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ABSTRACT

The performance of a bandpass smooth limiter which
is represented by the error function is analyzed when the
input is a sum of two signals. Two inpul cases are con-
sidered: sine wave plus sine wave and sine wave plug nar-
rowband Gaussian neoise. Corresponding to various input
ratios, ouiput ratios of inhand signals are obtained and dis-
played graphicaily as a function of a parameter ¢ which
specifies the degree of the limiter "hardness™ relative fo
the input level. One of the graphic results is the behavior
of the "captured limiter" as the limiter hardness is de-
ereased. The error function characterization of the limiter
is believed {0 be realistic since it is capable of describing
a wide range of practical operating characteristies of lim-
iterg and saturated amptifiers, In the Hmit when ¢ = ¢, the
smaoth limiter becomes a linear amplifier, and the limit
where g = © corresponds to an ideal hard limiter, The re-
sulis corresponding to ¢ = @ are shown io agree with those
known for the ideal hard limiter.
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SMOOTH LIMITING OF TWOQ SIGNALS IN A NARROWBAND SYSTEM

INTRODUCTION

The hard limiter has seen widespread use in acoustic signal processing. It has been
used as a two-level quantizer; it has been used to remove random amplitude fluctuations
while preserving phase information; it has even been used to enhance signal detectability
(signal-to-noise ratio). For example, in an impulsive noise environment the two-input
polarity coincidence correlator, which employs hard limiting on both inputs, actually
outperforms a correlator without hard limiters (1).

ouT ouT QuUT
IN / IN IN
HARD SOFT SMOOTH
LIMITER LIMITER LIMITER

Hard limiting of signals has been studied by numerous investigators (2-6).* Perhaps
because much is known about hard limiting of signals, limiting circuits are frequently
characterized as ideal hard limiters even when such a characterization is not fully ap-
propriate. For example, limiting action is observed in a saturated amplifier —a circuit
with a linear small-signal region and a gradual saturation. The saturated amplifier has
also been characterized as a "'soft limiter" which limits abruptly at some threshold and
passes, without distortion, signals below the threshold. Soft limiters too are not entirely
realistic since practical amplifiers rarely display this abrupt limiting property. In or-
der to analyze circuits with a gradual saturation, it would seem desirable to represent
the circuit transfer funciion with a smooth curve,

It is the intention of this report to consider a more realistic model of limiters in
general with the input consisting of the sum of two signals. A particularly realistic rep-
resentation of a practical limiter is a "smooth" transfer funection in the form of the er-
ror function

a/V2B
erf (a/y/2B) = 207 exp (~£2) dt |
[}

as shown in Fig, 1, where a is the input signal amplitude and g is the parameter which
determines the "hardness" of the limiter.

*The references cited here are by no means exhaustive.
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Fig. 1 - Transfer characteristics of error function limiter.

Lieberman (7) and Baum (8) considered an error function limiter and computed the
output autocorrelation function in a closed form when the input is Gaussian noise. Galejs
(9) examined the output signal-ta-noise ratic of a narrow-bandpass error function Hmiter
for an input of a periodic signal plus random noise, and the resulis were related to those
of a corresponding linear system (limiter is replaced by a linear amplifier]. Lee (10]
obtained the expression for the signal-power-to-crosstalik-power ratio at the output of an
error function limiter when the input is a multichannel frequency division multiplex
signal,

We consider an ercor function limiter with two input cases: sine wave plus sine
wave and sine wave plus narrowband Gaussian noise. Corresponding to various input
ratios, vutput ratios of inband signals are oblained as a function of g = a/g where the
parameter ¢ specifies the degree of the limiter “hardness” retative to the imput signat
amplitude, An advantage of the error function representation of the limiter is that the
analysis leads to results which correspond to a wide range of practical limiter shapes,
ranging from the linear amplifier to the hard limiter. It is shown that the results corre-
sponding to ¢ = = are those known for the ideal hard limiter.

The analysis in this report is based on the method of analyzing "bandpass nonlinear-
itieg! suggested by Blachman (11}, a method which has proven to be extremely powerful
(12,13).

