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A UNIFIED TREATMENT OF EDGE-GUIDED WAVES

INTRODUCTION

In the past 7 years more than 45 papers have been published on the theory and
application of edge-guided waves (EGW).* During this period, EGW multi-octave isolators
[1-4], circulators [5-6], phase shifters [7], and dlstrlbuted amphflers [8] were con-
structed and used in operational systems.

Edge-guided waves are electromagnetic waves guided by the RF conductor edge of a
ferrite stripline or microstrip circuit magnetized perpendicularly to the ground plane
[2,9]. In the case of a rectilinear edge, EGWs are associated with a strong nonreciprocal
transverse field displacement effect (TFDE) [2,3,8,10,11].

Edge-guided wave propagation characteristics, like many other propagation phenom-
ena, are best studied on the basis of their dispersion diagrams. However, when EGWs
became of interest in 1970, no such diagrams were available in the literature even for the
simplest related surface-wave structures, such as a slab of ferrite or a ferrite-air interface.
To the author’s knowledge, it was only in 1971 [10] that the dispersion curves of
surface-wave propagation along a ferrite-air interface were published and the opposite
sense of phase propagation of magnetostatic and magnetodynamic waves was recognized.
Furthermore, not until 1973 [12] was the complete set of dispersion curves calculated
for a ferrite slab in vacuum and the existence reglons of the various possible modes studied
in detail.

The reason for the dearth of information on the propagation aspects of the non-
reciprocal TFDE was probably that such information was not needed to design practical
TFDE devices. For EGW devices, on the other hand, the situation was completely
different: from the very beginning, it was evident that a good EGW isolator or circulator
could not possibly have been built without knowledge of the broadband propagatlon
characteristics of EGWs, along both rectilinear and curved edges

Most of the EGW research in the past 5 years [13] has therefore dealt with propaga-
tion aspects of the TFDE in various structures. This report brings together the results of
theoretical work on EGW propagation that had been scattered over a vast body of
literature; it also presents some unpublished results obtained by the author and his co-
workers. The material is presented in a plain fashion and with the aim of striking a good
balance between the physical aspects of the phenomena and their mathematical trestment.

*There is a general bibliography at the end of this report.
Manuscript received July 13, 1977.

Dr. de Santis is a consultant in microwave magnetics at NRL. His permanent affiliation is with the Faculty
of Engineering, Electrical Engineering Department Institute of Electrotechnics, Via Claudio 21 Naples
Italy.
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This report is divided into eight sections. The first two focus on some basic con-
cepts, such as the partially magnetized state of the ferrite substrate and the higher order
mode propagatlon that may exist in conjunction with EGW propagation. Both subjects ‘
are relevant in the construction of low-loss, unimodal EGW devices.

Sections 3 and 4 deal with calculation of the dispersion diagrams relative to uni-
directional waves, as well as TFDE modes in various geometries. This background pro-
vides the basis for understanding EGW propagation in rectilinear circuits. Particular
attention is given to effects of the “‘impedance” boundary conditions and of magnetic
losses. Both'effects impose the most important limitations on the achievement of broad-
band EGW devices.

The fifth section compares the propagation characteristics of magnetostatic and
magnetodynamic waves.

~ The sixth, seventh, and eighth sections focus on the broadbanding of EGWs by
dielectric loading of the guiding edge, on EGW propagation along circular boundaries, and
on the effect of fringing fields in EGW microwave integrated circuits (MICs).

The last two sections are of relevance in understanding the performance of EGW
circulators in the MIC version.

A number of problems remain open for future research in the EGW area. Some of
the most important of them are

~ 1. Relationship between MIC broé'db.an‘d junction circulators and EGW circulators
2. The EGW propagation in inhomogeneous magnetic biases

3. Millimeter-wave EGW propagation.

PARTIALLY MAGNETIZED FERRITES SUBJECT
TO MAGNETIC LOSSES

Although most microwave scientists are already familiar with the g tensor charac-
terization of ferrites, we believe that it is worthwhile recalling a number of points. The
algebraic sign convention for u entries, for the behavior of u as a function of the applied
- DC magnetic field in the partially magnetized state, and for the introduction of the
ferromagnetic resonance linewidth are perhaps the most important subjects dealt with in
this section. :

The algebraic sign of the off-diagonal components of u is of great importance

- because it affects many nonreciprocal phenomena that occur in magnetized ferrites. More
specifically, in ferrite structures magnetized perpendicularly to the direction of propaga-
tion, the sense of the nonreciprocal TFDE depends on such an algebraic sign. Therefore,
it helps to state from the very beglnnmg the 31gn convention used throughout this report.
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Here we adopt the sign convention introduced by D. M. Bolle and L. Lewin [14].
According to this convention, a ferrite medium, saturated along the coordinate z-axis by
a DC magnetic field Hy, is characterized by magnetic permeability ugp, given by [15] -

. My -Jjug O
MoMs =Ko | jue My O], - 1)
0 0 pg ‘

with pg, the magnetic permeability of vacuum, and, in the abserice of magnetic lbsses,

w2 ",(‘0% + WoWy,)

Sk e Rt @
Wy, |
#2=;Tw_g,» - (3)
pg =1, | @)

where w is the operation radian frequency that appears in the time dependence exp(jwt)
of all the field quantities, wqy = YH, v = 2.8 (MHz/Oe) is the gyromagnetic ratio, and
W, = v4nMg is the saturation magnetization. The tensor in Eq. (1), that refers to an
unbounded ferrite medium saturated along the z-axis is sometimes referred to as Polder’s
tensor. The saturation phenomenon is represented by the fact that ug = 1. If the ferrite
is not magnetized to saturation, some domain structure is still present within it. Under
these circumstances, the 4 tensor retains the form in Eq. (1) but different expressions
must be used for its entries. They were calculated by J. Green and coworkers [16] to be

B = Bgem + (1 = Mgem) (%3/2 | B .
S (®)

Mg = (ydem)ll-(4nM/4nMs)5/2], | | (7)‘.
™30 3 [1 - _(%2)2]1/2’ ‘ - | ®

and 47M is the average magnetization of the ferrite.

In the following, this tensor is indicated by mpy; where PM stands for partially
magnetized. Unfortunately, in a planar circuit, 4mM cannot be measured so easily as the
applied magnetic field H,. In fact, it is usually measured by ballistic techniques. There-
fore, an analytical relation between H and 47M is of great utility. Obviously, this rela-
tion should vary from ferrite to ferrite because it depends on the shape of the hysteresis

3
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Fig. 1 — (a) 4nM vs Hg curve for low H,
. values; (b) approximate relations

cycle at low Hj values (see Fig. 1a). In practice the following two simplified, linear

relations [17] are used for planar ferrite devices with demagnetizing factors N, = Ny =0,
N, =1: . ‘
Hy = 47M, 9)
4nMp
H, = yEe 47M, (10)
where. 4nMp is the residual magnetization (see Fig. 1b).
In these devices, internal magnetic field H; is given by
H;=H, - 47Mg, (11)
and u is given by Egs. (1) and (4), with wqy = vH,.
When Hy = 47Mg, from Eq. (11), H; = 0 and p becomes
o o
1 -ji—= 0 :
. Wm @ (12)
He = {J —a— 1 04. .
0 0 1
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One nice feature of the choice Hy = 47M is that if one crosses the Hy = 41rMS
boundary moving from the saturated state (H; = 0, Hy > 4nMg) toward the unsaturated
state (Hy < 4mMg) the Polder tensor pg transforms smoothly into the ppys tensor. In
fact, when Hy = 4nMg, 4nM = 4nMg and ppyy reduces to Eq. (12).

So far we have not discussed the limits of validity of the lossless model. For the
Mpy tensor, one readily recognizes from Eq. (8) that pyep, is real when w > w,,. For
w < Wy, , Mpy becomes a complex quantity and correctly represents a physical situation
characterized by the so-called ‘“low-field’’ losses.

