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INSIGHTS INTO UNSTRUCTURED MESH GENERATION 
FOR COASTAL OCEAN APPLICATIONS 

1.0 INTRODUCTION 

In recent times, an increasing number of coastal ocean model applications employed finite 
element modeling techniques. Significant advantages are associated with the finite element discrete 
form of equations governing the coastal ocean; the most obvious of these advantages being the 
tremendous grid flexibility afforded by finite elements. Variable mesh resolution allows enhance- 
ments in localized regions to represent sharp gradients of flow or bathymetric features or to capture 
the tortuous detail of a shoreline. Simultaneously, course mesh spacing can be utilized in deeper 
waters where changes in the ocean dynamics are known to occur more slowly or on larger scales. 
Such flexibility leads to questions of how best to construct a finite element mesh that will efficiently 
meet one’s modeling aims and, secondly, what tools are available to accomplish this end in the 
most automated fashion possible. 

This report offers a comprehensive presentation of the state-of-the art wisdom regarding the 
answers to these questions. Before moving to a discussion of mesh resolution, an overview of the basic 
premise and an abbreviated mathematical development of finite element approximations is presented 
for the uninitiated reader. Included in this introduction to the finite element approach is a comparison 
of finite element model formulations to the widely used finite difference modeling approaches. In 
the application of developed models that utilize finite element techniques, the user is required to 
understand the relationship between mesh resolution, domain size, boundary forcing, and the model 
computed fields to apply and assess the performance of finite element coastal ocean models. 

As mentioned, the heart of any finite element model application is an unstructured computational 
mesh. Both theoretical and empirical approaches can be used to identify a priori general mesh 
resolution requirements for a particular application. These perspectives on mesh resolution are 
presented together with highlights of advances and current areas of research related to the deter- 
mination of unstructured mesh resolution. The discussion of mesh res~olution gives way to practical 
concerns of mesh generation. Several known tools for mesh generation are described along with 
mention of some promising software under development. Finally, implementation of one particular 
mesh generation and editing tool, ACElgredit, is presented in depth. Currently, this package offers 
the most versatile and advanced features in mesh creation and editing within a user-friendly envi- 
ronment. Detailed descriptions on the usage of ACElgredit are presented in the context of common 
finite element mesh applications such as mesh creation, modification, and model diagnostics. Note 
that step-by-step instructions for the automatic generation of a mesh given coastline and bathymetry 
data is also presented. 

2.0 AN OVERVIEW OF THE FINITE ELEMENT METHOD 

Differential equations are an attempt to describe the actual behavior of a physical system. In 
the coastal ocean, the governing partial differential equations, at a minimum, consist of the conservation 
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laws of mass and momentum. These equations, because of their hyperbolic nature and strong 
nonlinearity, preclude analytic solution. Instead, a discrete representation of the governing equations 
must be formulated for solution on a computer. Selection of an optimal numerical technique depends 
on the governing equations themselves, the particular application, and the geometry of the domain 
involved. 

2.1 Mathematical Development 

The finite element method is simply a general technique for constructing approximate solutions 
to boundary value problems. The method of weighted residuals (MWR) is a family of numerical 
approximation techniques from which the finite element equations are derived. The heart of the 
MWR is predicated on an approximation to the actual solution to the differential equation while 
maintaining the original differential operator. A functional form for the solution, or trial function, 
is selected to satisfy the differential operator only in an approximate way. A convenient form for 
the trial function is a set of basis functions in N dimensional space such that their linear combination 
approximates the problem solution, i.e.: 

m = ii ai’pi (z) , (1) 
i=l 

where o(z) is the approximate solution to a partial differential equation, cp&c) are the basis functions 
of the solution, ai are scalar coefficients, and x contains the independent variables. The prob- 
lem, then (in the MWR) is to determine the coefficients ai such that G(z) is a good approximation 
to the true solution of the partial differential equations. By substitution of the approximate solution, 
Eq. (l), into the governing partial differential equations, MWR algorithms achieve the fundamental 
tenet of numerical methods: replacement of a differential equation by a related system of algebraic 
equations, finite in number. 

In choosing appropriate values for the coefficients ai, the MWR seeks to minimize the amount 
by which the approximate solution fails to satisfy the original governing equations. The measure 
of the error, termed the residual, is minimized by forcing it to 0 in a weighted, average sense over 
the entire domain. Mathematically, the MWR assumes the form: 

J P@(Z)) -fkIl Wi (8 dZ 3 
Q 

(2) 

where & is the problem domain, L is the differential operator, c(z) is the approximate solution, 
f(z) is the known forcing function, L(fi(s)) -f(z) is th e residual, and wi(z) are the weighting or 
test functions. Different choices of the weight functions are the distinguishing feature among various 
MWR approximations. 

In the MWR, functional forms for both the approximate solution and the weights must be 
determined. Admissibility conditions on the trial functions used to approximate the solution include 
satisfaction of all of the boundary conditions over the entire domain and functional continuity as 
required by the differential operators of the governing equations. In practice, the trial space is most 
always chosen from finite-dimensional polynomial space because of the simple definitions and 
well-known properties of polynomials. A popular choice are the Lagrange polynomials since the 
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coefficients ai correspond exactly to discrete nodal points in the domain. Furthermore, Lagrange 
polynomials are non-zero over the entire domain except at the nodal points and are infinitely 
differentiable. Note, however, that the choice of Lagrange polynomials is one of convenience, not 
necessity, since basis sets are not unique. 

A global set of functions that satisfy all of the prescribed boundary conditions over the domain 
is extremely difficult to determine, so it becomes advantageous to relax the admissibility requirements 
through a fundamental weak form of the MWR equations. In the fundamental weak form, only 
essential or Dirichlet boundary conditions must be satisfied with natural (flux) or Neumann bound- 
ary conditions met in a weighted residual sense; i.e., the approximate solution error associated with 
the boundary flux is explicitly included in the fundamental weak form of the MWR formulation: 

J~L(~(~~)-.fG91 wi(Z~dZ+JiI~sdti(Z~) +gNl wi(ZIdr.7 (3) 
!a r 

where I’ is the domain boundary, sN( fi@)) is the approximated natural boundary flux, and gN is 
the prescribed value at the natural boundary. 

Functional continuity requirements on the trial and test functions are further reduced through 
an application of Green’s theorem (or integration by parts). A symmetrical, weak weighted residual 
formulation is reached when the order of the derivatives on both the trial and test functions match. 
Weak forms of the equations allow lesser conditions on the problem equations and its derivatives 
and, thus, lead to the accommodation of irregular solutions having irregular domains and forcing 
functions. Note it can be shown (Becker et al. 1981) that the solution to the original equations also 
satisfies the weak form of the equations and is the only solution of the weak form. 

The most widely implemented MWR approximation, the Galerkin approach, is defined by 
choosing the trial function for the approximate solution and the weighting functions to be identical. 
This approach reduces the number of unknowns and significantly simplifies the boundary error 
term. Application of the Galerkin MWR yields a symmetric stiffness matrix that allows more 
expedient solution techniques. 

While the functions representing the approximate solution and the weights can be defined 
globally, functional continuity is more readily enforced over local domains or finite elements. Thus, 
it is advantageous to define the basis functions to be piece-wise continuous over the finite elements. 
Satisfaction of the essential boundary conditions is significantly simplified for locally defined 
functions over globally defined ones. In addition, splitting the domain into intervals and using 
lower order approximations within each element cause the integral error to assume better accuracy 
on a point-wise basis. 

For applications that utilize the finite element method, operation at the elemental level using 
a local element coordinate system offers several advantages. Basis function interpolation is simpli- 
fied by the definition of one set of elemental functions for all elements regardless of shape, size, 
or location. As a consequence, integrals in the weak weighted residual form of Eq. (3) are evaluated 
element-wise, with functional continuity enforced at the element level, and then summed to form 
a global system of equations: 

r 1 
NELE N 

Z: 2 ai J L(cPi(Zl wiC9)dZ + j- f(s) Wi(?dddX -sN(o(d) wN(d IN - (4) 
j=l i=l elem elem 



4 BZain and M&anus 

Essential boundary conditions are imposed on this global set of equations and the system is solved 
for the unknown nodal values, ai. Knowing these nodal coefficients, a solution to the governing 
equations is obtained from substitution into the approximate solution, Eq. (1). 

The finite element method allows for systematic and efficient development of discrete 
approximation equations. Note in the development of the finite element equations above that no 
specific differential equation or operator was identified. The finite element method as described is 
a general technique that is readily implemented for a variety of governing partial differential 
equations. Basis functions that approximate the solution are selected piece-wise over subregions of 
the domain (finite elements) and can be chosen as simple functions (polynomials of low degree) 
over the element. Piece-wise linear basis functions further simplify the problem in that their coef- 
ficients are the values of the solution at the nodal points. These unknown functional values at the 
nqdal points are then solved for by minimizing the error, over the domain with respect to some 
weighting functions. Efficiency of the finite element method is enhanced in that the formulation 
lends itself to solution one element at a time. 

For further details, discussion, and examples, the interested reader is referred to several texts 
on the finite element method including Celia and Gray (1992), Lapidus and Pinder (1982), and 
Becker et al. (1981). 

2.2 Comparison to Finite Difference Methods 

One of the most common and conceptually straightforward numerical approaches is the finite 
difference method. The fundamental basis of finite differences is the replacement of differential 
operators with a finite difference operator; i.e., continuous differential operators are replaced with 
discrete approximations written in terms of a finite number of point values of the unknown function. 
In a sense, finite difference expressions can be viewed as a reversal of the limit process used to 
define differential operators. 

The finite difference method is implemented by first identifying a finite number of discrete 
points or nodes in the domain of interest. At each of the nodes, an approximation to the true 
solution is computed. Derivatives appearing in the governing equations are replaced by discrete 
nodal values as unknowns. A resulting algebraic system of equations is solved to yield a value of 
the unknown function at every nodal point in the domain. 

Below, some comparisons between the finite difference and finite element approaches are 
offered with respect to three areas: grid flexibility, boundary condition implementation and efficiency. 
Certain advantages are inherent in the finite element method because of its piece-wise rather than 
point-wise approximation (Myers and Weaver 1995). Finite element approximations are especially 
appropriate for coastal ocean applications where the complexity of the shoreline significantly 
influences dynamic response and the phenomena of interest occur over several orders of magnitude 
requiring highly variable resolution throughout the domain. Be advised, however, that no single 
method can be identified as the “best” choice for all applications. One must consider all factors of 
the problem including the dynamics of the system, goals of a solution, and available resources when 
choosing an appropriate numerical technique. 

2.2.1 Grid FZexibiZity 

An obvious difficulty for regular grids with uniform rectangular elements of the type used for 
most finite difference schemes is that the edges of the grid cells are necessarily parallel to the two 
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coordinate axes, with the result that some parts of the coastline have to be approximated roughly 
by a “staircase” arrangement of line segments. This kind of approximation introduces the most error 
in the definition of boundary locations and is acceptable only in cases where the influence of the 
boundary is not dominant. 

