a sufficient volume of water to 600 K. Making the assumption that the water
so heated is saturated leads to an initial water pressure (in a local area) of 12.2 MPa (1786.6
psi) abs (from steam tables). After expansion to ambient pressure (or below) the bubble
reaches a final radius Rmax whose value is determined by the initial energy of the interaction
products. . .

The expansion to lower pressure occurs so rapidly it can be thought of as an explosion.
It is pictured in this way: Water at room temperature is heated at nearly constant volume to
600 K (620'F), as if the water were in a tiny steel tank. The momentary existence of this tank
is attributed to the high rate of deposition of the energy from the cosmic particle (or its in-
teraction products). When sufficient heat is added to bring this tiny volume of water to satura-
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Fig. 16 Illustrative analog of bubble growth and cessation

tion, the saturation pressure in the fictitious tank is 12.2 MPa, as noted above. At the instant
of completion of deposition the tank explodes into a bubble which expands until the energy of
deposition originally supplied is exhausted. The expansion is nearly isothermal as the bubble
draws energy from the heated tank. Toward the end of the cycle, when no more heat is avail-
able, the bubble can continue to expand briefly in an adiabatic process down to ambient pres-
sure or below, the driving force being the residual inertia of the water immediately surround-
ing the bubble.

Theory of Forster and Zuber

The preceding description of bubble formation and growth has yielded two important

parameters: the driving initial temperature and the final (or maximum) radius. The driving
temperature (here taken to' be 600 K) initiates the explosion, and the initial input energy
determines the final radius of the bubble. The time history R (t of the radial expansion is
however not simple. Numerous authors have investigated this knotty problem. We will
proceed here to sketch an approximate theory based on the work of Forster and Zuber [191,
which has been selected becauselof the clarity with -which it brings the intractable parts of the
theory into focus.
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The equation of radial motion of a bubble wall begins with an extended version of the
early formulation of Rayleigh. To set this up we note that the rate of change of volume veloci-
ty of a bubble of radius R is

d |d4 1rR31 =44If2RR2+R2Rl|
dt Idt 3 J

If one assumes the liquid is incompressible and then applies Bernoulli's law of the flow of an
incompressible fluid, one arrives at an equation of motion

R2 R + 2RR2 R4 R 2 Pi0, - Pext

r 2r4 Pj.

in which r is any radius >R and the right-hand side is the difference between the internal
pressure and the external pressure (divided by pO). Setting r = R and writing the internal
pressure as the sum of the vapor pressure p, and the permanent gas pressure pg and the exter-
nal pressure as the sum of the surface-tension pressure P,, and the hydrostatic pressure p00 ,
one can then write

{RR + 2 =PV + P9 -POO +2R |

To simplify matters, one first neglects the internal gas pressure and then relates the quantity
Ap = pv -p,, to the change in temperature ATby means of the Clausuis-Clapeyron equation

L

AP=T(v -f

in which vg and vf denote the specific volume of the vapor and fluid respectively, L is the la-
tent heat of vaporization, and AT is the rise in temperature above T The temperature
difference AT is determined by the solution of a problem involving heat conduction across a
moving surface of evaporation (in spherical geometry). This solution may be found in Ref.
[15].. If the heat input to the fluid is Qcalories per unit volume per unit time, then for thermal
diffusivity D

AT(t) =1C(D)/2p J(t) + AT :
Cf (IT D) 1"PJ O~f 

Here pg and pf are the densities of vapor and liquid respectively, D is the thermal diffusivity of
the fluid, J(r,iA') is an integral functional arising from the solution of the heat-conduction
equation noted in Ref. [20], AT is the superheat, and Cf is the specific heat of the liquid cal/gm
K. Subsitituting all these expressions into the equation of motion, one obtains

RR +-3R2 + R - + -yj(t) =Q t
2 R

where

2o- _ LAT L2 pg
Pf' P' fT(vg -Vj) P 2T'g -V /) (ITD) '/2Cf

Qu QL

Pf CfT(Vg -TVg )

This is an integral-differential equation in R (t): J(') is a functional of R (0. A more reveal-
ing equation can be obtained by introducing the concept of critical radius. This is done by not-
ing that for superheat AT there is a corresponding pressure rise
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LAT

T(v'g -V) ,

The bubble radius corresponding to a surface tension a- at pressure Ap, is called the critical ra-
dius

2o- 2o- a
nt Ap 23pf /3

Dividing the equation of motion by Rail, one has the more useful form,

r. + 3 ;2 _ A (r 1) + BJ=qt

where

2a- B=I Q* - RA = 2J B = r=
tf3 'ri2 ' R 2 :r RP crit crit ~crit r1

Because of the functional integral J(t) the solution of this equation is intractable as it stands.
Hence a general formula r(t) for all time t is not available. Forster and Zuber demonstrate
that for very small bubbles one can neglect the water inertia during growth. They then reduce
the problem to the solution of an equation of the Volterra type,

r 1 + q (t) = ' '(ti(t) dt" C* A
r C*r 0o (t -a') BR Ci= 

in which J(t) has been reduced by various arguments to the integral shown. Even this form is
intractable. However an upper limit for r(t) may be obtained by using the mean-value
theorem to calculate the integral (which then becomes 2rt 112 ). Using this approximation and
assuming q(t) is small relative to the other terms, one finally arrives at a solution for r(t) im-
plicitly given by

r -I 1/2~~t I rl 2

The initial condition is r = r, for t = r2/C 2. To start the numerical calculation, one assumes
r, is slightly greater than 1, say r1 = 1.01. Since

Cat = A P~~~2 T(vg-J (7r D) 1/2 CyR 2tC* A _ 2a- P/G'g Vf)(T)fcrit
BR eric pfRn 1 t LgPgRit

pjA TOrD) f/2C/

RerirLP g

we can interpret ATto be the initial superheat. Hence

Ca ArCf (ITD) i/2 ,
RCri LvL

This is a useful formula for estimating the numerical value of the right-hand side of the solu-
tion. To obtain a feeling for the magnitude of the terms and parameters involved we will calcu-
late two cases as follows.

Case 1. The liquid (water) is superheated 50C above boiling at atmospheric pressure. We
desire to find Rc ri and the time required to form a bubble of radius R = 20 iAM.
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Solution to Case 1: The thermodynamic chart for water shows that at T = 373 + 5 =
378"K, vR = 27 ft3 Ab, v1 = 0.02 ft3 Ab, L = 974 Btu/lb, C' = 4.18 J/g/ K, and D = 1.43
x 10 3 cm 2 /s. Then

J LArV (974 x 2.32) (J/g) x 5 K x 0.02 x 62.4 cm

T(Vg - ) 3780 K[(27 -0.02) X 62.4]cm 3/g

-2.3 x I1 5 cm2 /s2

and

=2a= 2(JVt = 2 x 50 x 0.02 x 62.4 = 124.8cm 3 /s 2 .
Pj1

Therefore

RCail a = 24.8cm 3 /s 2 5.6 X 10 -4Cm 5.6 A in.
/3 2.3 x 10 5cm 2/s 2 =56x1 cn=56g

From this

AT (OD) l/2Ctg
C* = .

C 5 OK(Ir x 1.43 x 10 -3 )1/ 2 cm/s'/ 2 x 4.18 (J/g K) x 27 x 62.4cm 3 /g

5.6 x 10 - 4cm x 974 x 2.32 (J/g) x 0.02 x. 6.24 cm31

= 1494 s -1/2.

Since r = R/RCr, = 20 ,m/5.6 gim = 3.57, we find

r + In r - 1 C*t 1/2
r1l-

or

3.57 + In 2.57 = 1494tl/2
0.01

or

t =37 A s.

This is approximately the result that Forster and Zuber show in their Fig. 1, where
R = 2 x 10 -3 cm corresponds to a formation time of about 3 Oas. Note that t depends on C*
inversely; that is, the higher the superheat, the faster the time of formation of a bubble of
specified size.

Case 2. We now calculate the case of a cosmic particle (or interaction 'product) with
enough energy to form a 600-K spike. We desire to find the time required to expand an em-
bryo to a radius of 70 ,im.