The low-field losses are related to the existence of the domain structure within the
ferrite [18] and are different from the “magnetic” losses of the saturated ferrite, which
are associated with damping of the precessional motion of the electron spins. These
magnetic losses may be taken into account by a suitable parameter AH, the ferromagnetic
resonance linewidth, which can be introduced into the u tensor by substltutmg for wg the
complex quantity w0\+ jy AH/[2. Typically for polycrystalline YIG AH is 25 Oe, ‘and,
for YIG single crystals, AH goes down as low as a few tenths of an oersted.

To show at which values of w and H low-field losses and magnetic losses are
encountered in a practical ferrite MIC circuit, we have shown in Fig. 2 the experimental
mode charts (H, vs w) of a 3-cm MIC disk resonator deposited on a YIG substrate 0.6-mm
thick, magnetized perpendicularly to the ground plane. The results reported in this
figure were obtained by the author from observations of the transmission frequency
spectrum of the resonator at fixed values of Hy. The shaded regions indicate that for
those particular values of H, and w the resonances were damped by some loss mechanism
and could not be measured. From this chart, it is apparent that low-field losses are

LETINT .
3- L ) o o
asenr o o o
i LOs%is 7 .
25 L ‘/ d I o
1 A /
! /L/:: o <)
g’ s B, 1 D ®  saTuRATED
[o]
Mg [————— *-———0———0D————0———
o o (o] [
15 [—— o <] o [¢]
o o o .
' o o PARTIALLY
° MAGNETIZED
1= LOW-FIELD ° ° °
LOSSES
o] [ [o]
(o] o o
5 — o (] [}
' yArMg © o o
0 | | | ] ] |
2 3 4 5 6 7 8 w(GHz)

Fig. 2 — Mode chart of a ferrite MIC disk resonator
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localized in the Hy < 4nM;, w < y4nMyg region, while magnetic losses are locahzed in the
vicinity of points where the effective magnetic permeability i g = (,Ul - Ilz)/#l of the
substrate becomes exceedingly large (infinite in the lossless case).

In what follows, extensive use is made of Brillouin diagrams, i.e., w vs wavenumber
diagrams, with wg; w,,, and €, fixed. In conjunction with that, it is helpful to know
the behavior of y as a functlon of frequency, other quantities being fixed."

Figure 3 shows the frequency dependence of u,, ”2 and of such characteristic
quantities as pog and py/p, for a numerical case which is typical of EGW propagation at
X-band frequencies. It refers to a YIG (47M; = 1780 Oe) slab, magnetized perpendicularly
to its faces (N, = 1) by an external DC magnetic field Hy = 3780 Oe (H; = 2000 Oe).

In Fig. 3 in‘addition to the numerical results, the analytical expressions of the zeros and
infinities of the various quantities have been provided.  This information allows one to
anticipate the qualitative behavior of the curves should either w( or w,;, be changed.
Note that wy in Fig. 3 is equal to (vH,, i.e., ¥(Hy - 4nMg). Therefore in terms of
external DC magnetic field H, the characteristic frequencies become -

- wy =Y(H - 47M,), ' _ ' (13)
wg =y(H2 - HydmMg)1 /2, L (14)
we = 7H0. ) E ‘ | (15)

From Fig. 3 one sees that Mere < O for (w(z) + Wow,, N2 << wqy + W, . Most of
the phenomena of interest occur at frequenc1es elther w1th1n or in the v1c1mty of this
frequency band.

H; = 2 kOe
4nMg = 1.78 kOe

w (GHz)

= \/‘mc,2 + WoWwn

1 We = Wo + Wny

o
R -
- o
§ p~D*
ge=g=D=0"

6 L

Fig. 3 — Frequency behavior of ly, Mg, Mg /My, Meg, for a
YIG slab with H; = 2 kOe
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ELECTROMAGNETIC WAVE PROPAGATION
IN AN UNBOUNDED FERRITE :

Dispersion Diagrams for z-Independent Fields

The Maxwell’s eQuations for a time harmonic exp(iwt)' electromagnetio field
propagating in the ferrite medium described in the first section are : :

V X h =jwege, e, (16)
V Xe=-jwpou * h. S an
If an x, y, z rectangular system of coordinates is 1ntroduced‘ and if 1t' is assumed 7
that Hy = i,H, together with a traveling wave dependence along the y-axis of the type
exp(~ ]6y y), then (Egs. (16) and (17) in component form read . .

oh

. y . ' :
-]Byhz - _'a_z‘ =]Q€0€rex, . (18)
oh, oh, _
3% 3% = jwege, ey, - 19)
ahy
—éx— +j6yhx =jw€06r€z, (20)
aey ’ .
‘jﬁyez - _a'z— = ‘jwﬂo(ﬂlhx —j”2hy)7 L t (21)
de, Oe, . :
~ox T, = iwmolHghy +uihy), (22)
aey o
B +jBye, =-jwHgugh,. (23)

From this system of equations one recognizes that in the special case of a
z-independent electromagnetic field; i.e. 9[ 1/0z = 0, e, is a function of only h, and h,
and dually h; is a function of only e, and e,. This is equivalent to saying that, under
those circumstances, two independent three-equation systems exist: one made up by
Egs. (18), (19), and (23) and the other by Egs. (20), (21), and (22) From a physical
point of view, this means that pure TM, = (e,, h,, h y) and TE, = (h,, e,, e,) modes
exist. However, the u tensor components enter only the equatlons representatlve of the
TM, mode; i.e., only the TM, modes are affected by the magnetic anisotropy of the
medium In studying these modes, it is convenient to regard e, as a scalar potential that
satisfies a wave equation and from which h, and h, may be denved To do that, one
can rewrite Eqgs. (21) and (22) as follows:

AITITSSYTIOND
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_6—}; e,
2 - (24)

o ) G )

C why Ox

to get
1 g e, .
hy = ——— (Bye, + — — |, 25
¥ WHoHep <y oy =)
h (e | 6
= _— 4 — e , . 2

Y WhoMer \ Ox  Hy 6’ A S

which substituted into ‘Eq. (20) yield the following wave equation for e,: :

. d2e,

o2 + (wzeoeruoueﬁ -53)62 = 0. (27)
x .

A tréveling wave solution of Eq. (27) is

e, (x) =~ exp(- jByx)
with
ﬁ?c = 6%6r“eff -55
B2 = w2equq: e

The corresponding Brillouin diagram is shown in Fig. 4. It indicates the 'frequency
_ bands where unattenuated propagatlon may occur It also indicates that in the lower
passband for w close to wy, = (‘*’0 + Wow,, ) 2, phase velocity w/B may attain very. low
values because 3 becomes exceedingly large. At this point, one should be very careful in
accepting the validity of the classical, lossless electrodynamic model for the ferrite .
medium. It happens, in fact, that if magnetic losses are introduced into the analysis the
numerical value of 8 is heavily affected by these losses just for w = Wy, In other words,
if magnetic losses are present, § = 8’ + jB", with ' < oo at w = wy, (see Fig.3). If one
is dealing with a very good ferrite material with very low magnetic losses (e.g., a single
crystal), other phenomena may set in to limit the numerical value of 8 at w;. Inter-
action with elastic waves supported by the crystal reticle or with exchange waves sup-
ported by the electron spin system may be two such phenomena



NRL REPORT 8158

w

1

W1 Wm=CONST.

