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ABSTRACT

The APT (Automatically Programmed Tooling) system provides for the
software description of geometric forms, the delineation of a tool path, and,
for output, discrete positioning information on punched paper tape for use by
a numerically controlled machine. The CROSEC (Mod 1) program, described
in this report, provides a means of extending the use of the canonical forms
of the plane surfaces defined by the programmer in the part program by pro-
viding a plotting capability in which the lines in intersection, within specified
limits, between a cross-sectional plane and all other defined planes are shown.
A visualization of the initial plane framework on which the cutting is to be
performed is therebyprovided. The cross sectional plane and its dimensional
limits are controlled by one plane definition and two point definitions. The
plot is supplemented by printer output that aids in the interpretation of the
plot. Theprogram is written in the framework of the CDC 3800 APT 2.1 con-
figuration. No additional program overlays or segments are necessary. This
report contains a discussion of the method used, subroutine descriptions,
listings and flowcharts, implementation aids, and a sample run.

PROBLEM STATUS

This is an interim report on a continuing problem.

AUTHORIZATION

NRL Problem 23Z0001

Manuscript submitted November 17, 1969,
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CROSS-SECTIONAL PLOTS OF PLANE INTERSECTIONS
An Adaptation of the APT System

INTRODUCTION

This report contains a complete description of a plotting adaptation of the APT system
in use at the Naval Research Laboratory (APT 2.1 on the CDC 3800). In the APT language,
a plane can be defined in seven different ways; but after being processed they are all stored
in a standard “canonical form.” This program, called CROSEC (Mod 1), utilizes such plane
canonical forms (of an APT Part Program) to obtain a plot of the intersection of one of the
planes, designated as the cross-sectional plane, and all of the other planes that have been
defined, processed, and stored at the end of APT Section 1. (See Ref 1 for a detailed de-
scr1pt10n of the APT system.)

The purpose of the program, primarily, is as an aid, an extra tool for the programmer
in debugging his program. The defined surfaces as stored in their canonical forms provide
a convenient starting point for geometric considerations. It is assumed that syntactic er-
rors have already been discovered and corrected and that in using CROSEC the programmer
wishes to verify that the surfaces he has defined do indeed describe the piece he wishes to
have worked on by the tool. The hope is that verification can be accomplished easily if he
can get a look at any cross section of his choosing through the conglomerate of the starting
surfaces. He realizes that the plot might require some interpretation because defined sur-
faces intersecting together do not fully describe the finished piece. However, he accepts
this limitation and looks upon the output as a working drawing, a picture of the output of
Section 1. By means of this drawing and the accompanying identifying information from
the printer, he should be able to make some significant debugging progress. Perhaps he
will discover a section of surface that is defined improperly or over defined,or a combin-
ation of surfaces that could be redefined in a simpler manner. Also, he may discover a
portion of surface that he has not yet defined and other events of this nature.

The report discusses plane equations, outlines the method of obtaining a coordinate
system in the cross-sectional plane, describes the plot, and points out the limitations of
the program. Also included are flowcharts, program descriptions, a complete listing,
and details of implementation with APT 2.1. An example is introduced early and followed
through the complete process in full detail.

DISCUSSION
The Plane
The canonical form for the plane, as defined in the APT system, is given by

AX + BY + CZ = D, (1)

where*

*As quoted from pp. 80 and A-1 of Ref. 1,
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X-Component of unit normal vector to plane
Y-Component of unit normal vector to plane
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Z-Component of unit normal vector to plane
Normal distance from plane to origin.
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Consider the normal form of the plane equation, namely
XCOSa_ + YCOSa, + ZCOSae, = L, (2)

where the coefficients for the X, Y, and Z coordinates in Eq. (2) are the direction cosines
of the positive normal vector N from the origin to the plane. The direction cosines of the
unit normal vector are identical with the direction cosines of N. The length, or absolute

value, of this normal is I.. Therefore, equating similar terms from Eqs. (1) and (2) yields

A = COSa,
B = COSw,
C = COSq,
D=L =|N|.

Thus, for example, A =0, B=1, C =0, D =1 is the plane passing through the point
(0, 1, 0), parallel to the XZ coordinate plane, with direction angles of 90, 0, and 90 degrees,
respectively, to the three axes.

Let us now take, for a more detailed example, the plane that passes through the points
(1,0,0), (0,1,0), and (0,0,1) a unit distance out along each axis. To fit this approach to the
definition of a plane, consider the intercept form for a plane equation,*

X Y Z

X, *Y,"2," 1, (3)
where X,, Y,, and Z; are the intercepts, i.e. the point (X,, 0, 0) is the intersection of the
X axis with the plane. Similarly with (0, Y,, 0) and (0, 0, Z3).

Using now the three unit axis points, already defined, in this intercept form, Eq. (3)
leads to the simple and interesting equation

X+Y+2=1. (4)

The correctness of Eq. (4) as truly representing the plane that passes through the three
points is easily determined by setting any two of the variables equal to zero, and the
remaining variable will be equal to 1. Equation (4) is illustrative of another form of an
equation used to describe a plane, the general form, where the coefficients of the X, Y,
and Z terms are considered to be direction numbers of the positive normal to the plane.

To go from the general form to the normal form, it is necessary to compute the
direction cosines by dividing each of the coordinate coefficients in turn by the square
root of the sum of the squares of all three coefficients. The length of the normal is ob-
tained in a similar fashion by dividing the constant term by the same square-root quantity.
Symbolically, if the general form is

PX + QY + RZ = 8, (5)

%*All forms of equations for a plane can be found in Section 3, p. 2-1 of Ref. 2.
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then
A = COSa, =T
B = COSa, =3
C = COSa, = %
D=1 = %
where

U = YP*P + Q*Q + R*R.
The normal form for the illustrative plane is therefore

L_}_l_'_l_-_l_. (6)
Y37 V3T V3 T V3"

It is easily verified that the sum of the squares of the direction cosines is 1.

It is important in our development to know the coordinates of the point represented
by the intersection of the normal N and the plane to which it is perpendicular. These co-
ordinates are obtained by multiplying each of the direction cosines by the length of the
n7rma}. Symbolically, (D*A, D*B, D*C). For the illustrative plane the result is (1/3,
1/3, 1/3).

One final consideration regarding these plane equations—our illustrative case has a
convenient set of intercept points; however, it is possible to determine the intercepts
from the normal form. They are

D
(Xp Y1; Z1) =(K: 0, 0>

D
(Xzy Y2, ZZ) = <0’ E’ 0>

D
(Xq Y5 29 = (0, 0, D).

Figure 1 summarizes this initial development using the symbols for the APT canon-
ical form of Eq. (1) in part a of the figure and the actual values of our illustrative plane
in part b.

The Cross-Sectional Plane and Its Coordinate System

The plot of Section 1 output uses a coordinate system in the cross-sectional plane,
particularized as the HOPE plane. Let us call the coordinate system in the HOPE plane
the prime system (i.e., X', Y’, Z°), in contrast to the original system established by the
part programmer known as the X, Y, Z system. The origin of the prime system is the
intersection of the normal with the plane, and the Z’ axis is the extension of the normal.

G3TITSSYIOND
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(DA,DB, DC)

D/C
{0,0,0/C) PLANE Ax +By+Cz=D

(0,0/B,0)

(D/A,0,0) X

(a) Normal form of plane equation

I | I
(313r3)
(0,0,1) PLANE L+L +—Z— -
v V3 V3 V3
’ Y
(0,1,0)
I
— -
\£) <
(1,0,0) X

{b) Equiangular plane in normal form

Fig. 1 - A general and a particular plane

The X’ axis is selected in one of three ways.

1. The “general solution” is the case where the HOPE plane intersects the X axis,
and the positive X’ axis is the line passing from the prime origin through the intercept
point and lies in the HOPE plane. In terms of the normal form the prime origin is (DxA,
D*B, D*C) and the intercept point is (D/A, 0, 0) with direction cosines

D -D¥B -DxC
[(?; - I)*A>’ U ° U },
U .

where

U =1/<KD - D*A>2 + (D*B)? + (b*c)2.
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For our illustrative plane X + Y + Z =1, the X" axis for the general solution would
be positively directed from the origin with coordinates (1/3, 1/3, 1/3) to the X intercept
with coordinates (1, 0, 0). The computation gives the X axis, in this case, direction
cosines of

(Y273, - V1/6, - V1/6)

2. If the HOPE plane does not intersect the X axis and is parallel to it, then the X~
axis is that line lying in the HOPE plane, parallel to the X axis, with direction cosines
(1, 0, 0) commencing at the prime origin.

3. If the HOPE plane is perpendicular to the X axis and parallel to the YZ plane
such that the normal is the X axis, then the positive X’ axis is that line lying in the HOPE
plane which starts at the prime origin and is parallel to the Z axis with direction cosines
(0,0,1).

The Y’ axis is defined as the cross product of the Z* and X" axes, duly preserving
right-handed concepts.

If the direction cosines of the X’ axis are Ty, T,;, T31, and those of the Y’ axis
T2, Ty, T3, and those of the Z* axis T;;, T,3, T35, then

Ty, = Tp3*Ty - Ty *Ty, (M
Ty = Ty1¥T33 - Ty3%Ty5 (8)
T3y = T13%¥Ty; - Tyy *Ty;. 9)

Thus, for our illustrative plane, the direction cosines of Z* are (1/v3, 1/v3, 1/v3) and of
X" are ( V273, - .V176, - ¥1/6). Using these equations, we find that the directions cosines
for Y’ are (0, V1/2, -71/2).

The equations required to convert any point in space from the original coordinates
to the prime coordinates are

X" =Ty X - Xg) + Tay (Y - Yo) + Tyy (Z - Z),

Y =Ty (X - Xg) + Tyy (Y - Yo) + Ty (Z - Z),
and

Z° = Ty (X - X)) + Tyy (Y - Y + Tsy (Z - Z),

where (X, Y,, Z,) is the prime origin defined in terms of X, Y, Z. Expanding yields
X’ = Ty *¥X + Ty *¥Y + Ty *Z + Cy, (10)

'Y'/

T p*X + T *Y + Ty *Z + Cy, (11)
and

Z" = T3¥X + Ty *Y + T33*%Z + C, (12)

AITITSSYTIOND
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where

Cy = =(T1 *¥Xo + Tp*Y, + T3y*Z),

frm

Lo T UL ® &y 4 L gp* Xy + 1g,%4),
C, -(T13*X0 + T xY, + T33*ZO).

For the illustrative case where (X, Y,, Z,) = (D*A, DB, DxC) = (1/3,1/3, 1/3),
the matrix corresponding to the coefficients of Eqgs. (10), (11), and (12), is

—1/%_ ’1/%- LG 0—
0 ]/%_ V3 0

Figure 2 illustrates the definition of the prime axes in the HOPE plane. In this instance
the HOPE plane is our illustrative plane X +Y + Z =1.

=

| =

z!

Fig. 2 - Prime axes in the
equiangular HOPE plane

Points and Lines in the Cross-Sectional Plane

So far we have established an understanding of the various forms of the equations that
describe a plane and have described an algorithm for defining a translation-rotation matrix
" for converting points from the part programmer’s coordinate system to a coordinate system
in the HOPE or cross-sectional plane. We can now ask, How is it determined whether any
APT-defined point in general lies in the HOPE plane ? Simply by substituting the X, Y, and
Z values of the point into the equation for the plane to determine if an equality ex1sts e.g.,
D7es th7 point (1/3, 1/3, 1/3) lie in the plane X + Y + Z = 1? Obviously yes, since 1/3 +
1/3+1/3 =1,

I the equations for the three planes are solved simultaneously, a point that lies in all
three planes is the result. If one of these planes is the HOPE plane, then there is no doubt
that the point is in the cross section.
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Consider now a situation in which the HOPE plane and a plane A are consecutively
solved with two other planes B and-C (defined such that no two planes of HOPE, A, B and
HOPE, A, C are parallel), resulting in two points P, and P,. Both of these points are
simultaneously in both the HOPE plane and in plane A; in fact, the line segment joining
P, and P, is a portion of the line of intersection between HOPE and A. Such a procedure
if carried out with all the defined planes, will result in an entire network of lines of inter
section. Each point as obtained is put through the matrix to obtain its definition in terms
of the HOPE coordinate system to enable it to be plotted. If a minimum and a maximum
value for each coordinate is specified, then many superfluous points of intersection can
be eliminated. :

Let us now consider what happens when the equiangular plane X + Y + Z = 1 inter-
sects some planes defined in a part program, an actual situation. (Refer to sample run
with “PARTNO TESTING” on p. 63.) Figure 3 depicts a simple part in three views. It
is to be noted that there are eight defined planes. Figure 4 shows the cross-section net-
work of intersecting lines obtained with the plane X + Y + Z = 1 as the HOPE plane
intersecting “PARTNO TESTING.” Usingonly the information provided in Figs. 3 and 4,
can you distinguish between the proper intersection outline and those lines that are
extraneous? It is an intersecting exercise, well worth spending a few minutes on.

/P4 /PLT /P3

PL4

4 |

/CYL

+ SETPT2 (6,-1,3)

[ yd e e 1
PI/ PLI/

a"

Fig. 3 - “PARTNO TESTING” with eight defined planes

ITITSSVIOND
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Fig. 4 - Cross section obtained from
PARTNO TESTING and equiangular
plane

[/ NN

e

Fig. 5 - Lines of intersection iden-
tified by plane number

e

The solution to this question will now be presented.

The accompanying printout identifies points of intersection from which the lines of
intersection were drawn. The coefficients of these points are given in the X, Y, Z sys-
tem, in the X', Y’, Z° system, and in plotter coordinates along with the plane numbers
associated with each point. There are 19 such points in Fig. 4. These point data con-
stitute background information, available when needed. However, rather than clutter up
the plot with point symbols and identifying numbers, only the lines of intersection have
been drawn using a minimum point and a maximum point. From these two points the
slope and the prime-system intercept have been computed. This information is also
printed along with the plane name associated with the line. The lines have been named
in Fig. 5. There are eight planes identified in the sketch of the part in Fig. 3 and there
are eight lines in the intersection plot.

Verification of the correctness of the numbering of these lines of intersection can
be achieved by noting that parallel lines in the plot correspond to parallel planes on the
part. Sure enough, plane 1 representing the bottom of the piece is parallel to plane 3,
the top, and is also parallel to plane 5 which represents the step surface. In Fig. 5 the
lines labeled 1, 5, and 3 are parallel lines.



NRL REPORT 7025 9

Fig. 6 - Perspective view of PARTNO TESTING 3 /
4

|
(without the cylinder) with eight planes and the ; _
intersecting equiangular HOPE plane s 12T s
& |
!

-
|

—_—— L |- =

In a similar fashion the lines of intersection for planes 2, 4, and 8 confirm a paral-
lelism between these planes, all three of them being vertical sides in the part shown in
Fig. 3. Finally, plane 6 (the front) is parallel to plane 7 (back), and the lines with these
numbers are parallel in Fig. 5.

Figure 6, which shows a perspective view of the planes of the part and the equiangular
HOPE plane, demonstrates the fact that the lines of intersection on the surface of the piece
lie in planes 6 (front), 1 (bottom), and 2 (left side). The triangle formed by the lines of
intersection of these three planes is accented in Fig. 5 and is the correct answer.

It is an interesting consequence of the situation that since plane X + Y+ Z =1 is
equiangular to each of the three coordinate planes, and that since all eight of the defined
planes in the simple part are either identical with or parallel to a coordinate plane, that
HOPE is also equiangular to these eight planes, namely 57.4 degrees.

