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Glass Relaxation Kinetics: Dynamic Activation Energy Assumption*

Abstract: The assumption was made that the activation energy of a
relaxation process can change slightly (<4%) as the system relaxes. The em-
pirical consequences of such an assumption are as follows: (a) The normally
exponential decay function becomes more gradual or broadened in precisely
the manner observed for glass and polymer relaxations; the well-known
fractional-exponential expression for the response function M(t) =
exp [—( t/?\)b] , where b is the fractional power of the ratio of elapsed time ¢
to relaxation time A and where 0<<b<1, is easily obtained. (b) A well-defined
temperature dependence is predicted for the width parameter b, which is
in excellent agreement with recent measurements on BoOg glass. (¢) Conven-
tional finite-amplitude (nonlinear) correction terms can be introduced in a
more unified manner than was previously possible. A simple physical justifica-
tion for this time-dependent activation energy is that the structural units
that relax later encounter a somewhat larger activation barrier than do the
units that relax first. '

INTRODUCTION

We can characterize the relaxational behavior of glass largely in terms of its not obeying

simple viscoelastic theory. Typically, the decay function for glassy relaxation is riot a simple
exponential. Its temperature dependence does not follow Arrhenius behavior [1]. Further,
for moderate perturbations, its relaxational reponse readily departs from linearity. Hence,
we term its behavior as nonexponential, non-Arrhenius, and nonlinear. Presumably, these
three features are interrelated, but they cannot be properly explained until the detailed
molecularity of the glassy relaxation process is better understood. Lacking such a model

for this process, we are left (for the most part) with only empirical descriptions to guide us
in reducing data.

This report suggests a plausible explanation of the first of these characteristics: non-
exponentiality. No adequate interpretation of this behavior has previously been reported.
Instead, it is generally only loosely attributed to cooperative interaction among the various
relaxing units of the glass (i.e., molecules) without further elaboration. This report offers
a more specific, mathematical, description. Although the approach presented is largely
phenomenological in origin, it can also be interpreted in terms of a simple physical model.

We do not attempt to account for either of the other two characteristics mentioned:
non-Arrhenius and nonlinear behaviors. The existence of these two is, however, recognized
in the mathematical formulations used.

*Presented in part at the 78th Annual Meeting, The American Ceramic Society; Cincinnati, Ohio, May 1,
1977 (Glass Division, No. 35-G-76).
Manuscript submitted August 2, 1978.
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CORSARO AND JARZYNSKI

CONVENTIONAL DESCRIPTION

This section presents certain equations that are commonly used to represent glass re-
laxation data. It is included primarily as a vehicle for defining the parameters and terminol-
ogy that will be used in later sections.

In relaxation studies, a system initially in equilibrium is suddenly disturbed by a change
in some external parameter, such as temperature or pressure. As the system approaches its
new equilibrium, the response of a physical property X of the system is monitored as a
function of time ¢. This response may be written as

X(t) — X(0) = [X(0) — X(=)1 M(2), (1)

where X(0) and X(o°) are the instantaneous and long-time values of X. The term M(t) is
called the response function. It is normalized to 1 at zero time, and to O at infinite time.

For the simplest type of relaxation.al process, the response function is an exponential,

= _t
M(t) = exp "o @)

where A° is a constant, called the relation time. Equation (2), actually the integrated form
of a more basic relationship, namely, the fractional rate of approach to equilibrium, is a
constant:

TM@) dt  \°° - @

For such a simple process, the temperature dependence of relaxation time is typically ex-
pressible by an Arrhenius-type equation:

E,

RT ° (4)

A°=A° exp

where R is the gas constant, EZ is the activation energy, and A° is a proportionality constant.
Such a form for \° arises when the rate-limiting step of the relaxation process is that of move-
ment over an energy barrier.

Many real systems do obey such simple relationships, but glasses generally do not. The
meanings of the terms nonexponential, non-Arrhenius, and nonlinear can now be clarified.

“Nonexponential” indicates that Eq. (2) does not apply. Specifically, although M(t)
can remain simply a function of ¢/\°, its functional form must change more gradually with
time than a simple exponential. In such cases, it is convenient to continue using the parameter
2\° as a measure of gross relaxation time. We must therefore define A\° independently of its
use in Egs. (2) and (3) (which are not applicable in this case). It is experimentally useful to
define it by the constraint,
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when
_1
M(t) =<, (5)
This definition is consistent with the use of A° in Eq. (3).

