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ABSTRACT 

The performance of a bandpass smooth limiter which 
is represented by the error function is analyzed when the 
input is a sum of two signals. Two input cases are con- 
sidered: sine wave plus sine wave and sine wave plus nar- 
rowband Gaussian noise. Corresponding to various input 
ratios, output ratios of inband signals are obtained and dis- 
played graphically as a function of a parameter p which 
specifies the degree of the limiter %ar&ess” relative to 
the input level. One of the graphic results is the behavior 
of the “captured limiter” as the limiter hardness is de- 
creased. The error function characterization of the limiter 
is believed to be realistic since it is capable of describing 
a wide range of practical operating characteristics of lim- 
iters and saturated amplifiers. In the limit when q = a, the 
smooth limiter becomes a linear ampKfier, and the limit 
where 4 = m corresponds to an ideal bard limiter. The re- 
sults corresponding to g = m are shown to agree with those 
known for the ideal hard limiter. 

PROBLEM STATUS 

This is a final report on one phase of a continuing 
problem. 

NRL Problem SOl-39 
Project RF-05-121-40~4069 

Manuscript submitted April 7, 1970. 



SMOOTH LIMITING OF TWO SIGNALS IN A NARROWBAND SYSTEM 

INTRODUCTION 

The hard limiter has seen widespread use in acoustic signal processing. It has been 
used as a two-level quantizer; it has been used to remove random amplitude fluctuations 
while preserving phase information; it has even been used to enhance signal d&e&ability 
(signal-to-noise ratio). For example, in an impulsive noise environment the two-input 
polarity coincidence correlator, which employs hard limiting on both inputs, actually 
outperforms a correlator without hard limiters (1). 

OUT OUT OUT 

jqk_/ 
HARD 

LlMlTER 
SOFT SMOOTH 

LIMITER UMITER 

Hard limiting of signals has been studied by numerous investigators (Z-6).* Perhaps 
because much is known about hard limiting of signals, limiting circuits are frequently 
characterized as ideal hard limiters even when such a characterization is not fully ap- 
propriate. For example, limiting action is observed in a saturated amplifier -a circuit 
with a linear small-signal region and a gradual saturation. The saturated amplifier has 
also been characterized as a “soft limiter” which limits abruptly at some threshold and 
passes, without distortion, signals below the threshold. Soft limiters too are not entirely 
realistic since practical amplifiers rarely display this abrupt limiting property. In or- 
der to analyze circuits with a gradual saturation, it would seem desirable to represent 
the circuit transfer function with a smooth curve. 

It is the intention of this report to consider a more realistic model of limiters in 
general with the input consisting of the sum of two signals. A particularly realistic rep- 
resentation of a practical limiter is a “smooth” transfer function in the form of the er- 
roi- function 

erf (a/G/3) = 2/fi exp (-t2) dt , 

as shown in Fig. 1, where a is the input signal amplitude and p is the parameter which 
determines the “hardness” of the limiter. 

*The references cited here are by no means exhaustive. 

1 



2 LEE AND HUGHEN 

Fig. 1 - Transfer characteristics of error function limiter. 

Lieberman (7) and Baum (8) considered an error function limiter and computed the 
output autocorrelation function in a closed form when the itlput is Gaussian noise. Gale@ 
(9) examined the output signal-to-noise ratio of a narrow-bandpass error function limiter 
for an input of a periodic signal plus random noise, and the results were related to those 
of a corresponding linear system (limiter is replaced by a linear amplifier). Lee (IQ) 
obtained the expression for the signaI-power-to-crosstalk-power ratio at the output of an 
error function limiter when the input is a multichannel frequency division multiplex 
signal. 

We consider an error function limiter with two input cases: sine wave plus sine 
wave and sine wave plus narrowband Gaussian noise. Corresponding to various input 
ratios, output ratios of inband signals are obtained as a function of 4 = a/p where the 
parameter 4 specifies the degree of the limiter “hardness ” relative to the input signal 
amplitude. An advantage of the error function representation of the limiter is that the 
analysis leads to results which correspond to a wide range of practical limiter shapes, 
ranging from the linear amplifier to the hard limiter. It is shown that the results corre- 
spending to 4 = m are those known for the ideal hard limiter. 