Formulation of the finite element approximations to the equations naturally deal with fully 
irregular-shaped domains. The use of triangular elements allows representation of complex features 
in the geometry, bathymetry, circulation, and point sources. A need to align elements with coordinate 
axes is removed in the finite element approach. 

Secondly, refinement of a region within a finite difference mesh either leads to unnecessary 
resolution over most portions of the domain or problematic distortion of the rectangular cells in 
areas remote from the desired region of mesh refinement. When using triangular finite elements, the 
inclusion of fine grid spacing can be achieved through the local addition of elements in the vicinity 
of a singularity or steep gradient. This approach eliminates high aspect ratios (ratio of the largest 
side length to the smallest side length) caused by restrictions to the rectangular cell geometry of 
finite difference methods. 

2.2.2 Boundary. Condition Implementation 

In general, finite difference equations must be specially formulated to accommodate various 
boundary conditions. For an essential boundary condition, formulation of the right-hand side (RHS) 
must be altered from the discretized interior equations to compute the influence of a known point 
source, i.e.: 

Q6(X- 6) , 

where Q is the magnitude of the point source and 6(X - 6 ) is the Dirac Delta function that assumes 
the value of the point source at X = 6 and is 0 elsewhere in the domain. While the finite difference 
approximation requires a point value of the RHS function, point values of the Dirac Delta function 
are not meaningful. The usual approximation of the delta function is a function that is C-l continuous 
over the domain, is as compact as the grid spacing will allow, and maintains the correct volume 
of extraction/injection of the source, i.e.: 

f 6 (k Y) = 
’ 0 all other (x, y) E S2 

where x0, y, = (0, 0) is the location of the concentrated source at node o. 

(6) 

The treatment of singularities in finite element approximations does not require replacement of 
the delta function. Finite element equations are based on integrations and the delta function is well 
defined in this context. Direct assignment of the essential boundary values to the appropriate 
boundary nodes is the usual treatment for both the finite element and the finite difference method. 
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The implementation of flux type boundary conditions in the finite difference domain is quite 
involved. The normal direction of a boundary is poorly approximated by normals to the numerical 
stepped boundary. Other coordinate systems may be employed for either the equations or the 
domain, but derivation of the finite difference approximations quickly becomes complex and 
cumbersome. Finite difference discretizations at flux boundaries is further complicated with the 
introduction of imaginary nodes exterior to the domain. Nodes on convex-out corners of 
the boundary require additional nodes in x and y, whereas concave-out corners need no additional 
nodes. This asymmetry adds to the burden of finite difference formulations and the need for multiple 
forms of the governing equations to properly represent a boundary value problem over the domain 
of interest. 

The finite element method naturally accommodates flux terms via the boundary integrals that 
arise in the weak form of the equations from an application of Green’s theorem (integration by 
parts). Boundary conditions can be quite general and only need be specified at a late stage of the 
analysis such that the specification of flux or mixed boundary conditions does not alter the stiffness 
matrix. 

2.2.3 Efficiency 

Conceptually, interior approximations to the equations are simple to derive using the finite 
difference approach. Admittedly, application of the finite element method to a set of equations is 
more mathematically involved though generality of the technique is gained. A significant advantage 
is realized if one wishes to change the order of the approximation to the equations. Since basis 
functions in the finite element method are defined at the element level, changing to higher order 
approximations is achieved with relative ease, whereas increasing the order of accuracy of the finite 
difference equations involves a complete reformulation of the difference operators. 

The regular discretization of the finite difference method allows implementation of certain 
expedient matrix solution techniques such as those based on approximate factorization, e.g., alter- 
nating-direction methods. Efficiency within the finite element method is achieved largely by the 
execution of localized computations performed on an element-by-element basis. The stiffness matrix 
that results from the summation of elemental computations has properties of summability, sparse- 
ness, and symmetry that facilitate matrix solution. The use of sparse matrix iterative solvers over 
bandwidth solvers is considerably more efficient in terms of reduced storage requirements and 
computational speed. In addition, this approach is particularly well suited for computation on 
parallel architecture machines. 

Clearly, the grid flexibility afforded by the finite element method translates into computational 
efficiency in the elimination of wasteful computations spent on a grid with uniform element size. 
Finite element grids offer substantial advantages when implemented in situations where water depth 
varies substantially over the area modeled. 

To summarize, the finite element method allows for systematic and efficient development of 
discrete approximation equations. The approach lends itself to relatively easy implementation 
of boundary conditions, in particular for second and third type conditions, where proper imposition of 
normal flux conditions may become difficult. Finally, the finite element method provides suffi- 
ciently accurate geometric definition of irregular boundaries where sufficiency is defined by the 
relative influence that boundary conditions have on the solution of interest. 
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In general, implementation of the finite element modeling approach involves approximation of 
the governing equations, selection of a model domain, and discretization of the domain into discrete 
elements with variable resolution. 

3.0 UNSTRUCTURED MESH RESOLUTION 

The design of a reasonable spatial discretization requires an understanding of the underlying 
mathematics of the governing equations, the physical processes being described by those equations, 
and the numerical methods used to obtain the approximate solution. With such an understanding, 
general expectations concerning the behavior of the solution can be formulated. In truth, control of 
numerical discretization errors through intelligent grid design is only one, albeit important, way to 
control solution errors. Other mechanisms include judicious modification of the actual finite ele- 
ment approximation to the governing equations and the appropriate specification and placement of 
boundary forcing. This report will only address the issue of mesh resolution and the design of finite 
element grids. 

In coastal regions, the large variability in bathymetry, the complexity of coastline features, and 
the resulting highly nonlinear hydrodynamic response suggest the use of unstructured meshes with 
graded grid spacing. The variable size and orientation of grid elements results in a better fit of 
coastlines having arbitrary directions. Furthermore, an unstructured mesh allows a higher density 
placement of nodes in regions where the dynamics are rapidly varying and leaves a sparse array of 
nodes in areas where changes are slow. Generally, for realistic simulation of coastal waters, 
unstructured, graded meshes provide an optimal discretization of the domain and yield the most 
accurate solution for the least computational resources (e.g., Blain et al. 1994, 1997; Luettich and 
Westerink 1995; Lynch et al. 1995). 

Some theoretical criteria and empirical approaches for nodal placement and grid resolution are 
presented below, as well as the latest advances in the area of mesh design. One must keep in mind, 
however, that many possibilities exist in the construction of a mesh and that the necessary resolu- 
tion cannot be known exactly a priori. Performance of a mesh must ultimately be tested through 
simulation of the physical processes of interest and a well-formulated convergence study. If the 
solution to the discrete problem is not well converged with respect to the mesh resolution, model 
error cannot be attributed to physical causes. 

3.1 Theoretical Aspects of Mesh Resolution 
3.1.1 Spatial Truncation Error Analysis 

l 
Truncation error is defined as the difference between a true derivative and the discrete 

approximation to that derivative. In truncation error analyses, variables of a model equation are 
typically approximated using a Taylor series expansion (this approach actually forms the basis for 
the derivation of finite difference derivative operators, e.g., Lapidus and Pinder 1982; Celia and 
Gray 1992), i.e.: 

m dnu u(x)= z: - 
I 

(x -%Jn 
n=O dxn X0 n! (7) 
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or 

“i+ 
du 

1-ui=z xi I 
(Xi+1 (8) 

where u(x) is the dependent variable and x0 is the point about which expansion takes place. From 
a Taylor series representation, the continuous form of the model equations is subtracted. The 
remaining terms of the Taylor series expansion constitute the truncation error: 

(U i+I-ui) du d2u (xi+l-Xi)2 -- 
lIEE (Xi+l-Xi) dx xi=2 xi I I 2 ‘-.** w 

Typically, it is the higher order derivative terms of the Taylor series that are truncated from the 
discrete representation of a continuous derivative and account for the error in the approximation. 
These terms maintain a dependency on mesh spacing that can be utilized to establish resolution 
criterion. 

Expectations regarding the behavior of a model solution together with knowledge of the truncation 
errors associated with the discrete equations influence the design of spatial resolution. Truncation error 
analysis generally confirms the intuitive arguments that finer resolution is required in regions of 
rapid changes of the computed solution. In areas of rapid variation, higher order derivatives in the 
truncation error terms are correspondingly large. Therefore, to control truncation error, a smaller grid 
spacing in these regions is needed. The truncation error associated with one-dimensional (1-D) 
forms of the model equations can provide guidelines for mesh design (see Celia and Gray 1992 for 
excellent examples). Truncation error analysis suggests that variable grid resolution may achieve a 
more accurate solution than the use of constant nodal spacing for the same number of nodes. As 
detailed in a later section, minimization of the spatial truncation errors can be applied as a constraint 
for the automatic generation of unstructured meshes. 

3.1.2 Stability Constraints 

Partial differential equations describing the coastal ocean environment are classified as initial 
value problems and require the discretization of time derivatives. Expressions for the time deriva- 
tives in discrete form result in an algorithm that marches the solution forward in time by small 
increments or time steps. These time marching algorithms can be subject to temporal instabilities 
that are characterized by unbounded growth of the discrete solution as time increases. The condition 
of stability, then, imposes a constraint that the difference between the analytical and numerical 
solutions for a set of equations remain bounded for all time. Formal stability analyses (e.g., the use 
of amplification factors, characteristic, matrix, and Fourier analyses) can be approached in several 
ways, but in general, their application is limited to linear approximating equations. This linear 
analysis, in turn, can provide guidelines for nonlinear solutions. A more detailed discussion of 
stability analysis is beyond the scope of this report and the reader is referred to texts such as Celia 
and Gray (1992). 

A relationship between stability and mesh resolution arises from the form of the stability 
constraint derived for coastal ocean model equations. Fourier analysis of a standard second order, 
hyperbolic (wave) equation leads to a term of the form: 

v = (cat/Ax) , (10) 
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where v is referred to as the Courant number. The Courant stability criterion requires that v ZG 1 for 
an explicit time stepping scheme (unknown model variables are at a single time level). Since water 
velocity, c, increases with water depth and variable time step sizes, At may not be practical; a 
uniform grid spacing leads to unnecessarily frequent computation everywhere except at the point 
of maximum depth. Most implicit time stepping schemes (unknown model variables are expressed 
at more than one time level) are stable if the Courant criterion is violated, but truncation error 
generally increases with local Courant number. Therefore, it is desirable to design grids whose 
elements change in size according to water depth so as to keep the Courant ratio fairly uniform over 
the entire grid. Recasting the Courant criterion as: 

c2T2 
A 51, (11) 

where A is the element area of an equilateral triangle and substituting c2 = gh, we are left with 
h/A, the ratio of the element area to local depth. In practice, this should be kept as uniform as 
possible over the grid. The Courant criterion is another means by which mesh resolution can be 
designed. 