The expressions obtained in this study were evaluated numerically on the Honeywetk
DDP-24 digital computer and plotted by the Calcomp 563 plotter.

GENERAL FORMULATION

We are considering a bandpass nonlinear device which is memoryless. The system
presentation is given in Figure 2, The input and output bandpass filters are essentially
identical. The input filter is shown only to emphasize that we are considering inputs
whose spectral occupancy lies within the passband of the output filter,
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INPUT t OUTPUT 2(1)
x4t} | BANDPASS i yit) BANDPASS ——»
FILTER FILTER

Fig, 2 - Bandpass nonlinear device.

The output y (t) of the nonlinear device is a function of the input x(¢) and we may write

y(t) = glx(t)] (1)

where the function & relates the input to the output instantaneously. Now let us assume
that the input is given by

x(t) = A(t) cos [2nft + ®(1)] (2)
where A(t) and @ (¢) may be specified appropriately if x(t) ig to represent {(a) AM-DSB/
SC signal, {b) phase-modulated (PM) signal, (¢) frequency-modulated (FM) signal,

(d) single-tone carrier, or (e) narrowband Gaussian process. If we let

O(t) = 2mft + () (3)
and substitute Eq. (2) into Eq. (1), we obtain

y(t) = g(4 cos9) (4)
where 4 and ¢ are both funections of the time ¢,

Since for any 4, Eq. (4) is an even function of 4, we may expand it in a Fourier
series (11,13):

y(t) = (1/2) By(A) + B (4) cos§ + By(A) cos 20 + ... (5)

k( ) ( o ) os )

It is apparent from Eq. (5) that B,(4) is the kth harmonic amplitude. Now let us make
the assumption that the second term in Eq. (5) is the only one present in the passband of
the output filter. In other words, the bandwidth of B, (4) is narrow compared to the fre-
quency f,. Furthermore, the bandwidths of the other By(4), k # 1, terms are narrow
enough so that in the region of the spectrum occupied by B, (4) cos ¢ there is no signifi-
cant contribution from any other term. Thus the output of the bandpass filter centered at
f), and assumed to have an ideal rectangular passband of sufficient width to pass only
the B (4) term, is

Z(t) =B (A) cos@ = B (A) cos [2mft + B(t)] . (M
From Eq. (2) above we have
cos [2mft + G(L)] = x(t)/A(t) , (8)

and putting Eq. (8) into Eq. (7} we get
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2 )Y :(81(.4)/%);( (£ ?(Biiéj_/’éjx (input). (9}
We can omit the subscript from B, since we will henceforth consider onily the case of
k = 1, Itis clear that Eq. {8} is the formula to be used for any particular input. In the
ensuing analysis, we will consider the two-input-signal case, but the necessity of identi-
fyving the nonlinear device with a specific transfer characteristic, i.e., specifying 8¢4),
does not arise at this time.

TWO SINUSOIDAL INPUTS

General

When the input is assumed to be the sum of two sinusoids of constant magnifudes a,
and @, and frequencies f, ar? f,, respectively, we have

x(t) = a, cos (2nf t) + a,cos (2mf,¢) (10}

where f; and f, both lie within the passband of the system. Using the law of cosines,
the amplitude of x(¢) is obtained as {see Fig. 3)

A(ty = [a2 + a} t 2aa, cos2n(f, - £ yt1Y/7, {11)

Thus the output of the bandpass filter is, from Eq. {3},

Zoey = (BrAy/AY x fipput)

B(\,/af +al 2aa, cos Zm(f,~- fI)t>

x {a, cos 2nf t+a, cos2nb ity (i)

7 7 _
\/{‘31 + af + 2aa, cos 2ﬂ(f2 fljt

Zmrist

Fig. 3 - Instantaneous phasor representation
of two signals.