There is one other interesting observation to make about Fig. 5. Because of the
equiangular characteristic of the cross-sectional plane, a reverse type of statement can
be made. Any equilateral triangle in this figure corresponds to three mutually perpen-
dicular planes. Besides the set already discussed {6, 1, 2}, eleven others can be iden-
tified. These are {1, 2, 7}, {1, 4, 6}, {1, 6, 8}, {2, 3, 6}, {3, 7, 8}, {1, 1, 8}, {5, 7, 8},
{2, 3,17}, {3, 4,1}, {3, 6,8 and {3, 7, 8}. The last one, which is the outermost triangle,
corresponds to the planes which are perpendicular to the maximum dimensions X = 4,

Y =2, and Z = 2, respectively.

There is a lot of information to be gleaned from the cross~sectional plot once it is
understood and assimilated.

When the restrictions of XMIN, YMIN, ZMIN = (0, 0, 0) and XMAX, YMAX, ZMAX =
(4, 2, 2) are placed on the cross-section points, then the network is reduced to that shown
in Fig. 7, the true triangle of intersection with the part.

CROSEC Limitations

CROSEC in its present form (Mod 1) has some definite limitations. Some of the
initially obvious ones are as follows:

1. There is no identification of defined points that might lie in the HOPE plane.
2. The plot does not contain any intersections of the HOPE plane with quadrix surfaces.

3. No tool motion information is present.

AITITSSYTIONN
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4. The plot resulting from the lines of intersection of defined planes with HOPE can
be initially confusing, since some of the lines might have no immediate relation to the
finished part, and the prime coordinate system might not be simply oriented with respect
to the X, Y, Z system. However, a consideration of the original part program along with
the printout can soon make the plot understandable.

Fig. 7 - CROSEC (Mod 1) output
plot for sample run with PARTNO
TESTING

(I

CONCLUSION

CROSEC (Mod 1) is a first step. In its present form, it can be helpful in a limited
fashion. The intersection with curved surfaces is missing, as well as the path of the
cutting tool in the cross-sectional plane. It is planned to incorporate these features in
further work on this project.
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Appendix A

SUBROUTINE DESCRIPTIONS WITH FLOWCHARTS AND LISTINGS

SUBROUTINE CROSEC

The CROSEC subroutine (Fig. Al) controls the Section 1 plotting of the intersections
of defined planes with the HOPE cross-sectional plane. For convenience it incorporates
all of the common area of Section 0 and Section 1 into itself without attempting to discard
portions it does not need. The APT system subroutines called on are CANGET, SIMEQ
and STDUNPK. The in-house library routines called include PLOTS, SYMBOL, PLOT,
STOPPLOT, SQRTF, ACOSF, QNSINGL, THEND, STH, ENC, Q1Q10100, Q8QSTOPS, and
Q8QDICT. Additional subroutines called by CROSEC and considered a part of the Mod 1
package are TESTHOPE, DELINE, and MM. There is also a function, ISITOK. The flow-
chart of Fig. A2 shows the relationship between these subroutines.

The CROSEC subroutine assumes that the defined symbol table (D.S.T.) is stored in
the JTABL array of numbered common 2 between ITAB11 and ITAB12. It further assumes
that the D.S.T. entries consist of pairs of words, the first of which is an eight-symbol
Hollerith name, left justified, and, second, an APT “standard word” which includes an
integer pointer giving the relative address in JTABL (extended beyond D.S.T.) where the
canonical form is stored. These assumptions are standard procedure for the CDC APT.
(See the Section 1 description starting on p. 01-1 of Ref. Al.) Accordingly, after executing
a top of form, the D.S.T. is searched for the name HOPE, and if this name is not found the
subroutine is exited and there is no plot obtained. If HOPE is found, its pointer is stored
in KANSURF prior to calling CANGET which fetches and stores the canonical form in the
DEFSTO array of the SECTILOG. After identifying A, B, C, and D from the HOPE canon-
ical form, the TESTHOPE subroutine is called.

TESTHOPE will either stop the run or return with a conversion matrix stored in
XMAT9. This matrix will permit the conversion from the X, Y, Z coordinate system to
the prime system whose origin is in the HOPE plane, thereby facilitating a two-dimensional
plot.

Another top of form is executed.

Since the cosine of the angle between two planes is equal to the sum of the product of
their corresponding direction cosines, it is a logical next step to take advantage of this
fact and compute the angle between each defined plane and the HOPE plane.

Special care is needed in picking up canonical pointers from the D.S.T. prior to making
the cosine computation. Undefined words or incorrectly defined words must be avoided as
well as the synonym register which appears at the head of the D.S.T. The standard word
must be unpacked by calling Subroutine STDUNPK in order to determine if BYTA contains
a 4, representing a canonical form. After the canonical form has been recovered by a
call to CANGET, it is necessary to examine the four most right-hand bits of the first
word in the set. A 3 in this position identifies the canonical of a plane as opposed to other
possible canonical forms such as points, cylinders, etc. In this manner the direction
cosines are obtained, and the computation for the angle between the planes can then be
performed. -

11

AITITSSYTIONN
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START

DOES
DEFINED SYMBOL TABLE
CONTAIN HOPE P

TEST THE HOPE
PARAMETERS AND

CONVERSION MATRIX
(USES TESTHOPE)

[

IF VALID FORM - —

COMPUTE AND LIST THE
ANGLE BETWEEN THE

HOPE PLANE AND ALL
OTHER DEFINED PLANES

DOES DST.
CONTAIN HOXYMIN 8
HOXYMAX P

FETCH LIMITING VALUES

CONVERT, STORE, &
COMPUTE & PLOT scaLe LPRINT

RETURN

RUN WILL

TERMINATE IF

HOPE PARAMETERS

DO NOT PERMIT

NEW COORDINATE
SYSTEM TO BE FORMED

NO ERROR
MESSAGE

COMPUTE POINTS OF
INTERSECTION BETWEEN
HOPE AND ALL COMBINATIONS
OF DEFINED PLANES TAKEN
2 AT A TIME

|

DRAW LINES OF INTERSECTION —

PRINT COORDINATES 8 NAMES

RETURN

Fig. Al - Flowchart for CROSEC subroutine
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S A
| oF APT SECTION t
*
S.
X X * * * * X
S. S. S. E. S. S. S, S. S. E.
CANGET ACOSF SIMEQ PLOTS SYMBOL TESTHOPE MM ISITOK DLINE STOPPLOT
* * X
S. S. S.
FILXMATS GENSOL PLOT
SQRTF

SUBPROGRAM DEPENDENCE FOR CROSEC (MOD 1) USING
CDC 3800 CONFIGURATION WITH CALCOMP PLOT PACKAGE

S.= SUBROUTINE , E.= ENTRY, % = FLOW CHART IN THIS REPORT, X = PART OF CALCOMP PLOT PACKAGE

Fig. A2 - Relationship between subroutines called by CROSEC

After making special tests for perpendicular planes and parallel planes, the arc
cosine function ACOSF is called and the resulting angle printed out in degrees. This angle
has a range of 0 to 180 degrees. All information regarding this analysis of the angles be-
tween the planes is outputed through the line printer and is not retained, as it has no con-
sequence to the plot. '

Next, the D.S.T. is searched for the names HOXYMIN and HOXYMAX, which must be
stored as adjacent pairs in order to be discovered. In the absence of these names, an -
error message is printed and the run is terminated. The message is “HOXYMIN AND
HOXYMAX NOT FOUND.” If these names are present, the corresponding values are
fetched via CANGET and stored in correspondingly descriptive name locations, such as
RAW X MIN. '

These raw limiting values are passed through the matrix by calling subroutine MM,
thus obtaining their corresponding values in the prime system, (XPMIN, YPMIN, ZPMIN)
and (XPMAX, YPMAX, ZPMAX). A printout is now initiated that lists the raw limiting
values.

The magnitudes of the minimum and maximum vectors are computed thusly,

MINVECTOR = }/(XPMIN)2 + (YPMIN)? + (ZPMIN)?2

MAXVECTOR = y(XPMAX)? + (YPMAX)? + (ZPMAX)2.
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The CALCOMP plot is restricted to a 10 x 10 in. space. When we allow for both
negative and positive values of X’ and Y’ it follows that 2 times the largest vector must
fit into 10 linear inches. The center of the plot is the origin of the prime coordinate
system. To accomplish this, the largest of these two magnitudes is set equal to REACH
and then divided into 5.0 to obtain the CALCOMP plot factor which is called SCALE.
SCALE is therefore the number of inches of plot length that is equivalent to one inch of
part length. SCLFAC is the reciprocal of SCALE and is the scale factor needed to obtain
a 1:1 Gerber plot. (The details of obtaining a paper tape output for use on the Gerber
plotter (Model 875) are discussed in Ref. A2.) Output messages regarding SCALE and
SCLFAC are printed, followed by another top of form.

The plot string is initiated.

A + symbol is plotted at (5.0, 5.0), the plot coordinates for the HOPE prime system
origin, and a scale mark is placed at the lower left-hand corner of the plot. A somewhat
involved double loop is now entered at the heart of which is a call to SIMEQ which solves
three plane equations simultaneously, resulting in the output of a common point of inter-
section (two planes intersect in a line, three planes intersect in a point).

Since the A, B, C, D of the HOPE plane are constant throughout the process, they are
stored once and for all in positions 108 through 111 of the DEFTAB array (used by
SIMEQ), before the entrance into the looping procedure,

Also initialized at this time are
1. IONCE, a flag which controls the call to subroutine DLINE,
2. IPTNO, the point number counter,

3. IP, the counter for coordinate pairs stored in the KR array. The KR array stores
only the points related to the current line about to be drawn, and

4. IS, the counter for coordinate pairs stored in the KS array. (The KS array stores
all points created by CROSEC.)

The outermost of the two loops commences at statement 1001,
DLINE is called only if IONCE is zero.

The canonical form for a plane is fetched under the same restraints as already
described above. If a plane is indicated, its name is saved as NAME1 and its A, B, C, D
are stored in DEFTAB 104 through 107. The inner loop commences at statement 1004,
By a similar process, the values for the third plane are stored in DEFTAB 100 through
103, and the creation of NAME2 takes place. Then comes the call for SIMEQ followed -
by the test on JSUBER for proper execution, thereby allowing for the situation of two of
the planes being identical. ‘

If a bad situation resulting in no point has occurreu, a transfer is made to the end
of the inner loop. If a proper point had been obtained, its X, Y, Z coordinates are picked
up from DEFTAB 112 through 114.

These numbers in turn are used to obtain the corresponding prime values and plotting
values. The prime values are obtained by use of the conversion matrix via a call on sub-
routine MM. The plotting values are obtained by means of the formulas
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X = XP * SCALE + 5.0
and

Y = YP « SCALE + 5.0, (10)
where XP and YP are the prime coordinates.

The ISITOK function now works with an elaborate set of parameters to avoid dupli-
cation and to assure operation within the allowable limits. If the answer from the func-
tion is YES, then the point is valid and can be used. The rest of the YES followup stores
the plotting values in the KS array and prints out the names of the planes, the point num-
ber, and the point coordinates in terms of the X, Y, Z system, the prime system, and the
plotter system. After exiting from these two loops, DLINE is called once more if IONCE
is zero; otherwise, the plot is terminated and CROSEC makes its return.

AITITSSVTIOND
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SUBRAUTINE CROSEC
COMMON /TIMETEST/ KSETIMEL1, KSETIMF2, KSFTIME, KSETADR
Teee COMMAUN AREA FO®R CDC APT 3 SECTIAON 0
LR R 2R EE] EEEXE TRP RN ke kRN E
CoMMEN /SYSTEMZ/ SYSTEM(4),KAPTCN, KAPTTR, KAPTIO,
A KAPTID, KFLAGS(10),K0, K1, K2, K3,
o K4, K5, K6, K7 K8, K9,
v IFILLe, IFILL2, IFILLS, IFILLY,
U KFLAGGD, KFLAGL, KFLAG2, KFLAGS, KFLAGY,
£ IFILL®, IWAVEN, IPTNLY, NEPBST, IFILLS, KAUTOP,
b ICLPRT, INDEXX, IPLOTR, IFILL7, NOPLBT, KLYNFG,
4 LOaCJPT, LOCBEG), KSECIN, NCI.REC, LOCMAC, KPOCKET,
H IFILLS8, IFILLY, IFILLIN, IPASTP(1),NUMPST, IPOSTFL(18),
1 TAPETE(1),CANTAP, CLTAPE, POCTAP, PLATAF, SRFTAP,
J LIRTAP, CRDTAP, IFILL1L, CERTAP, TAPES1, TAPES2,
K TAPESS,  TAPES4,  FORTIN,  INTAPE,  10UTAP,  PUNTAP,
L LSTFLG, LTVFLG, KBNVTCL, KINTRUPT,
M Pl PIR2, DGTRN» RDTDG, ANE
N EXTRAO(Z0)
EQUIVALENCE (PROTAP, TAPETB)
Crexhns shknkgH *hkw kK 'SXTE %] L AR LR B
C
Cras CEMMON AKEA FOR CDC APT 3 SECTIGN 1
c
Cexhrxexw - w kK T XL X2 RIS TR "TTEEL:
COMMON /SECTLLOG/ 1TABL, 1TAB?, 17483, ,
A ITA4, 1TA85, 1SNAM, ITABLL, 1TAB1E, 1TARLS,
b JENDPTPP, JENDCAN, JENDSTAR, JSTRTCAN, JEMDSYM,
C JCANTEMr, JRPTAH, JLPTAB, MAXNST,
D JINWD, JCHAR, IWNERR, JBUFL, NUPERP, NUPUN,
3 JSTYPE, JVARSZ, SCHERR, NMAGVY, MACASN(25)Y,
F INDXFT, IPTP, IXPT, MONE, EGCFLG,  LPNpFL,
G TRMFLG, INTRUPT, JUMPFL,.  ICDERR, NDERUG,
H* MACMODE, NESTFL, NRESULT, IPTLIM, JEXEC,
l KTYPE, MACTYP,
J IFARTERK, FINIS, 10FLG, MAGDEL , JSUBFR, NUMBERR,
K DEFSTO(85), DEFTAB(1000), ZSUK(3n),
L XMAT4(16),XMATI(16),XMAT2(16),XMATL(16),TMATX(16),
M I1stpMeNe, ISTDLIT, 1STDTBL, ISTDINDX, ISTDTYPE, ISTDWD,
N JPTIND, KPTCADE, KPTNAME, KPTTYPE, KPTNUM, KPTINDX,
) KPTSUB, KOMFLG, KOMPAP, NESURS, KANFLG, KRFSYS,
P KANREC, KANCNT, INAME, KANSLRF, KANINDX,
G JPRELEN, NEWCARD, JGORIT, NUMSTID, NUMCSER,
R IRFCIX, IRECNG, JTLPRS, ITITLE(9),LSRECN,
] NNODEFX, NNODEFL!, NIDUM, 1SI'ASH, 1EQUAL, 1BL ANK,
T LDUMMY, N100Q00, N7777, MASKU, MASKL IDIv,
"] MACREL , MACLOC, MACBEGN, MAGLAST, MACLEVEL.
v MACNAME(3), MACINDX(3), NMV, JRESTER, MACPSH(3,25),
W JTEMP1, JTEMP2, JTEMP3, JTEMP4, JTEMPS, JTEMFE,
X JTEMP7, JTEMPS, JTEMPY, EXTRAL(20)
EGUIVALENCE (DEFANS(1),IDEFSTO(4),NEFSTOL4)), (LSTYPE, KTYPE),
1 (PTNUM, KPTNUM)