“Non-Arrhenius” indicates that the temperature dependence of A° does not obey
Eq. (4) over the entire temperature range used. Equation (4) can be retained, however, if
we allow E and A° to be temperature dependent. This variation is perm1ss1ble because
E and A° change much more slowly with temperature than does \°. An expenmentally
meamngful evaluation of E then requires only the measurement of A° at two closely spaced
temperatures, Ty and Ty:

i

fn A —n Ay o ‘
e — = . Co {6
E.=R T, 1T, o (6)

Finally, “nonlinear” indicates that M(t) in Eq. (2) is not Just a functlon of t/A°, but’
rather contains additional terms related to the actual magnitude of the dev1at10n from equlhb-
rium. These nonlinearities are poorly understood and rarely-studied. They become significant
only when appreciable perturbations from equilibrium occur.

PRESENT APPROACH

There are two often-used approaches toward reducing linear, nonexponential glassy
relaxation data. Both are entirely phenomenological, and both use modifications of Eq.(2):
The first, called the fractional exponential approach, simply raises t/A° in Eq.(2) o a power,
b, where b = 1 for a simple relaxational process, and 0 < b < 1 for the more distributed
glassy relaxational process. Although this formulation is simple to use and accurately fits
an extensive body of data, it has no apparent physical interpretation. The second approach,
called the relaxation spectrum model, expresses M(t) as the sum of a large (or infinite).
number of simple exponential ¢/ terms, each with an associated weighting factor. The result
is simply a mathematical transform, which can be quite useful in certain apphcatlons In
addition, although it is phenomenological in origin, it nonetheless does have a plausible
physical interpretation: a distribution of molecular environments can yield a distribution of
simple exponential relaxation processes. This formulation, however, is very unwieldly to
use in reducing experimental data, because the least-squares evaluation of a large number of
fitting parameters requires considerable computational effort. ' :

This report uses a quite different approaeh. Here, we allow activation energy to change
slightly with time during the course of the relaxation process. This time-dependent activation
energy will introduce a time dependence in the relaxation time, as well.

Specifically, in a manner aﬁalogous to Eq. (3), we define a time-dependent relaxation
time, A(t), as the instantaneous value of the fractional rate of approach to equilibrium:

1 __ 1 dM(@)
NG M) dt

Ill

(7)
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CORSARO AND JARZYNSKI

We then define a time-dependent activation energy in terms of A(¢) in a manner analogous to

that of Eq. (4):
- Eo()
()= A exp (RT ) . (8)

Here A now can be temperature, but not time, dependent. It is only a proportionality con-
stant, however, and is generally eliminated from final expressions.

Together, Eqgs. (7 ) and (8) allow us to transform the observed time dependence of M(t)
into a time dependence of E4(?). It will be shown that this exchange can be both simple and
advantageous.

The use of a time-dependent relaxation time is not new. In exprassions for relaxation
time, Tool [2], and later Narayanaswamy [3], included a fictive temperature term, which is
implicitly time dependent. In analyzing their experimental data, Sharonov and Vol’kenshtein
noticed that graphs of M(t) vs £n A(t) appear linear [4, 5]. This observation is also apparent
_in the work of Goldstein and Nakonecznyj [6]. Even so, the concept of a time-dependent
- relaxation time (or activation energy) has not previously been pursued or exploited.

To include a time dependence in activation energy, we can expand E,(t) as a polynomial
in terms of some as yet undefined reaction variable x(t). Thus,

Ey(t)=E, [1+ax(t)+...]. @

In this equatién, E; is an adjustable parameter, whose value can be related to the experimen-
tally meaningful parameter EZ by this convenient constraint:

when t=)°, let E,(t) = E, . (10)

This permissible constraint is a natural choice, considering that E; is defined in terms of >\°‘
(Eq. 6). Equation (9) can then be better expressed as

o [1
E,(t)= EC [[1 ++a‘;x(()f3)++ - ?] . (11)

-Presumably any reasonable form of M(t) can be described in this manner, with the use
of any reasonable choice of reaction variable x(t), so long as enough terms are retained in
the polynomial expansion. For practical use, however, it is necessary that we use a reaction
variable such that an adequate description is provided when only linear terms are retained:

Ey(t) = Eg%. (12)

We then have only one width parameter, a, describing the departure from simple exponential
behavior.