LOSSLESS FERRITE ‘ : g p= V2 + pyﬁ
————— LOSSY FERRITE : B »

Fig. 4 — Dispersion diagram for TM, modes in an unbounded
ferrite with and without miagnetic losses

Mode Coupling for z-Dependent Fields

So far we have considered z-independent fields. In practice, they may exist in a
parallel plate waveguide completely filled with ferrite. If the plate separation is smaller
than a critical value, the higher order modes are cut off and the z-independent modes are
the only ones to propagate. A quantitative evaluation of such a critical value is there-
fore of great practical importance. Theoretically, it implies the solution of the associated
boundary value problem and the calculatlon of the lowest cutoff frequency of the
z-dependent modes

In this section, we shall not solve any boundary value problem. This will be done in
the fourth section. Here, we concentrate on the structure of a z-dépendent electro-
magnetm (EM) field in an unbounded ferrite and demonstrate that it is possible to extract
considerable information from Maxwell’s equations before imposing any boundary con-
dltlons In particular, it will be. demonstrated that in case of z- dependence -

1. The electromagnetic field cannot be separated in TM and TE, fields.

2. All the electromagnetic field components may be denved from ‘two scalar '
potentials: e, and h,. '

3. The potentlals ez and h, satlsfy two coupled wave equations.

4. A consequence of the “coupling” is that for one value of the wavenumber along
the z-axis, e.g., B,, two values exist for the wavenumber transverse to the z-axis.

FTSSYTONN
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‘5. For each value of the transverse wavenumber (eigenvalue), there exists a “partial”
field (eigenfunction). Both e, and h, are expressed as a superposition of two partial
fields. ’ ‘ :

6. Stationary solutions are possible along the z-axis.
To investigate the structure of the electromagnetic field, we find it convenient to

begin by separating both the e and h fields into transversal and longitudinal components
with respect to the z-direction, as follows: :

e=e tie, (29)
h=h +ih,. ) (30)

Here subscript ¢ indicates that the vector lies in a plane perpendicular to the z-direction.
Furthermore, let

V=9, - i, a (31)
Behmph, tigh, (32)

with _‘
et hy=pgh, +f“§£z Xhe o o | (33)

Let us now write Maxwell’s equations in terms of their longitudinal and transversal
components. To do that, let us cross and dot-multiply i, into Eqgs. (16) and (17) to
“obtain :

LV, X f_zt = jwege,e,, R (34)
LV Xe m-iomgigh, (35)
Vih, +iBh, = Jwege,i, th, - (36)
Ve, +jB.e; = -jwmg(uyi, X hy -jughy). | (8D

Equations (36) and (37) and the same equationé cross-multiplied by i, yield a rela-
tion between the transversal and the longitudinal components of e and h, which can be
* suitably cast in matrix form as follows:

- WHoMg -8, -jwmer; 0 e Vie;
= ‘ (38)

0. - jwegE, -iB. 0. i Xhy \ Iz X Vih,

jewtomy 0 - Whoky - JB; i Xey i, X Vee,

10
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Inversion of the 4 X 4 matrix ylelds the transversal components in terms of the

longitudinal ones: . T IR T
Ve,
Vih,
XV, |
iz .X Vih, o |
. where
ma = BB Remy -6,
my = AN~ wpgpyB?), |
my = A= jBye ),
mg = A1 [—jwllo#ﬂﬁzz ‘lﬁgér“eff):]f’
m, = A l[jweye (B2 - 60 ,ul)],
ms = Al (wegBle2ug),
, A ;'5'—263506,111&606 #weff |

To find the two coupled wave equations for e, and h,, one has to take the trans-
.- versal divergence of Eqs. (36) and (37), and then use divergence equations

Vee =i o .. (40)

#1Vt'ht +]-ﬂ2Vt'i X h *'j“3ﬁ, h =0, (41)

in conjunction with Egs. (34), (35), and €38) As a result the following system of two
coupled wave equatlons is obtained: . .

- () o, e
where | |
Bt =67 | 1B,onoHy :if Tn‘é Ty
T= | e |2 || (43)
- B, wege, 5(2)#36, .33 — Ty, ] Ty, '

A3TATSSYIOND
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. t9 .}

Note that'Eq. 42 can be regarded as a system of two wave equations coupled together
by the off-diagonal terms of matrix T.

. and

If T is diagonalized, Eq. (42) reduces to two independent second-order differential
équations that can be solved in the same manner as for the isotropic case. In general, it
is not possible to diagonalize a matrix with complex elements. For the moment, let us
therefore limit ourselves to the lossless case so that the elements of T are either real or
~ imaginary. Under these circumstances, diagonalization of T can be achieved by perform-
ing a similarity transformation using a nonsingular, space-invariant matrix operator R,

such that
(%) =gr. (%) o (44)
h, bq .

so that Eq. (42) becomes

| 6, |
(VZ1+R1-T-R) = 0. (45)
- b2 . .
It is now required that ¢, o satisfy two uncoupled wave equations. This is possible
if
R!:T-R=r, ' I (46)
where 7 is diagonal matrix
2 0 :
1
T= : . : : 47)
0 T% '

Let us rewrite the condition of‘ Eq. (46) as
T-R=T-7 | (48)

or, in explicit form, |

(Tyy =73) Ry + TypRy; =0

5 , (49)
Ty Ry +(Tyy -77) Ry =0 '

Ty1 -73) Ryg +T15Rp5 =0 .
; (50)
Tg3Ryp +(Tgy = 75)Rgg = 0

12
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From Egs. (49) and (50), it is apparent that T% o are the eigenvalues of the matrix;
i.e., they are the roots of the determinant equation :

(Tyy - 72)(Tag - 72) - T15Tg; = 0. © (1)

Furthermore, from Eq. (49), ‘one finds

(Bo1=hiRy1 | ' )

. 2 N ‘

1-Tn Ty :
h]_' = T = 9 ’ : . o T (53)

12 7'1 - T22 B
while, from Eq. (50),
Rgp =hgRy9 (54)
) ‘
73-Tyq Ty
hy = lre (55)
Ty 73~ Ty

Therefore, matrix R, which diagonalizes matrix T, is given by

| Eyy  Baz '
R={_ ) (66)
hiRi1 hyRig) | _

where R;; and R, are two arbitrary quantities. In the literature, various choices exist
for these two quantities. Perhaps the most used are :

1. Rll =R12 = 1

2. Rll = T2

= .2
1 R,y = Tg-

With the first choice, scalar poténtials e, and h, are given by
e, =9¢; tdy B
L N ’ (57)
h,=h1¢y +hooo ' ‘ ,
where “parﬁal fields” ¢, and ¢, satisfy the uncoupled wave equations
{ Vi, +730, =0

Vioy + 750, =0

13
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with 72 , defined by Eq. (51), i.e., via Eq. (43):

, 1 -
27%,2 = 'BE <1 + I~‘_1> + 6g€r(“eff + 1)

. ) N o 2|12
* -B?(lv'—#—l}rﬁger(uefffl) -43363,er(;;> . (89)

Note that ¢; and ¢,, even though they are functions of eigenvalues 7, and 79, do not
represent the “modes” of a particular z-dependent boundary value problem. In fact, the
boundary conditions appropriate to a particular boundary value problem are imposed on
and satisfied by the “total” EM field components. Functions ¢; and ¢, do not individ-
ually satisfy such boundary conditions.

For a given set of values of w, wy, w,,, €., it is enlightening to plot Eq. (59) as a
curve on a f3, vs T coordinate plane Figures 5a and 5b refer to the ferrite medium
described in Fig. 3. The operation frequency is w = 4 GHz (Megr > 0) and 9 GHz
(Mege < 0), respectively. A normalization to /€, has been used. In Fig. 5b the squared
wavenumbers plotted as 72 may assume negative values. It will be proven later in this
paragraph that 72 < 0 is a sufficient condition for ¢; to be a nonoscillatory function of
transverse coordinate x. Obviously, the shape of these curves depends on the numerical
values of y and pgy.