The analysis in this report is based on the method of analyzing “bandpass nonlinear- 
ities” suggested by Blachman (Il), a method which has proven to be extremely powerfU1 
(12,13). 

The expressions obtained in this study were evaluated numerically on the Honeywell 
DDP-24 digital computer and plotted by the Calcomp 563 plotter. 

GENERAL FORMULATION 

We are considering a bandpass nonlinear device which is memoryless. The system 
presentation is given in Figure 2. The input and output bandpass filters are essentially 
identical. The input filter is shown only to emphasize that we are considering inputs 
whose spectral occupancy lies within the passband of the output filter. 
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Fig. 2 - Bandpass nonlinear device. 

The output y ( t) of the nonlinear device is a function of the input x(f) and we may write 

Y(t) = g[x(t)l (1) 

where the function g relates the input to the output instantaneously. Now let us assume 
that the input is given by 

X(f) = A(t) cos [znft + a(t)] (2) 

where A(t) and o(t) may be specified appropriately if X( L) is to represent (a) AM-DSB/ 
SC signal, (b) phase-modulated (PM) signal, (c) frequency-modulated (FM) signal, 
(d) single-tone carrier, or (e) narrowband Gaussian process. If we let 

o(t) = znft + a,(t) 

and substitute Eq. (2) into Eq. (I), we obtain 

(3) 

y(t) = g(A coso) 

where A and 0 are both functions of the time r. 

(4) 

Since for any A, Eq. (4) is an even function of 8, we may expand it in a Fourier 
series (11,13): 

y(t) = (l/z) Be(A) + El(A) coso + B*(A) cos 20 + .,. (5) 

where n 
Bkc.4) = l/v [ g(A cos 0) cos ko do 

-n (6) 

It is apparent from Eq. (5) that B,(A) is the kth harmonic amplitude. Now let us make 
the assumption that the second term in Eq. (5) is the only one present in the passband of 
the output filter. In other words, the bandwidth of B,(A) is narrow compared to the fre- 
quency f,. Furthermore, the bandwidths of the other Bk(A), k + 1, terms are narrow 
enough so that in the region of the spectrum occupied by B,(A) cos o there is no signifi- 
cant contribution from any other term. Thus the output of the bandpass filter centered at 
f and assumed to have an ideal rectangular passband of sufficient width to pass only 

& B,(A) term, is 

Z(t) = RI(A) case = El(A) cos[z~ft + a(t)] (7) 

From Eq. (2) above we have 

cos [2nft + O(t)],= x(t)/A(t) , 

and putting Eq. (8) into Eq. (7) we get 

(8) 
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z(t) ={LI~(AYA)~(~) ~(D,(A),‘A)~(~“~~,~). (9) 

We can omit the subscript from B, since we will henceforth consider only the case of 
k = 1. It is clear that Eq. (9) is the formula to be used for any particular input. In the 
ensuing analysis, we will consider the two-input-signal ease, but the necessity of identi- 
fying the nonlinear device with a specific transfer characteristic, i.e., specifying B {A), 
does not arise at this time. 

TWO SINUSOIDAL INPUTS 

General 

When the input is assumed to be the sum of two sinusoids of constant magnitudes “1 
and a2 and frequencies f, a+ f,, respectively, we have 

x(t)= a,cos(2nf1t) + a,cos(Znf*t) Cl@ 

where f, and f, both lie within the passband of the system. UsinK the law of cosines, 
the amplitude oi x( t) is obtained as<see Fig. 3) 

A(t) z [a,’ t a; i 253 cos2n(fZ-fl)tl~'~. 

Thus the output of the bandpass filter is, from Eq. (9), 

z(f) = (B:A)/A) x (input) 

+a; + a,' + *ata, cos2n(fi-) 
x (al cos2nf,ttnz cos2nfit) 

a ,z + a 2’ + 2a,a, cos2n(f2- fl)f 

Fig. 3 - Instantaneous phasor representation 
of two signals. 