Solution to Case 2. The superheat is 227°C. From steam tables, using vapor at 15 psi and
620°F, and fluid at 15 psi, 212°F, we have vg = 43.6 ft3 /lb = 2.72 x 103 cm 3 /g, V/ = 0.02
ft3 Ab = 1.25 cm3 /g, latent heat of vaporization is 1345 - 180 = 1165 Btu/lb = 2.7 x 10 10
erg/g. The specific heat at constant pressure is 4.18 x 107 erg/g K, and the diffusivity is 1.43
x 10 -13 cm 2/s. Then
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LAT V 2.7 X 1010 x 227 X 1.25 (cm 3/g) = X 10 6 cm 2/s2

T(vg - N) 600 (2.7 x 103 cm 3 /g) m

and

2a-
a =-2xr =2 x 10 x 1.25 25.

Therefore

RC, a 4 2 X 5 x 10 cm 53nm.
Cr0 /3 4.7 x 10 6

From this,

AT (wD) 1 /2 CVg

Rcrit LV1

227 (O x 1.43 X 10 -3) 1/2 4.18 X 10' x 2.72 x 103

5.3 x 10-6 x 2.7 x 1010 x 1.25

=9.7 x 106 S -1/2

-5 ~7 x 10The time required to form a bubble of radius R = 7 x 10 5 cm (r = = 13.2) is
5.3 x 10-6

then

13.2 +In 12.2 =9.7x10 6 t 1 /2
0.01

or

t= 4.38 x 10 -12 S.

This is the same order of magnitude as that predicted by Seitz (- 10 -S)*

Clearly such small times must be treated with caution. The process is essentially an ex-
plosion, and the difficulty of treating an untractable integral-differential equation places a great
strain upon the analyst to quantify the growth of a bubble in such short times. Although the
work of Forster and Zuber allows one to construct a graph of r(t) vs t and from it /(t) and
i(t) needed for estimating the radiated sound, the limited conditions of validity, negligible
heat input, simplified heat conduction, mean value integration, etc.) make it unsatisfactory for
small radius bubbles and short times. We adopt next a different approach.

Approximate Solution of Bubble Growth and Collapse
Using Thermodynamic Charts

The formation and growth of a bubble will be traced on a temperature vs entropy (TS)
chart for water (Fig. 17). We imagine the process to occur as follows: water at 77T (room tem-
perature), point A, is heated nearly at 'constant volume (as if in a tiny steel tank) to'620"F,
point B; the heated spike then furnishes heat to an embryo along a constant temperature line
BC, followed by a final expansion to ambient pressure along an unknown route CD. With
such a picture in mind we perform the following calculations.
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Fig. 17 - Temperature entropy chart for water

Embryo Bubble Radius (Critical Radius)

At the instant of explosion (point B on the TS chart) there is present an embryo (or ini-
tial bubble) in the heated spike. We wish to determine' its size. The critical bubble size is ob-
tained by momentarily balancing all pressures at the bubble wall:

Pv + Pg Poo + K =0.

neglecting the vapor pressure due to permanent gases (pg), we have
2o-

crit -pv (T) -P.

Here a- is the surface tension; estimated from Ref. [21] to be 10 dyne/cm at T = 600'K. Tak-
ing p., to be 15 psi, we calculate

Rcrit =
2 x 10 = 1.6 x 10 -7 cm = 1.6 nm.
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Mass and Volume of Water Heated

The mass of water heated is determined by the change in enthalpy in going from 77TF to
6200 F. From steam tables we find this change to be 646.7 - 45 - 600 Btu/lb. For reasons
noted earlier, we choose the energy of the cosmic particle to be 4 Mev. Thus the mass of wa-
ter heated (thermal spike) is

= E - 4 X 10eV x 1.6 x 10 5 J/eV _46 x 10 16 g.
Ah 600 (Btu/lb) x 2.32 (J/g)/(Btu/lb)

The volume Vw of heated water is found from the specific volume of water at 620W, which is
0.0247 ft 3 /lb ( x 62.428 = 1.54 cm 3 /g). Thus

VW = 4.6 x 10 -16 g x 1.54 - = 7.1 x 10 -1 6 cm 3

whose radius is

= 7.1 X 10 -16 3 '1/3
R 171 x 10 -16 x 43 J 5.5 x 10 -6 cm =55 nm.

In accord with the growth process pictured by Sette and Wanderlingh this volume of water is
considered to be a heat source which contains a supply of heat (4 MeV) to expand the embryo
(process BCD on the TS chart, Fig. 17).

Final Bubble Radius

From the heat balance equation we have

AT =
mL

In infinitesimal form,

dTG') = -1 I E(R) = AT lE(R) dR.
nL. mLliR E &R

The minus sign means that an increase in radius of the bubble corresponds to a decrease in
temperature. As before

E(R) =47IR 2R- + mg AHV [T(R) ;

To estimate the mass of vapor, we note that 4 MeV will bring 4.6 x 10 -16 g water to 600'K.
The same 4 MeV will expand an embryo to a radius of unknown value at point A on the TS
chart, where the enthalpy is 1150 BtuAb. Thus the mass of vapor is estimated to be

mg = 1150- 45 X 4.6 x 10 -16 =2.5 X 10 16 g.

From Fig. 18 the value of AHV of gassed water at 375 K is approximately -6.5 kJ/mole.
Hence the energy required is

E(R) =47T(7 x 10 -5)2 140 -6.5 x 103(° - (2.5 x 10 -16) erg

=5 MeV,
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Fig. 18 - Heat of vaporization of water vs temperature

where (r* = 140 in from Ref. [21]. Here the final temperature is taken to be 2150 F. Since this
energy is nearly the 4 MeV we have postulated, we will accept the 4 MeV as consistent with a
mass in of 2.5 x 10 -16 g vapor.

Let us specify the terminal thermodynamic point more carefully. The specific volume is

4 r 7X1 0 -5 ) 3 .3wr (7 'x<i~) n

Vg x 10 -16 = 5,74 x 10 c =92 ft 3 /lb.
2.5 x 01 

Thus point D on the TS chart has h = 1155 Btu/lb, s = 1.896, T = 2150 F (-375 K), and p, =

4.3 psi.

If the water is not gassed, the latent heat AHv and critical radius change. From a bubble
at R,,(,i = 7 x 10 5 cm is at temperature of about 410 K (1370C or -280'F), and from Fig.

18 (Ref. 17) AHV is -4 X 103 J/mole. The total energy required is still about 4 MeV, and the
mass of vapor is still 2.5 x 10 -16 g. The specific volume is also the same, the enthalpy' is 1185
BtuAb, the entropy S = 1.93, and the vapor pressure is 4.8 psi.

Acoustic Radiation Based on Rayleigh's Formulas

Since the derivation of a history of wall expansion (namely R (0) is fraught with

difficulties, we will resort to a modified Rayleigh theory to calculate the acoustic effect of grow-
ing and collapsing bubbles. A convenient summary of this modified theory is found in Ref.
[22].

We first simplify the picture and assume there is an average driving pressure throughout

the growth period which performs work in expanding the bubble from R - 0 to R - 7

x 10 -5 cm. We neglect compression of the medium. Thus, for a volume change A V, and
100% heat-to-work efficiency,
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PAV"Einjt
Pav A 1Eiput 

or~~~~~~~~~~~~~~~~~~~~~~~~~~~~-or :-_
4 x 1 0 ' x 1.6 x 10 -1 erg 6 dyec 2

P = 4.45 x 10 6dyne/cm 2.

- r(7 0 x 10-6)3
3'

Thus although the initial pressure is 1786 psi abs and the final pressure is about 4 psi, the
average pressure is about 4-1/2 atmospheres (say 67 psi). The potential energy of the fully ex-
panded bubble is then

P.E. =Paav A V =6.4 x 10 6 erg.

According to Rayleigh's theory the wall velocity is approximately constant during most of the
growth phase. Thus [23]

2 P'v /121 4.45 x 106dyne/cm 2 cm4

p l- = l -1/ly
V 3 " -/ 3 1 dyne s2

= 17 m/s.

(Note that the density of the water is taken at room temperature.) Since this wall velocity is
well below the velocity of sound (-1.5 km/s), compressibility effects can be neglected. The
average time required to expand the bubble to its final radius is

0.7 x10 -6n MOO~
tav = * 17 in/s

The average acoustic power radiated over the period of the growth phase is obtained by in-
tegrating over the square of the acceleration:

E P f4 R 2 (t) dt 2 R2 R).

For constant velocity this reduces to [24]

E,,. 8 2Pov _ 8 112l 4.45'x 10 6
___ _ _ ______ _=_ l- I- -:- 0.03

P.E. 3 | 3 p1C 1/ 2 3 | 3 J 1(1.5 x 105)2

Thus only about 3% of the input energy is radiated as sound. For an input of 4 MeV, the
acoustic power radiated in 0.04 gAs is

Eac = 0.03 x 4 MeV x 0.16 pJ/MeV =0.02 pJ =2 x 10 -7 erg.