From Fig. 5 it is apparent that, for a given value of 8,, two values of 7 exist which
may both be real, one real and the other imaginary, or both imaginary. The numerical
value of §, is fixed by the boundary conditions along the z-axis! Once 7; and 7, are
found, a relation between transversal wavenumbers ﬁxl and B, is found. In fact, referr-
ing to a rectangular system of coordinates and assuniing that *

¢1(x, ¥) ~ exp j(By1x + Byy), . (60)

¢2(xa y) = exp ](sz’x + ﬁyy)a ‘ (61)

from Eq. (56) one finds |
ﬁ,%l 485—71, - o (62)
ﬁg2cz 6y=72 T ey

Ba-BesioT i .6

. . - B : S R Y .
The other relatlon necessary to determme B 1 and B, is obtained by 1mpos1ng the
boundary conditions along the x-axis. In general, these boundary conditions are imposed
on the z and y (tangential) components of the electric and magnetic field; e.g., e, /h, or
e, [h, are forced to be equal to some sort of “impressed” impedance. Therefore, 1t is
useful to derive the y components of the electromagnetic field from e, and h, usmg Eq.
(39). A straightforward application of this formula yields

14 °
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B

w=9GHz
H1=0.43
H2=0.9 .
Heft="-1.42

Fig. 5 — Bz vs T curves (a) for Megs > 0 and (b) for ueff < 0.
The caret " indicates normalization to By /€,

de, dh, . - e, dh,
T By T gy T2 B T Gy

de,  0h, de, oh,
hy s Gy TMa gy T Tox T T

where e, and h, are defined by Eqgs. (57) and (58)

(65a)

(664)

e, = [A1 exp(-jBy1x) + Ay exp(jBy1x) +A3 exp(~ jB, o) +A4 exp(lﬁxzx)] exp(- iByy)

(65b)

h ={h{[A; exp(-jB,1x) + Az exP(Jﬁﬂx)] + hz[A3 exp(-jByox) + Ay eXp(Jﬁxzx)]}

" exp(-jByy)

15
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EOET’V “OM € u
- - l--—1] - - ———— Y ,
| | 7
1>82] > osc. \
] .
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>0 | _
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| <By| <o NON OSC.
|
|
Fig. 6 — Dependence of ¢1 spatial Fig. 7 — Geometry associated with a ferrite—
behavior on the algebraic sign of 1',-2 : air interface

As far as the z-dependence of e, and h, is concerned, it is to be noted that if g, is
changed into -8, in the expression of 72, 7; 5, do not change their values. This means
that e, (x, y) (or h,(x, y)) can ‘“travel” in op’posite directions along the z-axis with the
same phase velocity; i.e., stationary solutions may exist along the z-axis. Therefore, the
z-dependence of e, and h, may be expressed as a linear combination of sine and cosine
terms. This, in turn, also means that the transversal components e, and k;, may assume
the same type of z-dependence. They are in fact obtained from e, and h, by means of
transversal operators that do not alter the z-dependence. While the square of longitudinal
propagation constant 82 is always a positive quantity, 5,%1 and 63%2 may be positive or
negative, indicating either oscillatory or nonoscillatory solutions for partial fields ¢;. In
general, a nonreciprocal TFDE is associated with nonoscillatory ¢;. More specifically, by .
rewriting Egs. (62) and (63) as §2; = 'r,-2 - {5’3, one finds the situation shown in Fig. 6.
From this figure, it is apparent that Ti2 < 0 is a sufficient condition for ¢; to be non-

oscillatory.

UNIDIRECTIONAL INTERFACE WAVES

In the previous paragraph we studied free propagation in an unbounded ferrite
medium. Let us now study a simple example of guided wave propagation perpendicular
to the DC magnetic field: the propagation of guided waves along a ferrite-air interface s
(see Fig. 7). In the following, these waves are called “interface waves” to emphasize that
their existence is related strictly to the existence of an interface between the ferrite and
some external medium. For the geometry of Fig. 7, we want e, to have an exp(- jBy y)
along y and to satisfy radiation condition at x = oo. Therefore, we choose e, with an
x-dependence of the type ‘

e,(x) = Aexp(-a,x) (02, a, >0, x>0), .. . ‘»"(67')'2

e,(x) = B exp(a, ;) (2, .+ >0, x <0). * (68)

16
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w o, = COST.

Vi py=ﬁom ‘

By

Fig. 8 — Dispersion diagram for interface waves

Substitution of Eq. (68) into the wave Eq. (27) and Eq.-(67) into Eq. (27) special- -

ized to the case of an air medlum (€, = Megr = 1) shows o, and o, must satisfy the -
followmg condltlons S y ; . o . L

B oy = BRerar (89

By -2, =63 R : , '(70(5)"

Since both dxf and «,, must be real and posu:lve gulded waves exist only When .

62> BBe, g P (Y

2>62. a2

On the w vs By diagram of Fig. 8, these two 1nequaht1es are satisfied in’the shaded -
reglons

Let us now impose the usual electromagnetic boundary conditions at x =0, express- -

ing the contmulty of both the electnc and magnetlc field’s tangentlal components

it

Here + and -, respectively, indicate that e, and k., are in air and in the ferrite medium.
Substitution of the appropriate expressions in Eqgs. (73) and (74) yields

A=B, o (75)

17
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"hy('0+)=hy(0')." . (74){.
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jAaxZ -jB “2 ‘

whose determinantal equation is

”’1 )
By = - E (axoueff + axf)' (77)

Equation (77), in conjunction with Egs. (69) and (70), allows one to calculate
dispersion relation w as a function B, and to draw the corresponding dispersion curves on
a Brillouin diagram. Unfortunately, this can be done only by computer for numerical
cases of interest. When this is done, [10-11] one sees that the dispersion curve is made
up by two branches (see Fig. 8). {One branch is in the w, By > 0 quadrant and presents
a horizontal asymptote at w = wy + w;, /2. The other branch is in the w, By <O
quadrant and extends between two limit points located on the By =By and By =
ﬁo(e,ueff)l/z curves (points B and A in Fig. 8). .

As is common in the study of anisotropic waveguides, it is convenient to consider
the two branches as representative of two different modes of propagation. The mode
represented by the dispersion curve with the horizontal asymptote may be called a

-~ modified magnetostatic mode. The other mode may be called the magnetodynamic mode

or ferrite-dielectric mode. The reason for these denominations will become apparent
later on, after discussion of the magnetostatic approximation.

. In Fig. 8, note how the two modes have opposite phase velocities and how the
ferrite-air interface behaves as a “nonreciprocal” structure in frequency range (w% +
WoW,, N2 < w< wo + W, /2 and as a “unidirectional” structure in frequency range
Wyt w,/2<w< ‘*’,421 . Furthermore, note how inversion of the DC magnetic field
direction would put the modified magnetostatic branch in the second quadrant of Fig. 8
and the magnetodynamic branch in the first quadrant. The same thing would happen if
one keeps H, unaltered and interchanges the ferrite region with the air region in Fig. 8
(see Fig. 9). :

Let us now consider the case of a ferriteb semispace backed by a layer of surface
reactance X;. In this case, the boundary conditions at x = 0 require

e, (07)
o TEe (78)
Yy
and Eq. (77) becomes [
By [ WHy ‘
By =- "X et + Oyr | - (79)

18
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Fig. 9 — Changes in the dlspersxon diagram as the ferrite and air semlspaces -
are mterchanged

Comparison of this equatlon with Eq. (77) reveals that for the ferrite-air 1nterface
X, = - wpg/oy,. For the special cases of X; = 0 (ie., ‘perfect electric wall) and X, =00
(1 e., perfect magnetic wall), one finds that Eq (79) respectlvely reduces to

(i) Mg =05 de, W=wg+w, . (80)

By

() aw =~ o By e, By =*Poleu)t - "_»\(81‘)

Equation (80) is represented by a horizontal line in a Brillouin diagram; therefore,

no RF energy transport is associated with this situation. Equation (81) is represented in -

Fig. 10. Also in this case, the dispersion curve is a two-branched curve and the two
branchés are in different quadrants. The two quadrants can be identified readily if one
recalls that o, must always be real and positive; therefore, the following inequalities’ " -
must hold: .