DIMENSION IUEFSTO(85),
1 ILPTAB(200),

IRPTAR(200),

K. P. THOMPSON

DEFANS(26),
ITNTAB(200}Y,

IPEFTAB(1000)
JPROTP(100),

CRS
CRS
CRsS
CRS
CRsS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
tRS
cRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRsS
CRS
CRS
CRS
CRS

10
20
30
40
50
60

80
90
ino0
110
120
130
140
1590
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
38R0
390
400
410
420
430 -
440
450
460
470
450
490
500
510
520
53¢
540
550
560
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2 IRECSV(200), MACVAR(25), MACNBR(25), INWARD(10), IBYLP(2},
$ PISTO(6), IPISTEl6Y, IDREC(4)
EQUIVALENCE (INWARD(14), I1BUUP(16), ILPTAB(990), ]RPTAB(790),
1 ITNTAB(290), PISTE(390), IPISTA(390), IDREC(384),
i JPRETP(S880), IRECSV(280), MACVAR(75), MACNGR(50),

IDEFTAB(1000), pEFTAR(1000))
c
COMMON/VOCAsTBL/ KOM({1100)
c
COMMAN /2/ JTABNUM,JTARL(1?2120)
Crrnxnn T TR - MR RN Run

* -
CAMMEMNT
*
* x

% % % ®*
* % ¥ »
* & * &
# % & %
® &£ % =2

CR@SEC (MBD 1) PROVIDES A MEANS OF EXTENMING THE USE GOF THE PLANE
SURFAGES(DEF INED BY THE PART PROGRAMMER IN THE PART PROGRpM) BY
PROVILGING A PLAOTTING CAPABILITY IN WHICH TWE LINES OF
INTERSECTION, WITHIN SPECIFIFD LIMITS, BETWEEN A CROSS<SECTIANAL
PLANE AND ALL OTHER DEFINED PLANES ARE SHOWN,

THE CR®SS SeCTIGNAL PLANE FOR THE PLAT AND ITS DIMENSIONAL LIMITS
ARE CONTROLLED BY MEANS BF ONE PLANE DEFINITION (NAMED #2zKOPEz#)
AND TW® POINT DEFINITIONS (NAMED 2zZHOXYMINZZ AND EzHOXYMAX#Z)
AUDED T@ THe PART PROGRAM,

THE PLOT IS SUPPLEMENTED BY PRINTER AUTPUT THAT IDENTIFIES POINTS
OF INTERSECTIUN THAT HAVE BEEN NUMRERED AN THE PLGT,

THE PRBOGRAM 1S WRITTEN IN THE FRAMEWARK AF THE CDC 3800 ApPT 2,
CouNFIGURATIWN AND N® ADDITIONAL OVERLAY AR SEGMENT MANIPULATIO®
1S NECESSARY,

1
N

CROSEC IS CALLED FROM SUBRAUTINE FIN!, AND THIS CALL IS THE ONLY
MEDIFICATION T APT 2,1 PROGRAMMING BEYGND THE ADDITION @F CROSEC
AND ITS FAMILY ©F SUBRBUTINES,

* - ® x * ] *
CROSEC DIMENSIONING BEGINS HERE
ZHOPEZ |S THE NaAME GIVEN TO® THE PLANE OF THE CRGSS SECTION
NOTE=~THE HOPE SYSTEM IS CALLED THE PRIME SYSTEM, THE TERMS ARE

USED INTERCHANGABLY AND 1S DENOTED BY THE SYMBALZ,
THIS SYMBOL IS USUALLY USED AS A SUFFIX, SICH AS X#

A,B,C,D, ARt THE HOPE PLANE CONSTANTS
BuTAINED FRuM THE CANGMICAL FORM

lsReoNeNeReNeoRoNeRoResEoReReNoReleNelsNeRoNoRoRoNoNoRoRoReNaReReoRaReNe o e NoRoRe R Ne Ro R N N

ISEND IS THe LENGTH OF THE DEFINED SYMBGL TARLE

CRS
CKS
CRS
CkS
CRS
CRS
CRS
CRS
CRS

CRS
CRS
CRS
CRsS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS

- CRS

CRS
CcRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS

_CRS

17

570
580
590
60C
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
670
880
890
900
910
9290
930
940
950
960
970
980
990
10600
1010
1020
1030
1040
1050
1060
1070
1080

.1098

1100
11190
1120

A3TITSSYTIOND
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CRS 1130

. CRS 1140

THE XMAT9 AKRAY WILL HBLD THE MATRIX Q@F COEFFICIENTS FOR CRS 115¢
COBRDINATE CUNVERS]ON (TRANSLATIGON AND/AR ROTATIEN) CRS 1160
FROM THE MAJAR SYSTEM T@ THE HAPE SYSTEM CRS 1170
CRS 1180

FROM THE EQUATIBNS CRS 1190
' CRS 1200
T11(X=X0) + T21(YmY0) + T31(Z»20) CRS 1210
CRS 1220

T12(X=X0) + T22(Y=Y0) + T32(Z=720) CRS 1230
CRS 1249

T13(XwX0) + TI2(Y=YD) + T33(Z~70) CRS 1250
CRS 1260

. CRS 1270

WHERE « CRS 1280
CRS 1290

THE X# AXIS HAS DIRECTION COSINES» T11, T21, T31 RS 1300

‘ : CRS 1310

THE Y# AXIS HAS DIRECTI!GN COSINESe Ti2, T22, T32 CRS 1320

CRS 1330

THE Z# aX1S HWAS DIRECTION COSINES» T13, 723, T33 CRS 1340

: cRs 1350

THE PRIMF SYSTEM ORIGIN IS AT (Xn,Y0,Z0) CRS 1360

CRS 1370

IT IS FORMEpD AS FOLLOWS= CRS 1380
' CRS 1390
CRS 1400
CRS 1410
CRS 1420
CRS 1430
CRS 1440
CRS 1450
CRS 1460
CRS 1470
CRS 1480
CRS 1490
CRS 1500
CRS 1510
WHERE w CRS 1520
c1 <(T11sx0 + T21#Y0 + T31e70) CRS 1530

CRS 1540

«(712%X0 + T22%Y0 + T5220) CRS 1550
) CRS 1560
»(113%X0 + T23%Y0 * T3370) CRS 1570
’ CRS 1580
CRS 1590

CRS 1600

CRS 1610

COMMON/12/A,B,CyD, IDSEND, XMATO(16) CRS 1620
CRS 1630

‘ CRS 164(
THE KR ARRAY HOLDS THE (XzY#) INFORMATIGN BF ALL PAJNTS @BTAINED CRS 1650
ON UNE COMPLETE PASS THROUGH THE INNFR LAGP COMMENCING AT CRS 1660
STATEMENT 1304, CRS 1670
CRS 1680

X¥#

Y#

¢

T11 T21 T31 ci
T12 T22 132 ce
T13 T23 T33 €3

S+ e et Tt et Img pmt et P
= 8 4 > —t ew P—a Pt @ +d

Cc2

c3
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Z21P#Zz COUNTS THE NUMBER OF PAIRS
COMMBN/4/]1P,KR(10D)
REAL KR

THE KS ARRAY HOLDS THE (X2zY#) INFORMATION AF ALL POINTS OBTAINED
BY PASSES THRUUGH BOTH LAOPS, 1,E, THE GUTFR LOOP COMMENCING AT
STATEMENT 1021 AND THE INNER LOGP THAT STARTS AT 1004,

#2182z COUNTS THE NUMBER @F PAIRS

LOMMBN/5/75,KS(500)
REAL KS '

22 1ONCEZZ I> A FLAG THAT CONTRALS THE CALLING OF SUBROUTINE DLINE
COMMBEN/6/ 1 UNCE
EZZARRAY£Z I> FOR THE FORMATION OF THE PLAT STRING,

DIMENSION ARRAY (254)

CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS

THE ##1FOISkT##Z ARRAY 1S USED AS A PARAMETER IM THE ENCEDE COMMANDCRS

T® COMPGSE wCD FOR THE PLOT,
DIMENSIGON [POISET(9)
» * » * » » ]
THE PRAGRAMMING ACTION STARTS HERE
Z2YESz2z AMD #2ZNO#£#z ARE THE TWO POSSIRLE ANSWERS FOR
FUNCTION IS1TOEK,

YES=1
NAs0

A TGP OF FOKM ACTION TA SEPARATE CROSEC AUTPUT FREM FARLIER
AFT BUTPUT,

PRINT 40
40 FURMAT (1H1)

LOCATING THE NAME HOPE [N THE DEFINED SYMB@L TABLE
DEF INED SYMBOL TABLE BEGINS AT ITARLL ANN ENDS AT 1T7AB12
ITS TOTAL LeNGTH IS THEREFORE (ITABL12=1TAB1L1)+1

#HUPEZ 1S THE NAME GIVEN T® THE REFFRENCE PLANE

IDSEND=ITAS12-1TARLL

CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
RS
CRS
CRS
CRS
CRS
CRS
GRS
CRS
CRS
CRS
CRS
CRS
CRS

19

1690
1700
171¢C
1720
1730
1740
1750
1769
1770
1780
1799
1800
1810
1820
1830
18490
18590
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970

1980

1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2229
2230
2240
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INSEND=IDSeND+1

p@ 9¢on I=1,1DSEMD,2

1SAVE=]

i=1=-1

INFURMATION IN THE DST APPEARS IN PATRS AND
THE FIRST WwRD @F THE FIRST PAIR IS AT LACATION #zI1TABil#z IN
ARRAY Z#JTAml 2#
THE FIRST WuRDS BF THESE PAIRS ARE LEFTeJUSTIFIED RCO NAMES
Te A MAXIMUM wF SIX LETTERS AND RLANK FILLFD

HOPE
P (JTARLCOITABLIL+1),EN,30464725606060608) 800,900

Z£PLETPLNGZZ IS THE INCREMENTAL INDEX T@ TWE SECAND.WQRD N THE
22HUPEZ# PALR, ' ‘

PLAOTPLNR=T+1
Go IH 60U
I=1SAVE

[F N6 HEPE uvARD HAS BEEN IDENTIFIED RETURN T® SOURCE @F Call

PRINT 704

FORMAT (1X,N@ HQPE CARD»)

LH TE 1401
* * * * » -
* * CoaMMENT » *
* » * * » n
* - » * » "

DefFINING THeE CANDNICAL FORM OF THE PLANE AS
X % @S ALPHA + Y * COS BETA + 7 % [0S GAMMA = P
WHERE THE CuSINE TERMS ARE DIRECTIAN COSINFS GF X, Y, AND Z
RESPECTFULLY,
TrE CANGONICAL FoRM ©F THE #HAPEZ PLANE 1S CALLFD AND STORED IN
THE REFERENUE ARRAY, WHERE
#RCESAZ CUMTAINS COSINE ALPHA
ZRLESHZ CONTAINS COSINE SETA
#RCOSGZ CONTAINS COSINE GAMMA L AND
ZR HOPE Pz CONTAINS THE #P# AR CANSTANT VALUE
* » * " .
» * * * » *

ZZKANSURF£Z 1S DESIGNED T@ HALD POINTERS .TO CANGN[CAL FORMS
IN STATEMENT 000 IT IS HOLDING THE PAINTER TR THE #z#HOPEZzPLANE
CANGBNICAL FuRM

KANSURF = JTABL (1TAB11 + PLOTPLNO)

THE ##ZCANGE|[ZZ SUSBRGUTINE FETCHES THE CANGNICAL FGRM POINTED TR
BY #ZZKANSURrZ# AND STORES ITS ELEMENTS IN THE #2ZDEFST@ZZ ARRAY,

CALL CANGUET

RCUSA = DErSTO(4)
RCOSH=DEFSTA(S)
RCYSG = DEFSTA(6)

* # ® %

CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS

‘CRS

CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CKS
CRS
CRS
CRS
CRS
CRS
CRS
CRS

" CRS

CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS

2250
2260
2270
2230
2290
2300
231¢
23290
2330
2340
2350
2360
2370
2380
2390
24900
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2750
276¢C
277¢C
2740
2790
2800
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R HUPE P = UDEFSTE (7)

USING THE SHARTHAND SYMBBLS FOR THE PLANE CONSTANTS=A,B,C,D
A=RCOSA

B=RCASH

C=RCOSG

PDERHOPEP

SUBROUTINE [ESTHOPE FILLS IN THE ##XMAT9ZZ ARRAY

CALL TEST mOPE (A,ByC,D,XMAT9)
ANATHER TGP-OF «FORM

PRINT 4y

* . COMMENT - ]

» - *
SINCE THE CuwSINg OF THE

CTHAT ARE EITHER rARALLEL @R PERPENDICULAR TQ@ THE REFERENCE PLANE,

c
c
C

lsRels e ReoEe Ne Nl

QOO0 0

OOO0

o Re]

41

921

] - * * L »

n * * *® » »

* * * * » »
PRINT 41

FORMAT (30X, »ANGLES BETWEEN HOPE AND THE DEFINED PLANES#*,/////)

pY 920 J=1,1DSEND,2
I=1TABLL+J-1

A MURE DETAILED EXAMINATION OF THE SECOND WORD IN THE DST PAIRS

IS NEEDED T AVAID PICKING UP ITEMS THAT ARE NAT PLANES,
##1ONEZz PICKS UP THE FIRST W@RD @F THE PAIR
ZZ11WOZ¢ PILKS UP THE SECOND WARD OF THE PAIR

[GNE=JTABL(T)
ITWR=JTABL(1+1)

IF A NAME Iy UNDEFINED THE SECAND WORD CANTAINS THE BCD W@RD
ZzNODEFX S#z,

IF A NAMF I INCORRECTLY DEFINED

THE SECGND wORD COMTAINS THE BCD WORN #fNGDEF] S#¥%,

THIS TEST PREVENTS QPERATING OGN THESE SITUATIONS,
IFCITWO,EQ,NNODEFX,BR, [TWO,EQ,NNODEF[)920,921

221STDWDZ#]s SET EQUAL T® THE SECOND WARD RECAUSE
IT 1S NOW ASSUMMED TO BE A STANDARD WGRD 8Y APT DEFINITIONS,

ISTNWD=1TwWy

SUBROUTINE STUNPK 1S CALLEDN UPON TO UNPACK THE STANDARD W@RD

*

* * L] »
ANGLE RETWEEN TWO PLANES 1S EQUAL TO THE
CSUM ©F THE PRODULT OF CORRESPONDING DIRECTIAN CASINES, THIS FACT IS
CTAKEN ADVANTAGE oF RY COMPUTING THE ANGLE BETWEFN EACH DEFINED PLANE
SPECIAL ATTENTIAN IS CALLED TO THOSE PLANES

*

.
*

CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS

"CRS

CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS

21

o
o
<
o
ST
L)
4

2810:;
2820
2830™
2840
2850
2860
2870
2880
2890
2900
2910
2920
2930
2940
2950
2960
2970
2980
2990
3000
3010
3020
3030
3040
3050
3060
2070
3080
3090
3100
3110.
3120
3130
3140
3150
3160
3170
3180
3190
3200
3210
3220
3230
3249
3250
3260
32790
3280
3290
3300
3310
3320
3330
33490
3350
3360
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950