The average acoustic pressure at 1 m from the center of the bubble is

< 2> 1/2 1 C PJ C . 2 x 10 < 1 x 1.5 x 105

At4w R2 4 x 10 8 4w (102)2
or

Pay = 2.4 dynes/cm 2 at 1 m, transient, from one bubble due to 4-MeV cosmic-particle interac-
tion product.
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Resonant Frequency, Steady-State Radiation

The pressure calculated above is the average (shock wave) pressure transient over the
period of bubble formation. Subsequent to formation the bubble will execute quasi-harmonic
vibrations at the resonant frequency fR, where [25]

fR = 2R 3YPexVfR 27TRO1 .

in which Ro is the nominal bubble radius, y = CJ,/Cv of the gaseous contents of the bubble,
P,,, is the external pressure on the bubble, and p .is the density of the water "at infinity." For
air CP = 0.24, C, = 0.17, and y = 1.41; for water CP 0.35, C, = 0.27, Ywater vapor - 1.3 at
room temperature. For ease in computation we take y =4/3 for both gases in the cavity. The
external pressure is

Pexc 'P0 0 + R2( )

Let us make this calculation on the assumption that the final bubble temperature is 410 K
(137C -280'F); we then estimate cr = 40 dyne/cm [211. Setting P_, = 1 atmosphere, we ob-
tain for a 0.7gm bubble,

P)x, = 1.03 x I0 + 2. 40 =22 x 106 dyne/cM 2

7 x10 5

Thus the resonant frequency of the bubble is

1 $ f--J 3 2.2 x 106

-fR 27r x 7 x 10 5 I

- 7 MHz.

To calculate the acoustic radiation due to resonance of the bubble, we must account for
energy losses. We assumed earlier that the potential energy of the bubble at radius
R = 0.7 gim is exactly the energy of deposition (4 MeV). Now let y represent the fraction of
energy input lost in shock-wave radiation both in the growth and collapse phase. Although we
have not calculated the collapse phase, we assume it radiates the same as the growth phase.
Thus the energy available for energizing bubble vibrations is ER = (1 - y) Ej,,p... = (1 -y)4
MeV. We use this energy to determine the volume displaced in going from R = Ro = R11011,jal
= 0.7 gim (say) to some minimum radius Ro - a during vibration. The potential energy at
minimum radius is seen to be

P.E.nin =67ryPev ,Roa 2

so that

ER

V6I Pe/, R,
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where ER is the potential energy ar radius R. From the previous calculation we estimate y to
be 0.06, so that ER =0.94 x 4 x 106 X 1.6 X10 -12 = 6 X10 6 erg. Hence

6 x 10-6

6I7T | 2.2 x 106 x 7 x 10 -5

= 0.39 inm.

If we assume sinusoidal radial motion during vibration, so that at the resonant frequency

R Ro + a sin 27TfRt,

then

R = 2 TfR a cos 2 irTfR t.

The volume velocity is then

S = (47TRO )27TJRa cos 2iffRt.

Hence the steady-state amplitude of radiated (acoustic) pressure will be (at 1 m)

Pas l= WfP, ('S) =
47TR

(2 7T x 6.7 X 106)2 (1) (7 x 10 5)2 (3.9 x 10 -5)

102

or

I pPad. =3.4 dynes/cm 2 , rms steady state (maximum)
at 1 meter at resonant frequency fR = 6.7 MHz
from 1 bubble excited by 0.94 x 4 MeV.

Since the radiation has a finite band of frequencies because the radial motion is not
periodic, we will calculate the acoustic effect at 25 kHz. That is, roughly,

exactly

This result is based on acoustic pressure being proportional to radial acceleration of the bubble
wall, hence proportional to (frequency). 2
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Extrapolation to Higher Energies

Let us assume that a single cosmic particle enters the ocean with an energy of 10 14 eV. If
every 4-MeV interaction collision generated one bubble, we could expect 2.5 X 107 bubbles to
form (at the maximum). Further, if all bubbles radiated coherently, then the steady-state
acoustic pressure measured at 25 kHz would be

I PadI =4.7 x 10-5 x 2.5 x 107 =1.2 x 10 dynes/cm 2 at I
meter at 25 kHz due to a 10 14-eV particle (steady state).

At 100 m this pressure reduces to

Pa, -12 dynes/cm 2.

This is above ambient noise (at 25 kHz).

Collapse Pressure and Acoustic Radiation

The initial calculation made above was based on an isothermal expansion BC to a final
state B at 280WF and about 4 psi, the last part of the expansion being unknown. To estimate
collapse pressures, we require a more expicit statement of the final stage of expansion. From
Ref. 17 it can be inferred (though it is not so stated by them) that the final expansion is adia-
batic. Hence we hypothesize the path on the TSchart (Fig. 17) to be ABCDEF.

Let us calculate the final radius at point E. We calculated previously that 4.6 x 10 -16 g
of water are heated on the thermal spike to 620'F, requiring an input of 4 MeV. We now allow
this heated spike to transfer heat to the embryo bubble, expanding it isothermally from B to C
to E, the point E being at 620'F and atmospheric pressure, with a specific volume of 43.6 ft 3 /lb
(x 6.24 = 2.72 x 103 cm 3 /g), enthalpy of 1344 Btu/lb, and entropy of 1.982. We next ima-
gine that the final expansion from E to F takes place at constant entropy to a temperature of
280N . At this point the pressure p, is 2.1 psi, the specific volume is 192 ft3 /lb, and the enthal-
py is 1159 BtuAb. To bring water to superheat at E requires an addition of 1344.5 -45 -

1300 BtuAb. We estimate the number of grams of superheated vapor to be

Ms = 600 x 4.6 x 1016 =2.12 x 10 - 16 g.

Since the specific volume is 192 x 62.4 = 1.198 x 104 cm 3 /g, the volume of superheated
vapor is

s = 2.12 x 10 - 1 6 g x 1.198 x 10 cm =C 2.54 x 10 -1 2 cm 3 ,

whose radius is,
Rs =12-54 x10 -12 43 | = .846 ,u1/3

R5 2.54 x( 10 -12 4I 3 .46gn
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This is close, but not quite the assumed final value of 0.7 gm. To obtain a more consistent final
point we require that the adiabatic expansion arrive at a radius of 0.7 gm, hence at a specific
volume of

4
V -7T (7 X 1 0 -5)3 3NI = 3 cm =6.8 x i0 3 cm3/g

imn 2.12 x 10-16 g

= 108 ft3 /lb.

The terminal point (from steam tables) is then 350W, enthalpy is 1209 Btu/lb, entropy is
1.982, and pressure is 4.5 psi.

After expansion the forces acting on the maximum bubble are unbalanced. The net col-
lapse pressure will now be calculated. This is

Plet = P + . Pt - P.
Rmax

at T = 3500F (=175 0C) we estimate a- = 35 dyne/cm, so that
P 2) = 2 X 35 = 106 dyne/cm2 .

Rmax 7 x 105

Also, at a temperature of 3500 F (=o458 K) we estimate the dissolved gases to have a pressure
of 2.7 x 10 3 dynes/cm 2 (see below for this estimate). Since pv = 4.5 psi ( x 6.895 x 104 4
3.1 x 10 5dynes/cm 2), and since P.0 = 1 atmosphere,

Pet = 1 X 106 + 1 X 106 -3.1 x 105 -2.7 X 10 3

= 1.6 9 x 10 6dynes/cm 2 .

Let us asume that during collapse the vapor is not instantly reabsorbed, so that it can act as a
buffer to total disappearance of the cavity. Then the ratio of the net collapse pressure to the va-
por pressure (called P/Q) is

Pnet _ P 1.69 x 106 -5.44, or -? = 018
Pv Q 3.1 X 105 P

These ratios will enable us to calculate bubble dynamics on collapse. The minimum radius of
collapse is obtained by setting [26]

Rm in = Rmax I Q 1/3 -I) ' | + Q (11 Q- ) |R01~0RmaxP(Y Cl) - +P(v-)
This formula is due to Neppiras and Noltingk [27].