R , B u

-2 >0 | f<o .
1 w>w; 1 w < ;.
B,<0 | B>0)

Comparison of Figs. 10 and 8 allows one to make a number of observations. One funda-
mental observation is that the X; - oo (perfect magnetic wall) condition has caused the
modified magnetostatic branch to lower to the 0 < w < wy frequency range and has

19
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moved the upper cutoff frequency of the magnetodynamic mode to infinity. Further-
more, it has transformed the structure to a completely ‘‘unidirectional’ one. In fact,
there is no frequency range where the opposite directed modes may simultaneously
propagate. There are only two passbands: the high-passband of the magnetodynamic
mode and the low-passband of the modified magnetostatic mode, with no overlapping
between the two.

One additional observation is that the lower cutoff frequency of the magnetodynamic
mode is w; =_(wg + Wow,, )2 with wy = vH;. Therefore, if H; = 0, w is very close
to zero and the magnetodynamic mode has a passband that goes from almost zero to
infinity. At the same time, the modified magnetostatic mode disappears. In fact, it
propagates from zero frequency to w = wq. More precisely, by introducing Eq. (12) for
p into Eq. (81) for &, and B,, one finds '

By =% BO V Er, (82)
Qef = Wy /€QEMg - ‘ (83)

This result can only be obtained if the following three conditions are simultaneously
verified:

1. Perfect magnetic wall at x = 0

2. Ferrite withbut low-field losses

3. H;=0.

In practice, the first tWo conditions cannot be completely satisfied. The interface
wave will be guided by an interface with 0 < X; < oo and low-field losses will be present

when w < w,,. As a result, upper and lower cutoff frequencies will always exist in the
passband of an actual interface wave. '

// By = Bo V ErHett

/£

Hi1>o0,

B,

Fig. 10 — Dispersion diagram for interface waves along a
~ perfect magnetic wall
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AR FERRITE

Hold /Eo&¢

Fig. 11 — Geometry associated with a ferrite slab in air

GUIDED WAVE PROPAGATION IN FERRITE STRUCTURES

Ferrite Slab with General Impedance Boundary Conditions;
Characteristic Equations for z-Independent Modes

Let us consider the ferrite slab of Fig. 11 and study the z-independent TM, (TE,)
modes that propagate without attenuation along the y-axis, with a dependence of the type
exp(~ jByy) where ﬁ% > 0. The slab geometry can be obtained formally from Fig. 7 by
introducing an additional ferrite-air interface at x = -W. This indicates that the analysis
may proceed as done previously for the semi-infinite ferrite medium, i.e., by choosing
“suitable” solutions of wave Eq. (27) in the various regions and then applying boundary
conditions. Suitable solutions mean that electric field e,(x) must satisfy radiation condi-
tions at |x| = oo dnd is a linear combination of either trigonometric or hyperbolic func-
tions in - W < x < 0. Therefore, »

e,1(x) = A exp(a,,X) | x<-W), | - (84)

?zz(x) " Becosh o px + C sinh o px

€,3(x) = D exp(- ayx) (x> 0), 88

with o, Byr real 'and o, real and positive. The quantities A, B, C, and D are arbitrary
amplitude constants. Substitution of Eqs. (84) and (85) into wave Eq. (27) yields the
following relationships between transversal and longitudinal wavenumbers:

of, =p3-83>0, @8
Br = Baerkess - B3 >0, (88)
o2 = P2 - BZe, g > 0. (89)

21

Bcos By px + Csin B px ‘ - (85)
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These inequalities indicate that the circular functions are appropriate when
B, < Bo (€ Megr)1/? and the hyperbolic functions when B, > g (€, togr)1/2. Since, in the
former case, e,(x) displays an oscillatory behavior within the slab, the modes may be
referred to as “volume” modes. In the latter case, e,(x) is nonoscillatory, and the modes
are labeled as “surface’” modes. However, later in this section it will be shown that this
is not a satisfactory mode classification. In fact, different “volume” or “surface” modes
exist; therefore, a more detailed classification is needed. Let us now impose the usual

electromagnetic boundary conditions of x = -W, 0:
e1(- W) =e,n(-W),
fy1 (= W) = hya(- w),
ezZ(O) ='éz3(0),
hy9(0) = hy3(0),

(90)

and recognize that s, can be obtained from e, via Eq. (26). We then obtain a system of
four homogeneous equations in the unknowns A, B, C, D. Using circular functions for
€,9(x), one finds - ‘ :

- o "Wl
re xal - cos B, /W sin B, ;W 0 A
. . ) #2 . . . .
dettOa |~ (Bursin oW o By sin By W |
eV R e A Y R oY
+ -“— By cos B W) | =By cos B W S
! 0 ;
0 1 0 -1 c
o - - My S e D
‘ — gL, i -
L . ) “l‘By . ‘ } 3xf N » xa“eff) L J
whose' determinantal equation is
' ‘ et Byra SR - o
tan B, W = =5 = P (92)

| | : ; 0 >
2 2 .2 _L 2
ﬁxf ~ Hefr%q + 1y 63’

When e,4(x) is expressed in terms of hyperbolic functions, one must replace Bxf by jou.;
and C by - jC in Eq. (91). The determinantal equation then becomes

' 2p o5 Oty X S
tanh o W = s S (93)

TAY

2 2 2 2

- xf"'”effaxa"' u ﬁy
1
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Hets >0

By

Fig. 12 — Qualitative dispersion curves for TM, modes in a ferrite slab

Mode Classification Based on the Brillouin Diagram

Equations (92) and (93) in conjunction with Egs. (87) and (89) allow one to calcu-
late the dispersion relation w = w(By) and hence draw the dispersion curves on a Brillouin
diagram. Because of the transcendental character of Eqgs. (92) and (93), this can only be
done by computer for specific numerical cases. Figure 12 depicts the behavior of the
dispersion modes in a qualitative manner, retaining however all the salient features of an
exact computer solution. By ‘“‘salient features,” we mean oblique as well as horizontal
asymptotes, cut-off and transition points. »

Figure 13 represents the exact dispersion curves calculated for a YIG slab of thick-
ness W =1 cm (dash and dot line, W = 0.1 cm) with an internal DC magnetic field H; =
200 Oe. One major advantage of a Brillouin diagram is that it allows one to make an
unambiguous classification of all possible modes guided by the structure. Such informa-
tion is obviously of great importance and may be otherwise difficult to obtain in multi-
modal, open structures such as the one under consideration. The criterion for determin-
ing the various modes and how they differ from one another involves a preliminary
inspection of the dispersion waves and later identification of curves that display the same
behavior and possess the same salient features. Application of this criterion to the specific
case under consideration leads to the following conclusions.

Upon inspection of Fig. 12, one easily recognizes in the region indicated by (1) that
all dispersion curves enjoy the following properties: :

1. Cutoff on the §, = B line

2. Oblique asymptote at B, = f, /€,

23
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2 4 6

Flg 13 — Dispersion curves for TM, modes ina
YIG slab of thickness 1 cm (—) and 0.1 cm (-~-);

H; = 220 Oe (from Cables & Trans 27(4), 416-435
(Oct 1973)).