931
933

982
945
954

938

947
956

920
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CALL STHUNpPK

Zz15TDTBLZZ RECEIVES BYTA AND A #£4%# REPRFSENTS A CANONICAL FARM

1IFCISTDTBL,EQ,4)50,920

IT IS NOW SaAFE TO PROCEED AND EXAMINE THE CANONICAL FORM [TSELF

KANSURF=1THWw
CALL CANGET

CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRsS
CRS
CRS
CRS
CRS

FzISAMz# PICKS UP THE 4 RIGHTMAST BITS OF THE FIRST CANONICAL W@RDCRS

ISAM=(DEFSTB (1) ,AND,178)

IF 22iSAMzZ 1S £QUAL TO A ##3#2 THEN T 1S A PLANE CANONICAL FORM

IF (1SAM,EW,$) 930,920

THE SUM OF PRQDUCTS OF CORRESPANDING GIRECTIAN CASINES
OF TWw PLANES,

COSSAM =RCySA*DEFSTR(4)+RCOSBYDEFSTA(5)+ROOSG#DEFSTA(6)
IF #£C0SSAMzZ 15 NEGATIVE, CHECK IT FURTHER AT STATEMENT 938
IF ##2CASSAMz#]S ZERG THEN THE PLANES ARE PERPENDICULAR

IF (Ccassad) 938,931,932
PRINT 933, |ONE

FORMAT(1X,a8,1X,32HPERPENDICULAR TO RFFERFNCE PLANE,///)

6O TR 92y
It #ZCOS8SAMz21S #z1#7 THEN THE PLANES ARE PARALLEL

IF (COSSAM,EQ.1) 935,937
PRINT 934, 1uNE
FORMAT (1X,A8,1X,27HPARALLEL TO REFERENCF PLANE,///)

Gd TE 920
IF #7CnSSAMz2 BETWEEN =1 AND 0
PROCEED T@ TAKE THE ARC COSINE
OTHERWISE Gy T9 END OF LegP

IF(COSSAM,uT . (-1,0))937,920

[t #2C0SSAMz# 1S NON=ZRRG, AMD NAT = 1, TAKF THE ARC COSINE
AND CONVFRT To DEGREES

ANUSAM =ACUS(COSSAM)IST7,32
PRINT 9354, [PNF,ANGSAM

CONTINUFE

FORMAT (1X,A8,1%X,2HAT,F10,1,1X, 26HNEGREES TO REFERFNCE PLANE,///

CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRs
CRS
CRS
CRS
CRS
CRS

3370
3380
3390
3400
3449
3420
3430
34490
3450
3460
3470
3480
34990
3500
3510
3520
3530
3540
3550
3560
3570
3580
3590
3600
3610
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NOTHING 1S uBNE WITH THIS INFORMATION ON ANGLES BETWEEN THE PLANESCRS

OTHER THAN PRINTING IT QUT FAR ITS USEFULNESS T8 THE PROGRAMMER

PRINT 4¢
* - . * * » .
* » * * * L *
* * » * » ] L
* » COMMENT » * L
- » » % » * L]
] * * . L] *

*
THE MINIMUM AND MAXIMUM VALUES OF THE MAJBR COMRDINATE SYSTEM
VARIABLES (1,E, X,Y,Z) ARE INTRODUCED THROUGH A SEQUENTIAL PAIR
OF SPECIALLY NAMED POINTS ~ #zHOXYMINZ# AND ZZHOXYMAXZZ,
THESE VALUE> ARE PICKED UP YIA THE DEFINED SYMROL TABLE

THE COORESPUNDING VALUES IN THE PRIME SYSTEM ARE COMPUTED,
(e, G, XAMINS FOXMINIYMINGZMIN)

A MINIMUM AND A MAXIMUM VECTOR MAGNITUDE IN THE PRIME SYSTEM ARE
CUMPUTED

(E,G, VMIN sSQRTIXZMIN®®2 + YZMIN*%2 ¢ Z2ZMIN*%9)

ThE LARGEST @F THESE VECTORS IS SCALFD TA COVER 5 INCHES oF PLAT
LENGTH,

THE POINTS oF INTERSECTION ARE COMPUTED
FIRST IN X,Y.Z COMRDINATES
SECUND IN X#,Y#,ZZCOORDINATES
THE Z# VALU=S ARE IGNORED AND SHOULD BE ZER®
THE PLOTTING CIGRDINATES (XP,YP) ARE COMPUTED USING THE SCALE
FACTGR AND AN ADDITIVE BIAS AF 5,0 IN ROTH DIRECTIONS,

IF THE RESULTING VALUES AF XP AND YP ARE NFGATIVE @R EXCEED 10,0
THEY ARE REJECTED AS EXCEEDING THE BAUNDS ®MF THE LIMITING VECTnR

#* #* * *
* * % &
* % ® %
* % # ®
* * &R
® % B ®
* N » »

THE DST TABLE IS SEARCHED FOR THE NAMES
ZEHOXYMINZZ AND ZZHAXYMAXZZ,

DO 950 K=1, IDS‘:NUga
KSAVE=K
Ksk=1
HOXYMIN
1F(JTABL(I!A811#K).E0.6046677Q443145603.AND-

CRS

CRS
CRS

CRS

CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS

CRS ¢

CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS

CRS

CRS
CRS
CRs
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"

TAB114K+2) 95

4
LN

[ ]

INCREMENTAL INDECIES T® SECOND WARD LGCATIONS IN DST
IMINND =zK+1

IMAXNO=K+3

GO T 9%2

KEKSAVE

PRINT 9%4

FORMAT (11X, *HOXYMIN AND HOXYMAX NOT FAUND#*)
STOP

THE MINIMUM VALUES ARE EXTRACTED FREM THE WOXYMIN CANGN[CAL FORM

KANSURF=JTARL(ITARL1+IMINNG)
CALL CANGEY
RAWXMIN=DEFSTO(4)
RAWYMIN=DEFSTA(5)
RAWZMIN=DEFrSTO(6)

THE MAXIMUM VALUES ARE EXTRACTFD FROM THE MOXYMAX CANGONICAL FORM

KANSURF=JTARLC[TABL1+IMAXNG)
CALL CANGET
RAWXMAX=DEr 3TO(4)
RAWYMAX=DEFSTA(5)
RAWIMAX=DEFSTO(S)
PRINT 957
FORMAT (1X,»liN BRIGINAL CORRNDINATE SYSTEM»,/,/,/)
PRINT 955, RAWXMIN,RAWYMIN,RAWZMIN,RAWXMAX ,RAWYMAX ,RAWZMAXK
FORMAT(S5X, «MINIMUM VALUES*,/,/,3(10%,F10,5,/),/,
1 5x,«MAXIMUM VALUES*,/,/,3(10X,F10,%,/))

XPMIN, YPMIN,ZPMIN

ARE COMPUTEL IN SUBRBUTINE MM USING THE XMAT9 MATRIX

CALL MM (XPMIN,YPMIN,ZPMIN,RAWNXMIN,RANYMIN,RAWZMIN,XMAT9)
CALL MMUXPMAX,YPMAX ) ZPMAX  RAWXMAX,RAWYMAX ,RANZMAX , XMAT9)
THE MINIMUM AND MAXIMUM VECTAR MAGN]TUNES ARE COMPUTED

MINVCTOR=SURT(XPMIN* %2+ YPMINu%2+ZPMIN®#2)
MAXVCT@R:SuQT(XDMAx*:2ﬁYPHAY:t2+ZPMAXtt2)

THE GREATEST GF THESE IN MAGNITUDE IS SET FQUAL T #ZREACHZ##

IF (MINVCTWR,ST,HAXVCTOR)96N,970
REACH sMINVYCTOR

G T 980

REACH = MAXVCTOR

GO TO 980

CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
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CRS
CRS
CRS
CRS
CRS
CRS
CRs
CRS
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4500
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4520
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45990
4600
4610
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4690
4700
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4800
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4840
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4870
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THE SCALE FACTOR=~ REACH MUST FIT INTA 5,0 INCHFS @F PLOT LENGTH

980 SCALE=5,0/REACH
PRINT OUT THE CAL-CQMP PLBT SCALE
PRINT 9%6

996 FORMAT (/,7.:1X,*[N HOPE PLANE=*,/,/)
FRINT 958,5CALE

CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS

9958 FURMAT(1X,*>CALE,. .#2F5,2,% INCHES OF PLGT LENGTH = 1 INCH OF PARCRS

LT LENGTH=)

CALCULATE AwD PRINT OUT THE GERBER SCALE FACTOR NEEDED T@

PROUUCE A 111 PLOT, THAT IS, A PLOT AN WWICH 8NE UNIT OF LENGTH
1S EQUAL TO ANE UNIT OF LENGTH GON THF BRIGINAL PART DRAWING,

SCLFAC=1/SCALE
PRINT 959,5CLFAC

CRS
CRS
CRS
CRS
CRS
CRS
cRS
CRS
CRS

959 FORMAT (/,/,1%X,+TQ @BTAIN A 1 T@ 1 PLOT AN THE GERRER USE A SCALE#CRS

1,» FACTOR In d3TH X AND Y OF *,§5,2)
PRINT 40
CALL PLOTS (ARRAY,254,10)

PLACE .A RIGHT ANGLE INTERSECTI®ON AT THF BRIGIN (5,0,5,0)

CALL SYMBOL (5,0,5,0,0,20,3,0,=1)

PLACE A SCALE MARK IN THE LOWER LEFT HAND CORNER
SHOWING THE CAL-COMP' DISTANCE COORESPAONDING TO ONE INGH OF
PART LENGTH,

CALL PLOT ¢0,0,3)

CALL PLOT (2,0,2)

CALL PLAT (0,-0,25,2)
CALL PLOT (SCALE,=0,25,2)
CALL PLOT (SCALE.UéZ)
CALL PLOT (SCALE,0,3)

» * » * L *
* * * * L *
* * COMMENT L L
L] * * H * »
* . ® L »

* .
THE SUSRGUTINE #SIMEQ# THAT SOLVES THREF PLANE EQUATIONS
SIMULTANEGUSLY 1S UTILIZED TO ®BTAIN POINTS OF INTERSECTI@N
ON THE ##HOrEzZ PLANE, A LINE @F INTERSECTION IS IDENTIFIED

WHEN A PLANE IS INVOLVED IN M@RE THAN ONE POINT, FOR THIS

REASGN AN GUTER LOOP IS CYCLED ##IDSENDz# TIMES, AND AN INNER
LUOP CYCLED #2ZIDSEND s IDSEND## TIMES S@ THAT FACH PLANE IS
HELD CONSTANT (ALONG WITH #zHEPE#Z OF COURSE) AS ALL @THER

PLANFS ARE BROUGHT N FBR TESTING,
* » * . » : .
» * - * . »

LR R R A 2
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ABSTRACT

The APT (Automatically Programmed Tooling) system provides for the
software description of geometric forms, the delineation of a tool path, and,
for output, discrete positioning information on punched paper tape for use by
a numerically controlled machine. The CROSEC (Mod 1) program, described
in this report, provides a means of extending the use of the canonical forms
of the plane surfaces defined by the programmer in the part program by pro-
viding a plotting capability in which the lines in intersection, within specified
limits, between a cross-sectional plane and all other defined planes are shown.
A visualization of the initial plane framework on which the cutting is to be
performed is therebyprovided. The cross sectional plane and its dimensional
limits are controlled by one plane definition and two point definitions. The
plot is supplemented by printer output that aids in the interpretation of the
plot. Theprogram is written in the framework of the CDC 3800 APT 2.1 con-
figuration. No additional program overlays or segments are necessary. This
report contains a discussion of the method used, subroutine descriptions,
listings and flowcharts, implementation aids, and a sample run.

PROBLEM STATUS

This is an interim report on a continuing problem.

AUTHORIZATION

NRL Problem 23Z0001

Manuscript submitted November 17, 1969,
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CROSS-SECTIONAL PLOTS OF PLANE INTERSECTIONS
An Adaptation of the APT System

INTRODUCTION

This report contains a complete description of a plotting adaptation of the APT system
in use at the Naval Research Laboratory (APT 2.1 on the CDC 3800). In the APT language,
a plane can be defined in seven different ways; but after being processed they are all stored
in a standard “canonical form.” This program, called CROSEC (Mod 1), utilizes such plane
canonical forms (of an APT Part Program) to obtain a plot of the intersection of one of the
planes, designated as the cross-sectional plane, and all of the other planes that have been
defined, processed, and stored at the end of APT Section 1. (See Ref 1 for a detailed de-
scr1pt10n of the APT system.)

The purpose of the program, primarily, is as an aid, an extra tool for the programmer
in debugging his program. The defined surfaces as stored in their canonical forms provide
a convenient starting point for geometric considerations. It is assumed that syntactic er-
rors have already been discovered and corrected and that in using CROSEC the programmer
wishes to verify that the surfaces he has defined do indeed describe the piece he wishes to
have worked on by the tool. The hope is that verification can be accomplished easily if he
can get a look at any cross section of his choosing through the conglomerate of the starting
surfaces. He realizes that the plot might require some interpretation because defined sur-
faces intersecting together do not fully describe the finished piece. However, he accepts
this limitation and looks upon the output as a working drawing, a picture of the output of
Section 1. By means of this drawing and the accompanying identifying information from
the printer, he should be able to make some significant debugging progress. Perhaps he
will discover a section of surface that is defined improperly or over defined,or a combin-
ation of surfaces that could be redefined in a simpler manner. Also, he may discover a
portion of surface that he has not yet defined and other events of this nature.

The report discusses plane equations, outlines the method of obtaining a coordinate
system in the cross-sectional plane, describes the plot, and points out the limitations of
the program. Also included are flowcharts, program descriptions, a complete listing,
and details of implementation with APT 2.1. An example is introduced early and followed
through the complete process in full detail.

DISCUSSION
The Plane
The canonical form for the plane, as defined in the APT system, is given by

AX + BY + CZ = D, (1)

where*

*As quoted from pp. 80 and A-1 of Ref. 1,

YI0ND
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X-Component of unit normal vector to plane
Y-Component of unit normal vector to plane

o alipp ATy VA RRaal AL AL Teala WV agvaal

Z-Component of unit normal vector to plane
Normal distance from plane to origin.

oo e
I

Consider the normal form of the plane equation, namely
XCOSa_ + YCOSa, + ZCOSae, = L, (2)

where the coefficients for the X, Y, and Z coordinates in Eq. (2) are the direction cosines
of the positive normal vector N from the origin to the plane. The direction cosines of the
unit normal vector are identical with the direction cosines of N. The length, or absolute

value, of this normal is I.. Therefore, equating similar terms from Eqs. (1) and (2) yields

A = COSa,
B = COSw,
C = COSq,
D=L =|N|.

Thus, for example, A =0, B=1, C =0, D =1 is the plane passing through the point
(0, 1, 0), parallel to the XZ coordinate plane, with direction angles of 90, 0, and 90 degrees,
respectively, to the three axes.

Let us now take, for a more detailed example, the plane that passes through the points
(1,0,0), (0,1,0), and (0,0,1) a unit distance out along each axis. To fit this approach to the
definition of a plane, consider the intercept form for a plane equation,*

X Y Z

X, *Y,"2," 1, (3)
where X,, Y,, and Z; are the intercepts, i.e. the point (X,, 0, 0) is the intersection of the
X axis with the plane. Similarly with (0, Y,, 0) and (0, 0, Z3).

Using now the three unit axis points, already defined, in this intercept form, Eq. (3)
leads to the simple and interesting equation

X+Y+2=1. (4)

The correctness of Eq. (4) as truly representing the plane that passes through the three
points is easily determined by setting any two of the variables equal to zero, and the
remaining variable will be equal to 1. Equation (4) is illustrative of another form of an
equation used to describe a plane, the general form, where the coefficients of the X, Y,
and Z terms are considered to be direction numbers of the positive normal to the plane.