3.1.3 Element Selection 

Within the finite element method, a number of element types may be accommodated through 
a coordinate mapping from global elements (x, y) to local, master elements (E, r), i.e.: 

dxdy = de tJd Edq , (12) 

where d e tJ is the determinant of the Jacobian matrix defined 

ax ay -- 
J= aE aE 

ax ay * -- 
a ti 

(13) 

There is a requirement that the Jacobian of these coordinate transformations remain nonzero at all 
points within the element area being mapped. As distortion of the element increases, evaluation 
of the element integrals becomes more difficult and more integration points become necessary. 
When the element becomes too distorted, the integral can no longer be evaluated due to a 0 value 
of the Jacobian within the element and the finite element approximation fails. Thus, the Jacobian 
can be used as a flag to check allowable element shapes and angles. A change in sign at the corner 
nodes of the element indicates that the Jacobian has become 0 somewhere within the element. 
Linear coordinate transformations should always be used except in special cases where higher order 
elements are needed, but care must be taken to avoid element distortion. 

Linear triangular elements have easily defined basis functions, and the element integrals associated 
with linear triangles are readily evaluated. Furthermore, Walters and Henry (1995) demonstrate that 
equilateral triangles reduce truncation errors in the computed numerical solution. Linear triangles 
also allow isotropic wave propagation (Foreman 1984). One further observation is that no more 
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than six elements should be permitted to meet at a vertex to reduce the generation of numerical 
noise (Platzman 1981). Elements should vary smoothly in size with area ratios of neighboring 
elements not to exceed two. 

3.2 Empirical Approaches to Mesh Resolution 
3.2.1 Dimensionless Wavelength 

A widely used strategy in the generation of unstructured grids utilizes the wavelength to grid 
size ratio: 

h ai -=- 
Ax Ax’ 

where h is the wavelength, Ax is the grid spacing, T  is the wave period, g is the gravitational 
acceleration, and h is the local water depth. This ratio is generally set to some constant value equal 
to 40 or less (LeProvost and Vincent 1986; Westerink et al. 1994a, b). In shallow water, wave speed, 
c, is related to the local water depth by c2 = gd. This condition is equivalent to requiring that the 
spatial sampling interval (number of gridpoints per wavelength) be kept as nearly uniform as 
possible over the grid. LeProvost and Vincent (1986) assume a level of 13-14 points/wavelength 
as the standard for comparison of different meshes. Others (e.g., Gray and Lynch 1977; Kinnmark 
1986; Luettich et al. 1992) found that amplitude and phase characteristics of a tidal wave are best 
represented by 15-25 uniformly spaced grid cells. 

Assuming that tidal waves propagate near their shallow-water wave speed: 

then h will decrease as a wave propagates into shallower water. To maintain a constant hlhx, the 
grid spacing, Ax, must decrease as fi. 

The dimensionless wavelength criterion is not without shortcomings. First of all, the criterion 
stems from an assumption of 1-D linear, frictionless waves moving over constant depths. Generally, 
a target of 25-150 is sought for h/Ax, but this is found to be unsatisfactory because of its inability 
to identify the two-dimensional (2-D) structure of the waves associated with features such as 
amphidromes and where circulation is forced by 2-D coastline or bathymetric features (Westerink 
et al. 1994a). In these cases, the actual wave number content of the response is much greater than 
that predicted by the 1-D criterion. Additionally, the rate of change of wavelength or associated 
significant gradients in the response, which occur as the waves propagate over steep topographic 
changes, is not considered. Such steep gradients are known to occur at the continental shelf break 
and continental slope. The modeler is also required to know the period and location of the char- 
acteristic waves associated with the hydrodynamic response of the system. Though this criterion is 
widely implemented, it must be used with caution. 

3.2.2 Topographic Length Scale 

Recently, a 1-D criterion, the topographic length scale, was introduced by Hannah and Wright 
(1995). This criterion requires the grid spacing to be less than the topographic length scale times 
a constant: 
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Axso&, (16) 

where Ax is the mesh spacing, a is a constant, and Lh is the topographic length scale. The topographic 
length scale can be expressed as a ratio of the bathymetry to the bathymetric gradient Vh: 

Lh - hl(AhlAx) , (17) 

which yields an expression 

VhJh s CY (18) 

over an element. This relationship in Eq. (18) can be used as a mesh generating tool where a is 
the mesh generation parameter. Use of the topographic length scale incorporates both the bathym- 
etry and the gradient of bathymetry into the mesh generation process. The criterion, however, fails 
in the limit as the bathymetric gradient approaches 0. Such conditions occur, for example, in locally 
constant depth regions, which severely limits the utility of the topographic length scale. 

3.3 Recent Research in Mesh Generation 

A basic difficulty with mesh generation lies in achieving an acceptable compromise among the 
following conflicting design criteria: (a) boundary line elements of the grid should fit the bound- 
aries of the problem domain with sufficient accuracy, (b) element area should be proportional to 
the local value of some scalar field defined over the grid, and (c) the Jacobian of the element 
coordinate transformation should be non-zero for the sake of accuracy in subsequent numerical 
calculations. A general survey of grid generation approaches is given by Simpson (1979), and 
Cescotto and Wu (1989) discuss a number of specific algorithms for element construction. 

3.3.1 Local Truncation Error Analysis (LTEA) 

Hagen and Westerink (1995) demonstrated that truncation errors are predominant at the coast 
and near the continental shelf break and slope. Use of the h/Ax criterion does not indicate a need 
for resolution in these localized areas. Hagen and Westerink (1995, 1996) have reexamined the use 
of truncation error analysis to derive guidelines for the automatic generation of finite element 
meshes. Taylor series expansions in the generic discrete nodal form of the conservation equations 
of mass (cast in the Generalized Wave Continuity form (Kinnmark 1986)) and momentum lead to 
expressions for the local or nodal truncation error. Fine mesh computations provide estimates for 
the spatial derivatives of velocity and elevation in the local truncation error expressions. With a 
goal to reduce local, second-order truncation errors, the physics of the equation are incorporated 
into the grid generation process. Values of the truncation error, once obtained, are forced to main- 
tain a specified level over the domain, thereby effectively generating a variably spaced mesh. 
Imposed multiples of change (IMCC) minimize the contribution of odd-order terms in the local 
truncation errors by restricting the magnitude and relative importance of even-order terms. The 
IMCC is ultimately utilized to generate a mesh given the minimum grid spacing desired at 
the coast. This approach appears promising for implementation as an automated mesh generation 
approach that incorporates the physics of the equations. 

3.3.2 Dynamic Gridding 
l 

In dynamic gridding, the spatial nodes of a grid are non-stationary in time. This approach takes 
advantage of the ideas of space-time truncation error cancellation. The majority of nodes can be 
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allocated to regions of the domain where they are most needed based on the dynamics of the 
problem, while relatively few nodes can be used in regions where the solution is changing slowly. 
Dynamic gridding is employed for the so-called characteristic methods that include Eulerian-Lagrangian 
methods, the method of characteristics, and particle tracking. The solution procedure in these 
approaches is obtained by tracking characteristic curves through space and time, where characteristic 
curves are defined by: 

3X 
z=V, (1% 

where V is the advective velocity of the system and x and t are the space and time independent 
variables, respectively. Actually, numerical schemes track along secondary characteristics associated 
with the diffusive portion of the governing equation. Nodal spacing should increase as time increases 
since diffusion spreads a pulse spatially with increasing time. 

The computational overhead of such approaches where nodal locations are a function of time 
can become quite high. The interdependence of nodal position and solution variable yields a highly 
nonlinear problem that requires significant iteration for solution at each time step. The idea of 
moving nodes with the advective velocity may be appealing and conceptually simple, but such 
computations can lead to severe grid distortion and the instance of tangled grids, places where 
characteristic lines cross, causing nodes to cross element boundaries. An even greater drawback is 
that optimal nodal placement depends on only one dependent variable precluding a good compu- 
tational solution with respect to the remaining dependent variables. Furthermore, the problem remains 
to specify an initial number and distribution of nodal points that will allow propagation of disturbances 
from the boundary and remain adequate throughout the entire simulation. 

Alternative approaches involve selective refinement on fixed grids that incorporate characteristic 
type approximations. Refinement of a particular region within the global mesh can be obtained by 
solving for the deviation of dependent variables within an element. Criteria for refinement can be 
established for each variable based on an error norm or estimates of deviation. Conversely, refine- 
ment may be eliminated via a 0 deviation threshold. A significant concern of the selective refinement 
approach is the strain placed on stability constraints with respect to the time step size. Computationally, 
this method is most attractive when time step can vary spatially over the domain. 

Needless to say, the specification of unstructured mesh resolution remains an open question and 
an area subject to further extensive research. In the intervening period, mesh construction relies on 
the theoretical and empirical criteria described within modeling experience and intuition. 

4.0 ErriSTING TOOLS FOR RlESH GENERATION 

High-quality, finite element predictions have at their core a well-constructed finite element 
mesh that provides the detail and resolution adequate to capture physical reality of the processes 
under study. As previously stated, one of the primary advantages of the finite element method is 
the inherent grid flexibility of the mesh for capturing complex shoreline geometry, irregular topo- 
graphic features, and highly variable circulation patterns. It is precisely this desired grid flexibility 
that precludes the timely development of finite element grids “by hand” and has driven many to 
seek more automated procedures for finite element mesh generation. 
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In the following sections, several of the known, more advanced mesh generation tools are 
briefly described. Subsequent discussions pertain to the first of those mesh generation tools, 
ACE/p-edit, which is selected for its multitude of features and its window-based, intuitive environment. 
Detailed information regarding the utilization and implementation of ACElgredit in semi-automatic 
mesh construction and grid editing are presented. The authors’ intent is to supplement the 
ACE/p-edit User’s Manual (Turner and Baptista 1991) and to aid the novice with the manipulation 
of grids within ACE/p-edit to accomplish grid creation and editing for common applications. 
Insights from the authors’ own experiences are also provided. 

4.1 ACElgredit 

ACE/gre+it is a software package that facilitates flexible, interactive, semi-automatic generation 
of 2-D triangular finite element meshes and allows for mesh modification and display. This software 
was developed by Antonio M. Baptista and Paul J. Turner at the Oregon Graduate Institute and 
made available by the Center for Coastal and Land-Margin Research through its Software Affiliates 
Program (Turner and Baptista 1991, 1992). Within ACElgredit, the user maintains full control of 
the grid design while letting the computer perform the algorithmic, time consuming tasks. Knowledge 
of some basic terminology for the components of a finite element mesh, together with the 
menu-driven interface in ACElgredit, form a relatively efficient and easy to use grid editing tool. 

A reference bathymetry field and raw, ordered coastal outline data are all that are needed to 
* automatically generate a spatial distribution of points. The placement density of these points is 

subject to a scalar criterion defined by the user. In the triangulation phase, these points are mapped 
onto nodes and triangulated into three-node triangular elements with linear shape functions using 
the Fortune’s sweepline method. The ACElgredit software allows node-wise and element-wise 
regional and local editing and facilitates model diagnostics. 

4.2 TriGrid 

The TriGrid software developed by Henry and Walters (1993) is aimed at automatic generation 
of finite element networks in two horizontal dimensions for use with models of coastal circulation. 
The philosophy contained within this grid generation tool is that partial automation of the most 
subjective stages of grid design is far more cost-effective than full automation. TriGrid assumes a 
knowledgeable and experienced user, such that it is more practical to include the modeler whenever 
necessary in the grid design process while maintaining automatically an up-to-date grid structure. 