The next step may be suggested by examining the implications of Eq. (12}, Equation
{12} represents two amplitude modulations (AM-DSBJ, each with a "modulation signal” of
fundamental frequency £, - f,, and the two carriers are 7/ and f,. One might note
that it is a highly unusual amplitude modulation that Eq. {12} represents since the modu-
lation signal appears to be subjected to a complex nonltinear process (which produces
all-order harmonics of f, - £ ) before being multiplied by the carriers. But thal is not
the point of our concern, for it is not the AM-DSB system that we are interesied in as
far as Eq. {12} is concerned. The fact is, however, that the AM-DSB signal yields
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frequency components having frequencies = {nf - (n- 1) f ,) at the nonlinear device out-
put, where n takes some integer (not necessarily positive) value.

Since Eq. (12) is an even function of ¢, we can express the output as a sum of cosine
terms:

Z(ty = Z cncos2w(nf1—(n—1)f2)t. (13)

n=—w

Since this is not an orthogonal expansion in general, that is, cos 27 (nf, - (n-1)f,}t is
not necessarily orthogonal to cos 27 [mf; - (m~ 1) f,]t, the method by which the ¢, is
evaluated may not be obvious at this point, However, the appendix contains a derivation
based on a complex Fourier series representation of the complex envelope of the analytic
signal,

Zety = zqey v i Z(t) (14)

where Z(¢) is the Hilbert transform Z(¢). From the appendix we thus obtain for the co-
efficient of the component term of frequency nf - (n-1) f,

(15)

1 B(\/af + al + 2aa, cos y)
canI - (alcos(nrl)}f + azcosny) dy
) \/.azl2 + a2 + 2a,a, cosy

where
y=am(f,-ft .

We have succeeded in obtaining a prediction formula for the amplitude of the signals
that exist in the passband of the filter output. Equation (15) may be simplified when we
consider the two cases:

(a) a, << a, {one signal is weaker than the other)

(b) a, = a, = a (equal-amplitude signals).

One Input Signal Relatively Weak

Let us first consider the case where a, << a,. This condition implies that

li(a,/a)? ~1

and hence Eq. {11) simplifies to

Acty = [312 " 322 + 2aa, cos 2'rr(f2‘- fl) t]i/z

~ ay +oa, cos 2m(f,-f)t, (16)
and

B (4) Bla, + a, cos 2m(f,- f)1t]

(17)

4 a, + a, cosZw(f2-f1)t
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The numerator of Eq. {17) ean be expanded in a Taylor series about a,, Using the se-
ries eXpangion up io and including the firgt-order term, Eq. {17} becomes

B B(a}} + B'(a)) &, Cos Qw(fg—fl)f

A a,
&, [l + ER cos 2w (f, - f})t}

2

1 a
(3{31} + Bf{al}az cos 2w {f,~ fl)t) Ew (1 - a—i cos 2w (£, - f) 5)

B(a B'tay B¢ay a
= (a . +a2eoszw{fz—fl)t( = L (21 )*(5_2) B"(a!)cos22ﬂ(fz—fl)t’
1 1 a, 1
B(al) d B(&ﬁ,)
A o + a,cos Zﬂ(fz—fl}t (;t—l) (—'3”1—_ {}3}

where the prime indicates the derivative with respect to the whole argument. Thus

Zey = (BeAy/A) « input

becomes
B(a,) B(a,) |
1 d 1
Z(E}%( 3, + a, (&;1—)< 7, ) cos 27 (F, - £ t) x (alc.os;E'rrflt-i- azcos?rrfzf)
B{a }
= B(a,y cos 2nf t + a, ~ cos 27, t

1

Ba}
+oaa, (i)( ! ) cos Zﬂ(fz—fi}tcos&n‘tf

dal ay

Bra)
+ al (—ud—)( ! ) cos 2u (£,- £ t cos 2mf ¢

4 da; a%

323(31)
= B{a,y cos 2wl t + ——— cos it
1

a B
. 9,8 (_ﬂ‘_)( (6‘1))COS 2m(2f, - )

a

2 déiI 1
a_a v 4B
¢ 22 —d— ( (al)) cos 2wl £
2 \da, 2y 2
a,y {19)
*(a;) (a,8'(a,)-B(a,)) cos2m(f,- £} t cos 2nf ¢ {Cont.)
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a,Ba) a,a, (d )(B(a”)}
=~ B(a cos 27wf ¢t +[ + — cos 2wf t
( 1) 1 a, 2 dal a, 2