The next step may be suggested by examining the implications of Eq. (12). Equation 
(12) represents two amplitude modulations (AM-DSB), each with a “modulation signal” of 
fundamental frequency f, - f,, and the two carriers are f, and f,. One might note 
that it is a highIy unusual ampiitude modulation that Eq. (12) represents since the mcdtr- 
lation signal appears to be subjected to a complex nonlinear process [wwhich produces 
all-order harmonics of f, - fl ) before being multiplied by the carriers. But that is not 
the point of our concern, for it is not the AM-DSB system that we are interested in as 
far as Eq. (12) is concerned. The fact is, however, that the AM-DSB signal yields 
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frequency components having frequencies k (nf, - (n - 1) f 2 ) at the nonlinear device out- 
put, where n takes some integer (not necessarily positive) value. 

Since Eq. (12) is an even function of r, we can express the output as a sum of cosine 
terms: 

Z(r) = 2 cn cos 2n(nf1 - (n - 1) f, ) t (13) 
“=-a 

Since this is not an orthogonal expansion in general, that is, cos 2n (nf, - (n - 1) f,) t iS 
not necessarily orthogonal to COB 2~ [mf, - (m- I) f2] t, the method by which the c, is 
evaluated may not be obvious at this point. However, the appendix contains a derivation 
based on a complex Fourier series representation of the complex envelope of the analytic 
signal, 

Z(t) = Z(t) + j;(t) (14) 

where i(t) is the Hilbert transform Z(f). From the appendix we thus obtain for the co- 
efficient of the component term of frequency nf, - (n - 1) f, 

l [ “‘~;++;;+‘:::“‘,::;” (a, cos(n- 1)~ + a2cosny) dy cn “n 1 2 
(15) 

where 

Y = 2n(fz-f,)t 

We have succeeded in obtaining a prediction formula for the amplitude of the signals 
that exist in the passband of the filter output. Equation (15) may be simplified when we 
consider the two cases: 

(4 a* << al (one signal is weaker than the other) 

(b) al = a2 = a (equal-amplitude signals). 

One Input Signal Relatively Weak 

Let us first consider the case where a2 CC a,. This condition implies that 

1 +(a,/a,)2 = 1 , 

and hence Eq. (11) simplifies to 

A(t) = a; + a*’ + 2a,a, cos zn(f?- I,) t 
I 

“’ 

jr a, + a* cos 2n(fz- fl) t ( 

and 

B (A) B ral + a2 COS 277( f, - fl) t] 
-=G 

A a, + a2 cos 2n(fz- fl) t 

(1’3) 

(17) 



6 LEE AND HUGHEN 

The numerator of Eq. (17) can be expanded in a Taylor series about at. Using the se- 
ries expansion up to and including the first-order term, Eq. (17) becomes 

B(A) B(a$) + B’(a,) a2 CDS Z??(f, - fl) t 

A 
al [? i ; CO5 2n(fz- f,) t] 

= (B(a,) t B’(a,) 

B(a,) 
=-+ a*cos2n(f*-fl)t i 

B’(a,) 
__ 

a 1 al 
- y, - (Zf B’(a*)cos~Zn(f*- f,) t 

s(a,) 
*- + a*CDS2n(fz-f*)t ($p) 

RI 
&3) 

where the prime indicates the derivative with respect to the whole argument. Thus 

Z(~r) = (B(A)/A) x input 

becomes 

Z(f) = i 
y + +)(yg ros2n(f~-f~)L)x (,,;,,,,f,~+.,,,,,,f*~~ 

= B(cJ,) cosznf,t * a2 
B(J,) 
__ CDS 2nf,t 

a1 

+ a*21 ($)(2-g cosZn(f*-f*)tcosznf*t 

+ a,’ (j$(y) co5 2n ( f, - f ,) t co5 27rf2 t 

a,*(a,) 
= B(ir,) cos Znf,f + 7 cas Zlrf, t 

+ yL (~)(q+2n!2f~-f~)1 

+ T ($) [y) cos z,r,t 

2 
+ + (a,B’(al) - B(d,)) ( 1 cos 2n(f,- I*) t cc‘s 2*fit 

w 
(Cont.) 
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a2 
= B(dl) 03s 2sf1 f + 2a 