In each of the following two sections, a particular choice of x(t) is considered. The
following section investigates the choice x(¢) = 2n (¢/\°). With this choice, the equations
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presented are found to reduce to the familiar fractional-exponential form for M(t). Next,

the choice x(t) = M(t) is studied. Although the resulting equations are more complicated,
nonetheless satisfactory data agreement is obtained. This choice of variable has the advantage
that M(t) has a physical meaning (extent of relaxation) aside from its use as a reaction
coordinate.

REACTION VARIABLE ¢n (t/\°)

A particularly convenient choice for x(t) is ¢n (t/\°). This reaction variable is familiar
[1]. For example, when deplctmg the measured time dependence of the decay function,
one generally plots M(t) vs 2n (¢/A°) (or logyg (t/\°)), as in Fig. 1. Assuming thermorheologi-
cal simplicity, such a graph allows data, collected under differing experlmental conditions,
to fall along the same smooth curve. Thus the reaction variable £n (t/\°) is specific only to
the shape of the decay function, and is independent of the locatlon of the relaxat1on along
the time axis.

With 2n t/A° as the choice of reaction variable, the formulation presented readily reduces

to
" b
M(t) = exp E<F>] (13)
where |
b=1 —E':El (14)
RT

and ay is parameter a of Eq.(12). The details of this derivation are given in Appendix A.

LOG o) t/X°

Fig. 1 — Relaxational decay, M(¢) vs t (where M(t) is the response function), for
BgOg glass, fit to the fractional-exponential equation. Data (circles) are from
pressure-jump volume relaxation study of Ref. 1.
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CORSARO AND JARZYNSKI

Equation (13) is the familiar fractional-exponential equation. It is well known that this
equation provides an excellent description of an extensive body of glass relaxation data. The
solid curve in Fig. 1, for example, was constructed with the use of a least-squares fit to
Eq. (13). Hence, for the first time, we are able to suggest a plausible origin for the fractional
exponential equation.

Accompanying this result is a predicted dependence of b on temperature (Eq. (14))
which includes no assignable parameters. From one determination of b at any one tempera-
ture, values of b can be calculated over the entire range of temperatures for which EZ is
known. No previous formulation allows such a prediction. Hence, we can devise a test of the
empirical usefulness of the derivation presented here. ' ~

Bucaro et al. recently measured the temperature dependence of the width parameter
b for ByOg3 glass at temperatures near and within the glass transformation region [7].
Their data are shown here as Fig. 2. Data points indicated by squares are from light-scattering
correlation, and those shown as circles are from pressure-jump, volume-relaxation measure-
ments. The relaxation is seen to narrow (b — 1) as temperature is increased.

10 T | T

//
-

o™
/4{”/
f |
P4
/ —
T- ,

0.8+

0.4 : ' ' L
200 300 400 500

T (°C)

Fig. 2 — Temperature dependence of width parameter b for BoOg glass. Solid
line is fractional exponential; dashed line is for the form where the reaction
variable is the response function. Squares represent data from light-scattering
correlation spectroscopy [7]; circles are from pressure-jump volume relaxa-
tion {1].
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To use Eq. (14) one must know the activation energy of this process over the tempera-
ture range of interest. Such data is available, and is shown in Fig. 3. Here, the circles and
squares are evaluated as for Fig. 2. The triangles are from earlier ultrasonic data [8]. All
relaxation times used to evaluate EZ are compressional, and the shape of the curve is drawn
to be also qualitatively consistent with the better-established temperature dependence of
EZ for shear [9].

With E, and b known at only one temperature (e.g., 300°C), ag can be evaluated from
Eq. (14). Values of b can then be predicted at any temperature for which E; is known.
The continuous line in Fig. 2 shows the temperature dependence predicted by this equation
(with ap = 0.0054).

The predicted temperature dependence of b is seen to be in good agreement with these
data. Unfortunately, suitable data on other glasses are not available over a sufficient tempera-
ture range to allow additional testing of the applicability of Eq. (14). Regardless, for the one
glass (BoOg) where sufficient data are available, the approach used here accurately predicts
the temperature dependence of the relaxation width, without introducing any additional
fitting parameters. We conclude, therefore, that this approach provides a phenomenologically
more complete description of the glassy relaxation process than those previously available.