48 f d Biag)
+ 3 ((};—)( a; ) cos 277(2f1—f2)t
1

az d
= B(a,) cos nf b+ - \aa [a,B(a)]} cos 2nf,t
1 1

238 d B(a,)
t T KJ;_I)( 311” cos 27 (2f, - £,) t . (19)

Equation (19) reveals the amplitudes of the fundamentals (£, and £,) and third-
order intermodulation (2f; - f,) quite explieitly, and hence it is not necessary to use
Eq.({15)for this case of one signal relatively weak.

Until now we have discussed the bandpass nonlinearity without specifying the form of
the nonlinear device. We will apply the general result obtained to a specific nonlinearity,
namely, an error function limiter. By an error function limiter, we mean

B(A) = w erf (7;—;) (20)

where g is a parameter which specifies the degree of hardness in the limiter shape. The
error function is defined by

ecf (z) é?‘f;—f exp (-t2) dt ;
o]

thus
EVNEY
B4y = Qﬁ f exp (-—f2) dt . (21)
0
From Eg. (19}, which gives the expression for z(¢) when a, << a, we have
B4
£y = t
z(t) 1 x{t)
= C1 cos 27rf1 t o+ Co cos 2711"21‘ + 02 cos 27?(2f1 " fz) t {22)
where
C, = B(a)) is the output amplitude at frequency £, (23)
c .l2(d B ' ;
o = 271 d_a—l [2;8{a;)] 1is the output amplitude at frequency f, , (24)
and
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¢ -2 fd (B(al}) is th Litud ' ; ;
:T T, \da} i, is e amplitude of third-order intermodulation term
(25)
Now by Eq. {20) we have
a! \
CliB{a])i‘H@rf( b (28}
oLy
and
a, fd
¢ o=t B
o Lt
82 B{r}l} :
= —2—( a) + R (a&)
Ta a a
-2 erf( ! >+ a, (—i—\\ [erf( : )} . (27)
2a, \/5!3 dau' \5,8
But
4 1 vag
Y L e
dﬂl 2;8 (f('ii \;’{F"Q}
2/ E!&2
)
28 28
YT e (: ) (28)
B 2p?
Therefore

& z
C, = jlz" erf o >+ ‘/g ii— exp (* %1 )] . {29}
oA 282

Then from Eqs. {26) and (29} we oblain

¢, (a2> erf{gA/2) + 1/%%}(9 {-g%/ 2] (30)
_C}: BEAEH erf {gAf2) ‘

where
4
g8 a/p.

The parameter g specifies the relative "haraness' of the smocth limiter. Since the lim-
iting action of the device depends on the signal amplitude level, the parameter g may be

termed the "limiter level parameter.”
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Note that € /C, is the output ratio of the two signals corresponding to the input ratio
ay/a,. Define the "suppression factor" p, by
Py 8 (G /C) (ay/a)

Then Eq. (30) gives

ert /D) 1)/ 2 a exol-a?2) -
erf (a/y7) '

P
L

Equation (31) is plotted in Fig. 4 as a function of g. Note that as ¢ — o, which is satis-
fied when g — 0 (hard limiter), p, — 1/2 (-6 dB) —a well-known result {4). In fact, for
any weak signal including a Gaussian process in the presence of strong unmodulated sine
wave interference, the signal-to-interference ratio at the output of the hard limiter is
always 6 dB worse than that of the input (14). This effect is often referred to as the
"limiter capture effect."