I( ) 
$ ra*B("1)l 

I 
cos Znf, t 

1 1 

+ y [(&I pgq cos ZT(2fl -f*, t (19) 

Equation (19) reveals the amplitudes of the fundamentals ( f, and f*) and third- 
order intermodulation (2fl - f*) quite explicitly, and hence it is not necessary to use 
Eq.(l5)for this case of one signal relatively weak. 

Until now we have discussed the bandpass nonlinearity without specifying the form of 
the nonlinear device. We will apply the general result obtained to a specific nonlinearity, 
namely, an error function limiter. By an error function limiter, we mean 

B(A) : 71 erf & / 
( I 

where 0 is a parameter which specifies the degree of hardness in the limiter shape. The 
error function is defined by 

erf (Z) n 1 
j’ 60 

exp (-f*) dt ; 

thus 

1 hl% 
B(A) z Zfi j- exp (-t*) dt 

0 

From Eq. (19), which gives the expression for z(t) when a2 << aI, we have 

B(A) 
L(f) = _ 

A X(t) 

(21) 

where 

= C1cos2nf,t + CoCO”2nf*t + C*cos2n(Zfl-f*)t (22) 

c, = B(a*) is the output amplitude at frequency f, , (33) 

is the output amplitude at frequency f* , (34) 

and 
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LS the amplitude of third-order intcrrmdulation tern 

w> 

Now by Eq. (20) we have 

c, = B(B1) z 71 erf 
t 

al \ %). w 

c, = ; L [atB(al)] i i r * da1 
a2 Bca,) 

= c 
j 1 i 

=; 1;1jg:‘:: cc;) [q&)]]. 

($) ~qAJ= ($1 (fJTB cxp(-I’) ,,:) 

2/v;; a : 
4 1 .- 

fii3 w 

&z 12 
= -cxp 2R2 P ! ! 

Therefore 

Then from Eqs. (26) and (29) we obtain 

where 

the pram&r 4 specifies the relative ‘hardness” of the smooth limiter. Since the lim- 
iting action of the device depends on the signal amplitude level, the paratneter 9 may be 
termeu the “limiter level parameter.” 



NRL REPORT 7113 9 

Note that Co/C, is the output ratio of the two signals corresponding to the input ratio 
az/a,. Define the “suppression factor” p, by 

Then Eq. (30) gives 

P, a (Co/C, )/(a*/a*) 

P, ,L 
erf (s/x/?) + r + 9 CT (-qv 2) 

2 erf (4/m 
(31) 

Equation (31) is plotted in Fig. 4 as a function of g. 
fied when p - 0 (hard limiter), p, 

Note that as 9 -m, which is satis- 
- l/2 (-6 dB) -a well-known result (4). In fact, for 

any weak signal including a Gaussian process in the presence of strong unmodulated sine 
wave interference, the signal-to-interference ratio at the output of the hard limiter is 
always 6 dB worse than that of the input (14). This effect is often referred to as the 
“limiter capture effect.” 

Fig. 4 - Weak signal suppression p, and 
normalized intermodulation /A, 1 vs rel- 
alive limiter hardness 9 far two sinus- 
oidal inputs, one relatively weak. 

The intermodulation-to-weak-signal ratio is also a quantity of interest. Referring 
to Eq. (25), the intermodulation amplitude C, is 

If we define A, as the ratio of intermodulation amplitude to the weak signal amplitude, 
~.e., A, a C2/Co, we have 

-5 4 exp (W/2) - 77 erf (y/JTj 

= J2n 9 =P(+/2) + 77 erf (q&q 
(32) 
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Figure 4 shows also a plot of the magnitude of A, YS 9 = a*/@. It is interesting to note 
that [A, 1 asymptotically approaches unity for large arguments, indicating that the iater- 
modulation never exceeds the suppressed weak signal. 