REACTION VARIABLE M(t)

Another obvious reaction variable is the decay function M(t), itself. With this choice,
the formulations presented are found (Appendix B) to reduce to

10 4 18
104/T(°K)

Fig. 3 — Temperature dependence of activation energy E: for
BgOg glass. Solid line shows trend. Squares and circles are as
in Fig. 2. Triangles represent data from ultrasonic spectros-
copy [2]. ’
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!  Ei(m)—- Ei(mM(t))

\° T "Ei(m) — Ei(m/e) (15)
where
—_ 9m EZ
“1+a,/e RT ° (16)

Here Ei is the exponential integral [10], which can be evaluated from tables or from an
infinite series expansion (Appendix B), and a,, is parameter a of Eq. (12) whose value is
specific to this choice of reaction variable.

- Note that the values of a,, and m are both negative, because the reaction variable
M(t) decreases as the relaxation proceeds. Also, note that Eq. (15) represents relaxational
decay with use of ¢/A° as a function of M(t), rather than the more usual representation, '
M(t) as a function of t/A°. This difference is immaterial.

- A relationship somewhat similar to this one (Eq. (B2) in Appendix B) was proposed
by Sharonov and Vol’kenshtein [4, 5], who noted that graphs of n A(t) vs M(t) appear
linear. This behavior, however, is not a good test of the applicability of Eq. (15), because
when the mcremental derivative term of A(t) (Eq. 7) is evaluated, the cumulative contnbutlon
of small errors is ignored. .

A much better test is to compare experimental data directly with the shape of the decay
function (Eq. (15)). The data shown in Fig. 1 were, therefore, fit to Eq. (15) with m = —1. 75.
As shown in Fig. 4, the quality of the fit is excellent The calculated time dependence is
shown by the line, which in all cases lies within the uncertainty limits of the data (+0.02).
Hence it is concluded that Eq (15) adequately represents this quite typical set of relaxation
data. ‘

M (1)

N T R S S DAY

4
’ LOG“O) f/l.

Fig. 4 — Relaxational decay, M(t) vs time ¢ (where M(t) is the response function),
of BoOg glass, fit to Eq. (15) (form x = M(¢) where x is the reaction variable)
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Because m and b (Eqgs. (16) and (14), respectively) are both independent width param-
eters, some correspondence exists between their values. To determine this correspondence
in an experimentally meaningful manner, we generated an idealized set of M(t) data with
selected values of m in Eq. (15). These data were then fit to the fractional-exponential equa-
tion, Eq. (13). The values of b thus determined are shown in Fig. 5. This figure can hence-
forth be used to estimate the value of one of these parameters (b or m) from an evaluation
of the other.

Because such a correspondence exists, the temperature dependence of b can also be
predicted with this present form (x = M(t)). In the same manner as before, Eq. (16) allows
us to calculate values of m over the temperature range of interest. Corresponding b values
can then be estimated from Fig. 5. The temperature dependence of b thus predicted is shown
by the dashed line in Fig. 2. The agreement with the data is again excellent—well within
experimental error. We conclude, therefore, that the choice of x(t) = M(%) also prov1des an
excellent fit to these experimental data.

It might be noted that the value of Oy, found for B9Og glass is quite similar to that
calculated for other oxide glasses. Thus, using the BoOg value (a,, = —0.0355), we calculate
b = 0.51 for soda-lime glass at 510°C (experimental b = 0.54) [11], and b = 0.76 for silica
at 1530°C (experimental b = 0.70).* Although such agreement is presumably only fortultous,
it may nontheless prove useful.

DISCUSSION

The one assumption of this approach is that the activation energy (or activation barrier)
of the relaxation process is time dependent. Hence, the activation energy is considered to be

Fig. 5 — Correspondence between values of param-
-4 _ eters of b and m. The line represents the empirical
equation 1/b = 1 — 0.227m + 0.0076m?2,

*J. A. Bucaro, private communication.
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a dynamic property, in much the same manner as compressibility, thermal expansivity, and
heat capacity are conventionally considered. Such an approach is plausible only if the activa-
tion energy is not required to change by a large amount during the course of the relaxation.
For the glasses tested (including By O3, silica, and soda-lime glasses), the total required
change is only 3.6% (a,, = 0.0355). It is therefore not unreasonable to suggest the presence
of such a small dynamic effect.