Within TriGrid, a network generator creates a depth-interpolation network using sub-sampled 
contour and shoreline data and depth soundings. An initial model network is generated from the 
interpolation network using geometric cells, the centroids of which become the nodal points. Inte- 
rior points for the depth-interpolation grid are obtained from digitized depth soundings or selected 
points from digitized depth contours. Boundary points are selected from digitized land boundary 
data. Finally, a depth interpolation grid is constructed from the interior and boundary points using 
a triangularization algorithm. 

The problem geometry is maintained using Delaunay triangulation where all boundary connections 
are preserved and all connections exterior to the boundary are removed. Linear interpolation 
between nodes is implemented in part to avoid overshoot with higher interpolation schemes. 
Nodal densities of the triangulated mesh are determined by some scalar function. Ultimately, a 
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graphics-based editor permits interactive modification of the network and performance quality 
checks after a preliminary grid has been constructed. 

4.3 Software Packages Under Development 

FEGPAK is a series of finite element mesh generation and modification utilities developed by 
Dr. Christopher E. Naimie at Dartmouth College for use in a research environment. As such, 
implementation of these programs requires significant familiarity, knowledge, and care on the part 
of the user. However, in FEGPAK the user maintains considerable control of the triangulation 
procedure in relation to placement of the boundary and the location of the nodes in relation to 
bathymetric contours. Operations on portions of the mesh are handled with ease as is the joining 
.of separate meshes. 

GENEsrS is a finite element grid generation effort currently under development at the Bedford 
Institute of Oceanography, Dartmouth, Nova Scotia, under Dr. David A. Greenberg in conjunction 
with Dr. Florent Lyard from the Laboratorie des Ecoulments Geophysics et Industriels (LEGI) in 
France. This software package is merging the various sources for bathymetry and shoreline data 
such that they are directly accessible to the automatic finite element grid generation process. 

At the Mississippi State University, Engineering and Research Center for Computational Field 
Simulation, an intensive effort headed by Dr. David L. Whitfield is underway to fully automate 
unstructured grid generation for computational fluid dynamics problems. The system has built in 
options for mesh generation such that the combination of techniques which produce the “best” grid 
for ocean model applications may be utilized. In this comprehensive system, extraction routines 
will generate the mesh geometry from available data bases with intelligent processing which, for 
instance, will filter a specified level of detail if not desired, compute a grid where the element size 
is coupling with depth data or some other scalar parameter, and interpolate depth values from 
multiple sources of bathymetry. Point densities on the boundary and the approximate number of 
points/elements desired in the mesh must be specified. Measures are in place for checking min/max 
angles, skewness, and length ratios of triangular elements. The edge-swapping algorithm allows 
either the minimization of maximum angles (preferred/advancing front triangulation) or the maxi- 
mization of minimum angles (Delauney triangulation). The package currently operates from a mix 
of batch and interactive modes. 

The grid generation and editing packages presented by no means comprise an exhaustive list. 
The software discussed is intended to familiarize the reader with the existence of other packages 
and to emphasize that finite element grid generation is an evolving effort combining new research 
in grid generation algorithms with advanced computer graphics capabilities. 

0 

5.0 APPLICATIONS USING ACE&edit 

The following sections detail implementation of the ACElgredit grid editing and generation 
software for a number of common mesh applications. These applications include generation of a 
mesh from raw bathymetric and shoreline coordinate information, the addition or deletion of regions 
within an existing grid, refinement of shoreline or mesh resolution, localized node and element 
edits, and model analysis that includes the contouring of bathymetry or other model surface fields 
and the location of nodes and elements within the mesh for diagnostic purposes. 

0 



l 

l 

l 

l 

l 

l 

Insights into Unstructured Mesh Generation 15 

5.1 Definition of Terminology 

A few of the building blocks used in the construction of a finite element mesh, as well as the 
terminology employed by the ACElgredit software, are defined here and graphically shown in 
Figs. 1-3. 

An edit grid is a collection of triangular elements and nodal points that compose the finite 
element mesh. Elements within ACElgredit are restricted to linear triangles and so have three 
vertices labeled as nodes. As will later be detailed, the edit grid is the final product of the semi- 
automatic grid generation process and may be modified using local or regional node and element 
edits in ACElgredit. The coastal outline of an edit grid plus the outline of any islands contained 
within the mesh domain are labeled the edit grid boundary. Any elements created during the 
triangulation process that lie outside the edit boundary will be clipped. Build points are a collection 
of points not necessarily identical to the nodes in an edit grid that are triangulated to form an new 
edit grid. The build points also contain point-wise bathymetric information that can be triangulated 
to form a background grid having a convex hull boundary. A background grid supplies the refer- 
ence bathymetry and is comprised of elements and nodes just as the edit grid. Bathymetry from the 
background grid will be interpolated onto the edit grid nodal points. A coastal boundary is the raw 

Fig. 1 -Graphical depiction of the edit grid boundary and edit grid used within the 
ACE/gredit software 

l 
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Fig. 2 -Graphical depiction of nodal points and elements used within the ACE&edit software 
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BUILD iOlNTS l 
Fig. 3 -Graphical depiction of the coastal boundary and build points used within 

the ACE/gredit software 
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shoreline data used to automatically create an edit grid boundary or it can be used as a guide in 
the manual creation of an edit grid boundary. 

The various grid components just defined can be viewed individually or in groups within 
ACE&edit by selecting their icons from the main panel on the left and scaling the display according 
to the grid components selected. The main panel consists of three groups of grid components each 
associated with either the edit grid, background grid, or the build points. 

Found under EdGr in the main panel are eight items associated with edit grid: the mesh (first 
square in the left column), isolines of a nodal variable (i.e., bathymetry, first square in the right 
column), the edit grid boundary (second square in the left column), a filled edit grid (second column 
in right column), node numbers (third square in right column), element numbers (third square in 
right column), values .of the nodal variable (i.e., bathymetric elevations, fourth square in the left 
column), and enlarged circles at the nodal points (fourth item in right column). The background 
grid, noted by BkGr in the main panel, has three components for display: the mesh (first square 
in the left column), isolines of the node values (first square in the right column), and the 
background grid boundary (second square in the left column). Build points themselves can be 
viewed under BldP. 

To display an individual or set of grid components, simply click the corresponding boxes in the 
main panel and scale the view if necessary. To scale the view, select DISPLAY/AUTOSCALE from 
the menu bar. This opens a DISPLAY window, which lists the following grid components that can 
be used to scale the view: EDIT GRID, EDIT BOUNDARY, BUILD POINTS, BACKGROUND 
GRID, and COASTAL OUTLINE. Click on the square next to the item or items to be viewed and 
then click ACCEPT. The grid components selected in the main panel for the area covered by the 
item(s) selected in the DISPLAY window will be shown. 

5.2 Mesh Creation 

The building blocks of a finite element mesh are the coastal outline and bathymetry data. The 
mesh creation feature in ACElgredit uses these two pieces of information to construct a Z-D finite 
element grid composed of three-node triangular elements. The resulting mesh is termed the “edit 
grid.” The shoreline and bathymetric data sources are often cast in a variety of forms that must be 
converted into file formats accepted by ACE/g-edit. Within ACEfgredit these raw data files are then 
transformed through a series of steps into an edit boundary and background grid, the building 
blocks for automatic grid generation. Detailed below are the steps necessary to generate a back- 
ground grid containing bathymetric information and create an edit boundary from coastal outline 
data. Having the background grid and edit boundary, a step-by-step procedure for automatically 
creating a triangular mesh whose nodal distribution is defined by some user- defined criterion is 
presented. 

5.2.1 Bathymetry 

The first step in creating an edit grid is converting the bathymetric information into a background 
grid. Bathymetry must initially enter ACE/g-edit through an ASCII build point file that contains 
either latitude and longitude or Cartesian coordinate pairs and the corresponding bathymetric depth 
at that location. Note that one should strive to define the area1 extent of the background grid 
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bathymetry to be much larger than the coastal outline of the desired mesh. The build point file 
format is as follows: 

Line 1: string, usually the name of the build point file or source of bathymetry 

Line 2: number-of-build-points 
0 

Line 3: build-point-number longitude latitude depth 

or 6 , Y> 
. ..repeated number-of-build-point times e 

Having created a build point file with the necessary bathymetric information, this file is now 
read into the ACE/gredit software. The steps within ACE/gredit are outlined below: 

* Start ACE&edit: 
- type xmgredit edit.grd 

The file edit.grd is any edit grid created previously and is used here simply to start the 
ACE/gredit software. 

* Select FILE/OPEN from the menu bar, which opens a read data window. 

- Select the build point file to load. 
- Click on the box next to read object. Select build points from that list. 
- Click on OK. 

ACE/gredit requires that grid manipulations be exercised in a Cartesian reference frame 
and bathymetry coordinates be expressed in meters. Build points defined relative to a spherical 
latitude/longitude coordinate system must be transformed to a Cartesian coordinate system. This is 
accomplished using the Carte Parallelogramatique Projection (Pearson 1990) or CPP transformation. 
Alternative projections may be used but must be executed by the user outside of the ACE/gredit 
software. To apply the CPP projection: 

* Select EDIT/edit over gritiregions from the menu bar. 

* Select CPP projection... from the edit region window. 

* The CPP map projection window requires the following input: 

- Median longitude and median latitude values for the region covered by the bathymetry 
data. 

- Data type to be converted. This can be specified by clicking on the box next to Apply to:. 
The default is ALL. Select build points. 

- Click on OK in CPP map projection window. 

To save the CPP conversion of the bathymetric build points: 

* Select FILE/SAVE from the main menu. 

- Select build points as the write object. 
- Enter the file name. 
- Click accept. The file will be written in the directory where ACE/gredit was started. 
- Click on done and the write data window will disappear. 
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To view the CPP-converted build points: 

* Select DISPLAY/AUTOSCALE from the main menu. 

- Click on the square next to build points and then accept in the scaling window. 
- Click on done in the scaling window. The scaling window will disappear. 

To utilize the bathymetric information contained in the CPP or other planar referenced build 
points, a background grid must be created. The first step is triangulation of the build points fol- 
lowed by computations of the boundary of the background grid. The result is a grid whose boundary 
consists of a convex hull. The nodal locations for this grid are identical to that of the build points 
and are assigned the bathymetry value of each build point. The procedure for generation of this 
background grid is described below: 

* Select BOUNDARIES from menu bar. 
- If clear external boundary is selectable, it means that an external boundary is present and 

should be cleared, so select cZear external boundary. 

* Select BUILD/TRIANGULATE BUILD POINTS... from menu bar. 
- Enter a minimum distance in triangulate build points window. Experience dictates that the 

minimum distance must be greater than 0. 
- Click on apply in triangulate build points window. 

* Select BOUNDARIES/COMPUTE BOUNDARY from menu bar. 

- Save background grid. 

* Select FILE/SAVE from the main menu. 

- Select background grid as the write object. 
- Enter the file name. 
- Click accept. The file will be written in the directory where ACE/gredit was started. 
- Click on done and the write data window will disappear. 