Equal Amplitude Sinusoids 

Let US consider now the case where the two sinusoidal input signals are of equal am- 
plitude. The input x(t) is again given by Eq. (10) but now aI = a2 = a. From Eq. (15) 
the coefficient C, of the component term of frequency nf, - (n- I) f2 is 

2a2t 2a2cosy 
cn = n y:’ [a cos(n - 1) Y + a cosnyj dy 

Za2 + 2a2 cos y 

~(zacos~) cos (2n- 1)~ dy (33) 

The specific form of Eq. (33) is obtained via Eq. (6) when a specific device is considered. 
Therefore, Eq. (33) is a prediction formula for the “inband” signal amplitudes for the 
case of two, equal-amplitude, sinusoidal inputs. 

From Eq. (20) we have 

thus 

Therefore C, in Eq. (33) above must be evaluated in the light of Eq. (34): 

c* = 2 (I2 r’f(fi8go,+O~(2”-,,Y dy (35) 

Now it is clear that we must determine from Eq. (35) the amplitudes of signals COPI‘%- 
spondiogto I,, f,, and 2f, - f,. They are determined by giving an appropriate value 
for n in the term nfL - (n- 1) f,. 

Amplitude of f,(n= I) and f,(n- o,-Note that whenn=o and n= 1, Eq. (35) results 
in the same expression (as expected), and thus 

co = c, : 2 y2 erf(fia;‘~)cosY dY (36) 
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Amplitudes of the third-order intermodulation component -The amplitudes copre- 
sponding to 2f, - f, and 2f, - f, are found from Eq. (35) by setting n = 2 and n = -1, re- 
spectively. Also we note that, as expected, the results for n = 2 and n = -1 will be identi- 
cal: 

C2 = C-, : 2 -p” erf(fia,si) cos 3y dy (37) 

Equations (36) and (37) give the “responses” of the inband signals (two fundamentals and 
a third-order intermodulation product) as a function of the input voltage level a and the 
limiter characteristic p, 

If we compare Eq. (36) with v erf (u/fip) , we can determine how much each of the 
signals at f, and f, is suppressed by the other: 

P2 B (C&r) ..r(alfip) 

T/2 
2i” erf (JTSCOSY) cosy dy 

(38) 

Equation (38) was evaluated numerically and is plotted as a function of q = a/~ in Fig. 5. 
Examining the asymptotic behavior of Eq. (38) for g - m (corresponding to the hard lim- 
iter), since erf (m) = 1, we have 

lim p2 = $ 
9+- (39) 

This means that each signal undergoes 2/n (or -3.92 dB) loss due to the presence of the 
other. This is a well-known result for the hard limiter (12). 

Fig. 5 - Signal suppression pz and 
normalized intermodulation 1 II~ 1 
vs relative limiter hardness 9 for 
two equal-amplitude sinusoidal 
inputs. 

” 

m 0.3- 0 $j J/,71+ f 
4N 

0 I I 2 2 3 3 4 4 RELATIVE HcaDNESS q RELATIVE HcaDNESS q 

Another quantity of interest is the ratio of intermodulation to suppressed signal, 
namely, 
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erf (fiq cos Y) cos 3~ dy 

A numerical evaluation of Eq. (40) is also plotted in Fig. 5; /hz/ asymptotically ap- 
proaches l/3 (or -9.54 dB) for large 9, again the expected result for the hard limiter 
(10,lZ). 

lf we compare Eq. (37) with n erf (a/G-p), we determine the in&-modulation ampli- 
tude with respect to the single input response: 

n/2 
2 

C2 

r[3= s 

erf (JTq cos Y’) CDS 3y rly 

h, a 0 
a 

” erf - 
(2) 

n eCftq/fi) 

The asymptotic value of 1 .A,\ is 

This means that the intermodulation is down bv 213~ (or -13.46 clB\ from the aingle input ” 
response level, OP 

20 log(2/3n) - 20 log (Zh) = -9.54 LIB 

down from the suppressed output level as Eq. (40) shows. (See Fig. 6). 