1.0 |
il
=
=z
o
o
&
Fig. 4 - Weak signal suppression p, and z
normalized intermodulation |A;| vs rel- =ost 5
ative limiter hardness ¢ for two sinus- -
oidal inputs, one relatively weak. =
o A!
&
0 1 1 1
! 2 3 4

RELATIVE HARDNESS q

The intermodulation-to~weak-signal ratio is also a quantity of interest. Referring
to Eq. (25), the intermodulation amplitude C, is

a B(a )
€, = : (B'(E‘H) - all ) )

If we define A, as the ratio of intermodulation amplitude to the weak signal amplitude,
ie., A 2¢/C,, we have

a B(a )
_2<B'(a1) - al )
A = 2 1
L, =
Y B(a,)
?(B (al) + 7,

. \/quxp (—q2/2) - merf (q/\/2—)

- . (32)
V27 qexp (=q%/2) + 7erf (q/m
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Figure 4 shows also a plot of the magnitude of A, v ¢ = a, /8. It is interesting to note
that [A,] asymptotically approaches unity for large arguments, indicating that the inter-
modulation never exceeds the suppressed weak signal.

Equal Amplitude Sinusocids
Let ug consider now the case where the two sinusoidal input signals are of equal am-

plitude. The input x (¢} is again given by Eq. (10} bul now =2, = a, = a. From Eqg. {15}
the coefficient €, of the component term of frequency nf, - (n- 1)/, is

1 TR \(2a?+ 2a2cosy
C :-—f
t1}
Ty “v2a?+ 2a% cosvy

[acos{n-1Yy + acosny] dy

"

lf B Zacgsi cas {21 - 1)1513,
= 2 2

o

/2
= 773 f Bizacasy) cos (2n- 1}y dy . {33)
0

The specific form of Eq. (33} is obtained via Eq. {6} when a specific device is considered.
Therefore, Eq. (33) is a prediction formula for the "inband" signal amplitudes for the
case of {wo, equal-amplitude, sinusoidal inputs.

From Eq. {20) we have

4
B{AY = merf (-———),
T

28
thus
3 p 2acasy {34}
{2acosy) = mer (——-————)
Ves
Therefore €, in Eq. {33} above must be evaluated in the light of Eq. {34):
Tz A2
€, =2 J erf(—"[—@ﬂa——cfl)cos (In~-1yy dy . (35}
o v B

Now il is clear thal we must determine from Eq. (35} the amplitudes of signals corre-
sponding to f,, f,, and 24, - f,. They are delermined by giving an appropriate value
for » in the term »f - (n- 1) f,.

Amplitude of fy(n= 1) and f,(n= 0)—Note that whenn=0 and n=1, Eq. {35} resulis
in the same expression {as expected}, and thus

wAD
CO = Ci = 2 f erf(_,\t[_z—_iﬂ)c()sy dy . (36)
) 8
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Amplitudes of the third-order intermodulation component — The amplitudes corre-
gponding to 2f, - f, and 2f, - f; are found from Eq. (35) by setting n=2 and n=-1, re-
spectively. Also we note that, as expected, the results for n=2 and »= -1 will be identi-
cal:

w/a

C.=C_. = QI erf([-z—a;i]f-) cos 3y dy . (37)
(

Equations (36) and {37) give the "responses' of the inband gignals (iwo fundamentals and
a third-order intermodulation product) as a function of the input voltage level = and the
limiter characteristic g.

If we compare Eq. (36) with = erf (a/\/28), we can determine how much each of the
signals at f, and f, is suppressed by the other:

(Co/m) erf{a/y2p)

Pa

m/2

2 f erf (/2q cosy) cosy dy (38)

0

merf (q/V2)

Equation (38) was evaluated numerically and is plotted as a function of ¢ = a/g in Fig. 5.
Examining the asympiotic behavior of Eq. (38) for ¢ — « (corresponding to the hard lim-
iter), since erf (w) = 1, we have

lim o, = = . (39)

g—+o

This means that each signal undergoes 2/7 (or -3.92 dB) loss due to the presence of the
other. This is a well-known result for the hard limiter {12).