This time-dependent activation energy can be interpreted as arising from a physical
origin: all structural units are initially equivalent, but as the first units relax, they form con-
figurations or energy states that tend to stabilize the other as yet unrelaxed units in their
immediate environment. The remaining unrelaxed structural units then experience an activa-
tion barrier that is somewhat larger than that encounted by the first units to relax.

" This physical interpretation is particularly consistent with the use of M(t) as the reaction
coordinate. With this choice, the extent to which an unrelaxed unit is stabilized becomes
S1mp1y proportional to the number of relaxed units present in its immediate environment. It
must be noted, however, that to avoxd memory comphcatlons [12], M(t) should not be viewed
asa state parameter. «

A further feature of glassy relaxations is their tendency to be highly nonlinear. Nara-
yanaswamy has suggested that finite-perturbation (nonlinear) behavior can be included as an
ad hoc activation energy correction [3]. Thus a typical data reduction procedure is to use
the fractional exponential equation for the linear behavioral component [13], and an expres-
sion of entirely different form (Narayanaswamy’s) to account for deviations from linearity.

“By using the formulation presented in this report for the linear component the lmear
and nonlinear equations merge. Narayanaswamy’s correction now appears as simply an addi-
tional fictive, temperature-dependent term in Eq. (8). The resulting unification of linear and
nonlinear equations is not only a computational aid, but also makes possible the future
inclusion of cross terms (e.g., dependence of width on the magnitude of the perturbation).

Finally, it has been often noted that glassy relaxation processes generally differ from
simple relaxation theory in three respects: their widths are broader, their activation energies
are temperature dependent, and they are highly nonlinear. It is interesting that all three
factors can be attributed to the variability of just one relaxation property--activation energy.

CONCLUSIONS

The assumption was made that activation energy can be time dependent. Some phenom-
enological consequences of this assumption were investigated. The formulation developed
is found to be phenomenologically more descriptive of experimental data than any previous
formulation. However, it is recognized that the body of data available for such tests (for
example, the temperature dependence of b or the functional form of the nonlinearity correc-
tion) is rather limited. Hence, of necessity, this report is somewhat speculative:.

The principal conclusion of this study is that the approach presented is dernonstrably
useful and offers considerable potential for further development. -

10
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Appendix A
DERIVATION FOR THE CASE x(t)= n t/A

‘With &n /X as a choice of reaction variable x(t), Eqgs. (8) and (12) yield

EO
) = Af exp[R——,;1 <1 +af Qn—{%}

(A1)

Where the subscript f is used to indicate parameters whose value is specific to this choice of

reaction variable. Equation (A1) readily reduces to
o o, 1-b

ANy
A =L (T)
where b is defined as

asz
RT

b=1—

and where A° = \° exp (Eg/RT), which is a constant to be eliminated shortly.

Substituting Eq. (14) into Eq. (7) and integrating yield

]

M(t) = exp [—b—f‘—;(—;u—) |

With use of the constraint, Eq. (5), this expression reduces to the simple form,

M(t) = exp [—(—)—% b].

12

(A2)

(14)

(A3)

(13)



Appendix B
DERIVATION FOR THE CASE x(t) = M(t)

With the selection of M(t) for the reaction variable x(t), Eqgs. (8) and (12) become

ES1+anM
A(E) = A° exp[ﬁ 1—’}};%] (B1)
or
At)= A" exp [mM(2)], (B2)

where A’ is a constant, which will be eliminated shortly, and m is defined as

o
S, E,

1+a,/eRT °

m (16)

Here a,, is parameter a in Eq. (1) whose value is specific to this choice of reaction variable.
Note that the values of a,, and m are both negative, since M(t) decreases as the relaxation
proceeds.

Combining Eqs. (7) and (B2) and integrating yield

[~

7 = Ei(m) — Ei(mM(t)) (B3)

b

where Ei is the exponential integral,* which can be evaluated from tables, or from the in-
finite series expansion:

() = S o_x" B4
Ei(x)=0.57722 + ¢n x +n2=31 n(nh) (B4)

Evaluating Eq. (18) at ¢ = A\° to eliminate A’ yields the final expression:

t__ Ei(m) — Ei(mM(2))
N° = TEi(m) = Eim/e) (15)

*E. Jahnke, F. Emde, and F. Losch, Tables of Higher Functions, 6th ed. (revised by F. Lésch), McGraw-Hill,
New York, 1960, p. 17.
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