Assuming y = 4/3, we obtain

Rmin 0.18 X 3 =035 IsayI
Rmax 1 + 0.18 x 3 0 3s j

This parameter, plus knowledge of P/Q, allows us to calculate the peak radiated shock wave on
collapse. From Ref. [28] at 1 m

mx 3 r Rmi Rma+ net Rma |IRrma j [ 1 _ 4 Rrin |3|

1.69 x 106dyne/cm 2 x 7 x 10 5 cm (3)211 -41113|
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or

| Pn+a 3 dyne/cm 2 shock amplitude ate I m during collapse of a I
0.7 , m bubble based on assuming the vapor acts as a buffer.

The shock power radiated is (roughly) given by [29]

Eac 1 2Pe,, Rmax3/ 2
P.E. 3 3 pfC]2 Rmin

I V 2 x 1.69 x 106 (3)3/2

3 3 x 1 x (1.5 x 105)2

= 0.012.

We estimated earlier that the acoustic output on collapse was about the same as upon growth
(3% each). Here the figure on collape is 1%. Of course some of the vapor will be-reabsorbed on
collapse. Hence 1% is too pessimistic. If all the vapor returned to the liquid (water) upon col-
lapse, and left only permanent gas pressure, then it is simple to calculate that the peak shock
wave pressure will be p + = 1.5 X 10 5dynes/cM 2 at 1 m from one bubble. This is overly op-
timistic.

Calculation of Gas Pressure

The partial pressure of the permanent gases in the bubble is an essential parameter in
calculating the shock-wave magnitude. However it is difficult to calculate it. The gas content of
the ocean is reported in books on oceanography in the following way. First, whatever the loca-
tion of the water volume, it is assumed that at some time it had been at the surface of the oce-
an and in equilibrium with the air [30]. Thus regardless of depth the water is assumed nearly
saturated (at NTP = normal temperature and pressure). Hence gas content is reported in sa-
turation values (say mi//) in equilibrium with a normal dry atmosphere. From page 188 of Ref.
[21] we see that at O0 C and 35% salinity the saturation volume of oxygen in seawater is about 8
I1n//I and of nitrogen is about 14 mn/I. We next suppose this dissolved gas is in the microbubble
described above, and we desire to calculate the partial pressure of the dissolved gases at the in-
terface. According to Henry's law the concentration m of a gas in a liquid is related to the par-
tial pressure of the gas as m = Csp, where C, is the coefficient of saturation. If m is expressed
in units of milliliters per liter and p is expressed in torr (760 torr = 1 atmos 1
x 106dynes/cm 2 ), then at 0C (273 K) and 35% salinity the value of C, is 38 for oxygen
(02) and 14 for nitrogen (N2 ) [Table 41, p. 191, Ref. [30]]. Thus the partial pressures are

02: p0 = c x 1 760° -2.8 x 102 dynes/cm 2

C, 38 760

and

N2: pN2 =14 X 760 =1.3 x 103 dynes/cm 2 .
N2 :pN .X 760 10

The total gas pressure is therefore about 1.6 x 103 at 0C. However the temperature of the
bubble at maximum radius is taken to be 458 K. Hence the estimated gas pressure is 458/273
x 1.6 x 10 3 =2.6 x 103 dynes/cm 2 .
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Effect of Depth of Particle in the Ocean

Let us again consider a 4-MeV particle heating a mass of 4.6 x 10 16 g water in a ther-
mal spike to 620TF, at which temperature the specific volume is 0.0247 ft3 Ab (= 1.54 cm3 /g).
As before this water acts as a heat source and feeds an embryo that expands (say) to ambient
pressure. Let ambient be 1600 psi (say about 3500 ft, or 1 km, of water). At the end of ex-
pansion the pressure is so great that the specific volume is only 0.272 ft3 Ab (x 62.4 = 16.97
cm3 /g) the enthalpy is 1187 Btu/lb, and the entropy is 1.348. Since only 600 Btu/lb is avail-
able, the mass of the heated vapor is

mg = 1187 _45 x 4.6 x 1016 =2.4 x 10 1 6 g.

Thus the volume of superheated vapor is

V5 = 2.4 x 10 - 16 g x 16.97 =4.1 X 10 -15 cm 3 ,

whose radius is

I 1~~~~~~~1/3

14.1 x 10 - x -3| =9.9 x 10 -6 cm (say 0.1 Ami).

We compare this expansion to 1600 psi with the earlier calculated expansion to 15 psi (at
620'F). At the latter point the specific volume is 2.72 x 103 cm 3/g, from which the volume
of heated vapor is

V. =2.4 10 -t 6g x 2.72 x cm -6.5 x 10 -13 cm3,
Vs15pat g .2x1 

g

whose radius is

R = 16.5 x 10 - 3 x 3 1 5.4 x 10 - cm = 0.54 Am.

Thus the resultant bubble at 1600 psi is about 5-1/2 times smaller than at 15 psi for the same
energy. However it is larger than critical (= 1 nm); hence it can grow by further adiabatic ex-
pansion. But Sette and Wanderlingh show [Fig. 7] that the final expansion (after isothermal
expansion) is small. We have calculated that in the case of adiabatic expansion from 620W at
15 psi to 350TF at 4.5 psi the change in radis is about 2/7 or 30%. Thus we estimate the final
radius at the depth of 1 km to be about 0.13 gim, still a factor of about 7 smaller than a bubble
near the ocean surface. This smaller radius bubble will reduce the acoustic effect. For exam-
ple the peak shock wave on collapse will be about 7 times smaller, assuming the ratio of
Rmin/Rm1aX is about the same as in the earlier case. Greater depths will even have a more
drastic effect, primarily due to reduction of the maximum bubble that can form with the given
input energy. Of course, if higher energy particles participate in bubble formation, a larger
acoustic output can be expected.

JET MODELS AND OTHER MODELS

Jet Models

After a cosmic particle creates a shower of interaction products in a liquid, the shower it-
self can be imagined to be the continuation of a jet of equal diameter entering the liquid from
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the outside. This jet creates noise as it traverses the liquid. Several mechanisms may be con-
sidered. The principal mechanism is injection of mass of jet, hence monopole radiation is to be
expected. However, if the flow of the jet meets obstacles (fluid molecules), the expected radia-
tion is dipole. If the jet creates thermal (or velocity) turbulence, the radiation will be quadru-
pole. Our objective will be to calculate the noise power due to these three mechanisms.

By dimensional analysis one can establish relations between the parameters of jet noise.
These are: the density pi of the jet material, the speed V of the jet flow, the pertinent length L
and the mach number M = V/c, where c is the speed of sound in the liquid. For jets of finite
cross-sectional area S one chooses L such that L2 - S. The relations between the noise power
Wgenerated and these parameters are as follows:

monopole radiation: WM ,cc pf L2 V3 M
dipole radiation: Wd Pc p, L2 V 3 M3

quadrupole radiation: Wq a P/ L2 V3 M 5

The constants of proportionality depend on the process. Various estimates of their magnitude
have been calculated. For example, if the mechanical stream of the jet has a kinetic power

Wnech= I=m. V2 (units of ni. kg/s),
2 J .k/)

then the acoustic power generated is roughly

WI Wnliech 1420 X p

m 5 .5 P. 1
-mech 10,830 p1

Winecl 120,470 P -0.01,

provided Wa,. < W,,,ehii [Ref. 31]. Since Winech pl SV = p1 L2 V, we see that
W.,2 = Wl,,ech M:- const. W.C M ,

Wd = const. Wac M 2,

Wq = const. W"..
The constant in each case matches the constant in the expression for Wc,.

The calculation of the effective mach number M of the fluid jet requires considerable
care. Let the imagined cosmic-particle jet have a unit flux of energy (per cross-sectional area)
of magnitude Pj4. Upon interaction with the liquid the particle jet is converted to a liquid jet
whose power is W,. The interaction itself depends on the capture area presented by the fluid
to the incident particle stream. The ratio of powers fW'1 to WP is designated y, where

Y yV/2

in which mi; and in represent mass flow. Assume next that the mass flows are proportional to
mass density. Then

P, V/ or V = I
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This is the initial velocity of the fluid. Thus the effective mach number of the jet IS,

.,i i; "~~~V 1 P'1/2 .a

Noting that Wi7ecih = y W1, we see that the acoustic power generated is

Wac ; Be v [I P I /2 1 C 
- .. fi . , ~ ~'C -Y : K

KI

where

K, =1420 - =10
P./:

K, = 10,830 =1
p1

K, =120,470- =0.1
(If

The coefficient of momentum transfer y is roughly the ratio of the scattering cross section of
the incident particle to that of the fluid particle. The noise power generated is seen to be pro-
portional to y

Transient Radiation From Sources in Motion

When a cosmic particle is decelerated by a liquid the liquid itself is accelerated. Such an
acceleration constitutes an acoustic source, and an acoustic pressure (shock wave) is radiated
outward. A simple theory constructed on this picture is as follows.