5.2.2 Coastline 

The second step toward the automatic generation of an edit grid is the specification of a 
coastline. Shoreline data must initially enter ACE/gredit through an ASCII coastal outline file. A 
coastal outline file contains either the latitude and longitude or Cartesian coordinate pairs of the 
shoreline and can be created manually or extracted from an outside source. ACElgredit ultimately 
requires coordinates to be expressed in meters. The format for the coastal outline file follows: 

Line 1: string, usually the name of the coastal outline file or source of shoreline data 

Line 2: 1 (for the number of boundaries) 

Line 3: number-ofqoints-in-the-boundary 

Line 4: longitude latitude 

or (x , Y) 
. ..repeated number-of-points-in-the-boundary times 

l 
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The most widely available source for shoreline data is the World Vector Shoreline (WVS) and 
the WDBII-CIA data bases. The detail of the coastal outline within these sources is represented by 
short line segments assigned to regularly spaced bins covering the entire globe. The line segment 
format is problematic for any mesh generation software in that it is most difficult to order shoreline 
points from unrelated line segments and distinguish which segments are associated with the closed 
coastlines of islands. ACElgredit relies on boundaries that are organized such that the outer 
boundary of the mesh is oriented counterclockwise and the internal boundaries or islands are 
oriented clockwise. 

l 

e 

l 
A background coastline can be read in as a coastal boundary and used as a stencil. 

* Select FILE/OPEN from menu bar. 

* Select coastalboundary as the read object. 

- Select the file name. 

- Click OK. 

Manual creation of the coastline then begins by selecting points along the stencil coastal 
outline. Initially, a crude representation of the coastal outline is acceptable. This manually created 
coastline is achieved by: 

* Select BOUNDARIES/CREATE EXTERNAL BOUNDARY from the menu bar. 

- Click the left mouse button along the coastal boundary to generate points in the shape of 
the coastline. 

- Click the middle mouse button when complete. 

* Select the DISPLAY BOUNDARY button under the EdGr portion of the main panel to show 
the created coastline. 

Additional points can be added to the crude coastal outline to improve the realism of the 
coastline shape. Boundary points can be added in the following manner: 

* Select BOUNDARIES/INSERT BOUNDARY POINTS from menu bar. 

- Click the left mouse button on the two boundary points that will be on either side of the 
new point; the two points must be selected in a clockwise fashion. 

- Click the left mouse button on the location of the new point. 
- Click the middle mouse button when all of the new boundary points have been added. 
- Click the DRAW button on the left panel to see a current version of the coastline. 

Making the coastline shape more realistic sometimes only requires shifting the locations of a 
few coastal boundary points; these points can be moved by: 

* Select BOUNDARIES/MOVE EXTERNAL POINT from menu bar. 

- Click the left mouse button on the point to move and click a second time on its new 
location. 

- Click the middle mouse button when finished moving boundary points. 

- Click the DRAW button on the left panel to see a current version of the coastline. 
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To save the created coastal outline: 

* Select FILE/SAVE from the menu bar. 

- Select edit boundary (X,,r) as the write object. 
- Enter the file name. 
- Click accept. The file will be written in the directory where ACElgredit was started. 
- Click on done and the write data window will disappear. 
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Again, conversion of the coastline to a Cartesian reference frame is necessary. It is important 
to apply the same transformation used to convert the build points associated with the background 
grid, in this case the CPP transformation. To perform the CPP transformation on the coastline: 

* Select EDITfedit over gridfregions from the menu bar. 

* Select CPP projection... from the edit region window. 

* The CPP map projection window requires the following input: 

- The same median longitude and median latitude values used to create the background grid 
so that the coastline and bathymetry information will be consistent. 

- Data type to be converted. This can be specified by clicking on the box next to apply to. 
The default is ALL. Select coastal boundaries. 

- Click on OK in CPP map projection window. 

To save the CPP conversion of the coastal outline: 

* Select FILE/SAVE from the main menu. 

- Select edit boundary (X,,y) as the write object. 

- Enter the file name. 

- Click accept. The file will be written in the directory where ACE/gredit was started. 

- Click on done and the write data window will disappear. 

To view the CPP-converted coastal outline: 

* Select DISPLAY/AUTOSCALE from the main menu. 
- Click on the square next to coastal boundaries and then accept in the scaling window. 

- Click on done in the scaling window. The scaling window will disappear. 

5.2.3 Automatic Grid Generation 

The automatic mesh generation capability in ACElgredit utilizes the background grid and coastlines 
created in the previously outlined steps to create a spatial distribution of build points that are 
subsequently triangularized to form a mesh of elements. The procedure to obtain such a finite 
element grid is detailed below: 

The CPP transformed background grid containing the bathymetric information and the appropriate 
CPP coastal outline for the desired mesh region are to be read into ACElgredit. 

* Select FILE/OPEN from the menu bar, which opens a read data window. 

- Select the CPP background grid file to load. 
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- Click on the box next to read object. Select background grid from the list. 
- Click on OK. 

* Select FILE/OPEN from the menu bar, which opens a read data window. 

- Select the coastline file to load. 
- Click on the box next to read object. Select edit boundary (X, Y) from the list. 
- Click on OK. 

To verify the coordinate system correspondence of the background grid and coastal outline, 
view these components together by: 

* Select DISPLAY/AUTOSCALE from the main menu. 

- Click on the square next to coastal boundary and then accept in the scaling window. 
- Click on done in the scaling window. The scaling window will disappear. 

The next step in the process of creating a finite element mesh is to generate a distribution of 
build points within the coastal outline that utilizes the bathymetric data supplied by the background 
grid. This array of build points is triangulated to form the nodes and elements of the new edit grid. 
The density of the build points in the mesh can be defined by the user according to a scalar 
criterion. Several options are provided by ACE/gredit. In the first option, the user selects the 
minimum dimensionless wavelength or the minimum number of points needed to represent one 
wavelength. This condition also requires input of the shortest allowable wave in hours and a grid 
delta or spacing. Other options include the minimum element area and a maximum Courant number 
criterion using previously computed velocity field. The latter two options will not be discussed or 
demonstrated in this report. To automatically generate build points according to the minimum 
dimensionless wavelength criterion: 

0 

e 
* Select BUILD/AUTOMATIC PLACEMENT from menu bar. 

- Enter the minimum dimensionless wavelength, the shortest allowable wave in hours, and 
the grid delta. 

l 
See App. A for examples of applications employing the minimum dimensionless wavelength 

criterion for semi-automatic grid generation. 

- Select the square next to CREATE BOUNDARY. 

- Specify the minimum depth at the boundary and the minimum depth desired in the created 
mesh or retain the default values. 

- Click on accept. 

e 

If a no boundary formed window appears, re-read the background grid and coastal boundary 
and retry the automatic placement. 

Within the automatic build point placement, the created boundary is one that conforms to 
exterior locations of the background build points if the background grid falls within the coastal 
outline over any portion of the domain. One may desire to preserve the original coastal outline 
boundary. Once the placement of build points along the boundary of the background grid and on 
the interior of that boundary is complete, the points from the original coastal outline can be 
included in the current set of build points by: 

* Select BUILD/MERGE BOUNDARY TO BUILD POINTS from the menu bar. 
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Once the edit grid build points are created and the boundary points are included, triangulate the 
build points inside the external boundary: 

* Select BUILD/TRIANGULATE BUILD POINTS... from menu bar. 
- Enter a minimum distance in triangulate build points window. Experience dictates that the 

minimum distance must be greater than 0. 

- Click on apply in triangulate build points window. 

For finite element model stability and to reduce computational errors associated with the mesh, 
triangular elements within the mesh should be as close to equilateral as possible. To make minor 
adjustments to the nodal positions to achieve this goal, a springs utility is included in ACElgredit. 
To apply springs: 

* Select BUILD/SPRINGS from the menu bar. 

To keep elements inside of the exterior boundary and outside of any interior boundaries: 

* Select BOUNDARIES/COMPUTE BOUNDARY from menu bar. 

Of course, it is highly desirable to save the semi-automatically generated edit grid before 
proceeding with any further modifications: 

* Select FILE/SAVE from the main menu. 

- Select edit grid as the write object. 
- Enter the file name. 
- Click accept. The file will be written in the directory where ACEfgredit was started. 
- Click on done and the write data window will disappear. 

5.3 Mesh Modification and Editing 

Once edit grids are formed and loaded into ACE/gredit, modifications can be made to enhance 
or degrade resolution in local or regional areas or point edit individual elements or nodes either on 
the interior or boundary of the domain. 

5.3.1 Element Skewness 

To reiterate, one factor associated with a viable, accurate computational mesh is the proximity 
of the triangular elements to equilateral triangles that have 60” angles at each nodal vertex. As 
noted during the discussion of automatic grid generation, springs is one mechanism that assists in 
the adjustment of nodes toward more equilateral elements. The springs approach, however, is 
incomplete and a final phase of hand edits is required to adjust element skewness to a particular 
user-defined threshold. 

The skewness of an element is a measure of its deviation from an equilateral triangle. More 
specifically, skewness is computed as the ratio of the longest edge of an element divided by the 
element’s equivalent radius equal to Area,lement/n: . A skewness check of grid elements marks 
elements that have skewness values higher than a specified value. Generally, skewness between 3.9 
and 3.4 is considered achievable. Smaller skewness values indicate elements that more closely 
approach the ideal equilateral condition. To run the skewness check: 



24 Blah and McManus 

* Select EDIT/EDIT over grid/regions... 

* Select ACCEPTABLE SKEWNESS from edit region window. 

- A SKEWNESS window will pop up. 
- Enter a skewness value, generally between 3.9 and 3.4. 
- Click on the PREVIEW button. Note that selection of the accept button will result in the 

deletion of all elements violating the skewness criterion. It is NOT recommended that 
the accept button be selected. 

To correct isolated points and entire regions within the grid where the skewness criterion has 
been violated, one can locally edit nodes or elements or refine an entire region through element 
splitting. Mesh adjustments can also be achieved by adding, deleting, or modifying build points and 
retriangulating the mesh. 

5.3.2 Local Node and Element Editing 

The alteration of elements whose skewness values have been flagged for exceeding the 
prescribed threshold can be accomplished through a number of element-wise and nodal edits. Several 
approaches can be taken including moving nodes, swapping the shared line between elements, or 
increasing the number of elements by splitting the elements into three or four new elements. Also 
note that improvements made to the edit grid through point- and element-wise edits are largely 
experimental, so it is highly recommended that the user save frequently as edit grid improvements 
are made. Reloading the latest saved version of an edit grid can quickly undo unexpected or 
detrimental grid modifications. 

To move a node: 

* Select EDIT/EDIT TRIANGLES... from menu bar. 

* Select move node from EDIT NODES/ELEMENTS window. 

- Click with left mouse button on the node to move and then click on its new location. The 
prompts for each step are written at the bottom border of the main ACElgredit window. 

- Nodes can be moved as often as needed without reselecting move node from the EDIT 
NODES/ELEMENTS window. To end, hit the middle or right mouse button. 

To swap a side shared by two triangular elements: 

* Select EDIT/EDIT TRIANGLES... from menu bar. 