- 021~ 
? , 

I 
z : 

I 
= 0 , 

(43) 

RLLATWE WSDNESS * 

Fig. 6 - Ratio [ A,[ of intermodulation amplitude to single 
input response vs relative limiter hardness 9 in a smooth 
limiter for two equal-amplitud~ sinusoidal inputs. 
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SINE WAVE PLUS GAUSSIAN NOISE 

Input Signal-to-Noise Ratio Relatively Small 

If we replace Eq. (10) with 

X(t) = a,(t) cos(znf,t+ a) + as cosznf*t ( (44) 

where the first term on the right-hand side represents a narrowband Gaussian random 
process with a uniformly distributed over (0, k), then following the preceding develop- 
ment for a2 <( a,, we can express the output of the bandpass smooth limiter as 

Z(t) = c,cos (2nflt+a) + co cos2nf,t -1 cz cos(zn(zf, - fz)t+2a) (45) 

where 

co = ; g [alB(aI)l %  
,( ) 

(46) 

and 

c, = B(a,) , (47) 

c, : yz (k)(T) 

The “noise” is assumed to be Gaussian with zero mean and a variance oz. The 
noise envelope is then characterized by the Rayleigh density function 

“1 al2 Pa(a,) = 2 exp - ,1 
i ! 

a1 2 0 (49) 

To be consistent with Blachman (11) and Cahn (4), the output signal power is defined as 
s Out : (l/2) coz; thus we must average the signal envelope over all possible values of 
noise: 

“, : ‘QaC~,) da, 

Integrating by parts and using Eq. (49) we obtain 

The output noise power is 

N out =‘C? z’ * 1 P 2 0 
BYal) ~(a,) da, 

(50) 

(51) 

(53) 
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where we have neglected the C, term due to its insignificant contribution to the total 
noise output. The output signal-to-noise power ratio is 

~?a,) ~,,(.-a) da, 

2 

a,B(a>) PA(“)) da, 

z- 

202 
r BYa,) Pacal) da1 
0 

Considering a;‘/2n* to be the input signal-to-noise power ratio, we can define the 
signal suppression factor p3 as follows: 

s 3. 
p342L 2 

N 
/ 

N. o”t I” 

(53) 

2 
m 

(J 

alB(,al) PA<“,) da1 

0 J 

za* BYal) mCal)dy 

Letting P G r//B and ol = a/a, Eq. (54) becomes 

(J” a> q&) +g d@j 

(54) 

Figure 7 shows a numerical evaluation of Eq. (55). This plot differs from the others 
in that the independent variable is o/B rather than aI /@. The change was de&r&&e be- 
cause this parameter should lend itself to experimental determination. However, nl( t) 
is a sample function of a random process and hence not a measurable quantity, whereas 
u, the rms vaIue of the input noise, is certainly measurable. The significance of m/p is 
the same as the a,/~ used previously. Both parameters are a measwe of limiter hard- 
ness relative to the input level. 

Note that as the smooth limiter becomes a hard limiter (P -a) we obtain the well- 
known result (2) 
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Fig. 7 - Signal-to-noise power transfer 
ratio for weak (curve pJ and large 
(curve pq) input signal-tcAoise vs rel- 
ative limiter hardness (D for p3 and 9 
for pa) far sine wave plus Gaussian 
noise input. 
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Input Signal-to-Noise Ratio Relatively Large 

Let us now consider the case where the input signal-to-noise ratio is very large 
compared to unity. In order to use the previous development let US alter Eq. (44) SO that 
the first term will represent the signal and the second term the narrowband Gaussian 
noise. In this manner, we can easily make use of the previous results. Then, 

X(L) = a, cos 27Tf,i + a,(r) cos (znf,t t a) (57) 

Note that the case of “input signal-to-noise ratio relatively large” implies aI >> a*. 

The output expression is then given by 

z(t) = c, cos 28f, t + co cos (27rfz t + a) + c* cos (2Tr(2f, - f*) t - 8) 

where CO, Cl, and C, are given by Eqs. (46), (47), and (48), respectively. 