Let the volume flux of liquid set into motion be S(n 3 /s), and let the corresponding mass
flux be p/S = q(t) (units: N - s/m). The motion of the cosmic particle is equavalent to the
motion of q(t). The latter constitues source distribution density Q(r,t) (units: N s/M4) of
form,

Q(r,t) = q(t) 8 (z - Vt) 8 (y)8 (x),

which radiates shock waves according to the formula

I 32p -

Vp 2 -- aq(t)8(z - v8 (y) 8 (X).

The solution of this equation is obtained by a coordinate transformation [4, pp. 721 mf1. When
the velocity V of the equivalent source is supersonic (as we assume), the solution can be ex-
pressed as function of distances R +, R -, and angles C +, C , explained below; thus

_qt R |
p(RCt) = -q'~t - R+J + q' (t -R c)

47r R + (Mcos + 1 )2 47r R - (m cos 1) 2

_ q(t - R +1c) (M -cos C +) V q(t - R /c) (M -cos C -) V
4ir (R +)2 (Mcos H + - I)3 4. (R ' (- Mo 1);
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A
p

E+ Z

: - Wz~~~~~~v� A'~~v

B

Fig. 19 - Transient radiation from a source in motion

in which q' is the derivative with respect to the argument. Distances and angles are given by

Fig. 19. In this figure the source S is moving in the direction z with supersonic velocity V

(mach number M > 1). It is the origin of a cone of shock waves (A, B). Any point P inside

the cone will hear the pressure p given above at time t. This pressure will consist of radiation

from two fictitious origins, E+ and E_, with E+ at a distance R+ from P. and E_ at dis-

tance R - from P (E is in front of Pand E+ is behind). The distances are given by

M(Vt -Iz) ± (Vt - ) 1 _ M 2)
R+ 1'~~~~~~~t z 2 2 2_ 
= Al2 -1 ,r Y +z2 .

The half angle of the cone is 0 = sin -I (M -1)* Outside the cone at time t there is silence.

The directionality inherent in the formula for pressure p must be obtained by numerical
evaluation. If the time dependence is harmonic, that is, q'(t - R/c) = q0 oO cos
(o (t - R/c) then the fields due to E+ and E - interfere, so that the reserved sound pressure
oscillates with time (beating phenomenon). The amplitude spectrum of the radiated pressure

can be obtained by Fourier transformation:

p(R,O,w) = f e'° p(rjt)dt.

Another model of cosmic particles as travelling sources may have relevance to acoustic

pulse formation. In this picture the interaction products bounce back and forth due to succes-

sive collisions. Thus the advance of the cosmic particle is imagined to be that of a dipole

source travelling with supersonic speed. A formulation of the pressure field developed is

presented for convenience.

The bouncing byproducts exert a force FJ (per unit volume) conceived to be

Fj = fj t) 8 (z - Vt) 8 (x) 8 (y),

in which fj (t) is an impulse force (units: N). To apply this force to the pressure equation, one

lets p = div A, and solves for A; the governing equation is
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V 2 A -' 1 f2A =f (t)8(Z - Vt) 8 (x) 8 (),
C2 6 t2

whose solution iso

fj (t -R +/c) fj (t -R /c)
J . 47r RI+ 4iT RI

Ultimately the field pressure is [4 page 721ffl

fj'(t -R +/c)cosO + fjt -R +/c) (M -cos O +)
47r R + c(Mcos + 1)2' 47r(R 3)2 (Mcos + )3

f 7'(t -R c)cos - fj (t -R -/c) (M -cos O)
+ .+

47r R -c (Mcos 0H -1 ) 4ir (R -) 2 (M cos 0 - -) 3

This dipole case is conceptually related to the monopole travelling source: if one sets q V =f,

so that the oscillating force is numerically equal to the monopole mass flux traveling at velocity
V, it is then possible to interchange the formulas. In particular one sets q' =fJ/c, and then the

derivations of the formulas are identical.

CONCLUSION

The generation of sound by sources is well understood when the sources can be categor-
ized as monopole, dipole, quadrupole, etc. In the particular case of the noise pulses generated
by cosmic particles in the ocean the greatest emphasis in modeling to date is on monopole
sources related to the time-varying application of heat. Two varieties of heat models have been
surveyed and developed in this report. the thermoelastic model, in which a deposition of heat
into the liquid results in an elastic expansion which radiates outward as a shock wave, and is
the microbubble model, in which the deposition of heat "boils" the liquid locally, creating an

expanding (and collapsing) bubble, which radiates sound as shock waves. Other models are-
possible, such as a jet noise model, a moving-source model, and an explosion model. The first
two have been noted, but no detailed calculations given. An explosion model is discussed in
Appendix A. Numerical calculations of several heat models have been made in the text and
are further amplified in Appendixes B and C. As expected, they yield different (even radically
different) answers for the same input parameters. These differences are attributed to different
conceptions of what the precise physical event is in :the liquid. It is concluded that further pro-
gress in modelling must await renewed effort in experiment work.
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Appendix A
RADIATION MODEL BASED ON THE THEORY OF EXPLOSIVE SOURCES

In the theory of explosive acoustic sources the potential energy of the explosion bubble
(WWB) is only a small percentage of the intrinsic energy of the source (W5 ), that is,
WB = K W5 where K is 0.10 or less. In the well-known theory of Willis the initial radius of a
bubble due to potential energy WB at hydrostatic pressure P is

13WB1"'3 =.13KW, 5 13
R 0

14~rPJ 47rPJ

and the first period of the bubble oscillation from the Willis-Rayleigh theory is

TB = 2 X '0.9141 1/3 I I4 P 2

Two types of radiation propagate from the bubble: a shock wave, and then a wave due to bub-
ble oscillation. The peak pressure developed by the shock wave has been empirically found to
be

fmax = k{ |1/J

in which W is the weight of explosive (its internal energy), R is the distance of measurement,
and k, a are empirical constants. Many experiments show that a is approximately unity. Thus

ax cc W113 [Ala]. To include the effect of the explosion pressure subsequent to the passage
of the peak pressure, one uses the time integral of the pressure, called the impulse, defined as

1(t) = f P(t) dt.
0

Empirically the impulse is given by [Albi

/=I w113 |W | 

where / and /3 are constants

A third characterization of the shock wave is the energy flux E1 per unit area of a fixed
surface normal to the directions of propagation. This is given by [Alci

Et = t, W 113 | J "/

where m and y are constants

To use these empirical formulas, one requires a knowledge of the constants. They will
depend on the type of explosive and the units. For example, let the explosive be TNT (densi-
ty 1.52) and the units be English: pressure in psi, distance in feet, weight in pounds (mass),
and energy density in inch-pounds of force per square inch. Then [Ald]
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Pmax =2.16 x 104 | W1 1 lb 11.13 (units: psi),

XW113 1 0.89

I =1.46 W11 3 RJ (units: psiS ~

and
Iwl/3 12.051

E = 2.1 x 1 W1/3 R~? { units:lb -in./in.2

Here the integration time is taken (somewhat arbitrarily) as 6.70, where 0 is the time constant
of the initial high-pressure region.

To use these formulas for the case of high-energy particles we must relate the particle en-
ergy to the weight of TNT that is energetically equivalent. Only approximations are possible,
and these depend on experience factors. Since the energy release of TNT depends on depth,
we will take 30 ft, or 9 m, to be the depth in the following calculation.

We assume from experience [A2, p. 17] that 1 lb of TNT will release roughly 1.5 x 106
ft-lb of energy. (Another convenient estimate is: 1 g of explosive liberates 1 kilocalorie =
4.18 kJ = 2.61 X 1022 eV, or 1.19 x 1025 eVAb or 1.4 X 106 ft lb.) Converting to more con-
venient units, we have for the conversion factor EW

1.5 X 10 6 ft. lb/lb x 1.3558 J/ft. lbEW=
453.6 g/lb 1.6 x 10 -19 J/eV

= 2.802 X 1022 eV, or 1.271 X 1025 eV/lb.
g

For example a high-energy particle with E0 = 10 16 eV is equivalent to

10 1 6 eV
1 105 eV -7.87 x 10 -10 lb of TNT
1.27 X 1025 eV/lb

or

1 16 eV
= .0356 pg of TNT.