Lo
L2}
&
=z
o
2
Fig. 5 - Signal suppression p, and : 06l —,2;
normalized intermodulation |A,| e
vs relative limiter hardness ¢ for N
two equal-amplitude sinusoidal = by
inputs. T 03F L
[ 3
g
—~L 1 Il
) I 2 3 4

RELATIVE HARDNESS g

Another quantity of interest is the ratio of intermodulation to suppressed signal,
namely,
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£2
f" erf (J2qgcosy) cos 3y dy
C

a2 ° .
AzﬁE._ — {ag1

0 .
J’ erf {\/-2-};* cos ¥} cos ¥ dy

a

A numerical evaluation of Eq. (40) is also plotied in Fig. 5; [ A, asymmiotically ap-~
proaches 1/3 {or -9.54 dB) for large g, again the expected result for the hard limiter
(10,12).

H we compare Bg. (37) with = erf{aA/Z8], we determine the intermodulation ampli-
tude with respect to the single input response:

Tz
c 2 J erf [ﬁq cos ¥} cos 3y dy
A 2 - (41)
m erf ’ w e:f(q/‘ﬁ}
Vag
The asymptotic value of [A,] is
lim A, = 2 {423
w10l

This means that the intermodulation is down by 2/37 {or -13.46 dB) from the single input
response tevel, or

20 log £2/37Y ~ 20 log (/%) = -9.54 dB (43)

down fraom the suppressed output level as Eq. {40) shows. {See Fig. 6},

I#] (DIMENSIONLESS)

S ¥ N S S .t i
i 2 3 4 3 & T

wi-
wr

RELATIVE HARDNESS g

Fig. § - Ratio [As[ of intermodulation amplitude io single
inpuf responsge va relative iimiter hardness g in a smocth
limiter for two egual-amplitude ginusoidal inputs.
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SINE WAVE PLUS GAUSSIAN NOISE
Input Signal-to-Noise Ratio Relatively Small
If we replace Eq. (10) with

x(t) = a;(t) cos (2wt + o) + a,cos2nf,t (44)
where the first term on the right-hand side represents a narrowband Gaussian random
process with ¢ uniformly distributed over (0, 2w), then following the preceding develop-

ment for a, << a,, we can express the output of the bandpass smooth limiter as

Z(t) = Cycos (2nf t+a) + € cos 2nfy ¢ + C, cos (2m(2f, - £,)t+20) (45)
where
a d
c, - >
o g () a0 (46)
cl:B(aI) \ (47)
and
aa, g 4 Bia)
A ]
5 =) )

The "noise' is assumed to be Gaussian with zero mean and a variance o?. The
noise envelope is then characterized by the Rayleigh density function

a a.?
pA(al) :U—; exp (— 201_2 ), a, z 0. (49)

To be con51stent with Blachman (11) and Cahn (4}, the output signal power is defined as

Seut = (1/2) C ; thus we must average the signal envelope over all possible values of
noise:

m

0 - f C,palay) da,

a

!
1

= %f 3—1( )[a B(a)] py(a,) da, . (50)
0

Integrating by parts and using Eq. (49) we obtain

0

a
C, = 2—:; alB(al) pa(a;) da, . (51)
0

The output noise power is

o

f Bi(a,) py(a,) da, {52)

0

out

=
I
e
(1]
5]
i
b [
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where we have neglected the €, term due to its insignificant contribution to the total
noise output. The cutput signal-to-noise power ratio is

a, f“’ .
e aB{a,y pyla,yda
2er2 / i ¥ i i

S

f BZ{_al} PA{§;> daL

0

gut

out

2
(J a B{a,) pyla)) dai)

2 T

2 (53}

252 -
2572 f 32(31) pgla,) da,

)

Considering 2.2/2c?to be the input signal-to-noise power ratio, we can define the
signal suppression factor », as follows:

/

S5 5.
out F 33
P17y /N.
out In
i

(f a,Bla,y mia,) dal>

o

[t~

(54)

el

20"“’[ B¥(a ) py(a,)da;
6

Letting p & o/8 and « = a/c, Bq. (54} becomes

b)) )

Py = - ; )
2 ! o (erf (7;;)) exp(-—m?)da

Figure 7 shows a numerical evaluation of Eq. (35}, This plot differs {rom the others
in that the independent variable is o/ rather than a, /8. The change was desirable be-
cause this parameter should lend itself to experimenta] determination. However, at)
is a sample function of a random process and hence not a measurable quantity, whereas
o, the rmg value of the inpul noise, is certainly measurable. The significance of /8 is
the same ag the a/g used previcusiy. Both parameters are a measure of Hmiler hard-
ness relative to the input level.