Using the same definitions of output power, the output signal power is 

(58) 

Wa,) PA da, = $ @Cal) 69) 

where PA is again the Rayleigh density function of the noise envelope. The total out- 
put noise power in this case becomes* 

where 

*Note that here we do take into consideration the effect of the “signal-and-noise cross term” C,. 
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and likewise 

F; = [5*(alj - 5qq* ‘;’ 

Equation (60) becomes 

N c? BZ<a,) =- __ out 2 i a*2 
+ Ps(a1)12 

I 

The output signal-to-noise power ratio is 

s o,,t BYa,> 
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Defining the signal-tn-noise degradation pa, 

s O,lt Sin P#=r - i: O”f #in 
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The asymptotic value of ,oq for 4 -a again agrees with the known results for a hard 
1imiter (2): 

Ii, p4 = 2 hw em 

Figure ? also shows a plot of Eq. (66). 

SUMMARY AND CONCLUSlONS 

We have analyzed the effect of a smooth limiter characterized by the error function 
on signal interactions for the case where the input consists of two sinusoidal signals, one 
relatively weak (case a) and both of equal amplitude (case h). We have a&o analyzed the 
output signal-to-noise ratio when the input consists of a sine wave plus Gaussian noise 
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for (a) the input signal to noise small compared to unity and (b) the input signal to noise 
large compared to unity. J.n the graphical presentation of the results it can be observed 
that when the error function limiter becomes a hard limiter, i.e., when the limiter level 
parameter approaches infinity, the result is in perfect agreement with the known results 
for the ideal hard limiter. 

The results presented here* can be applied to an existing circuit by the determina- 
tion of the hardness parameter p. By considering normalized transfer characteristic 
data extended into the overload or limiting region, a value of ,e is chosen which gives the 
best approximation to the transfer curve by the error function curve erf (a/&) ivhere a 
is the peak amplitude of the input. This specifies an error function model for the circuit. 
For a particular situation of interest, e.g., two sinusoidal inputs, one relatively weak, a 
value of the peak amplitude of the large sinusoid is determined (either by direct meas- 
urement or hypothesis); the appropriate graph is then entered at the abscissa corre- 
sponding to 4 = a/p and the resultant is read off the ordinate. This procedure must be 
modified slightly in the case of signal-plus-noise input for small signal-to-noise ratios. 
Here the limiter level parameter is r//p where m is the rms value of the input noise. 

*These results were also the subject of a technical presentation (15). 



REFERENCES 

1, Wolff, KS., and Gastwirth, J.L., “Robust Two-Input C&relators,” J. Acoust. Sot, 
Am., 41(No. 5:1212-1219 (May 1967). 

2, Davenport, W .B., Jr., “Signal-to-Noise Ratios in Band-pass Limiters,” J. Appl, 
PhYS., 24:?20-727 (June 1953). 

3. Blachman, N.M., “The Output Signal-to-Noise Ratio of a Power-Law Device,” J. 
Appl. Phys., 24:783-785 (June 1953). 

4. Cahn, C.R., “A Note on Signal-to-Noise Ratio in Band-Pass Limiters,” IRE Trans, 
inform. Theory, IT-7:39-43 (Jan. 1961). 

5. Jones, J.J., “Hard-limiting of Two Signals in Random Noise,” IEEE Traw. Inform. 
Theory, IT-9:34-42 (Jan. 1963). 

6. Sollfrey,W., “Hard Limiting of Three and Four Sinusoidal Signals,” IEEE Trans. 
Inform. Theory, IT-152-7 (Jan. 1969). 

7. Lieberman, G., Report of NRL Progress, pp. 48-51, Jan. 1955. 

8. Baum, R.F., ‘The Correlation Function of Smoothly Limited Gaussian Noise,” IRE 
Trans. Inform. Theory, IT-3:193-197 (Sept. 1957). 

9. Galejs, J., “Sign&-to-Noise Ratios in Smooth Limiters,” IRE Trans. Inform. Theory, 
IT-5:79-85 (June 1959). 

10. Lee, J.S., “Signal-to-Crosstalk Power Ratio in Smoothly Limited Multichannel FDM 
Signals, IEEE Trans. Commun. Technol., Corn-16:63-67 (Feb. 1968). 