2.802 X 10 22 eV/g

In conformity with our calculations in the section on microbubbles, we apply the above formu-
las to the case of a 4-MeV particle. The equivalent weight of TNT of such a particle is

W 4 X lO eV = 3.15 x 10 -19 lb of TNT.
1.271 X 1025 eV/lb

We indicated in the main text that the conversion efficiency from particle power to acoustic
power is roughly 3% on expansion of the bubble and 1% on contraction. Let us arbitrarily as-
sume a 2% energy conversion. Thus the actual energy available to form a bubble is assumed to
be

W = 3.15 x 10 -19 x 0.02 = 6.3 X 10 -21 lb of TNT.

Thus, applying the formula for the peak shock pressure (at 1 m = 3.28 ft), we obtain
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X 104 (63 X10 -21 )113 113

Pmax = 2.16 x 104 ( 3.28 1 I - 1.388 X 10 -4 psi

= 9.58 dynes/cm 2 (peak).

Similarly, we can calculate the impulse at 1 m:

I = 1.46 x (6.3 X 10 -21)1/3 (6.3 X ;.-2811/3

= 9.52 x 10 14 psi *s or 6.57 x 10 9 dynes/cm 2 s.

If the dominant frequency is 25 kHz, we assume the integration time to be 1/25,000 = 40gs.
The average pressure radiated is then

1 6.57 x 10 -9 dynes/cm 2 =s 10 -4 dyneP~~w = -= - ~~~ ~ 1.64 x dn at 1 meter.
At 40 x 10 -6 s cm 2

We note that both Pmax and pav are of the same order or magnitude as previously calculated in
the main text. However this choice of integration time is quite arbitrary. Cole [Ale, p. 239]
takes the integration time to be t = 6.70 where 0, is the time constant of exponential decay of
the main shock pulse (as if the pulse had the form p = P,1, exp (-t/0)). A plot of reduced time
constant 0/WI 13 vs W' 13 /R [Alf, p. 240] is out of the range of our numerical work. However
we can try an estimate. 'We note that 0/WI1 3 rises 0.05 ms sec per falling decade of WI1 3 /R.
For a 4-MeV particle whose effective TNT equivalent is roughly 6.3 x 10 -21 lb, the value of

IR at R = 1 m is

(6.3 X 10 - 2 1 1/3 1.8469 X 10 -7
___________lb) 1_ 46-x5.6 x I108

3.28 ft 3.28

This is roughly 10 7 or 7 decades lower than W" 3 /R = 1. Hence by extrapolation

0 = s0.05 x 10 -3 + (0.05 x 10 -)107 5 x 102.

The time constant is therefore

0 :-5 x 10 2 W1 /3 =5 x 102 x (6.31 x 10-21)1/3 9 2 .3 As.

Our estimated integration time is

t = 6.7 x 0 =6.7 X 92.3, ,s =0.62 ms.

The average pressure radiated in this time is estimated to be

1 _ 6.57 x 10 -9 dynes/cm 2 s = 1.06 x 10 -5 dynes/cm 2.
At 0.62 x 10 -3 s

The characteristic frequency of the transient is (At) - _ 16 kHz.
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Appendix B
COMPARISON OF ENERGY DENSITY OF COSMIC PARTICLES
AND ENERGY DENSITY OF AMBIENT NOISE IN THE OCEAN

Ambient noise in the ocean is reported in decibel units referenced to the intensity (or
energy density) of a plane wave of unit amplitude in a 1-Hz band. Thus if EN is the energy
density actually measured and E,.ef is the reference, then the number of measured decibels is

EN '
N =10 log10 EN

Hence

EN = Erect 1oN/l0 (units: erg/cm3 Hz).

For example at 25 kHz the lowest measured ambient noise is'reported as N =-82 dB "re 1 dyne
/cm 2" This means that

EN = Eref 10 -8.2 = ETeJ x 6.3 x 10

Now the energy density of a plane wave of unit amplitude is
p2 (2 ___

ER EF pc2 1 x (15 x 105) 2 44 1 3,

from which ; 1

EN =4.44 X 10 1 1 x 6.3 x 10 -9 2.8 x 20 -19 erg
cm 3 * Hz't

Using the same procedure we construct the following table. c z

Freq. (Hz) N (dB) (EN(erg/cm 3 . Hz)
1 -11 3.5 x 10 -12

10 -40 4.4 x 10 15

100 -60 4.4 x 10-17
1,000 -73 2.2 x 10 -18

10,000 -80 4.4 x 10 -19
25,000 -82 2.8 x 10 -19
30,000 -84 1.76 x 10 -19

Let us assume that for various reasons we are requied to use a 10-kHz band for underwater
detection of these particles. The average noise energy density in a 1-Hz band between 10,000
and 25,000 Hz is - 3.6 x 10 -19 (erg/cm 2 * Hz). Thus in a 104 -Hz band the average energy
density is

3.6 x 10-1 x 10 4 = 3.6 x 10 - 5 erg/cm 3 .

We desire to compare this with the energy density of the cosmic-particle flux. To do this, we
let Il be the particle flux density per steradian and Ep be the average energy per particle.
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Then the total energy flux (intensity) is obtained by integrating over the' solid angle of in-
cidence:

1,, = J ill Ep dSI (units: erg/cm 2 . S)

We next assume that the particle flux is a plane wave of light. We then estimate the energy
density Eto be

/,IE,, d11
Em=- = (units: erg/cm3),

in which cL is the speed of light.

As an estimate we take the case of muons and choose Il = 1.83 x 10 -2/cm 2 s sr
x cos 2 Pand E,, =2 x lO 9 eV =2 x 10 x 1.6 x10 -12 =3.2 x 10 -3 erg/muon. Over the

hemisphere of incidence

= 1.83 'X 10 2 | 1 cos 2 0 2vr sin 0 dPI 3.2 x 10 - erg/muon

cm 2 2~ 0

= 1.83 X 10 -2 [12 3.2 x 10 -3 = 1.23 x 10 -4 erg/cm2 S.
3:

The energy density of the equivalent plane wave of "light" is

123 X 10 4 erg/cm S =4.08 2 1O -15 erg

3 x 10'10 cm/s cm 3:

Thus, if we listen underwater over a 10-kHz band, the energy density of the muon flux is
about the same as the energy density of noise in the ocean over the band of 10,000 Hz to
25,000 Hz. On the other hand; if we listen over a 1-Hz band, the noise due to the muous (of
energy 109 eV) is about 10,000 times higher than the ambient noise due to all other causes.
However the presence of a muon signal is a random event in space and time. The probability
of detection is still to be calculated.
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Appendix C
TOTAL NOISE OF MUONS

Assume that muons of energy 2 GeV penetrate the ocean with a total flux of
1.82 x 10 - 2/cm 2 * s - sr. The angular distribution of particles varies as cos2 0, where 0 is the
angle of the muon track with the vertical. The rate of absorption is 2 MeV/cm, so that the
effective range of the track is L = 10 m. We wish to calculate the total noise production of the
muons and compare it with the noise of molecular agitation in the ocean. To do this, we use
the formulas of model la. For kL large the total acoustic power generated by vertically incident
particles is

a wfp2 (IS)2

16 p Cp,

First we assume that a = L I = (1/10) m 1. Then we must replace the uniform intensity 10
of vertically incident particles by an effective intensity to account for the cos 2 0 dependency of
arrival. As a simple approximation we take

f 1° cos 2 0 27T sin 0 dO = 2-7 ,.
et 2 0 3 O

Next we calculate the input heat power WI to the water caused by one muon, which according
to the model is to be based on the heat deposition time T1:

=2i7r 2T EoWI = lv S 2- I0 S = -i- - (units: N tn/s).

To choose T1 we assume first that the noise caused by muons is not greater than the measured
ambient noise of the ocean at the selected frequency. As we shall see later, the smallest T1 -

41 ns. Thus

27r 2 GeV x 1.6 x 10 -1 9 N m/eV
3 0.41 ns

= 1.635 X 10 -2 N - m/s.