To go from the general form to the normal form, it is necessary to compute the
direction cosines by dividing each of the coordinate coefficients in turn by the square
root of the sum of the squares of all three coefficients. The length of the normal is ob-
tained in a similar fashion by dividing the constant term by the same square-root quantity.
Symbolically, if the general form is

PX + QY + RZ = 8, (5)

%*All forms of equations for a plane can be found in Section 3, p. 2-1 of Ref. 2.
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then
A = COSa, =T
B = COSa, =3
C = COSa, = %
D=1 = %
where

U = YP*P + Q*Q + R*R.
The normal form for the illustrative plane is therefore

L_}_l_'_l_-_l_. (6)
Y37 V3T V3 T V3"

It is easily verified that the sum of the squares of the direction cosines is 1.

It is important in our development to know the coordinates of the point represented
by the intersection of the normal N and the plane to which it is perpendicular. These co-
ordinates are obtained by multiplying each of the direction cosines by the length of the
n7rma}. Symbolically, (D*A, D*B, D*C). For the illustrative plane the result is (1/3,
1/3, 1/3).

One final consideration regarding these plane equations—our illustrative case has a
convenient set of intercept points; however, it is possible to determine the intercepts
from the normal form. They are

D
(Xp Y1; Z1) =(K: 0, 0>

D
(Xzy Y2, ZZ) = <0’ E’ 0>

D
(Xq Y5 29 = (0, 0, D).

Figure 1 summarizes this initial development using the symbols for the APT canon-
ical form of Eq. (1) in part a of the figure and the actual values of our illustrative plane
in part b.

The Cross-Sectional Plane and Its Coordinate System

The plot of Section 1 output uses a coordinate system in the cross-sectional plane,
particularized as the HOPE plane. Let us call the coordinate system in the HOPE plane
the prime system (i.e., X', Y’, Z°), in contrast to the original system established by the
part programmer known as the X, Y, Z system. The origin of the prime system is the
intersection of the normal with the plane, and the Z’ axis is the extension of the normal.

G3TITSSYIOND
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(DA,DB, DC)

D/C
{0,0,0/C) PLANE Ax +By+Cz=D

(0,0/B,0)

(D/A,0,0) X

(a) Normal form of plane equation

I | I
(313r3)
(0,0,1) PLANE L+L +—Z— -
v V3 V3 V3
’ Y
(0,1,0)
I
— -
\£) <
(1,0,0) X

{b) Equiangular plane in normal form

Fig. 1 - A general and a particular plane

The X’ axis is selected in one of three ways.

1. The “general solution” is the case where the HOPE plane intersects the X axis,
and the positive X’ axis is the line passing from the prime origin through the intercept
point and lies in the HOPE plane. In terms of the normal form the prime origin is (DxA,
D*B, D*C) and the intercept point is (D/A, 0, 0) with direction cosines

D -D¥B -DxC
[(?; - I)*A>’ U ° U },
U .

where

U =1/<KD - D*A>2 + (D*B)? + (b*c)2.
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For our illustrative plane X + Y + Z =1, the X" axis for the general solution would
be positively directed from the origin with coordinates (1/3, 1/3, 1/3) to the X intercept
with coordinates (1, 0, 0). The computation gives the X axis, in this case, direction
cosines of

(Y273, - V1/6, - V1/6)

2. If the HOPE plane does not intersect the X axis and is parallel to it, then the X~
axis is that line lying in the HOPE plane, parallel to the X axis, with direction cosines
(1, 0, 0) commencing at the prime origin.

3. If the HOPE plane is perpendicular to the X axis and parallel to the YZ plane
such that the normal is the X axis, then the positive X’ axis is that line lying in the HOPE
plane which starts at the prime origin and is parallel to the Z axis with direction cosines
(0,0,1).

The Y’ axis is defined as the cross product of the Z* and X" axes, duly preserving
right-handed concepts.

If the direction cosines of the X’ axis are Ty, T,;, T31, and those of the Y’ axis
T2, Ty, T3, and those of the Z* axis T;;, T,3, T35, then

Ty, = Tp3*Ty - Ty *Ty, (M
Ty = Ty1¥T33 - Ty3%Ty5 (8)
T3y = T13%¥Ty; - Tyy *Ty;. 9)

Thus, for our illustrative plane, the direction cosines of Z* are (1/v3, 1/v3, 1/v3) and of
X" are ( V273, - .V176, - ¥1/6). Using these equations, we find that the directions cosines
for Y’ are (0, V1/2, -71/2).

The equations required to convert any point in space from the original coordinates
to the prime coordinates are

X" =Ty X - Xg) + Tay (Y - Yo) + Tyy (Z - Z),

Y =Ty (X - Xg) + Tyy (Y - Yo) + Ty (Z - Z),
and

Z° = Ty (X - X)) + Tyy (Y - Y + Tsy (Z - Z),

where (X, Y,, Z,) is the prime origin defined in terms of X, Y, Z. Expanding yields
X’ = Ty *¥X + Ty *¥Y + Ty *Z + Cy, (10)

'Y'/

T p*X + T *Y + Ty *Z + Cy, (11)
and

Z" = T3¥X + Ty *Y + T33*%Z + C, (12)

AITITSSYTIOND
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where

Cy = =(T1 *¥Xo + Tp*Y, + T3y*Z),

frm

Lo T UL ® &y 4 L gp* Xy + 1g,%4),
C, -(T13*X0 + T xY, + T33*ZO).

For the illustrative case where (X, Y,, Z,) = (D*A, DB, DxC) = (1/3,1/3, 1/3),
the matrix corresponding to the coefficients of Eqgs. (10), (11), and (12), is

—1/%_ ’1/%- LG 0—
0 ]/%_ V3 0

Figure 2 illustrates the definition of the prime axes in the HOPE plane. In this instance
the HOPE plane is our illustrative plane X +Y + Z =1.

=

| =

z!

Fig. 2 - Prime axes in the
equiangular HOPE plane

Points and Lines in the Cross-Sectional Plane

So far we have established an understanding of the various forms of the equations that
describe a plane and have described an algorithm for defining a translation-rotation matrix
" for converting points from the part programmer’s coordinate system to a coordinate system
in the HOPE or cross-sectional plane. We can now ask, How is it determined whether any
APT-defined point in general lies in the HOPE plane ? Simply by substituting the X, Y, and
Z values of the point into the equation for the plane to determine if an equality ex1sts e.g.,
D7es th7 point (1/3, 1/3, 1/3) lie in the plane X + Y + Z = 1? Obviously yes, since 1/3 +
1/3+1/3 =1,

I the equations for the three planes are solved simultaneously, a point that lies in all
three planes is the result. If one of these planes is the HOPE plane, then there is no doubt
that the point is in the cross section.
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Consider now a situation in which the HOPE plane and a plane A are consecutively
solved with two other planes B and-C (defined such that no two planes of HOPE, A, B and
HOPE, A, C are parallel), resulting in two points P, and P,. Both of these points are
simultaneously in both the HOPE plane and in plane A; in fact, the line segment joining
P, and P, is a portion of the line of intersection between HOPE and A. Such a procedure
if carried out with all the defined planes, will result in an entire network of lines of inter
section. Each point as obtained is put through the matrix to obtain its definition in terms
of the HOPE coordinate system to enable it to be plotted. If a minimum and a maximum
value for each coordinate is specified, then many superfluous points of intersection can
be eliminated. :

Let us now consider what happens when the equiangular plane X + Y + Z = 1 inter-
sects some planes defined in a part program, an actual situation. (Refer to sample run
with “PARTNO TESTING” on p. 63.) Figure 3 depicts a simple part in three views. It
is to be noted that there are eight defined planes. Figure 4 shows the cross-section net-
work of intersecting lines obtained with the plane X + Y + Z = 1 as the HOPE plane
intersecting “PARTNO TESTING.” Usingonly the information provided in Figs. 3 and 4,
can you distinguish between the proper intersection outline and those lines that are
extraneous? It is an intersecting exercise, well worth spending a few minutes on.

/P4 /PLT /P3

PL4

4 |

/CYL

+ SETPT2 (6,-1,3)

[ yd e e 1
PI/ PLI/

a"

Fig. 3 - “PARTNO TESTING” with eight defined planes

ITITSSVIOND
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Fig. 4 - Cross section obtained from
PARTNO TESTING and equiangular
plane

[/ NN

e

Fig. 5 - Lines of intersection iden-
tified by plane number

e

The solution to this question will now be presented.

The accompanying printout identifies points of intersection from which the lines of
intersection were drawn. The coefficients of these points are given in the X, Y, Z sys-
tem, in the X', Y’, Z° system, and in plotter coordinates along with the plane numbers
associated with each point. There are 19 such points in Fig. 4. These point data con-
stitute background information, available when needed. However, rather than clutter up
the plot with point symbols and identifying numbers, only the lines of intersection have
been drawn using a minimum point and a maximum point. From these two points the
slope and the prime-system intercept have been computed. This information is also
printed along with the plane name associated with the line. The lines have been named
in Fig. 5. There are eight planes identified in the sketch of the part in Fig. 3 and there
are eight lines in the intersection plot.

Verification of the correctness of the numbering of these lines of intersection can
be achieved by noting that parallel lines in the plot correspond to parallel planes on the
part. Sure enough, plane 1 representing the bottom of the piece is parallel to plane 3,
the top, and is also parallel to plane 5 which represents the step surface. In Fig. 5 the
lines labeled 1, 5, and 3 are parallel lines.
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Fig. 6 - Perspective view of PARTNO TESTING 3 /
4

|
(without the cylinder) with eight planes and the ; _
intersecting equiangular HOPE plane s 12T s
& |
!

-
|

—_—— L |- =

In a similar fashion the lines of intersection for planes 2, 4, and 8 confirm a paral-
lelism between these planes, all three of them being vertical sides in the part shown in
Fig. 3. Finally, plane 6 (the front) is parallel to plane 7 (back), and the lines with these
numbers are parallel in Fig. 5.

Figure 6, which shows a perspective view of the planes of the part and the equiangular
HOPE plane, demonstrates the fact that the lines of intersection on the surface of the piece
lie in planes 6 (front), 1 (bottom), and 2 (left side). The triangle formed by the lines of
intersection of these three planes is accented in Fig. 5 and is the correct answer.

It is an interesting consequence of the situation that since plane X + Y+ Z =1 is
equiangular to each of the three coordinate planes, and that since all eight of the defined
planes in the simple part are either identical with or parallel to a coordinate plane, that
HOPE is also equiangular to these eight planes, namely 57.4 degrees.

There is one other interesting observation to make about Fig. 5. Because of the
equiangular characteristic of the cross-sectional plane, a reverse type of statement can
be made. Any equilateral triangle in this figure corresponds to three mutually perpen-
dicular planes. Besides the set already discussed {6, 1, 2}, eleven others can be iden-
tified. These are {1, 2, 7}, {1, 4, 6}, {1, 6, 8}, {2, 3, 6}, {3, 7, 8}, {1, 1, 8}, {5, 7, 8},
{2, 3,17}, {3, 4,1}, {3, 6,8 and {3, 7, 8}. The last one, which is the outermost triangle,
corresponds to the planes which are perpendicular to the maximum dimensions X = 4,

Y =2, and Z = 2, respectively.

There is a lot of information to be gleaned from the cross~sectional plot once it is
understood and assimilated.

When the restrictions of XMIN, YMIN, ZMIN = (0, 0, 0) and XMAX, YMAX, ZMAX =
(4, 2, 2) are placed on the cross-section points, then the network is reduced to that shown
in Fig. 7, the true triangle of intersection with the part.

CROSEC Limitations

CROSEC in its present form (Mod 1) has some definite limitations. Some of the
initially obvious ones are as follows:

1. There is no identification of defined points that might lie in the HOPE plane.
2. The plot does not contain any intersections of the HOPE plane with quadrix surfaces.

3. No tool motion information is present.

AITITSSYTIONN
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4. The plot resulting from the lines of intersection of defined planes with HOPE can
be initially confusing, since some of the lines might have no immediate relation to the
finished part, and the prime coordinate system might not be simply oriented with respect
to the X, Y, Z system. However, a consideration of the original part program along with
the printout can soon make the plot understandable.

Fig. 7 - CROSEC (Mod 1) output
plot for sample run with PARTNO
TESTING

(I

CONCLUSION

CROSEC (Mod 1) is a first step. In its present form, it can be helpful in a limited
fashion. The intersection with curved surfaces is missing, as well as the path of the
cutting tool in the cross-sectional plane. It is planned to incorporate these features in
further work on this project.
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Appendix A

SUBROUTINE DESCRIPTIONS WITH FLOWCHARTS AND LISTINGS

SUBROUTINE CROSEC

The CROSEC subroutine (Fig. Al) controls the Section 1 plotting of the intersections
of defined planes with the HOPE cross-sectional plane. For convenience it incorporates
all of the common area of Section 0 and Section 1 into itself without attempting to discard
portions it does not need. The APT system subroutines called on are CANGET, SIMEQ
and STDUNPK. The in-house library routines called include PLOTS, SYMBOL, PLOT,
STOPPLOT, SQRTF, ACOSF, QNSINGL, THEND, STH, ENC, Q1Q10100, Q8QSTOPS, and
Q8QDICT. Additional subroutines called by CROSEC and considered a part of the Mod 1
package are TESTHOPE, DELINE, and MM. There is also a function, ISITOK. The flow-
chart of Fig. A2 shows the relationship between these subroutines.

The CROSEC subroutine assumes that the defined symbol table (D.S.T.) is stored in
the JTABL array of numbered common 2 between ITAB11 and ITAB12. It further assumes
that the D.S.T. entries consist of pairs of words, the first of which is an eight-symbol
Hollerith name, left justified, and, second, an APT “standard word” which includes an
integer pointer giving the relative address in JTABL (extended beyond D.S.T.) where the
canonical form is stored. These assumptions are standard procedure for the CDC APT.
(See the Section 1 description starting on p. 01-1 of Ref. Al.) Accordingly, after executing
a top of form, the D.S.T. is searched for the name HOPE, and if this name is not found the
subroutine is exited and there is no plot obtained. If HOPE is found, its pointer is stored
in KANSURF prior to calling CANGET which fetches and stores the canonical form in the
DEFSTO array of the SECTILOG. After identifying A, B, C, and D from the HOPE canon-
ical form, the TESTHOPE subroutine is called.

TESTHOPE will either stop the run or return with a conversion matrix stored in
XMAT9. This matrix will permit the conversion from the X, Y, Z coordinate system to
the prime system whose origin is in the HOPE plane, thereby facilitating a two-dimensional
plot.

Another top of form is executed.

Since the cosine of the angle between two planes is equal to the sum of the product of
their corresponding direction cosines, it is a logical next step to take advantage of this
fact and compute the angle between each defined plane and the HOPE plane.