11. Blachman, N.M., “Band-Pass Nonlinearities,” IEEE Trans. Inform. Theory, IT-K!: 
162-164 (April 1964). 

12. Blachman, N.M., ‘Two-Signal Interaction in a Logarithmic IF Amplifier,“ LEEE 
Trans. Commun. Technal., Comm-15:305-307 (April 1967). 

13. Blachman, M.M., “Noise and Its Effect on Communication,” New York:McGraw-Hill, 
1966, Ch. 5. 

14. Berglund, C.N., “A Note on Power-law Devices and Their Effect on Signal-to-Noise 
Ratio,” IEEE Trans. Inform. Theory, IT-10:52-51 (Jan. 1964). 

15. Lee, J.S., and Hughen, J.H., “Interactions of Two Signals in a Bandpass Smooth Lim- 
iter,” paper presented at the 78th Meeting of the Acoustical Society of America, San 
Diego, California, Nov. 1969. 

18 



, . 

Appendix 

DERIVATION OF C” 

In this appendix we show that the filter output Z(t) can be expressed as 

m 
z(t) = c C” cos 2n [nf, - (” - 1) fz] t (Al) 

n=-m 

where C, represents the amplitude of the output component corresponding to the fre- 
quency [“f, - (” - 1) fzl. The set {cos 2r(nfl - (n - 1) fz) tl, where n takes some integer 
value, is not an orthogonal set unless the frequencies f, and f, are commensurable. 
Thus we cannot employ the usual method of determining generalized Fourier coefficients 
by multiplying Z(t) by cos 2n [nfl - (n - 1) fJ t and integrating over the interv%l of or- 
thogonality. In order to deter_mine C,, we employ an analytic (complex) signal repre- 
sentation of the output. Let Z(t) be the complex representation of the output. Then 

Z(t) = Z(t) + j i(t) (AZ) 

where z^(.t) is the Hilbert transform of the real signal output Z(t). The Hilbert trans- 
form of the Z ( f ) can be determined by inspection from Eq. (12) by noting that since Z (t 1 
is expressly required to be a narrowband signal, the bandwidth of B (A)/A must be small 
compared to either f, or f,. Thus 

i(L) % B(A) 
A (a, sin 2rrfl t + a2 sin 2nfii) (A3) 

Substituting Eq. (A3) into Eq. (AZ) we obtain the analytic signal z”(f): 

(A4) 

If we define the complex envelope function s”(f) as 

(A5) 

we can then expand S(f) in a complex Fourier series and substitute the series form of 
Eq. (A5) into Eq. (A4) obtaining 

( 

m  
y(f) = C anej2~n(fl-f2)t ej2nfZt 

) 
w 

n=-m 

where 
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and 

Now, 

a”,-, _ 1 il”,‘y(t) e-jz=n(fl-f2)t dt 

T: ‘/(fa-fi) 

T/2 
-j L B(A) 

J - CkI sin2n(n-I)(fi-f2)tta2Pin2nn(fl-f*)t dt. 
) 

w 
T -r/2 A 

Since 5(A),‘A is an even function of time, the second integral in Eq. (A8) will vanish. It 
is thus shown that n, is a real quantity. Substituting T = I/( f, - 1% ) and Y : ?n ( f’? - f, ) t 
into Eq. (~8) gives 

“” = ; ,i y ia, cos(n-1)yia2Lmny)dy (A91 

Now having established that the d,‘s are reak, it is easy to show that the analytic signal 
of Eq. (A6) leads to the desired form of 2 ( r ): 

Z(f) = ; Re [Z(t) t ~**(r)l 

m 1 
: z a,, CDS 2n [IIf> - (n - 1) fJ t WO) 

n=-m 

Comparing this expression term by term with Eq. (Al) we conclude that the ~1~ and c, 
are identical. Thus we have 

c”q25(a, cos(n-I)ytaZcosny)dv (All) 

which is the form given in Eq. (15). 