* Select swap lines from EDIT NODES/ELEMENTS window. 

- Click with left mouse button on two adjacent elements. The nodes that define the new line 
are the two nodes of the elements not used to define the previous line. Prompts are written 
at the bottom border of the main ACEfgredit window. 

- Swap lines can be used to undo an unproductive swap by selecting the two new elements 
that were created from the first line swap. 

- Line swapping can be repeated as often as needed without reselecting swap lines from the 
EDIT NODES/ELEMENTS window. 

- To end, hit the middle or right mouse button. 
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To add a node: 
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* Select EDIT/EDIT TRIANGLES... from menu panel. 

* Select add node from EDIT NODES/ELEMENTS window. 

- Click with left mouse button on the new node location. The prompts for each step are 
written at the bottom border of the main ACElgredit window. 

- Additional nodes can be added by clicking with the left mouse button until the middle or 
right mouse button is clicked. 

* To dismiss the EDIT NODES/ELEMENTS window, click on done. 

* To see the new nodes, click on the DISPLAY NODES icon and then DRAW on the main 
panel. 

To add an element: 

New elements can be created from new nodes (see the adding new nodes section) or from 
existing nodes that remain following an element or node deletion. 

* Select EDIT/EDIT TRIANGLES... from menu panel. 

* Select add element from EDIT NODES/ELEMENTS window. 

- Click, in counterclockwise fashion, the three nodes that will serve as the vertices of 
the new element. The prompts for each step are written at the bottom border of the main 
ACElgredit window. 

- More than one element can be made in a single session and new elements are displayed 
as they are made. 

- To end, click with middle or right mouse button. 

* To dismiss the EDIT NODES/ELEMENTS window, click on done. 

To delete an element: 

* Select EDIT/EDIT TRIANGLES... from menu panel. 

* Select delete element from EDIT NODES/ELEMENTS window. Note that the cursor is now 
represented as a skull and crossbones; the bottom border of the main window displays 
instructions on deletion. 
- Click on the elements to be deleted with left mouse button. Elements selected for deletion 

are identified by a black square that appears at the element center. 
- Deletion does not occur until it is confirmed by clicking the middle button and can be 

cancelled by clicking the right mouse button. 

To view the effects of local node and element modifications on the edit grid, select the edit grid 
fill icon to the left on the main panel. Elements are shaded gray and islands or portions of the 
domain not represented by an element are indicated in white. This tool can be used to identify 
irregularities in the local node and element edits. 

5.3.3 Mesh Refinement 

Element skewness problems in a region arise due to sharp transitions between finely and 
coarsely gridded areas. In these regions, it is common for six elements to all have a shared vertex. 
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The smoothing of sharp changes in resolution can be achieved by increasing resolution within a 
transition region in two ways: splitting an element into three or four elements or adding elements 
in the transition area. 

To refine a region through element splitting: 

First, select the region of elements to be split: 

* Select REGIONS/CREATE REGION from the menu bar. 

- Click with the left mouse button to create the points that define this region. 
- Click with middle or right mouse button to end the creation phase; the created region wilI 

be enclosed in a thick black line. 

Then, split elements in the region: 

* Select EDIT/EDIT OVER GRID/REGION from the menu bar. 

* Select split elements... from EDIT REGION window. 

* Select a preference for the type of element split from the list next to split elements in the 
SPLIT IN REGION window. 

- Split into 3 is preferable for transition regions. Split into 4 will result in three-node 
element sides where the defined region meets the coarser mesh resolution. 

An initial sweep to adjust element skewness or refine a mesh may best be achieved by adding 
build points in problem areas and retriangulating the mesh. 

To refine or modify resolution within a region: 

* Select BUILD/LOAD GRID TO BUILD POINTS from menu panel. To have an unobstructed 
view of the build points, the only icon selected should be that under BZdP on the left panel. 

To add build points: 

* Select BUILD/PLACE BUILD POINTS from the menu panel. 

- Click with the left mouse button to place new build points. 
- Click with middle or right mouse button to end. 

To move build points: 

* Select BUILD/MOVE BUILD POINTS from the menu panel. 

- Click with the left mouse button on the build point to be moved and then click the new 
location. 

- To end, hit the middle or right mouse button. 

To remove build points: 

* Select BUILD/DELETE BUILD POINTS from the menu panel. The cursor becomes a skull 
and crossbones and the bottom border of the main window displays instructions on deletion. 

- Click on the build points to be deleted with left mouse button. Upon selection, the build 
point center becomes black. 
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- Click on the middle mouse button to confirm deletion. 
- Click on the right mouse button to cancel deletion. 

Once the new build points are in place, the grid must be retriangulated: 

* Select BUILD/TRIANGULATE BUILD POINTS... from menu bar. 

- Enter a minimum distance in triangulate build points window. Experience dictates that the 
minimum distance must be greater than 0. 

- Click on apply in triangulate build points window. 

To smooth the elements, making them more equilateral, the nodal positions are adjusted through 
the springs utility: 

* Select BUILD/SPRINGS from the menu bar. 

More adjustments and element skewness checks will likely be required after either of these 
procedures. 

5.4 Model Diagnostics 
54.1 Edit Gridpoint Locator 

Locate can be used to identify the position of nodes and elements, the bathymetry at a point, 
or specific coordinates within the edit grid. Such a capability is extremely useful when tracking 
model instabilities or assessing computational effects of the mesh or bathymetry on model com- 
puted fields. The tools available under LOCATE in the menu bar display information at a particular 
point including a node or element number, the coordinates, and the bathymetry in the bottom border 
of the main window. To implement these features: 

* Select LOCATE from the menu bar. 

- Find nearest node displays the node number, coordinate location, and depth of the node 
nearest a point selected with the cursor and the left mouse button. 

- Find element displays the element number, associated node numbers, area, and an equivalent 
radius of an element selected with the cursor and the left mouse button,. 

- Find nearest element displays the same information as find element but for the nearest 
element to the point selected with the cursor and the left mouse button. 

- Find depth in edit grid displays for a selected point the nearest element number, coordinate 
location, and the interpolated depth from the edit grid at that location. 

- Find depth in background provides identical information as find depth in edit grid but the 
information pertains to the background grid. 

- Find nearest build point displays coordinates for the build point nearest the selected point. 
- Find depth in all displays the depth values relative to the edit and background grids for 

the selected point. 
- Goto node/element... positions the cursor on the node or element specified by the user in 

the goto node/element window. 
- Goto X,K.. positions the cursor on the x, y coordinate position entered by the user in the 

goto X, Y window. 
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5.4.2 Graphical Display of Mesh Fields 

ACElgredit also acts as a powerful tool for viewing the finite element mesh itself, its boundary, 
and the bathymetry. Other fields computed over the mesh or pertaining to the mesh may be displayed 
as well using ACElgredit. For example, one may wish to contour mesh spacing or model computed 
elevations. Any scalar quantity may be contoured by substituting nodal values in place of the 
bathymetry values in the grid file. A useful zoom in/out capability, as well as color bar options, 
also exist for the display window. These graphical display features, coupled with the edit gridpoint 
locator, form a very powerful analysis tool for finite element meshes and model results. 

To view a contoured field over the mesh: 

* Select DISPLAYIISOLINES OF BATHYMETRY (EDIT GRID). 

The DISPLAY ISOLINES icon on the left panel (first icon in right column under EdGr) must 
be selected to view. Several options for viewing isolines are possible including contour lines, color 
fill, or both; contour intervals can be automatically determined or user specified, and the precision 
of the color bar contour values can be set. To invoke these options: 

* In the edit grid isolines window: 

- Select type of contour from the contour box next to draw, either lines, filled, or both. 
- Select auto place labels to label bathymetric values at a user-defined number of points on 

a contour line specified in the box next to label every. 
- Select # of isolines ranging from 1-16. 
- Spacing by permits user flexibility in selection of a contour interval. 

l Start, step spacing allows specification of the starting value and increment of the isolines. 
l Specified values spacing allows each contour value to be defined separately. The values 

#X and #X + 1 determine the minimum and maximum values for contour interval #X. 

- Select precision to define the number of significant digits associated with the contours. 
The range is from O-9 decimal positions. 

- Select vertical or horizontal next to layout for the desired legend orientation. 
- Select legend to enable display of the contour legend. 
- Select place legend to specify the position of the contour legend in the plotting window. 

Note the cursor becomes a cross-hair in the plotting window. 
- Click on the new location of the contour legend. Click on accept. Then click DRAW on 

the main panel to view. 

Repositioning of the legend can be accomplished by repeating the last three steps. 

To add a map scale: 

* Select DISPLAY/MAP SCALE... from menu bar. 

- Enter the mapscale length in the box next to mapscale legend length. 
- Select the legend units from the list next to mapscale legend units. 
- Though the legend label font and mapscale legend color can be changed, it is recommended 

that they remain unchanged. 
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- Click display mapscale legend and accept. 
- Click on place to locate the position of the mapscale legend in the plotting window. 
- Click on the new location of the map legend. Click accept. 
- Click on draw and the map scale will appear. 

To change the color map used for color fill: 

* Select DISPLAY/COLORS... from menu bar and a COLOR EDIT window opens. 

- Bathymetric colors are the colors number 16-31. 

* A color can be modified by adjusting its RGB or its HSV value. As a color is edited, the 
number assigned to it is displayed above the RGB and HSV slide bars. The color resulting 
from the current value is shown in both the COLOR EDIT window and by filled isolines in 
the main window. 

- RGB colors are derived according to numerical values assigned to red, green, and blue. 
The values for red, green, and blue can separately range from O-255. For example, RGB 
values of (0, 0, 255) result in the solid blue color. 

- HSV colors are derived according to numerical values assigned to hue, saturation, and 
value. Hue sets the color that can range from O-360. Saturation controls the amount of 
white that a color contains and can range from 0.01-1.0. Value controls the portion 
of black that a color contains and its range is from 0.01-1.0. 

* An alternate approach to editing the color bar is to interpolate between two specified colors: 

- Type the numbers associated with the beginning and ending colors for interpolation in the 
boxes next to from color# and to coZor#. 

- Click on the type of interpolation desired, RGB, or HSV. 
- Click interpolate. 
- To revoke the interpolation, click on the undo box. 

To add text to the display window: 

* Select DISPLAY/TEXT... from menu bar. 

Any number of text properties can be user controlled including font type, font color, justification, 
text position reference, rotation, and text size. In addition, the depth at a user-selected point can 
be included along with a symbol identifying the depth point. Existing text strings may also be 
edited. In practice, the text editing features are often unreliable and other means of including text 
on a graphic are recommended. 

To either print directly to a printer or save the graphic as a file: 

* Select FILE/SAVE... 

- Select printer from box next to print to for output directly to a printer. 
l Edit lpr statement in window to send to correct printer. 

- Select fiZe from box next to print to for output to a postscript file. 
l Enter the name of the postscript file. 
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6.0 SUMMARY 

Blah and McManus 

One of the primary advantages associated with finite element approximations is the flexibility 
associated with variably graded meshes. Construction of the finite element mesh with appropriate 
mesh resolution throughout the domain of interest remains a challenging problem in the application 
of finite element models. 