Special care is needed in picking up canonical pointers from the D.S.T. prior to making
the cosine computation. Undefined words or incorrectly defined words must be avoided as
well as the synonym register which appears at the head of the D.S.T. The standard word
must be unpacked by calling Subroutine STDUNPK in order to determine if BYTA contains
a 4, representing a canonical form. After the canonical form has been recovered by a
call to CANGET, it is necessary to examine the four most right-hand bits of the first
word in the set. A 3 in this position identifies the canonical of a plane as opposed to other
possible canonical forms such as points, cylinders, etc. In this manner the direction
cosines are obtained, and the computation for the angle between the planes can then be
performed. -

11
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START

DOES
DEFINED SYMBOL TABLE
CONTAIN HOPE P

TEST THE HOPE
PARAMETERS AND

CONVERSION MATRIX
(USES TESTHOPE)

[

IF VALID FORM - —

COMPUTE AND LIST THE
ANGLE BETWEEN THE

HOPE PLANE AND ALL
OTHER DEFINED PLANES

DOES DST.
CONTAIN HOXYMIN 8
HOXYMAX P

FETCH LIMITING VALUES

CONVERT, STORE, &
COMPUTE & PLOT scaLe LPRINT

RETURN

RUN WILL

TERMINATE IF

HOPE PARAMETERS

DO NOT PERMIT

NEW COORDINATE
SYSTEM TO BE FORMED

NO ERROR
MESSAGE

COMPUTE POINTS OF
INTERSECTION BETWEEN
HOPE AND ALL COMBINATIONS
OF DEFINED PLANES TAKEN
2 AT A TIME

|

DRAW LINES OF INTERSECTION —

PRINT COORDINATES 8 NAMES

RETURN

Fig. Al - Flowchart for CROSEC subroutine
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S A
| oF APT SECTION t
*
S.
X X * * * * X
S. S. S. E. S. S. S, S. S. E.
CANGET ACOSF SIMEQ PLOTS SYMBOL TESTHOPE MM ISITOK DLINE STOPPLOT
* * X
S. S. S.
FILXMATS GENSOL PLOT
SQRTF

SUBPROGRAM DEPENDENCE FOR CROSEC (MOD 1) USING
CDC 3800 CONFIGURATION WITH CALCOMP PLOT PACKAGE

S.= SUBROUTINE , E.= ENTRY, % = FLOW CHART IN THIS REPORT, X = PART OF CALCOMP PLOT PACKAGE

Fig. A2 - Relationship between subroutines called by CROSEC

After making special tests for perpendicular planes and parallel planes, the arc
cosine function ACOSF is called and the resulting angle printed out in degrees. This angle
has a range of 0 to 180 degrees. All information regarding this analysis of the angles be-
tween the planes is outputed through the line printer and is not retained, as it has no con-
sequence to the plot. '

Next, the D.S.T. is searched for the names HOXYMIN and HOXYMAX, which must be
stored as adjacent pairs in order to be discovered. In the absence of these names, an -
error message is printed and the run is terminated. The message is “HOXYMIN AND
HOXYMAX NOT FOUND.” If these names are present, the corresponding values are
fetched via CANGET and stored in correspondingly descriptive name locations, such as
RAW X MIN. '

These raw limiting values are passed through the matrix by calling subroutine MM,
thus obtaining their corresponding values in the prime system, (XPMIN, YPMIN, ZPMIN)
and (XPMAX, YPMAX, ZPMAX). A printout is now initiated that lists the raw limiting
values.

The magnitudes of the minimum and maximum vectors are computed thusly,

MINVECTOR = }/(XPMIN)2 + (YPMIN)? + (ZPMIN)?2

MAXVECTOR = y(XPMAX)? + (YPMAX)? + (ZPMAX)2.
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The CALCOMP plot is restricted to a 10 x 10 in. space. When we allow for both
negative and positive values of X’ and Y’ it follows that 2 times the largest vector must
fit into 10 linear inches. The center of the plot is the origin of the prime coordinate
system. To accomplish this, the largest of these two magnitudes is set equal to REACH
and then divided into 5.0 to obtain the CALCOMP plot factor which is called SCALE.
SCALE is therefore the number of inches of plot length that is equivalent to one inch of
part length. SCLFAC is the reciprocal of SCALE and is the scale factor needed to obtain
a 1:1 Gerber plot. (The details of obtaining a paper tape output for use on the Gerber
plotter (Model 875) are discussed in Ref. A2.) Output messages regarding SCALE and
SCLFAC are printed, followed by another top of form.

The plot string is initiated.

A + symbol is plotted at (5.0, 5.0), the plot coordinates for the HOPE prime system
origin, and a scale mark is placed at the lower left-hand corner of the plot. A somewhat
involved double loop is now entered at the heart of which is a call to SIMEQ which solves
three plane equations simultaneously, resulting in the output of a common point of inter-
section (two planes intersect in a line, three planes intersect in a point).

Since the A, B, C, D of the HOPE plane are constant throughout the process, they are
stored once and for all in positions 108 through 111 of the DEFTAB array (used by
SIMEQ), before the entrance into the looping procedure,

Also initialized at this time are
1. IONCE, a flag which controls the call to subroutine DLINE,
2. IPTNO, the point number counter,

3. IP, the counter for coordinate pairs stored in the KR array. The KR array stores
only the points related to the current line about to be drawn, and

4. IS, the counter for coordinate pairs stored in the KS array. (The KS array stores
all points created by CROSEC.)

The outermost of the two loops commences at statement 1001,
DLINE is called only if IONCE is zero.

The canonical form for a plane is fetched under the same restraints as already
described above. If a plane is indicated, its name is saved as NAME1 and its A, B, C, D
are stored in DEFTAB 104 through 107. The inner loop commences at statement 1004,
By a similar process, the values for the third plane are stored in DEFTAB 100 through
103, and the creation of NAME2 takes place. Then comes the call for SIMEQ followed -
by the test on JSUBER for proper execution, thereby allowing for the situation of two of
the planes being identical. ‘

If a bad situation resulting in no point has occurreu, a transfer is made to the end
of the inner loop. If a proper point had been obtained, its X, Y, Z coordinates are picked
up from DEFTAB 112 through 114.

These numbers in turn are used to obtain the corresponding prime values and plotting
values. The prime values are obtained by use of the conversion matrix via a call on sub-
routine MM. The plotting values are obtained by means of the formulas
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X = XP * SCALE + 5.0
and

Y = YP « SCALE + 5.0, (10)
where XP and YP are the prime coordinates.

The ISITOK function now works with an elaborate set of parameters to avoid dupli-
cation and to assure operation within the allowable limits. If the answer from the func-
tion is YES, then the point is valid and can be used. The rest of the YES followup stores
the plotting values in the KS array and prints out the names of the planes, the point num-
ber, and the point coordinates in terms of the X, Y, Z system, the prime system, and the
plotter system. After exiting from these two loops, DLINE is called once more if IONCE
is zero; otherwise, the plot is terminated and CROSEC makes its return.

AITITSSVTIOND
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10/22/69
SUBRAUTINE CROSEC
COMMON /TIMETEST/ KSETIMEL1, KSETIMF2, KSFTIME, KSETADR
Teee COMMAUN AREA FO®R CDC APT 3 SECTIAON 0
LR R 2R EE] EEEXE TRP RN ke kRN E
CoMMEN /SYSTEMZ/ SYSTEM(4),KAPTCN, KAPTTR, KAPTIO,
A KAPTID, KFLAGS(10),K0, K1, K2, K3,
o K4, K5, K6, K7 K8, K9,
v IFILLe, IFILL2, IFILLS, IFILLY,
U KFLAGGD, KFLAGL, KFLAG2, KFLAGS, KFLAGY,
£ IFILL®, IWAVEN, IPTNLY, NEPBST, IFILLS, KAUTOP,
b ICLPRT, INDEXX, IPLOTR, IFILL7, NOPLBT, KLYNFG,
4 LOaCJPT, LOCBEG), KSECIN, NCI.REC, LOCMAC, KPOCKET,
H IFILLS8, IFILLY, IFILLIN, IPASTP(1),NUMPST, IPOSTFL(18),
1 TAPETE(1),CANTAP, CLTAPE, POCTAP, PLATAF, SRFTAP,
J LIRTAP, CRDTAP, IFILL1L, CERTAP, TAPES1, TAPES2,
K TAPESS,  TAPES4,  FORTIN,  INTAPE,  10UTAP,  PUNTAP,
L LSTFLG, LTVFLG, KBNVTCL, KINTRUPT,
M Pl PIR2, DGTRN» RDTDG, ANE
N EXTRAO(Z0)
EQUIVALENCE (PROTAP, TAPETB)
Crexhns shknkgH *hkw kK 'SXTE %] L AR LR B
C
Cras CEMMON AKEA FOR CDC APT 3 SECTIGN 1
c
Cexhrxexw - w kK T XL X2 RIS TR "TTEEL:
COMMON /SECTLLOG/ 1TABL, 1TAB?, 17483, ,
A ITA4, 1TA85, 1SNAM, ITABLL, 1TAB1E, 1TARLS,
b JENDPTPP, JENDCAN, JENDSTAR, JSTRTCAN, JEMDSYM,
C JCANTEMr, JRPTAH, JLPTAB, MAXNST,
D JINWD, JCHAR, IWNERR, JBUFL, NUPERP, NUPUN,
3 JSTYPE, JVARSZ, SCHERR, NMAGVY, MACASN(25)Y,
F INDXFT, IPTP, IXPT, MONE, EGCFLG,  LPNpFL,
G TRMFLG, INTRUPT, JUMPFL,.  ICDERR, NDERUG,
H* MACMODE, NESTFL, NRESULT, IPTLIM, JEXEC,
l KTYPE, MACTYP,
J IFARTERK, FINIS, 10FLG, MAGDEL , JSUBFR, NUMBERR,
K DEFSTO(85), DEFTAB(1000), ZSUK(3n),
L XMAT4(16),XMATI(16),XMAT2(16),XMATL(16),TMATX(16),
M I1stpMeNe, ISTDLIT, 1STDTBL, ISTDINDX, ISTDTYPE, ISTDWD,
N JPTIND, KPTCADE, KPTNAME, KPTTYPE, KPTNUM, KPTINDX,
) KPTSUB, KOMFLG, KOMPAP, NESURS, KANFLG, KRFSYS,
P KANREC, KANCNT, INAME, KANSLRF, KANINDX,
G JPRELEN, NEWCARD, JGORIT, NUMSTID, NUMCSER,
R IRFCIX, IRECNG, JTLPRS, ITITLE(9),LSRECN,
] NNODEFX, NNODEFL!, NIDUM, 1SI'ASH, 1EQUAL, 1BL ANK,
T LDUMMY, N100Q00, N7777, MASKU, MASKL IDIv,
"] MACREL , MACLOC, MACBEGN, MAGLAST, MACLEVEL.
v MACNAME(3), MACINDX(3), NMV, JRESTER, MACPSH(3,25),
W JTEMP1, JTEMP2, JTEMP3, JTEMP4, JTEMPS, JTEMFE,
X JTEMP7, JTEMPS, JTEMPY, EXTRAL(20)
EGUIVALENCE (DEFANS(1),IDEFSTO(4),NEFSTOL4)), (LSTYPE, KTYPE),
1 (PTNUM, KPTNUM)

DIMENSION IUEFSTO(85),
1 ILPTAB(200),

IRPTAR(200),

K. P. THOMPSON

DEFANS(26),
ITNTAB(200}Y,

IPEFTAB(1000)
JPROTP(100),

CRS
CRS
CRsS
CRS
CRsS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
tRS
cRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRsS
CRS
CRS
CRS
CRS

10
20
30
40
50
60

80
90
ino0
110
120
130
140
1590
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
38R0
390
400
410
420
430 -
440
450
460
470
450
490
500
510
520
53¢
540
550
560
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2 IRECSV(200), MACVAR(25), MACNBR(25), INWARD(10), IBYLP(2},
$ PISTO(6), IPISTEl6Y, IDREC(4)
EQUIVALENCE (INWARD(14), I1BUUP(16), ILPTAB(990), ]RPTAB(790),
1 ITNTAB(290), PISTE(390), IPISTA(390), IDREC(384),
i JPRETP(S880), IRECSV(280), MACVAR(75), MACNGR(50),

IDEFTAB(1000), pEFTAR(1000))
c
COMMON/VOCAsTBL/ KOM({1100)
c
COMMAN /2/ JTABNUM,JTARL(1?2120)
Crrnxnn T TR - MR RN Run

* -
CAMMEMNT
*
* x

% % % ®*
* % ¥ »
* & * &
# % & %
® &£ % =2

CR@SEC (MBD 1) PROVIDES A MEANS OF EXTENMING THE USE GOF THE PLANE
SURFAGES(DEF INED BY THE PART PROGRAMMER IN THE PART PROGRpM) BY
PROVILGING A PLAOTTING CAPABILITY IN WHICH TWE LINES OF
INTERSECTION, WITHIN SPECIFIFD LIMITS, BETWEEN A CROSS<SECTIANAL
PLANE AND ALL OTHER DEFINED PLANES ARE SHOWN,

THE CR®SS SeCTIGNAL PLANE FOR THE PLAT AND ITS DIMENSIONAL LIMITS
ARE CONTROLLED BY MEANS BF ONE PLANE DEFINITION (NAMED #2zKOPEz#)
AND TW® POINT DEFINITIONS (NAMED 2zZHOXYMINZZ AND EzHOXYMAX#Z)
AUDED T@ THe PART PROGRAM,

THE PLOT IS SUPPLEMENTED BY PRINTER AUTPUT THAT IDENTIFIES POINTS
OF INTERSECTIUN THAT HAVE BEEN NUMRERED AN THE PLGT,

THE PRBOGRAM 1S WRITTEN IN THE FRAMEWARK AF THE CDC 3800 ApPT 2,
CouNFIGURATIWN AND N® ADDITIONAL OVERLAY AR SEGMENT MANIPULATIO®
1S NECESSARY,

1
N

CROSEC IS CALLED FROM SUBRAUTINE FIN!, AND THIS CALL IS THE ONLY
MEDIFICATION T APT 2,1 PROGRAMMING BEYGND THE ADDITION @F CROSEC
AND ITS FAMILY ©F SUBRBUTINES,

* - ® x * ] *
CROSEC DIMENSIONING BEGINS HERE
ZHOPEZ |S THE NaAME GIVEN TO® THE PLANE OF THE CRGSS SECTION
NOTE=~THE HOPE SYSTEM IS CALLED THE PRIME SYSTEM, THE TERMS ARE

USED INTERCHANGABLY AND 1S DENOTED BY THE SYMBALZ,
THIS SYMBOL IS USUALLY USED AS A SUFFIX, SICH AS X#

A,B,C,D, ARt THE HOPE PLANE CONSTANTS
BuTAINED FRuM THE CANGMICAL FORM

lsReoNeNeReNeoRoNeRoResEoReReNoReleNelsNeRoNoRoRoNoNoRoRoReNaReReoRaReNe o e NoRoRe R Ne Ro R N N

ISEND IS THe LENGTH OF THE DEFINED SYMBGL TARLE

CRS
CKS
CRS
CkS
CRS
CRS
CRS
CRS
CRS

CRS
CRS
CRS
CRsS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS

- CRS

CRS
CcRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS

_CRS

17

570
580
590
60C
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
670
880
890
900
910
9290
930
940
950
960
970
980
990
10600
1010
1020
1030
1040
1050
1060
1070
1080

.1098

1100
11190
1120
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CRS 1130

. CRS 1140

THE XMAT9 AKRAY WILL HBLD THE MATRIX Q@F COEFFICIENTS FOR CRS 115¢
COBRDINATE CUNVERS]ON (TRANSLATIGON AND/AR ROTATIEN) CRS 1160
FROM THE MAJAR SYSTEM T@ THE HAPE SYSTEM CRS 1170
CRS 1180