3. Close similarity to the TM, dispersion curves relative to an isotropic dielectric
slab (see Fig. 14) of dielectric constant €, and thickness W (hereafter referred to as
“limit” 1sotrop1c slab)

As a conclus1on it seems natural to say that these curves are representative of TM,
dielectric modes modified by the ferromagnetic properties of the ferrite or, more simply,
that they represent modified dielectric modes. For w >> w, when the ferromagnetic
-system is completely out of resonance, t = 1 and those modes coincide with the cor-
respondlng modes of the “limit” isotropic slab. -

In region 2 of Fig. 12, only one curve extends from B to A. If one compares this
curve to that in Fig. 8 relative to the semi-infinite model, one recognizes a strong similar-
ity between the two. It is therefore natural to take this curve as representative of a
magnetodynamic ferrite mode. Similar reasoning applies to the curve in region 3. It
represents a modified magnetostatic mode|(see pages 46 to 48). The curves in region 4
might be regarded as the curves of the isotropic slab modified by the presence of the
horizontal asymptote at w = (wo + wowpy, )1 12 (resonance of p.¢). However, closer
examination reveals that these curves are heavily affected by the ferromagnetlc properties
-of the ferrite and are very similar to the dispersion curves of the ferrite volume mode of
other ferrite wave guides. In particular, they display a mode clustering phenoémenon in

. 24
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w

By

Fig. 14 — Dispersion curves for TM, modes invisotropic
dielectric slabs

the vicinity of frequency (w% + W, )1/2, Therefore, we prefer to consider them as
representative of new modes that we call ferrite volume modes. The dotted region

Iﬁ | < By as indicated by the inequality Eq. (87), represents modes with nonreal o, i.e.,
radlatlve modes that radiate as they propagate. These modes are of no concern here.

A possible classification of all discrete modes that propagate without attenuation
along the ferrite slab in Fig. 11 is shown in Table 1. Note how the dispersion curves of
all these modes are symmetrical with respect to the w-axis; i.e., their propagation charac-
teristics do not change when the direction of propagation is reversed.. Hence, by defini--
tion, the slab under consideration is a reciprocal structure as far as its propagation charac-
teristics are concerned. The nonreciprocal character of the structure becomes apparent
when the x- dependence of the various field components is considered. For 1nstance if
one calculates e;(x) for B > 0 and then e;(x) for [3 < 0, one finds that e} # e;. This
point will be taken up in more detail in a dlscussmn of the ferrite slab between two ‘
perfect magnetic walls. The above type of nonreciprocity with a reciprocal propagation
and nonreciprocal transversal field distribution exists as long as the structure surrounding
the ferrite slab enjoys a mirror symmetry with respect to the slab’s axial plane x = - w/2.
An asymmetrical loading of one of the two faces also would render the propagatlon non-
reciprocal (see pages 48 to 52). :

Behavior of the Sui'face Modes as ‘a
Function of Slab Thickness

Let us now analyze in more detail the transxtlon pomt A on the dispersion dlagram
in Fig. 12. The name indicates that at this point a transition occurs between two different
modes. In fact, if one traces along the magnetodynamic curve from low w values toward
high values and one goes through this point, one sees that the magnetodynamic mode,

25
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Table 1 — Complete Discrete Electromagnetic Spectrum of a Ferrite Slab

N Cutoff Transition Frequency
Denomination Points Power Asymptotes Range e,(x)
(1) Modified _mm _ Oblique- | w>wg vol.
dielectric | Pxf = Ty B, = Bon/&r
' ” w> wg
(2) Magneto- ’ ﬁy = 60 6y = 50\/ €,.Mort - Wwp <w< Wy Surf.
- dynamic W= wg W= Wy 4 ‘ v
(3) Modified g= Byc o Horizontal | w;<w
magnetostatic | w = w; . Wm W,
w=wo+— | w<wy+—| Surf.
2 2
(4) Ferrite Bxr = —(%Vlr Horizontal
volume -
Tl w<wg ' w =Wy | 0<w<wy vol.

which is surface wave in character, transforms into the modified dielectric mode which
has volume wave fields. This modified dielectric mode, in turn, as w — °°, becomes the
TM, (or TE,) with the largest By (fundamental mode) of an isotropic dielectric slab of
dielectric constant €,. It can easily be shown that transition point frequency w, is
dependent on thickness W of the fertite slab. As W = 0, w, = wg, wg being the fre-
quency at point K in the Brillouin diagram of Fig. 12. This fact indicates that for very
thin slabs the magnetodynamic mode branch gets very close to velocity of light line §, =
"By- On this line, o, = 0 and the electromagnetic field is no longer guided by the sla%.
On the other hand, as the slab thickness becomes bigger and bigger (i.e., W — o0), the

. magnetodynamic mode of the slab becomes more and more similar to the magnetodynamic
mode of the ferrite-air interface. More specifically Eq. (93), for W = oo, becomes

lim tanh o, W=1-= ettt - | - (94)
> |
e - o - ulyol, + (%) 8
or 9 |
(Gp * Hofrteg)? =<£—f) 8, | (95)
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which splits up into

u

_B_y = _‘;2_ (axf+“effaxa) - L ‘ (96)

and
1#1 : .
By = 7 (axf + “effaxa)' ) . : (97)
9 ) ‘ . o

Here Eq. (96) coincides with Eq. (77) and therefore the corresponding Brillouin diagram
is shown in Fig. 8. Equation (97) differs from the previous one because of the minus sign
in front of it. The Brillouin diagram is now obtained from Fig. 8 by interchanging the
curve of the first quadrant with that of the fourth. It is therefore represented by Fig. 9a.
Note how the results shown in Eqgs. (96) and (97) may lead to the definition of the sur-

. face modes in a ferrite slab as modes that reduce to the interface modes when slab thick-
ness goes to infinity. In like manner, the volume modes of the slab may be defined as
modes that in the limit W — oo reduce to free plane waves propagatlng in an unbounded
ferrite medium. e :

Let us now investigate the behavior of the modified magnetostatic mode diépersion
curves as slab thickness decreases from <o to zero. When W = oo, this curve has been
studied in the previous section. It originates at the cutoff point

_(wo +‘*’o m)1/2 = w;

"eﬁ=——‘_———;—. —
B o/ Nm

with zero slope and has an honzontal asymptote at w = wo + W,y /2 When 0 < W < oo,
it can be demonstrated that the cutoff point and the honzontal asymptote both remain -
unaltered. : :

The behavior of the curve for w,; <w< wy + wm 12 ma3; be ea‘silsufkinvestiéated for
large but finite values of 8. Under these circumstances, from Egs. (87) and (89) one
finds S :

o2, = o2~ 2 - (98)

and Eq. (93) reduces to
~2coth B, W= pep + — 99)
#y .
or
B. = — tanh-1 O 1 (100)
== tan — - 1{.
y w 2((02 - 2)

27

AITITSSYIIND



PIETRO de SANTIS

. 'ﬁy
Fig. 15 — Dispersion curves for modified
magnetostatic modes

Puttmg together this result with the fact that the pos1t10n of the cutoff pomt is independent
of W, one obtains the curves in Fig. 15.

Perfect Magnetic Walls: Lossless Case

We considered a semi-infinite ferrite medium backed by a perfect magnetic wall. If
e,(x) of the interface wave is strongly peaked at the wall, this idealized geometry is a good
approximation to a practical circuit of finite width. However, if e,(x) exhibits a slow
transversal decay, the one-wall approximation is not valid. Under these circumstances, the
width of the circuit affects the propagation characteristics and a two-wall or a slab model
approximation is to be used. In this section, we study the TM, modes in a ferrite slab of
width W between two perfect magnetic walls, .

Suppose the walls are located at x = - Wand x = 0. The Chaxacteristic equation can
be found by letting a,, = 0 (see Eqgs. (78) and (81)) in Eq. (91) to obtain

2
Mo
Ber+ <,71> By | sin B W =0 (o1
for volume wave fields and
| up\2 S -
-aZe+ (E) B2 |sinha, W =0 . (»102)

for surface wave fields.