Note that as the smooth limiter becomes a hard limiter {r —«) we dbtain the well-
known result (2}




NRIL REPORT 7113 15

Fig. 7 - Signal-to-noise power transfer
ratio for weak {curve p;) and large
{(curve g,) input signal-to-noise vs rel-
ative limiter hardness (p for p; and g
for p,) for sine wave plus Gaussian
noise input.

'

RELATIVE HARDNESS q {orp}

lim p, = =
foldes} 3 4

(~1.05 dB) . . (56)

Input Signal-to-Noise Ratio Relatively Large
Let us now consider the case where the input signal-to-noise ratio is very large
compared to unity. In order to use the previous development let us alter Eq. (44) so that
the first term will represent the signal and the second term the narrowband Gaussian
noise. In this manner, we can easily make use of the previous results. Then,
x(t) = a,cos 2mf £ + a,(t) cos (2wl t +d) . (57)
Note that the case of "input signal-to-noise ratio relatively large" implies a, >> a,.
The output expression is then given by
Z(t) = C,cos2mf t + C, cos (2uf,t+a) + C, cos {(2m(2f, - £) £ - a) (58)
where C,, C,, and C, are given by Eqgs. (46), (47), and (48), respectively.

Using the same definitions of output power, the output signal power is

1 = 1 * 1
Sout - = Cl2 = —f Bz(al) palay) da2 == 82(51) (59)
2 2 4 2
where py(as) is again the Rayleigh density function of the noise envelope. The total out-
put noise power in this case becomes™

1

out —'2_ C_22 (60)

1 _
- 2
N _5C0+

where

*Note that here we do take into consideration the effect of the 'signal-and-noise cross term" C,.

—
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2
Gl

7
_ 1 [B(a,) ~ Bea )
2= Z[ 5 LA B‘(a!}:} _} a? pyla,) da, :[ 5 LA B‘(_ai)} a? . {81}
1 A 1 2

and likewise

2z
k B’(‘a 3 e
Ep = [B’ (a,) - a}‘ } 0_2 . (62)

Equation {60} beeomes

Bi(a
I { (22 + EB‘{aljjz} : (63}

aut o 312

The cutput signal-to-noise power ratio is

aut Bz(ail
Noow Bi(a ) (64}
vt 32{ b : [3'(&1}32}
61-
Defining the signai-to-noise degradation p,,
o, = Sout iﬁ.
! rJ\rrcuut {viu
B 2‘32{31}
B¥a) 2
‘312{ av:z1 : [B,(al}}}
1
2 Eerf (q/ﬁ}:[ 2
(65}

= 3
fert{alVD)" s — % exp (-a¥)

The asymptotic value of 5, for ¢ — » again agrees with the known results for a hard
Iimiter (2):

Lim p, = 2. {66}

q-+m

Figure 7 also shows a plot of Eg. (68).

SUMMARY AND CONCLUSIONS

We have analyzed the effect of a smooth limifer characterized bry the error function
on signal interactions for the case where the input congists of two sinuscidal signals, one
relatively weak {case a} and both of equal amplitude {case b). We have also analyzed the
output signal-to-noise ratic when the input consists of a sine wave plus Gaussian noise
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for {a) the input signal to noise small compared to unity and (b} the input signal to noise
large compared to unity. In the graphical presentation of the results it can be observed
that when the error function limiter becomes a hard limiter, i.e., when the limiter level

parameter approaches infinity, the result is in perfect agreement with the known results
for the ideal hard limiter.