FROM THE EQUATIBNS CRS 1190
' CRS 1200
T11(X=X0) + T21(YmY0) + T31(Z»20) CRS 1210
CRS 1220

T12(X=X0) + T22(Y=Y0) + T32(Z=720) CRS 1230
CRS 1249

T13(XwX0) + TI2(Y=YD) + T33(Z~70) CRS 1250
CRS 1260

. CRS 1270

WHERE « CRS 1280
CRS 1290

THE X# AXIS HAS DIRECTION COSINES» T11, T21, T31 RS 1300

‘ : CRS 1310

THE Y# AXIS HAS DIRECTI!GN COSINESe Ti2, T22, T32 CRS 1320

CRS 1330

THE Z# aX1S HWAS DIRECTION COSINES» T13, 723, T33 CRS 1340

: cRs 1350

THE PRIMF SYSTEM ORIGIN IS AT (Xn,Y0,Z0) CRS 1360

CRS 1370

IT IS FORMEpD AS FOLLOWS= CRS 1380
' CRS 1390
CRS 1400
CRS 1410
CRS 1420
CRS 1430
CRS 1440
CRS 1450
CRS 1460
CRS 1470
CRS 1480
CRS 1490
CRS 1500
CRS 1510
WHERE w CRS 1520
c1 <(T11sx0 + T21#Y0 + T31e70) CRS 1530

CRS 1540

«(712%X0 + T22%Y0 + T5220) CRS 1550
) CRS 1560
»(113%X0 + T23%Y0 * T3370) CRS 1570
’ CRS 1580
CRS 1590

CRS 1600

CRS 1610

COMMON/12/A,B,CyD, IDSEND, XMATO(16) CRS 1620
CRS 1630

‘ CRS 164(
THE KR ARRAY HOLDS THE (XzY#) INFORMATIGN BF ALL PAJNTS @BTAINED CRS 1650
ON UNE COMPLETE PASS THROUGH THE INNFR LAGP COMMENCING AT CRS 1660
STATEMENT 1304, CRS 1670
CRS 1680

X¥#

Y#

¢

T11 T21 T31 ci
T12 T22 132 ce
T13 T23 T33 €3

S+ e et Tt et Img pmt et P
= 8 4 > —t ew P—a Pt @ +d

Cc2

c3
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Z21P#Zz COUNTS THE NUMBER OF PAIRS
COMMBN/4/]1P,KR(10D)
REAL KR

THE KS ARRAY HOLDS THE (X2zY#) INFORMATION AF ALL POINTS OBTAINED
BY PASSES THRUUGH BOTH LAOPS, 1,E, THE GUTFR LOOP COMMENCING AT
STATEMENT 1021 AND THE INNER LOGP THAT STARTS AT 1004,

#2182z COUNTS THE NUMBER @F PAIRS

LOMMBN/5/75,KS(500)
REAL KS '

22 1ONCEZZ I> A FLAG THAT CONTRALS THE CALLING OF SUBROUTINE DLINE
COMMBEN/6/ 1 UNCE
EZZARRAY£Z I> FOR THE FORMATION OF THE PLAT STRING,

DIMENSION ARRAY (254)

CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS

THE ##1FOISkT##Z ARRAY 1S USED AS A PARAMETER IM THE ENCEDE COMMANDCRS

T® COMPGSE wCD FOR THE PLOT,
DIMENSIGON [POISET(9)
» * » * » » ]
THE PRAGRAMMING ACTION STARTS HERE
Z2YESz2z AMD #2ZNO#£#z ARE THE TWO POSSIRLE ANSWERS FOR
FUNCTION IS1TOEK,

YES=1
NAs0

A TGP OF FOKM ACTION TA SEPARATE CROSEC AUTPUT FREM FARLIER
AFT BUTPUT,

PRINT 40
40 FURMAT (1H1)

LOCATING THE NAME HOPE [N THE DEFINED SYMB@L TABLE
DEF INED SYMBOL TABLE BEGINS AT ITARLL ANN ENDS AT 1T7AB12
ITS TOTAL LeNGTH IS THEREFORE (ITABL12=1TAB1L1)+1

#HUPEZ 1S THE NAME GIVEN T® THE REFFRENCE PLANE

IDSEND=ITAS12-1TARLL

CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
CRS
RS
CRS
CRS
CRS
CRS
CRS
GRS
CRS
CRS
CRS
CRS
CRS
CRS

19

1690
1700
171¢C
1720
1730
1740
1750
1769
1770
1780
1799
1800
1810
1820
1830
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ABSTRACT

The APT (Automatically Programmed Tooling) system provides for the
software description of geometric forms, the delineation of a tool path, and,
for output, discrete positioning information on punched paper tape for use by
a numerically controlled machine. The CROSEC (Mod 1) program, described
in this report, provides a means of extending the use of the canonical forms
of the plane surfaces defined by the programmer in the part program by pro-
viding a plotting capability in which the lines in intersection, within specified
limits, between a cross-sectional plane and all other defined planes are shown.
A visualization of the initial plane framework on which the cutting is to be
performed is therebyprovided. The cross sectional plane and its dimensional
limits are controlled by one plane definition and two point definitions. The
plot is supplemented by printer output that aids in the interpretation of the
plot. Theprogram is written in the framework of the CDC 3800 APT 2.1 con-
figuration. No additional program overlays or segments are necessary. This
report contains a discussion of the method used, subroutine descriptions,
listings and flowcharts, implementation aids, and a sample run.

PROBLEM STATUS

This is an interim report on a continuing problem.

AUTHORIZATION

NRL Problem 23Z0001

Manuscript submitted November 17, 1969,
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CROSS-SECTIONAL PLOTS OF PLANE INTERSECTIONS
An Adaptation of the APT System

INTRODUCTION

This report contains a complete description of a plotting adaptation of the APT system
in use at the Naval Research Laboratory (APT 2.1 on the CDC 3800). In the APT language,
a plane can be defined in seven different ways; but after being processed they are all stored
in a standard “canonical form.” This program, called CROSEC (Mod 1), utilizes such plane
canonical forms (of an APT Part Program) to obtain a plot of the intersection of one of the
planes, designated as the cross-sectional plane, and all of the other planes that have been
defined, processed, and stored at the end of APT Section 1. (See Ref 1 for a detailed de-
scr1pt10n of the APT system.)

The purpose of the program, primarily, is as an aid, an extra tool for the programmer
in debugging his program. The defined surfaces as stored in their canonical forms provide
a convenient starting point for geometric considerations. It is assumed that syntactic er-
rors have already been discovered and corrected and that in using CROSEC the programmer
wishes to verify that the surfaces he has defined do indeed describe the piece he wishes to
have worked on by the tool. The hope is that verification can be accomplished easily if he
can get a look at any cross section of his choosing through the conglomerate of the starting
surfaces. He realizes that the plot might require some interpretation because defined sur-
faces intersecting together do not fully describe the finished piece. However, he accepts
this limitation and looks upon the output as a working drawing, a picture of the output of
Section 1. By means of this drawing and the accompanying identifying information from
the printer, he should be able to make some significant debugging progress. Perhaps he
will discover a section of surface that is defined improperly or over defined,or a combin-
ation of surfaces that could be redefined in a simpler manner. Also, he may discover a
portion of surface that he has not yet defined and other events of this nature.

The report discusses plane equations, outlines the method of obtaining a coordinate
system in the cross-sectional plane, describes the plot, and points out the limitations of
the program. Also included are flowcharts, program descriptions, a complete listing,
and details of implementation with APT 2.1. An example is introduced early and followed
through the complete process in full detail.

DISCUSSION
The Plane
The canonical form for the plane, as defined in the APT system, is given by

AX + BY + CZ = D, (1)

where*

*As quoted from pp. 80 and A-1 of Ref. 1,

YI0ND
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X-Component of unit normal vector to plane
Y-Component of unit normal vector to plane
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Z-Component of unit normal vector to plane
Normal distance from plane to origin.

oo e
I

Consider the normal form of the plane equation, namely
XCOSa_ + YCOSa, + ZCOSae, = L, (2)

where the coefficients for the X, Y, and Z coordinates in Eq. (2) are the direction cosines
of the positive normal vector N from the origin to the plane. The direction cosines of the
unit normal vector are identical with the direction cosines of N. The length, or absolute

value, of this normal is I.. Therefore, equating similar terms from Eqs. (1) and (2) yields

A = COSa,
B = COSw,
C = COSq,
D=L =|N|.

Thus, for example, A =0, B=1, C =0, D =1 is the plane passing through the point
(0, 1, 0), parallel to the XZ coordinate plane, with direction angles of 90, 0, and 90 degrees,
respectively, to the three axes.

Let us now take, for a more detailed example, the plane that passes through the points
(1,0,0), (0,1,0), and (0,0,1) a unit distance out along each axis. To fit this approach to the
definition of a plane, consider the intercept form for a plane equation,*

X Y Z

X, *Y,"2," 1, (3)
where X,, Y,, and Z; are the intercepts, i.e. the point (X,, 0, 0) is the intersection of the
X axis with the plane. Similarly with (0, Y,, 0) and (0, 0, Z3).

Using now the three unit axis points, already defined, in this intercept form, Eq. (3)
leads to the simple and interesting equation

X+Y+2=1. (4)

The correctness of Eq. (4) as truly representing the plane that passes through the three
points is easily determined by setting any two of the variables equal to zero, and the
remaining variable will be equal to 1. Equation (4) is illustrative of another form of an
equation used to describe a plane, the general form, where the coefficients of the X, Y,
and Z terms are considered to be direction numbers of the positive normal to the plane.

To go from the general form to the normal form, it is necessary to compute the
direction cosines by dividing each of the coordinate coefficients in turn by the square
root of the sum of the squares of all three coefficients. The length of the normal is ob-
tained in a similar fashion by dividing the constant term by the same square-root quantity.
Symbolically, if the general form is

PX + QY + RZ = 8, (5)

%*All forms of equations for a plane can be found in Section 3, p. 2-1 of Ref. 2.
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then
A = COSa, =T
B = COSa, =3
C = COSa, = %
D=1 = %
where

U = YP*P + Q*Q + R*R.
The normal form for the illustrative plane is therefore

L_}_l_'_l_-_l_. (6)
Y37 V3T V3 T V3"

It is easily verified that the sum of the squares of the direction cosines is 1.

It is important in our development to know the coordinates of the point represented
by the intersection of the normal N and the plane to which it is perpendicular. These co-
ordinates are obtained by multiplying each of the direction cosines by the length of the
n7rma}. Symbolically, (D*A, D*B, D*C). For the illustrative plane the result is (1/3,
1/3, 1/3).

One final consideration regarding these plane equations—our illustrative case has a
convenient set of intercept points; however, it is possible to determine the intercepts
from the normal form. They are

D
(Xp Y1; Z1) =(K: 0, 0>

D
(Xzy Y2, ZZ) = <0’ E’ 0>

D
(Xq Y5 29 = (0, 0, D).

Figure 1 summarizes this initial development using the symbols for the APT canon-
ical form of Eq. (1) in part a of the figure and the actual values of our illustrative plane
in part b.

The Cross-Sectional Plane and Its Coordinate System

The plot of Section 1 output uses a coordinate system in the cross-sectional plane,
particularized as the HOPE plane. Let us call the coordinate system in the HOPE plane
the prime system (i.e., X', Y’, Z°), in contrast to the original system established by the
part programmer known as the X, Y, Z system. The origin of the prime system is the
intersection of the normal with the plane, and the Z’ axis is the extension of the normal.

G3TITSSYIOND
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(DA,DB, DC)

D/C
{0,0,0/C) PLANE Ax +By+Cz=D

(0,0/B,0)

(D/A,0,0) X

(a) Normal form of plane equation

I | I
(313r3)
(0,0,1) PLANE L+L +—Z— -
v V3 V3 V3
’ Y
(0,1,0)
I
— -
\£) <
(1,0,0) X

{b) Equiangular plane in normal form

Fig. 1 - A general and a particular plane

The X’ axis is selected in one of three ways.

1. The “general solution” is the case where the HOPE plane intersects the X axis,
and the positive X’ axis is the line passing from the prime origin through the intercept
point and lies in the HOPE plane. In terms of the normal form the prime origin is (DxA,
D*B, D*C) and the intercept point is (D/A, 0, 0) with direction cosines

D -D¥B -DxC
[(?; - I)*A>’ U ° U },
U .

where

U =1/<KD - D*A>2 + (D*B)? + (b*c)2.
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For our illustrative plane X + Y + Z =1, the X" axis for the general solution would
be positively directed from the origin with coordinates (1/3, 1/3, 1/3) to the X intercept
with coordinates (1, 0, 0). The computation gives the X axis, in this case, direction
cosines of

(Y273, - V1/6, - V1/6)

2. If the HOPE plane does not intersect the X axis and is parallel to it, then the X~
axis is that line lying in the HOPE plane, parallel to the X axis, with direction cosines
(1, 0, 0) commencing at the prime origin.

3. If the HOPE plane is perpendicular to the X axis and parallel to the YZ plane
such that the normal is the X axis, then the positive X’ axis is that line lying in the HOPE
plane which starts at the prime origin and is parallel to the Z axis with direction cosines
(0,0,1).

The Y’ axis is defined as the cross product of the Z* and X" axes, duly preserving
right-handed concepts.

If the direction cosines of the X’ axis are Ty, T,;, T31, and those of the Y’ axis
T2, Ty, T3, and those of the Z* axis T;;, T,3, T35, then

Ty, = Tp3*Ty - Ty *Ty, (M
Ty = Ty1¥T33 - Ty3%Ty5 (8)
T3y = T13%¥Ty; - Tyy *Ty;. 9)

Thus, for our illustrative plane, the direction cosines of Z* are (1/v3, 1/v3, 1/v3) and of
X" are ( V273, - .V176, - ¥1/6). Using these equations, we find that the directions cosines
for Y’ are (0, V1/2, -71/2).

The equations required to convert any point in space from the original coordinates
to the prime coordinates are

X" =Ty X - Xg) + Tay (Y - Yo) + Tyy (Z - Z),

Y =Ty (X - Xg) + Tyy (Y - Yo) + Ty (Z - Z),
and

Z° = Ty (X - X)) + Tyy (Y - Y + Tsy (Z - Z),

where (X, Y,, Z,) is the prime origin defined in terms of X, Y, Z. Expanding yields
X’ = Ty *¥X + Ty *¥Y + Ty *Z + Cy, (10)

'Y'/

T p*X + T *Y + Ty *Z + Cy, (11)
and

Z" = T3¥X + Ty *Y + T33*%Z + C, (12)

AITITSSYTIOND



6 K. P. THOMPSON

where

Cy = =(T1 *¥Xo + Tp*Y, + T3y*Z),

frm

Lo T UL ® &y 4 L gp* Xy + 1g,%4),
C, -(T13*X0 + T xY, + T33*ZO).

For the illustrative case where (X, Y,, Z,) = (D*A, DB, DxC) = (1/3,1/3, 1/3),
the matrix corresponding to the coefficients of Eqgs. (10), (11), and (12), is

—1/%_ ’1/%- LG 0—
0 ]/%_ V3 0

Figure 2 illustrates the definition of the prime axes in the HOPE plane. In this instance
the HOPE plane is our illustrative plane X +Y + Z =1.

=

| =

z!