Included in this report is a brief introduction to the finite element method and a comparison of 
finite element versus more common finite difference approaches that provides the reader with an 
initial foundation and motivation for the implementation of finite element models. Advantages of 
finite element approximations include the ease of localized refinement and a maximization 
of computational resources through unstructured, graded meshes and element-based computations. 
The use of a triangular element results in more realistic representations of shoreline and bathymetric 
complexities; boundary conditions are naturally incorporated into the finite element approximations, 
eliminating the need for additional forms of the discrete equations. 

Both theoretical and empirical approaches for determining mesh resolution a priori for a particular 
application were presented. Drawbacks for several criterion were highlighted. Clearly, no one tech- 
nique provides “the answer” to the question of what mesh resolution is adequate for a particular 
application. In fact, two areas of recent research, local truncation error analysis and dynamic 
gridding, were introduced as promising approaches for the future. The adequacy of mesh resolution 
is ultimately determined from a well-formulated convergence study in the area of interest. 

The more theoretical discussion of mesh resolution turns to practical concerns of the mesh 
generation itself. Several known tools for mesh generation are described along with promising 
developmental software. The mesh generator, ACElgredit, currently offers the most versatile and 
advanced features in mesh creation and modification within a user-friendly environment. Detailed 
descriptions of the usage of ACElgredit are presented in the context of common finite element mesh 
applications such as mesh creation, editing, and model diagnostics. One highlight is step-by-step 
instructions for the automatic generation of a mesh, given coastline and bathymetry data. This 
procedure offers a first-generation, rapid relocatable capability for finite element models. 
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EXAMPLES OF SEMI-AUTOMATIC GRID GENERATION USING ACE/GREDIT 

The semi-automatic grid generation feature was implemented for a single geographical region 
with grids created for two. portions of that region. The first mesh covers the Yellow and Bohai Seas 
together, which are bordered to the east by Korea and to the north and west by China. The second 
grid is a subset of the first and encompasses only the Bohai Sea. Raw coastal outline data for this 
geographical area was obtained from the WVS and CIA II data bases. Bathymetry values were 
taken from a 5-min resolution data source covering most of the region of interest. Note, however, 
that this bathymetry field did not cover near coastal portions of the western Bohai Sea as defined 
by the WVS and CIA II shoreline data. One can see in the examples shown the importance of 
utilizing a bathymetry field that includes all areas within the coastal outline of the region of interest. 

In applying the automatic grid generation feature of ACE/g-edit, the dimensionless wavelength 
criterion was used exclusively for nodal point placement. Tables Al and A2 provide summaries of 
25 cases of grid generation in which various values of the three parameters shortest wave, grid 
delta, and dimensionless wavelength, are selected. Included in these tables are values of the mesh 
generation parameters, the number of nodes and elements in the created mesh, and the CPU times 
associated with each stage of mesh generation. The automatically generated mesh for each of the 
cases, A-Y, is depicted in Figs. A-l-A.25, respectively, for the Yellow and Bohai Seas and in 
Figs. A.26-A.50, respectively, for the Bohai Sea. 

These examples are intended to give the reader a visual feel for products of the automatic nodal 
placement feature of ACE/g-edit, as well as an appreciation for the computational time required. 
Computed correlations for various mesh generation parameters are also presented in Table A3 for 
the interested reader. 
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Table Al - A Summary of Automatic Grid Generation Parameters of Meshes Created for 
the Yellow and Bohai Seas 

I I I I I Total 
Shortest Grid WIin. Dim. # of # of Time 

Wave Delta Wavelength Nodes Elements (min) Case 

a 12.0 5000 25 
b 12.0 2500 25 
C 12.0 1250 25 
d 12.0 10000 25 
e 12.0 20000 25 
f 6.0 5000 25 

g 24.0 5000 25 
h 12.0 5000 50 
i 12.0 5000 15 

j 3.0 5000 25 
k 1.5 5000 25 
1 12.0 5000 30 

m 12.0 5000 40 
n 9.0 5000 25 
0 9.0 5000 35 

P 24.0 5000 15 

4 24.0 5000 50 
r 6.0 5000 15 
S 6.0 5000 50 
t 12.0 2500 15 
u 12.0 15000 50 
V 6.0 2500 25 
W  6.0 15000 25 
X 1.5 2500 25 

Y 3.0 2500 25 

Pl = Processing coastal outlines 

P2 = Initializing auxiliary grid 

P3 = Computing depths 

P4 = Processing boundary 

P5 = Processing interior 

997 1750 11.97 534 43 
1026 1807 16.52 539 176 
1047 1847 36.50 535 664 

925 1604 10.25 537 12 
729 1211 10.75 545 3 

3588 6590 23.88 984 100 
248 395 6.17 275 20 

3588 6590 24.42 1008 100 
363 601 7.60 347 24 

10376 19332 55.67 2214 234 
19776 36418 121.67 5021 500 

1409 2510 13.9 599 53 
2398 4352 19.17 809 78 
1715 3082 15.3 656 59 
3155 5768 22.15 924 91 

89 126 4.30 173 19 
997 1750 12.50 564 47 

1409 2510 13.98 605 54 
10376 19332 52.67 2113 233 

370 614 9.42 324 91 
1997 3418 20.99 992 12 
3942 7296 38.98 992 406 
1997 3418 20.15 700 31 

40399 77568 258.4 5739 2290 
14142 26872 96.72 2160 944 

- 

- 
24 
26 
72 
20 
20 
24 
24 
23 
24 
24 
75 
37 
23 
25 
24 
25 
23 
24 
24 
32 
20 
32 
14 
36 
34 

- 

57 
61 
62 
57’ 
57 

111 
23 

140 
30 

333 
778 

60 
99 
82 

127 
14 
65 
72 

596 
32 

142 
142 
326 
765 
329 

50 
189 
847 

19 
8 

204 
15 

188 
21 

464 
880 

73 
130 

88 
151 

10 
53 
72 

420 
77 

1 6: 
23 

6662 
23 

I) 
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Table A2 -A Summary of Automatic Grid Generation Parameters of Meshes Created for 
the Bohai Sea 

Case 

a 
b 
C 

d 
e 
f 

g 
h 
i 

j 
k 
1 

m 
n 
0 

P 
q 
r 
S 

t 
U 

V 

W  

X 

Y 

I I I 1 Total I 
Shortest Grid Min. Dim. # of # of 

Wave Delta Wavelength Nodes ~ Elements 
Time Pl P2 P3 P4 P5 
bin) 6) 6) 6) 6) 

5000 25 5.06 218 22 
2500 25 6.67 218 34 
1250 25 13.83 ~ 220 65 

10000 25 4.75 ~ 220 20 
20000 25 4.72 224 17 

5000 25 8.92 370 24 
5000 25 2.82 98 23 
5000 50 8.83 370 24 
5000 15 3.38 140 24 
5000 25 18.20 767 22 
5000 25 36.50 1545 23 
5000 30 5.75 247 23 
5000 40 7.17 291 24 
5000 25 6.17 261 23 
5000 35 8.30 346 23 
5000 15 1.78 59 23 
5000 50 5.10 218 23 
5000 15 5.70 243 23 
5000 50 19.03 780 23 
2500 15 4.35 144 33 

15000 50 7.58 366 20 
2500 25 13.92 367 33 

15000 25 8.13 402 19 
2500 25 65.23 1587 33 
2500 25 30.07 756 32 

12.0 
12.0 
12.0 
12.0 
12.0 

6.0 
24.0 
12.0 
12.0 

3.0 
1.5 

12.0 
12.0 

9.0 
9.0 

24.0 
24.0 

6.0 
6.0 

12.0 
12.0 

6.0 
6.0 
1.5 
3.0 

281 
297 
300 
257 
181 
991 

69 
991 
104 

2534 
3942 

398 
669 
480 
879 

22 
281 
398 

2534 
105 
472 

1125 
472 

9819 
3912 

484 
515 
521 
437 
287 

1809 
104 

1809 
164 

4680 
7055 

693 
1199 

852 
1597 

25 
484 
693 

4680 
166 
777 

2069 
777 

18786 
7423 

17 
60 

228 
5 
3 

32 
9 

33 
11 
72 

149 
20 
26 
23 
31 

7 
17 
20 
71 
36 

5 
124 

5 
591 
280 

22 
26 
32 
23 
23 
52 

4 
51 
13 

117 
254 

29 
51 
32 
47 

3 
23 
28 

153 
13 
49 
57 
51 

258 
121 

6) 
15 
55 

279 
5 
1 

46 
5 

100 
5 

102 
148 

19 
21 
22 
93 

4 
15 
20 
75 
24 

5 
185 

6 
1435 

601 

Pl = Processing coastal outlines 

P2 = Initializing auxiliary grid 

P3 = Computing depths 

P4 = Processing boundary 

P5 = Processing interior 
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Table A3 - Correlations Between Grid Generation Parameters for the 
Yellow and Bohai Seas and the Bohai Sea Meshes for all 26 Cases on 
(a) a Cartesian Scale, (b) a Logarithmic Scale, and (c) an Inverse Scale 

(a) Cartesian Shortest Min. Dim. 
Scale Time # of Nodes Wave Grid Delta Wavelength 

Time 0.8936 -0.6172 -0.2626 -0.0017 
0.8883 -0.5704 -0.2505 -0.0235 

# of Nodes 0.8936 -0.5852 -0.2488 0.0144 
0.8883 -0.5851 -0.2327 0.0080 

Shortest -0.6172 -0.5851 0.06083 0.1201 
Wave -0.5704 -0.5852 0.06083 0.1201 

Grid Delta -0.2626 -0.2488 0.06083 0.1611 
-0.2505 -0.2327 0.06083 0.1611 

Min. Dim. -0.0017 0.0144 0.1201 0.1611 
Wavelength -0.0235 0.0080 0.1201 0.1611 

Logarithmic Shortest Min. Dim. 
Scale Time # of Nodes Wave Grid Delta Wavelength 

Time 0.9458 -0.8883 -0.3353 -0.2575 
0.9502 -0.8884 -0.334 -0.2603 

# of Nodes 0.9458 -0.8643 -0.1895 0.3875 
0.9502 -0.8768 -0.1588 0.385 

Shortest -0.8883 -0.8643 0.1737 0.07855 
Wave -0.8884 -0.8768 0.1737 0.07855 

Grid Delta -0.3353 -0.1895 0.1737 0.2132 
-0.334 -0.1588 0.1737 0.2132 

Min. Dim. -0.2575 0.3875 0.07855 0.2132 
Wavelength -0.2603 0.385 0.07855 0.2132 

Inverse Shortest Min. Dim. 
Scale Time # of Nodes Wave Grid Delta Wavelength 

Time 0.983 1 -0.5621 -0.2644 0.5035 
0.9908 -0.5561 -0.2574 0.5242 

# of Nodes 0.983 1 -0.3057 -0.06393 0.5222 
0.9908 -0.3224 -0.0533 0.5384 

Shortest -0.5621 -0.3057 0.1347 0.0083 
Wave -0.5561 -0.3224 0.1347 0.0083 

Grid Delta -0.2644 -0.06393 0.1347 0.1561 
-0.2574 -0.0533 0.1347 0.1561 

Min. Dim. 0.5035 0.5222 0.0083 0.1561 
Wavelength 0.5242 0.5384 0.0083 0.1561 

NOTE: The first value in each cell is the correlation from the Bohai grid 
cases; the second value is the correlation from the Yellow and Bohai Seas 
grid cases. 
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CASE A 
SHORTEST WAVE = 12 h 
GRID DELTA = 5000 m 
MIN. DIM. WAVELENGTH = 25 