The results presented here* can be applied to an existing circuit by the determina-
tion of the hardness parameter g. By considering normalized transfer characteristic
data extended into the overload or limiting region, a value of 8 is chosen which gives the
best appreoximation to the transfer curve by the error function curve erf (a/\/28) where a
is the peak amplitude of the input. This specifies an error function model for the circuit,
For a particular situation of interest, e.g., two sinuscidal inputs, one relatively weak, a
value of the peak amplitude of the large sinusoid is determined (either by direct meas-
urement or hypothesis); the appropriate graph is then entered at the abscissa corre-
sponding to g = a/f and the resultant is read off the ordinate, This procedure must be
modified slightly in the case of signal-plus-noise input for small signal-to-noise ratios.
Here the limiter level parameter is o/8 where o is the rms value of the input noise.

*These results were also the subject of a technical presentation (15).
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Appendix

DERIVATION OF C_
In this appendix we show that the filter output Z (¢) can be expressed as

Z(f): Z Cnc05277[nf1—(n—1)f2]t (Al)

n==m

where C, represents the amplitude of the output component corresponding to the fre-
quency [nf;~-(n-1)f;]. The set {cos2w(nf,-(n-1)f,) ¢}, where n takes some integer
value, is not an orthogonal set unless the frequencies f; and f, are commensurable.
Thus we cannot employ the usual method of determining generalized Fourier coefficients
by multiplying Z (¢) by ces 27 [nf, - (n- 1) f,] t and integrating over the interval of or-
thogonality. In order to determine C., we employ an analytic (complex) signal repre-
sentation of the output. Let Z(t) be the complex representation of the output. Then

Z(ey=2z¢ty+ jZty (A2)

where Z(¢) is the Hilbert transform of the real signal owtput Z (¢}, The Hilbert trans-
form of the Z (¢) can be determined by inspection from Eq. (12) by noting that since Z(t)
is expressly required to be a narrowband signal, the bandwidth of 8(4)/4 must be small
compared to either f; or f,. Thus

~ B4A
Zety = “D

(aysin 2mf t +a, sin2mf i) . (A3)

Substituting Eq. (A3) into Eq. (A2) we obtain the analytic signal Z(¢):

= B oty
&

janf
Z(t) = y (ale}ﬂl +a

2

By i2a(F = F )t fom £
= (.31 AR +a, e’ zt). (A4)
If we define the complex envelope function §(t) as
- BcA Some fo—
S(ey b _%) (alefz fy f2)t+a2) , (AB)

we can then expand s {t) in a complex Fourier series and substitute the series form of
Eq. (A5) into Eq. (A4) obtaining

~ i j2an( f - i 2w
Z(ty = (Z ane’% ! f2)t)e’2 ! (A6)

where
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1 7 f2sn (£ ~F
-t [ s, (an
T ~r/2
and

Tz 18 - £,y .

) Bed j2ng £~ f —j2matf, ~F
C‘ﬁ}?:% , —L} (a}ejz ¢ 1 2)z+ag)e f2rng H 2)t di

T/2 Brd ‘g 1350 F ~F. ¢ i F.o-f 3¢
o e e R £
T, 4
/2
B4
:% f {A} (31 cos Zm(n-13(f, - £}t +a, cos2m(f; - £) t)df
Yyia

T/2
BiA
~F b3 f A (az sinZr(n-1)(f - £} t+azsin2wn(51—52)t) dt . (AB)
T4, A

Sinee B¢4y/4 is an even funciion of time, the second integral in BEq. {A8) will vanish. B
is thus shown that «, is a real quantity. Substituting 7= 1/(f;-f,) and ¥ = 22 (f, - f ) !
into Eg. {A8) gives

:ﬂ A .
@, = J B {al cog (n-1yr +a, cosny) dy . (A9}
o

| -

A

Now having established that the ¢_.'s are real, it is easy to show that the analytic signal
of Eq. {A6) leads to the desired form of Z(¢y:

Zeey = %Re [Z(ey + Z*(ty)
= Z gycos 27 [nf —(n~1y 168 {A10}

Comparing this expression term by term with Eq. (A1) we conclude that the «, and c,
are identical. Thus we have

B (4
C :%f (4 fal c05(11~1)y+32c03ﬂy} dy (A11)

which is the form given in Eq. {15}.