Fig. 2 - Prime axes in the
equiangular HOPE plane

Points and Lines in the Cross-Sectional Plane

So far we have established an understanding of the various forms of the equations that
describe a plane and have described an algorithm for defining a translation-rotation matrix
" for converting points from the part programmer’s coordinate system to a coordinate system
in the HOPE or cross-sectional plane. We can now ask, How is it determined whether any
APT-defined point in general lies in the HOPE plane ? Simply by substituting the X, Y, and
Z values of the point into the equation for the plane to determine if an equality ex1sts e.g.,
D7es th7 point (1/3, 1/3, 1/3) lie in the plane X + Y + Z = 1? Obviously yes, since 1/3 +
1/3+1/3 =1,

I the equations for the three planes are solved simultaneously, a point that lies in all
three planes is the result. If one of these planes is the HOPE plane, then there is no doubt
that the point is in the cross section.
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Consider now a situation in which the HOPE plane and a plane A are consecutively
solved with two other planes B and-C (defined such that no two planes of HOPE, A, B and
HOPE, A, C are parallel), resulting in two points P, and P,. Both of these points are
simultaneously in both the HOPE plane and in plane A; in fact, the line segment joining
P, and P, is a portion of the line of intersection between HOPE and A. Such a procedure
if carried out with all the defined planes, will result in an entire network of lines of inter
section. Each point as obtained is put through the matrix to obtain its definition in terms
of the HOPE coordinate system to enable it to be plotted. If a minimum and a maximum
value for each coordinate is specified, then many superfluous points of intersection can
be eliminated. :

Let us now consider what happens when the equiangular plane X + Y + Z = 1 inter-
sects some planes defined in a part program, an actual situation. (Refer to sample run
with “PARTNO TESTING” on p. 63.) Figure 3 depicts a simple part in three views. It
is to be noted that there are eight defined planes. Figure 4 shows the cross-section net-
work of intersecting lines obtained with the plane X + Y + Z = 1 as the HOPE plane
intersecting “PARTNO TESTING.” Usingonly the information provided in Figs. 3 and 4,
can you distinguish between the proper intersection outline and those lines that are
extraneous? It is an intersecting exercise, well worth spending a few minutes on.

/P4 /PLT /P3

PL4

4 |

/CYL

+ SETPT2 (6,-1,3)

[ yd e e 1
PI/ PLI/

a"

Fig. 3 - “PARTNO TESTING” with eight defined planes

ITITSSVIOND
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Fig. 4 - Cross section obtained from
PARTNO TESTING and equiangular
plane

[/ NN

e

Fig. 5 - Lines of intersection iden-
tified by plane number

e

The solution to this question will now be presented.

The accompanying printout identifies points of intersection from which the lines of
intersection were drawn. The coefficients of these points are given in the X, Y, Z sys-
tem, in the X', Y’, Z° system, and in plotter coordinates along with the plane numbers
associated with each point. There are 19 such points in Fig. 4. These point data con-
stitute background information, available when needed. However, rather than clutter up
the plot with point symbols and identifying numbers, only the lines of intersection have
been drawn using a minimum point and a maximum point. From these two points the
slope and the prime-system intercept have been computed. This information is also
printed along with the plane name associated with the line. The lines have been named
in Fig. 5. There are eight planes identified in the sketch of the part in Fig. 3 and there
are eight lines in the intersection plot.

Verification of the correctness of the numbering of these lines of intersection can
be achieved by noting that parallel lines in the plot correspond to parallel planes on the
part. Sure enough, plane 1 representing the bottom of the piece is parallel to plane 3,
the top, and is also parallel to plane 5 which represents the step surface. In Fig. 5 the
lines labeled 1, 5, and 3 are parallel lines.
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Fig. 6 - Perspective view of PARTNO TESTING 3 /
4

|
(without the cylinder) with eight planes and the ; _
intersecting equiangular HOPE plane s 12T s
& |
!

-
|

—_—— L |- =

In a similar fashion the lines of intersection for planes 2, 4, and 8 confirm a paral-
lelism between these planes, all three of them being vertical sides in the part shown in
Fig. 3. Finally, plane 6 (the front) is parallel to plane 7 (back), and the lines with these
numbers are parallel in Fig. 5.

Figure 6, which shows a perspective view of the planes of the part and the equiangular
HOPE plane, demonstrates the fact that the lines of intersection on the surface of the piece
lie in planes 6 (front), 1 (bottom), and 2 (left side). The triangle formed by the lines of
intersection of these three planes is accented in Fig. 5 and is the correct answer.

It is an interesting consequence of the situation that since plane X + Y+ Z =1 is
equiangular to each of the three coordinate planes, and that since all eight of the defined
planes in the simple part are either identical with or parallel to a coordinate plane, that
HOPE is also equiangular to these eight planes, namely 57.4 degrees.

There is one other interesting observation to make about Fig. 5. Because of the
equiangular characteristic of the cross-sectional plane, a reverse type of statement can
be made. Any equilateral triangle in this figure corresponds to three mutually perpen-
dicular planes. Besides the set already discussed {6, 1, 2}, eleven others can be iden-
tified. These are {1, 2, 7}, {1, 4, 6}, {1, 6, 8}, {2, 3, 6}, {3, 7, 8}, {1, 1, 8}, {5, 7, 8},
{2, 3,17}, {3, 4,1}, {3, 6,8 and {3, 7, 8}. The last one, which is the outermost triangle,
corresponds to the planes which are perpendicular to the maximum dimensions X = 4,

Y =2, and Z = 2, respectively.

There is a lot of information to be gleaned from the cross~sectional plot once it is
understood and assimilated.

When the restrictions of XMIN, YMIN, ZMIN = (0, 0, 0) and XMAX, YMAX, ZMAX =
(4, 2, 2) are placed on the cross-section points, then the network is reduced to that shown
in Fig. 7, the true triangle of intersection with the part.

CROSEC Limitations

CROSEC in its present form (Mod 1) has some definite limitations. Some of the
initially obvious ones are as follows:

1. There is no identification of defined points that might lie in the HOPE plane.
2. The plot does not contain any intersections of the HOPE plane with quadrix surfaces.

3. No tool motion information is present.

AITITSSYTIONN
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4. The plot resulting from the lines of intersection of defined planes with HOPE can
be initially confusing, since some of the lines might have no immediate relation to the
finished part, and the prime coordinate system might not be simply oriented with respect
to the X, Y, Z system. However, a consideration of the original part program along with
the printout can soon make the plot understandable.

Fig. 7 - CROSEC (Mod 1) output
plot for sample run with PARTNO
TESTING

(I

CONCLUSION

CROSEC (Mod 1) is a first step. In its present form, it can be helpful in a limited
fashion. The intersection with curved surfaces is missing, as well as the path of the
cutting tool in the cross-sectional plane. It is planned to incorporate these features in
further work on this project.
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Appendix A

SUBROUTINE DESCRIPTIONS WITH FLOWCHARTS AND LISTINGS

SUBROUTINE CROSEC

The CROSEC subroutine (Fig. Al) controls the Section 1 plotting of the intersections
of defined planes with the HOPE cross-sectional plane. For convenience it incorporates
all of the common area of Section 0 and Section 1 into itself without attempting to discard
portions it does not need. The APT system subroutines called on are CANGET, SIMEQ
and STDUNPK. The in-house library routines called include PLOTS, SYMBOL, PLOT,
STOPPLOT, SQRTF, ACOSF, QNSINGL, THEND, STH, ENC, Q1Q10100, Q8QSTOPS, and
Q8QDICT. Additional subroutines called by CROSEC and considered a part of the Mod 1
package are TESTHOPE, DELINE, and MM. There is also a function, ISITOK. The flow-
chart of Fig. A2 shows the relationship between these subroutines.

The CROSEC subroutine assumes that the defined symbol table (D.S.T.) is stored in
the JTABL array of numbered common 2 between ITAB11 and ITAB12. It further assumes
that the D.S.T. entries consist of pairs of words, the first of which is an eight-symbol
Hollerith name, left justified, and, second, an APT “standard word” which includes an
integer pointer giving the relative address in JTABL (extended beyond D.S.T.) where the
canonical form is stored. These assumptions are standard procedure for the CDC APT.
(See the Section 1 description starting on p. 01-1 of Ref. Al.) Accordingly, after executing
a top of form, the D.S.T. is searched for the name HOPE, and if this name is not found the
subroutine is exited and there is no plot obtained. If HOPE is found, its pointer is stored
in KANSURF prior to calling CANGET which fetches and stores the canonical form in the
DEFSTO array of the SECTILOG. After identifying A, B, C, and D from the HOPE canon-
ical form, the TESTHOPE subroutine is called.

TESTHOPE will either stop the run or return with a conversion matrix stored in
XMAT9. This matrix will permit the conversion from the X, Y, Z coordinate system to
the prime system whose origin is in the HOPE plane, thereby facilitating a two-dimensional
plot.

Another top of form is executed.

Since the cosine of the angle between two planes is equal to the sum of the product of
their corresponding direction cosines, it is a logical next step to take advantage of this
fact and compute the angle between each defined plane and the HOPE plane.

Special care is needed in picking up canonical pointers from the D.S.T. prior to making
the cosine computation. Undefined words or incorrectly defined words must be avoided as
well as the synonym register which appears at the head of the D.S.T. The standard word
must be unpacked by calling Subroutine STDUNPK in order to determine if BYTA contains
a 4, representing a canonical form. After the canonical form has been recovered by a
call to CANGET, it is necessary to examine the four most right-hand bits of the first
word in the set. A 3 in this position identifies the canonical of a plane as opposed to other
possible canonical forms such as points, cylinders, etc. In this manner the direction
cosines are obtained, and the computation for the angle between the planes can then be
performed. -

11
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START
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HOPE PLANE AND ALL
OTHER DEFINED PLANES

DOES DST.
CONTAIN HOXYMIN 8
HOXYMAX P

FETCH LIMITING VALUES

CONVERT, STORE, &
COMPUTE & PLOT scaLe LPRINT

RETURN

RUN WILL

TERMINATE IF

HOPE PARAMETERS

DO NOT PERMIT

NEW COORDINATE
SYSTEM TO BE FORMED

NO ERROR
MESSAGE

COMPUTE POINTS OF
INTERSECTION BETWEEN
HOPE AND ALL COMBINATIONS
OF DEFINED PLANES TAKEN
2 AT A TIME

|

DRAW LINES OF INTERSECTION —

PRINT COORDINATES 8 NAMES

RETURN

Fig. Al - Flowchart for CROSEC subroutine
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ABSTRACT

The APT (Automatically Programmed Tooling) system provides for the
software description of geometric forms, the delineation of a tool path, and,
for output, discrete positioning information on punched paper tape for use by
a numerically controlled machine. The CROSEC (Mod 1) program, described
in this report, provides a means of extending the use of the canonical forms
of the plane surfaces defined by the programmer in the part program by pro-
viding a plotting capability in which the lines in intersection, within specified
limits, between a cross-sectional plane and all other defined planes are shown.
A visualization of the initial plane framework on which the cutting is to be
performed is therebyprovided. The cross sectional plane and its dimensional
limits are controlled by one plane definition and two point definitions. The
plot is supplemented by printer output that aids in the interpretation of the
plot. Theprogram is written in the framework of the CDC 3800 APT 2.1 con-
figuration. No additional program overlays or segments are necessary. This
report contains a discussion of the method used, subroutine descriptions,
listings and flowcharts, implementation aids, and a sample run.

PROBLEM STATUS

This is an interim report on a continuing problem.

AUTHORIZATION

NRL Problem 23Z0001

Manuscript submitted November 17, 1969,
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CROSS-SECTIONAL PLOTS OF PLANE INTERSECTIONS
An Adaptation of the APT System

INTRODUCTION

This report contains a complete description of a plotting adaptation of the APT system
in use at the Naval Research Laboratory (APT 2.1 on the CDC 3800). In the APT language,
a plane can be defined in seven different ways; but after being processed they are all stored
in a standard “canonical form.” This program, called CROSEC (Mod 1), utilizes such plane
canonical forms (of an APT Part Program) to obtain a plot of the intersection of one of the
planes, designated as the cross-sectional plane, and all of the other planes that have been
defined, processed, and stored at the end of APT Section 1. (See Ref 1 for a detailed de-
scr1pt10n of the APT system.)

The purpose of the program, primarily, is as an aid, an extra tool for the programmer
in debugging his program. The defined surfaces as stored in their canonical forms provide
a convenient starting point for geometric considerations. It is assumed that syntactic er-
rors have already been discovered and corrected and that in using CROSEC the programmer
wishes to verify that the surfaces he has defined do indeed describe the piece he wishes to
have worked on by the tool. The hope is that verification can be accomplished easily if he
can get a look at any cross section of his choosing through the conglomerate of the starting
surfaces. He realizes that the plot might require some interpretation because defined sur-
faces intersecting together do not fully describe the finished piece. However, he accepts
this limitation and looks upon the output as a working drawing, a picture of the output of
Section 1. By means of this drawing and the accompanying identifying information from
the printer, he should be able to make some significant debugging progress. Perhaps he
will discover a section of surface that is defined improperly or over defined,or a combin-
ation of surfaces that could be redefined in a simpler manner. Also, he may discover a
portion of surface that he has not yet defined and other events of this nature.

The report discusses plane equations, outlines the method of obtaining a coordinate
system in the cross-sectional plane, describes the plot, and points out the limitations of
the program. Also included are flowcharts, program descriptions, a complete listing,
and details of implementation with APT 2.1. An example is introduced early and followed
through the complete process in full detail.

DISCUSSION
The Plane
The canonical form for the plane, as defined in the APT system, is given by

AX + BY + CZ = D, (1)

where*

*As quoted from pp. 80 and A-1 of Ref. 1,

YI0ND
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X-Component of unit normal vector to plane
Y-Component of unit normal vector to plane
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Z-Component of unit normal vector to plane
Normal distance from plane to origin.
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Consider the normal form of the plane equation, namely
XCOSa_ + YCOSa, + ZCOSae, = L, (2)

where the coefficients for the X, Y, and Z coordinates in Eq. (2) are the direction cosines
of the positive normal vector N from the origin to the plane. The direction cosines of the
unit normal vector are identical with the direction cosines of N. The length, or absolute

value, of this normal is I.. Therefore, equating similar terms from Eqs. (1) and (2) yields

A = COSa,
B = COSw,
C = COSq,
D=L =|N|.

Thus, for example, A =0, B=1, C =0, D =1 is the plane passing through the point
(0, 1, 0), parallel to the XZ coordinate plane, with direction angles of 90, 0, and 90 degrees,
respectively, to the three axes.

Let us now take, for a more detailed example, the plane that passes through the points
(1,0,0), (0,1,0), and (0,0,1) a unit distance out along each axis. To fit this approach to the
definition of a plane, consider the intercept form for a plane equation,*

X Y Z

X, *Y,"2," 1, (3)
where X,, Y,, and Z; are the intercepts, i.e. the point (X,, 0, 0) is the intersection of the
X axis with the plane. Similarly with (0, Y,, 0) and (0, 0, Z3).

Using now the three unit axis points, already defined, in this intercept form, Eq. (3)
leads to the simple and interesting equation

X+Y+2=1. (4)

The correctness of Eq. (4) as truly representing the plane that passes through the three
points is easily determined by setting any two of the variables equal to zero, and the
remaining variable will be equal to 1. Equation (4) is illustrative of another form of an
equation used to describe a plane, the general form, where the coefficients of the X, Y,
and Z terms are considered to be direction numbers of the positive normal to the plane.

To go from the general form to the normal form, it is necessary to compute the
direction cosines by dividing each of the coordinate coefficients in turn by the square
root of the sum of the squares of all three coefficients. The length of the normal is ob-
tained in a similar fashion by dividing the constant term by the same square-root quantity.
Symbolically, if the general form is

PX + QY + RZ = 8, (5)

%*All forms of equations for a plane can be found in Section 3, p. 2-1 of Ref. 2.