NRL REPORT 8158

By

VOLUME S
—~—— SURFACE :

Fig. 16 — Dispersion curves for TM, modes in a ferrite slab between
perfect magnetic walls

From these equations one finds for u, /ui >0

nmw

Bur = w n=012. ,, o (103)
By =% w, Ot ‘ ) ' - (104)
X | .
or via Egs. (88) and (89)
' 271/2 . , v
By = [60 €rMeft = (W)] - . as
By = * Bole,uy) 2. ~ (106)

Now, Eq. (105) coincides with Eq, (28) once B,y is quantlzed according to the rule
nn/W (n =0, 1, 2 ..). Therefore, the dispersion curves are those (solid) in Fig. 16 and
coincide with those of Fig. 4 for n = 0. Note the mode clustering phenomenon for w —>
wi(w < w;). Equation (106) does not contain W.and, in fact, coincides with Eq. (81)

, relatlve to the semi-infinite model. This result should have been expected as long as in the

semi-infinite geometry h, was zero everywhere and therefore the field configuration auto-
matically could satisfy the boundary condition hy = 0 imposed by an additional magnetic
wall. The surface wave dispersion curves are the dashed lines in Fig. 16. Let us now study
the nonreciprocal TFDE in this structure. The nonreciprocal TFDE in a transversally
homogeneous ferrite slab is schematically illustrated in Fig. 17. If ez(x) and e;(x) indicate
the x-distributions of e, associated respectively to the By > 0 and 6y < 0 cases, the TFDE
can be characterized by the following conditions:

29
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etix ez (x)

By >0

ez;"(x‘) # ey (x)
xﬁ# XM
IF x = 0 IS SLAB'S AXIS,

et ] =le (%

Xif=— xp

Fig. 17 —Schematic of noﬁreciprocal transversal
field displacement effect

e;(x) # e5(x)
‘. Xy F Xy -

where Xpr is the abscissa of ez max- 1f the ferrite slab is symmetrlcally placed w1th respect ‘
to x = 0 (i.e., the perfect magnetlc walls are located at x = + W/2 the above condltlon
speCIahzes lnto B :

Ie (x) = Iez(x)l

Xyo=- %y

Let us now calculate e;(x) at a fixed frequency and see how the TFDE looks in
our particular case. Let us begin by considering frequency region w > w; where’ (g /ul)
> 0. From Eq. (85), we find that for the surface-wave modes

e,(x)= B (cosh ozxfx + <

B sinh axfx>, . - (107)

and from Eq. (91) spemahzed to the perfect magnetic Wall case (1 e., with a,, = 0), we
find that :

c..y o qog
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Therefore, via Eq. (104)

-1 . wh >0 .
<. when By (109)
B 1  whenB, <0 :
which yields
e,(x) =B exp(F a,x)  for f, 2 0. ' (110)

This result indicates that e,(x) for the surface wave modes in_side a ferrite slab between
two perfect magnetic walls coincides with the e,(x) of a semi-infinite geometry (see
Eq. (68)). The x component of the h field is found from Eq. (25) to be

*Byix

= e
-X wl“()u] z

where i, is the unit vector in the x-direction. Via Eq. (106), one also finds

€0€r

X

e, (111)

KoKy

.and, from Eq. (104), h, = 0.

Therefore, the surface wave modes are transverse electromagnetic (TEM), with a
wave impedance given by \/MgH, /€yg€,. The amplitude variations of e, or h, along the
x-axis are shown in Fig. 18a(1) where, for convenience, B is set equal tol (or B =
v Mol [€gE, for h,). Fig. 18a(1) clearly indicates a nonreciprocal TFDE where e, max (or
hz max) Shifts from x = - W to x = 0 upon inversion of the propagation direction. "~How-
ever, one striking feature of these diagrams is that lez (x)] # le;(x)| for every x.. Obv1ous1y,
this result has nothing to do with the TFDE under cons1derat10n as long as the relative
amplitudes of the incident and reflected waves depend only on the nature of the longi-
tudinal discontinuities. One can in fact easily demonstrate that this result depends on
the location of the slab with respect to the x = 0 axis and that a symmetrical location
leads to le;(x)| = Iez(— x)I as indicated in Fig. 18a(2)

For the volume wave fields, one finds
i

#26 w
ez(x)_=B<cosﬂx— > sin*n—TEx> ,

w Minm w
Bﬁy " nmw Bger“ZW ‘n7r
hy(x) = Y (cos W —TBy_— Sm—uT x], (112)

and
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e,{x) e,{x)

(a)

NIE b ey e
\ 6
[\

T N

.

e, (x) e, (x)

—0O0

Fig. 18 — (a) Transversal field displacement effect for

spatially decaying modes in a slab (1) asymmetrically

and (2) symmetrically located with respect to the x =

0 axis; (b) transversal field displacement effect for ™ '+ e
volume modes . : . .

indicating that the modes are now TM, (or TE,). A quahtatlve behavior of the functlon

e,(x) has been plotted in Fig. 18b as a linear combmatlon of a sine term and a cosine . .
term. For simplicity, n and (uy/uq )ﬁy (W/n7) have been assumed equal to unity. The .
magnetic field component h, displays a similar behavior. From Fig. 18b(1) and (2), one -
recognizes that a nonremprocal TFDE may occur also for the n = 1 volume wave modes.
However, this phenomenon takes place ‘within” the ferrite slab. From outside, no _
observer could say that an inversion in the propagation verse has shlfted the maximum of
e, (x) sideways with respect to the slab’s axis. For this reason, one mlght call this
phenomenon an “internal” TFDE. For w < w;, when ug /,ul < 0, the same type of
reasoning applies. One has only to invert the inequalities in Fig. 18. At this point, one
might wish to know which physical parameters control the TFDE and among them which
ones must be most conveniently acted upon in order to optimize the phenomenon. In
our idealized geometry, the TFDE is controlled by exp(«, W), i.e., by ayrW. Therefore,
the first obvious conclusion is that, all the rest being flxed the slab s width W must be
large. The other quantity one must look at is
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w
W=V welw, + W)
wO
EEa
' I
5 a
wn Ve o
Co
Fig. 19 — Behavior of ¢, as a function of ‘frequency
w2w,, €,
Op = , (113)

C(,\/((.v.)2 - wiz)(w2 - w%)

which, on a Brillouin diagram, looks like Fig. 19. If the material is lossless, one would
like to choose operating frequencies close to w, and w;, where o, is large. However, at
wo, My — oo and ferromagnetic losses might heavily influence the propagation characteris-
tics: Therefore, in principle, one would stay away from w and, rather, choose w = w;
with w > w;. More specific results can only be obtained by taking into account losses.
This is done in sec. 4.5. In Fig. 20, the exact behavior of « f 18 displayed as a function
of frequency for a lossless YIG slab of thickness W = 1 cm with H; = 220 Oe (same
numerical case as in Fig. 13). A more complete pictorial representation of the TFDE can
be made either in terms of equiamplitude curves or lines of force of the e and h fields.
This is shown in Figs. 21 and 22. In Fig. 22, note that the line of force representatlon
has been made for the b field (continuous lines). In the upper part of the drawing, the h
field has been represented (dashed lines) by arrows of different length. This rather
unusual situation is due to the fact that a volume magnetlc charge distribution exists,

2
: My By
V.)}_z-_—_ _2 afx’
B My Wi

which is a function of x. Note that b = (by, by) With by = i1k, and by, = jugh,.
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Fig.' 20 - o, as a function of frequency for a
YIG slab with W =1 c¢m and H; = 220 Oe (from
Cables & Trans. 27(4), 416-435 (Oct. 1973).
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Fig. 21 — Representation of the transversal field displace-
ment effect in terms of equiphase and equiamplitude planes