Fig. A.1 -An automatically generated finite element mesh for the Yellow and 
Bohai Seas, case A 

Fig. A.2 - An automatically generated finite element mesh for the Yellow and 
Bohai Seas, case B 
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CASE C 
SHORTEST WAVE = 12 h 
GRID DELTA = 1250 m 
MIN. DIM. WAVELENGTH = 25 

a 

Fig. A.3 -An automatically generated finite element mesh for the Yellow and 
Bohai Seas, case C 

l 

CASE II 
SHORTEST WAVE = 12 h 
GRID DELTA = 10000 m 
MIN. DIM. WAVELENGTH = 25 + 

Fig. A.4- An automatically generated finite element mesh for the Yellow and 
Bohai Seas, case D 
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CASE E 
SHORTEST WAVE = 12 h 
GRID DELTA = 20000 m 
MIN. DIM. WAVELENGTH = 25 

Fig. A.5 -An automatically generated finite element mesh for the Yellow and 
Bohai Seas, case E 

CASE F 
SHORTEST WAVE = 6 h 
GRID DELTA = 5000 m 
MIN. DIM. WAVELENGTH = 25 

Fig. A.6-An automatically generated finite element mesh for the Yellow and 
Bohai Seas, case F 
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CASE G 
SHORTEST WAVE = 24 h 
GRID DELTA = 5000 m 
MIN. DIM. WAVELENGTH = 25 

Fig. A.7 -An automatically generated finite element mesh for the Yellow and 
Bohai Seas, case G 

CASE H 
SHORTEST WAVE = 12 h 
GRID DELTA = 5000 m 
MIN. DIM. WAVELENGTH = 50 

a 

r 

Fig. A.8 -An automatically generated finite element mesh for the Yellow and 
Bohai Seas, case H 
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CASE I 
SHORTEST WAVE = 12 h 
GRID DELTA = 5000 m 
MIN. DIM. WAVELENGTH = 15 

Fig. A.9-An automatically generated finite element mesh for the Yellow and 
Bohai Seas, case I 

Fig. A.lO- An automatically generated finite element mesh for the Yellow and 
Bohai Seas, case J 

e 
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CASE K 
SHORTEST WAVE = 1.5 h 
GRID DELTA = 5000 m 
MIN. DIM. WAVELENGTH = 25 

Fig. A. 11 - An automatically generated finite element mesh for the Yellow and 
Bohai Seas, case K 

CASE L 
SHORTEST WAVE = 12 h 
GRID DELTA = 5000 m 
MIN. DIM. WAVELENGTH = 30 

* 

Q 

l 

Fig. A. 12 - An automatically generated finite element mesh for the Yellow and 
Bohai Seas, case L 

a 
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CASE M 
SHORTEST WAVE = 12 h 
GRID DELTA = 5000 m 
MIN. DIM. WAVELENGTH = 40 

Fig. A.13 -An automatically generated finite element mesh for the Yellow and 
Bohai Seas, case M 

Fig. A.14-An automatically generated finite element mesh for the Yellow and 
Bohai Seas, case N 
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CASE 0 
SHORTEST WAVE = 9 h 
GRID DELTA = 5000 m 
MIN. DIM. WAVELENGTH = 35 

e 
Fig. A.15 -An automatically generated finite element mesh for the YeIlow and 

Bohai Seas, case 0 

l 

l 

Fig. A. 16 - An automatically generated finite element mesh for the Yellow and 
Bohai Seas, case P 

e 
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CASE Q 
SHORTEST WAVE = 24 h 
GRID DELTA = 5000 m 
MIN. DIM. WAVELENGTH = 50 

Fig. A.17 - An automatically generated finite element mesh for the Yellow and 
Bohai Seas, case Q 

- 
CASE R 

SHORTEST WAVE = 6 h 
GRID DELTA = 5000 m 
MIN. DIM. WAVELENGTH = 15 

Fig. A.18 - An automatically generated finite element mesh for the Yellow and 
Bohai Seas, case R 
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CASE S 
SHORTEST WAVE = 6 h 
GRID DELTA = 5000 m 
MIN. DIM. WAVELENGTH = 50 

Fig. A. 19 - An automatically generated finite element mesh for the Yellow and 
Bohai Seas, case S 

CASE T 
SHORTEST WAVE = 12 h 
GRID DELTA = 2500 m 
MIN. DIM. WAVELENGTH = 15 

a 

* 

8 

a 

l 

e 

Fig. A.20 - An automatically generated finite element mesh for the Yellow and 
Bohai Seas, case T 
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CASE U 
SHORTEST WAVE = 12 h 
GRID DELTA = 15000 m 
MIN. DIM. WAVELENGTH = 50 

Fig. A.21 -An automatically generated finite element mesh for the Yellow and 
Bohai Seas, case U 

gi?, = 25 1 

Fig. A.22- An automatically generated finite element mesh for the Yellow and 
Bohai Seas, case V 
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CASE W 
SHORTEST WAVE = 6 h 
GRID DELTA = 15000 m 
MIN. DIM. WAVELENGTH = 25 

Fig. A.23 -An automatically generated finite element mesh for the Yellow and 
Bohai Seas, case W 

CASE X 
SHORTEST WAVE = 1.5 h 
GRID DELTA = 2500 m 
MIN. DIM. WAVELENGTH = 25 

Fig. A.24 - An automatically generated finite element mesh for the Yellow and 
Bohai Seas, case X 
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CASEY 
SHORTEST WAVE = 3 h 
GRID DELTA = 2500 m 
MIN. DIM. WAVELENGTH = 25 

I 

49 

0 Fig. A.25 - An automatically generated finite element mesh for the Yellow and 
Bohai Seas, case Y 

l 
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CASEA 
SHORTEST WAVE = 12 h 
GRID DELTA = 5000 m 
MIN. DIM. WAVELENGTH = 25 

Fig. A.26 -An automatically generated finite element mesh for the Bohai Sea, case A 
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CASEB 
SHORTEST WAVE = 12 h 
GRID DELTA = 2500 m 
MIN. DIM. WAVELENGTH = 25 

Fig. A.27 -An automatically generated finite element mesh for the Bohai Sea, case B 

a 

i 

l 

l 

Fig. A.28 -An automatically generated finite element mesh for the Bohai Sea, case C 
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Fig. A.29 - An automatically generated finite element mesh for the Bohai Sea, case D 

CASE E 
SHORTEST WAVE = 12 h 
GRID DELTA = 20000 m 
MIN. DIM. WAVELENGTH = 25 

Fig. A.30 - An automatically generated finite element mesh for the Bohai Sea, case E 
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a 

CASE F 
SHORTEST WAVE = 6 h 
GRID DELTA = 5000 m 
MIN. DIM. WAVELENGTH = 25 

Fig. A.31 -An automatically generated finite element mesh for the Bohai Sea, case F 

l 

l 

CASE G 
SHORTEST WAVE = 24 h 
GRID DELTA = 5000 m 
MIN. DIM. WAVELENGTH = 25 

l 

a 

Fig. A.32 -An automatically generated finite element mesh for the Bohai Sea, case G 
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CASE H 

SHORTEST WAVE = 12 h 
GRID DELTA = 5000 m 
MIN. DIM. WAVELENGTH = 50 

Fig. A.33 - An automatically generated finite element mesh for the Bohai Sea, case H 

Fig. A.34- An automatically generated finite element mesh for the Bohai Sea, case I 
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CASE J 
SHORTEST WAVE = 3 h 
GRID DELTA = 5000 m 
MIN. DIM. WAVELENGTH = 25 

Fig. A.35 -An automatically generated finite element mesh for the Bohai Sea, case J 

l 

l 

l 

Fig. A.36 -An automatically generated finite element mesh for the Bohai Sea, case K 
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Fig. A.37 -An automatically generated finite element mesh for the Bohai Sea, case L 

CASE M 
SHORTEST WAVE = 12 h 
GRID DELTA = 5000 m 
MIN. DIM. WAVELENGTH = 40 

Fig. A.38-An automatically generated finite element mesh for the Bohai Sea, case M 



56 Blah and M&lams 

CASE N 
SHORTEST WAVE = 9 h 
GRID DELTA = 5000 m 
MIN. DIM. WAVELENGTH = 25 

0 

l 

Fig. A.39 -An automatically generated finite element mesh for the Bohai Sea, case N l 

CASE 0 
SHORTEST WAVE = 9 h 
GRID DELTA = 5000 m 
MIN. DIM. WAVELENGTH = 35 

l 

l 

a 

Fig. A.40-An automatically generated finite element mesh for the Bohai Sea, case 0 

a 
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CASE P 
SHORTEST WAVE = 24 h 
GRID DELTA = 5000 m 
MIN. DIM. WAVELENGTH = 15 

Fig. A.41 -An automatically generated finite element mesh for the Bohai Sea, case P 

Fig. A-42-An automatically generated finite element mesh for the Bohai Sea, case Q 
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Fig. A.43 -An automatically generated finite element mesh for the Bohai Sea, case R 

CASE S 
SHORTEST WAVE = 6 h 
GRID DELTA = 5000 m 
MIN. DIM. WAVELENGTH = 50 

Fig. A.44 - An automatically generated finite element mesh for the Bohai Sea, case S 
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CASE T 
SHORTEST WAVE = 12 h 
GRID DELTA = 2500 m 
MIN. DIM. WAVELENGTH = 15 

Fig. A.45 -An automatically generated finite element mesh for the Bohai Sea, case T 

CASE U 
SHORTEST WAVE = 12 h 
GRID DELTA = 15000 m 
MIN. DIM. WAVELENGTH = 50 

Fig. A.46 - An automatically generated finite element mesh for the Bohai Sea, case U 
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Fig. A.47 - An automatically generated finite element mesh for the Bohai Sea, case V 

l 

CASE W  
SHORTEST WAVE = 6 h 
GRID DELTA = 15000 m 
MIN. DIM. WAVELENGTH = 25 

l 

l 

0 

Fig. A.48 -An automatically generated finite element mesh for the Bohai Sea, case W  

a 
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CASE X 
SHORTEST WAVE = 1.5 h 
GRID DELTA = 2500 m 
MIN. DIM. WAVELENGTH = 25 

Fig. A.49 -An automatically generated finite element mesh for the Bohai Sea, case X 

CASE Y 
SHORTEST WAVE = 3 h 
GRID DELTA = 2500 m 
MIN. DIM. WAVELENGTH = 25 

Fig. A.50-An automatically generated finite element mesh for the Bohai Sea, case Y 