The total acoustic power "radiated" by one muon at a frequency of 25 kHz (say) is therefore

W 1 _) _2(W_ )2
L 16p C2

= 1 x 27r x 25 x 103 s-IX- X 1
10 m 16 103 N. s2 /m4

(1.4 x 10 -4)2 2 {1635 x1 2 )2 X S4 K2

K2 S2 (4.18 x 103)2 Mi4

= 2.94 x 10 -19 N m i
s muon

We are given that there are 1.83 x 10 -2 muons/s * cm 2; or 183 muons/s . m 2, so that the to-
tal power of Nmuons is
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WN =2.94 X 10 -19 N * m x 183 muons 
s muon * m2

-5.39 x 10 -(l NJ x |r2n|

We interpret WN as the acoustic power (watts) flowing through a.,spatially averaged I m 2 of
ocean surface temporally averaged over I s. We will go one step farther and assume the acous-
tic power so generated belongs to a plane wave of sound arbitrarily oriented, the energy density
of which is

WN/S '
E = c , c = speed of sound in water,

5E39 x 10 - 1 7 N . Mn/s M2 -20 N m

1.5 x 103 i/s mi3

= 3.59 x 10 -19 erg/cm 3 (averaged over 1 s).

This is nearly the energy density of ambient noise (per herz) measured in the ocean between
15 and 25 kHz. The equality of muon noise and ambient noise was deliberately made to occur
by choosing T1 to be 41 ns. The energy density is calculated on a 1-s averaging basis as re-
quired by the specified incidence rate.

The input energy E0 is actually taken from the spectrum of measured energy versus in-
cidence rate. It is an arbitrary selection. Similarly T1, the time factor in the rate of deposition
of heat, is taken to be a plausible estimate in the absence of concrete experimental fact. Previ-
ously for various reasons we adopted Tt to be I ns. We will now make a calculation based on
this choice.

For T1 = 1 ns the heat deposition of a single muon is

=7T X2 x GeV x 1.6 x 10 19 N .m/eV

3 ~~~~~ns

= 0.67 N * m/s.
The acoustic power at 25 kHz of one muon is therefore

1 X27rx X 25 x 10 x 1 X1 (1.4 x 10 -4) 2
lo0m s 16 103 N 3 s/ 4 K2

x (6. X 10-1)2 N2 .m2 1 S4 . K2
S2 (4.18 x 103)2 m4

= 4.95 x 10 -16 N . m/s.

We multiply this by the incidence rate to obtain the unit areal power flux:

WN = 4.95 X 10 -16 N - m . 83 muons
s muon s nm2

= 9 .05 x 10 -14 N m rn 1
s m 2 * s
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This is then divided by the speed of sound c to obtain the space-and time-averaged energy
density of an equivalent plane wave:

E = 9.05 X 1 0 - 1 4 N m X( 1 ) 1 604 N m X 10 -17
s m 2 .S 1.5 x 103 i/s m3 S

-6.04 x 10 -16 erg/cm 3 (averaged over 1 s).

This is larger than the ambient noise in a 1-Hz band by a factor of 6.04 x 10 -16/3.59 x
10 -19 = 1.7 x 103. It is seen to be 10 x smaller than the noise energy density in a 10-kHz
band.

From this calculation shows that the prediction of noise generation from muons in the
ocean is highly sensitive to the correct estimate of heat deposition rate. Since an upper limit of
this noise (at 25 kHz) is the measured ambient noise, one can find T1 for any choice of E0

with the understanding that it is the smallest possible time in the limit that all the ambient
noise is due to muons of this energy.

A final calculation based on the experimentally more plausible value of T1 - I gs will
serve to illustrate the wide divergence in predictions. Thus

WI ~ 27r 2 GeV x 1.6 x 10 - 1 9 N m/eV
3 1 As

= 0.67 X 10 -3 N m/s

Thus the "particle power" which is considered in this model to be the analog of the laser power
of Westervelt-Larson is 0.67 mW. The total acoustic power radiated by one muon at 25 kHz is
then

I 2ir x 2.5 x 10 4 (1.4 x 10 4) 2 10 -3) 2 N 2 in 2

lWin 5 K2X x (0.67 x 1

x x 1 -N s2 /m4 x 1 S4K2

16 lo, (4.18 x 103)2 mi4

= 4.94 x 10 -22 N . m/s.

For an incidence rate of 183 muons/s m2 the power generated over 1 2 in an averaging
time of 1 s is

WN = 4.94 x 10 -22 N im/s muon x 183 muons

= 9.04 x 10 -20 watts of acoustic power.

Considering again each square meter to be a unit area of a plane wave, we find the energy den-
sity to be

9.04 x 10 - 2 0 N . m/s mi2 -23 N . mE =-=.3X 101.5 X 10 3 m/s m6.03 x3

-6.03 x 10 -22 erg/cm 3.

The ratio of muon noise to ambient noise (in a 1 Hz band) is then

EA 6.03 X 10 -22 17 X 10 -4

Eambient 3.59 X 10 -19
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The comparison with molecular agitation noise is different. According to :'ellen [14] the
thermal noise in the ocean is empirically given by . .

N,,1 = -175 + 20 logo0 f
,. ., ~~~~~~~~~~~~~~~~rr,

in units of dB re 1 Abar of equivalent plane wave of unit amplitude, with if being given in
hertz. In arithmetic units the energy density of thermal noise is therefore

E = re1 5 .6 2 3 x 1081..

Here we take the reference energy density to be that of a plane wave of unit 'amplitude:

E = P = (1)2 (dyne/cm2)2 e r4.4 x 1.0 g
el 2 -2 2 3 cpc2 1 dyne x (1.5 x 105)2 cm

cm 4 s

Thus the thermal energy density is

E = 4.44 X 10812 erI
1 l~~~~~5.623 X 10 cm}

At f = 25 kHz,

E = 4 44 ~~~~~X 10 -11 | 25 X 104 7 o -20e ),1, =444 x 0=8178 x 103
l5.623 x 108 : cm 3

The ratio of acoustic energy density caused by muons to the noise energy density of molecular
agitation depends on the bandwidth of listening and on the c'hoice .of deposition time T1. Us-
ing the results just calculated, we can construct a ratio (Table Ci). Thus, to detect muon noise
above thermal noise, the bandwidth of the receiver must not be appreciabl'mo6re' than 1 Hz.

Table C1 - Ratio of 68/6th: at 25ikHz ' 

Bandwidth t , : " ,
(kHz) =j 41 us ,iiTns

1 3.59 X 10-19/878 X 10-20 , 4 6.04 1 0tl 6 /.78x 10,-' 71X 103

1 0 33.59 X 1019/8.78 X 10-1 - 4 X 104 6.04 X 10 -18.7 8X 1 0 0.7

REMARKS I X.

The procedure used in the above calculation is to calculate the acoustic radiation from
one muon and then use the statistics of muon incidence to calculate the poWer per unit of time
per unit of area. The statistical basis of the muon count must 'not not be overlooked. Most
likely, muon incidence corresponds to shot noise and has therefore' a Poisson-type probability
distribution in time. Over a long record (say many seconds, hours, days,.-etc.) the average of
the distribution is taken, and this is the number used in the above calculation. Other probabil-
ity moments can be of use in developing the statistics of acoustic radiation developed by the
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muons. For example, by quoting the variance of the random incidence, we can find the vari-

ance of the power crossing a square meter of the ocean surface; hence we can find the vari-

ance of the acoustic energy density. This would be a valuable statistic in comparing the acous-
tic radiation developed by muons to the noise of molecular agitation in the ocean.

We have made our calculation on the basis of a component (25 kHz) of the power spec-
trum of the radiated acoustic noise, choosing a single muon particle as our basic model. When

we deem N muons incident in 1 s (as averaged over many seconds of record), we have as-
sumed incoherent summation by taking the total power to be Ntimes the power of one muon.
If the summation is coherent, there will be a directional gain in radiation, as if the volume of

incidence were a volume array of sources. The energy density would then be higher in specific
directions.

We can also treat the problem in the time domain rather than in the frequency domain.
Thus we can calculate the transient power W(t) per muon, find the average power

WA = f W(t) dt/At
0

for the duration At of the transient, and then multiply by the statistically determined time and
space rate of incidence Nto find the total power for all frequencies per unit of time and area.

Finally we could proceed to calculate a long time record of power W(t), taken over many
seconds, and subject it to a probability analysis. This can be done by dividing the record into
M records and making histograms of the average, the variance, etc. among the components of
the set. An autocorrelation could then lead directly to the power spectrum.

REMARKS II

The total noise energy density generated by the flux of muons is an average over all
space. The sharp directionality of vertically incident particles has been canceled in the averag-
ing process. Although illustrative, the calculation of acoustic energy densities does not lend it-
self to experimental check directly. One must measure acoustic pressure and use it to calculate
energy density according to some simplifying assumption, say plane waves. The significant
directional power quantity is the acoustic intensity. From Model Ia in the main text this inten-
sity is seen to depend on the angle 0 as

1

1 + (kL) 2 coS2 0

in which 0 is measured relative to the vertical. Actually muons arrive at all angles ( (relative
to the vertical). The sound radiated from a track at angle ( in direction of angle 4 from ( then
depends on

cos 2
2

1 + (kL)2 cos2 (e + )
Thus the greatest contributions to muon noise occur in the horizontal, from tracks near the
vertical (e - 0). A rough approximation to noise generation is to average cos2 ( in the
numerator over a solid angle of hemisphere and to neglect ( in the denominator.
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REMARKS III: DIRECTIONALITY

The number of particles incident on a unit area is proportional to cos2 0, where 0 is the
angle of the track of the particle relative to the vertical. Since the radiated sound from a track
is sharp in a direction normal to the track, we assume that the directionality of all the tracks
through a unit area is also proportional to cos2 0, where 0 is now taken relative to the horizon-
tal. The 3-dB points of the intensity pattern of acoustic radiation occurs at 0 values such that
cos 2 0 = 1/2, or cos 0 = 0.707, or 0 = + 450 . Hence the 3-dB beamwidth of muon noise is
900 centered on the horizontal. We compare this directionality with that of ambient noise and
of directional noise. Ambient noise at low frequencies (say less than 10 kHz) normally arrives
in a wedge +200 centered on the horizontal [Ref. 22, p. 282]. High-frequency ambient noise
originating in surface wave action arrives at a point in a vertical cone whose vertex angle
depends on depth of the listening sensor. In the range of interest (25 kHz and above) high-
frequency muon noise can be differentiated from ambient noise by the difference of angle of
arrival: muon noise arrives horizontally, and surface noise arrives vertically. In contrast ther-
mal or molecular-agitation noise dominates at high frequency and is omnidirectional.

REMARK IV: RELATION BETWEEN ENERGY DENSITY AND INTENSITY 14, p. 5771

We imagine the total acoustic effect of cosmic particles in the ocean to be analogous to
the assemblage of randomly distributed standing plane waves in a room, each wave traveling in
some direction 5, 0. Let each plane wave have amplitude A (r, X, 0). The power incident on
a unit area normal to k, 0 is the intenstiy I:

1 2Tr 7r/2

I(r) = C tdoff J A(r, 0, 0 12 CoOSsin 0dO.

Similarly the energy density w (r) is,
2 7r 7r

W(r) = f do f JA(r,',0)j2sin 0dO.
PC 0 0

At high enough frequency we can take the sound field in the room to be isotropic, meaning
that A (r, 'k, 0) is independent of r, tk, 0. This is the frequency range of geometrical acoustics.
Upon integrating in this region, one obtains

A_2 _ ' 47r A2

pc pc2

Hence the relation of Ito wis,

4'1'. = -

c

In the above numerical calculation of muon noise we have omitted the factor 4 and written w
= I/c. This omission was done because an integration over the hemisphere of particle in-
cidence had already converted angular incidence to vetical incidence.

STATISTICS OF NOISE IN THE OCEAN

The power spectrum level of noise in the ocean has been complied by Wenz [13] and is
reproduced as Fig. Cl for convenience. The ordinate of this chart represents the noise level
(NL), defined as
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NL = 10 log 0 x V , = frequency (Hz)

in which the reference is the quantity p2 of a plane wave of unit amplitude at the frequency f
All curves shown (except the one labeled molecular agitation) represent measured values of
ambient noise. The curve for molecular agitation is a straight line extending to the right with
the slope shown. All quantities are based on noise power in a 1-Hz band. The lower limit of
ambient noise in the ocean at 25 kHz is -8 -74 = -82 dB re 1 dyne/cm 2 (spectrum level),
and the noise of molecular agitation is -13 -74 = -87 dB re 1 dyne/ cm 2. By use of the
Mellen formula [14] one can extend this latter curve upward as desired.

Signal Processing of Muon Noise When the Time of Arrival is Random

We form a conceptual analog: let the unit area of the ocean surface be likened to an
anode in a vacuum tube, and let the cosmic particles incident on it be likened to electrons ar-
riving randomly. Also let each particle generate the same heat source h(r, t) in the water and
hence the same acoustic pressure p(r, t). Assume all effects of a unit area of incidence are ad-
ditive, taking r the same for all. The total effect at time t due to all the particles of a small
enough unit area is

p(r,t) = I p(r, t tK).

Since the individual p occurs at random time the total P is a random function of time.

Choose an interval Tand let exactly K cosmic particles arrive on the unit area in this in-
terval at random times tK. Then the contribution of these K particles to the total time history
of acoustic pressure is called PK, where

K

PK (t) = p(r, t - tk).
k =1

If r is dropped for convenience, the autocorrelation p (i-) of the total acoustic pressure will be

P (T (t) p (t + T) g(K PA ph, PK (t + T),
A =0

in which g(K) is the probability that exactly K muons arrive in the interval 0, T If one
chooses g(K) to be a Poisson distribution corresponding to shot (or impulse) noise, then one
can show that

q, (T) N f p (t) p (t + 7-) dt + p_(t_) 2

in which Nis the average number of muons arriving per second and P(t) is the average value
of P(t), namely,

p(t) = N X p(t) dt.

The ensemble averaged power spectrum i(f) can now be calculated from the standard relation

W(f) = 2 f qj (T )cos 2 fT dr

=2NIs(f) 2 + 2 p(t) 2 (f)
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in which

s (f') = | p (t) e -2irdO dt.

Thus, to find the power spectrum, one must Fourier transform the impulse acoustic pressure of

one muon to obtain the amplitude spectrum s(f). Then one must take 2Ntimes the absolute
value squared of s(f) and finally'add to it twice the square of the mean value of the total pres-

sure P(t) as a "DC" component.

When iW(f) is available over the frequency range of interest, we can estimate the statisti-

cal behavior of P(t). A convenient reference is S. 0. Rice ("Mathematical Analysis of Random

Noise," in Seletected Papers on Noise, N. Wax, editor, Dover Publications, 1954). As a special

case we list the applicable formulas for narrowband noise, assuming the total muon noise P(t)

will be processed through a narrowband filter to obtain spectral information at (say) 25 kHz.

Thus assume the autocorrelation is of the for m I/ (T) = A cos ATr; then, if P(t) and

WPbat are both Gaussian, the expected number of zero crossings per second is
1/2

I .( 11/2 0/2 W ' 

ZN rq(0 =2f2wf)f

where

qt (O) = -4T 2 .f2 W(f) df.

The probability that the time interval between successive zeros lies between T and T + dT is

approximately
dT a

2 [1 + a2 (T - Tr )2]3/2

where

a. Vj~(b + fa) 2 an = 1
fb - fa fb +fa'

in which fb -fa is the passband.

Writing P(t) = PC cos w ...t - Ps sin ,..t, where co,,. = 27rf.1 . is the midfrequency of the

filter and P, and Ps are quadrature components, we take P, and Ps as normally distributed with

the same standard deviation. The statistics of the pair PC and Ps, and of the envelope R (t) =

PC + pS are the following:

* the probability that the point (Pa, Ps) lies in the elementary rectangle dP, dP, is

dP2 dP5 S P 1
2 1q(0~) exp 2 qi(0) I'
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* the number of maxima of the envelope R (t) expected in 1 s is 0 .6(fb V fa;

* the probability that a maximum selected at random lies between R and R + dR, when
the envelope R > 2.5 1/ 7OW, is

1.13 (y' ~1e Y2 /2 dR R
- the execenmerom p ( ) s /2 is/2

* the expected number of maxima per second is

1/2

MN =
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Appendix D
MAGNITUDE OF CONSTANTS USED IN THE

NUMERICAL CALCULATIONS

1 = 1.4 x 10 -4 OK -1, coefficient of thermal expansion of water

Cp, = 4.18 X 103 joules tor 2 specific heat of water at constant pressure

eV = 1.6 x 10 19 joules 1.6 X 10 12 erg, energy

D = 1.43 X 10 c3 - 1.43 x 10 7-, heat diffusion constant of water
sec se

C = 1.5 X 103 , speed of sound in water
sec

I atmosphere =105 N _106 dynes
2 cm 2

reference pressure on dB scale:

(1) dB re 1 dyne/cm 2

(2) dB re 0.0002 dyne/cm 2 subtract 74 dB to convert to dB re 1 dyne/cm 2

(3) dB re 1 micropascal, subtract 100 dB to convert to dB re 1 dyne/cm 2

1 calorie =4.18 joules =4.18 x 107 ergs =2.6 X 1019 eV
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