—_——— b

NOTE:
Voh 2 e %X £0

Fig. 22 — Line-of-force representation of the transversal
field displacement effect
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One final subject of interest is the analytical expression of the RF power carried by
the surface waves and a possible definition of an equivalent transmission line associated
with the surface wave propagation. The surface wave power flowing through a slab’s cross
section of width W and height h (see Fig. 18) is given by

*ByA h fo o 20X o = AZh {e G i1 (114)
wioky Ly * 2wpomy 2%V _1° |

The reason why P* # P~ is the same as that mentioned before in relation to e, (x) and
e;(x). It is because the slab’s axis does not coincide with the x = 0 axis. In fact, placing
the magnetic walls at x = + W/2, one obtains '

2

pt=_p-= wZ?#z sinh (0t W). (1)

The characteristic impedance of an equivalent transmission line associated with the
surface wave modes may be introduced in various manners.  One possible way is

w/2
f hxax
-W/2
having made reference to a slab symmetrically located with respect to the x = 0 axis.
From Egs. (115) and (116), one finds that

P 12
Z=— with |I]%=

, (116)
12

- Whpg g sinh (o, /W)

7 =
T T agw (117)
sinh 2
or, alternatively, ,
: ‘ dxfW -1 ‘ . '
Z; = Zjeo | tanh R , (118)

where Zjoo = hwigHg/2 is the equivalent characteristic impedance for surface waves in a
ferrite semispace, i.e.,

lim 2 = Zjes.

W-—>oo
In Fig. 23, we have reported Zj, in ohms as a function of w /C)O for a YIG slab of

height 2 = 0.06 cm and in Fig. 24, Z;/Z;. as'a function of the normalized slab’s thickness
lefW. : o
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2100 {Q)

50 h = 0.06 cm
Wy, = YAnMg = 4.984GHz
po = 1.275 X 108

40 (Q-sec-em™)

hiowm
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We

' Fig. 23 — Characteristic impedance Z,, of the
equivalent transmission line associated with the
surface waves of a ferrite-air interface as a func-
tion of the normalized frequency w/wq (h =

0.06 cm)
Z|
=
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Fig. 24 — Z;/Z,,, as a function of the nor-

malized slab width axfW
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Another possible definition for the equivalent characteristic impedance is
Zy= — : (119)

with V=e___ h.
Substitution of Eq. (115) into Eq. (119) yields
Z, =4z, ‘ (120)

Therefore, the behavior of Z,, as a funcﬁon of w/wg for a YIG slab 0.06 cm thick is
represented by the curve of Fig. 23 with the coordinates multiplied by four.

Pexfect Magnetic Walls: Lossy Case

Let us assume that the slab discussed in the previous section is made by a ferrite
material with magnetic losses. These losses can be introduced into the analysis in an
approximate manner by formally substituting complex r; and uy values into the disper-
sion relations of Eqgs. (103) and (106). This is equivalent to assuming that the electro-
magnetic field also preserves its lossless transversal distribution in the presence of magnetic
losses. Obviously this is not true, but if losses are small the approximation is good.

When p; and p, are complex, the longitudinal and transversal wavenumbers also are com-
plex, and for propagation in the dlrectlon of the pos1t1ve y-axis (By > 0) one finds the
following situation.

[}
Lossless | Lossy
]
e
. : -
151 I Ky =1ty
N )
e,(y) ~lexp(- jB,y) K e,(y) ~exp(-iB,y -oyy)  (121)
]
B, >0 ! By, 0, >0
1 .
1

e,(x) ~ exp(- o, x) e, (x) ~ exp(- a,px +jB, 2x)

1
i
i
i

. !

o> 0 : | ~ exp(- Q) . (122)

!
| when B, is small
' .
1
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Lossless
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3 . ' .1/2 o .
X #1 + sl/2 kS '
. = || o (123
\ :

]

1

1

i

1

Let — =p'-jp"
Ty

o =p'By -p"a (124)

 Bys =P’y + p"B, (small quantity)

The four quantities o, By s Oy and xf Can now be plotted as Brillouin diagrams for
flxed H,, AH, 47Mg, and €,. This is shown in Fig. 25 for YIG with AH = 35 Oe and
H; = 2000 Oe. This is the same numerical case considered in Fig. 3 and is typical of
edge guided wave propagation at X-band frequencies. Note that the slab’s width does not
enter into the picture; therefore, these diagrams also represent the propagatlon charac-
teristics of a ferrite semispace. Obviously our “small loss™ analysis is valid only in fre-
quency ranges where (3, is very small.

. , (a) . K . bl
GHz 'v ) GHz ' ‘

B o o

I ! [ | ] |
0 4 8 12 0 2 ) 6 .
t 1 1 - Pv { - l ‘J_BXf
0 20 0 6 a . 0 .4 & 120 gy

F1g 25 — Behav1or of (a) ﬁ ,a, and (b) ﬁ P as a functlon of

xf? xf

frequency, for surface waves in Yi’G (AH 35 Oe H;= 2000 Oe [20]
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From Fig. 25a, it is apparent that unattenuated longitudinal propagation (o, =~ 0)
occurs only for 0 < w < 4.6 GHz and w > 9.2 GHz. However, from Fig. 25b, one
recognizes that in the lower passband transversal attenuation constant « «f 8oes to zero as
w = 0. Therefore, if one is interested in a strong TFDE; i.e., if one wants to keep « f
greater than, say, 20 dB/cm, one must limit the operatlon frequency between 3.2 and
4.6 GHz (lower shaded area). In the upper passband, the situation is more favorable
since o, is always rather large and above 80 dB/cm. However, for high frequencies, it
is possible that higher order volume modes propagate.

At this point, it is therefore appropriate to explore the behavior of the volume
modes. They can be studied as before, by assuming a longitudinal dependence of the
type exp(- jB,y - « ,¥) with a,, ﬁ >0, and e,(x) almost equal to the e, (x) of the loss-
less case. Under these mrcumstances, letting Megr = Megr - jlag, one finds from Eq. (105)
that : :

By ={A Al —1292)2 - 02]1/2 11/2 (125)
e 1

" ={ -A+B%+[(A -232)2 + 02]”2} ’ (126)
where

A = B2e oy

B

(nm/W)2
C = B2e.u".
0Criteff

Equations (125) and (126) have been plotted as Brillouin diagrams in Fig. 26 for the
same numerical case of Fig. 25. Flgure 26 a and b refer respectively to the n =1 and
n = 2 cases.

From those diagrams, one recognizes that while the n = 2 volume mode is heavily
attenuated for all frequencies of interest, the n =1 mode can propagate virtually un-
attenuated for w > 12 GHz. Therefore, if some possibility exists for the n = 1 volume
mode to be excited (e.g., due to a longitudinal discontinuity) and one wants only the sur-
face wave mode to propagate, one should limit the ‘upper propagation band at 9.2 < w
< 12 GHz.

Character of z-Dependent Modes

The z-dependent modes of a ferrite slab were shown (page 22 - 27) to be pure
TE;(TEy) or TM,(TM, ) modes, either volume or surface wave in character. Here we
wish to study the z-dependent modes of the same structure. The practical reason for
doing so was mentioned on pages 8 to 11, when we said that a parallel plate waveguide
may support only z-independent modes if the plate distance is sufficiently small. In this
section we determine how small such a distance must be for a typical case of interest.
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The z-dependent fields were studied in an unbounded ferrite, and an outline was présented
for the solution of the boundary value problem associated with the parallel plate wave-
guide. The reader is therefore referred to pages 8 to 15 before reading what follows.

"Let us consider the structure of Fig. 27. 1t is a ferrite slab in air, bounded at z =
t h/2 by two perfect electric conductor (PEC) plates. Inside the ferrite, all the reasoning
of the discussions of pages 8 to 15 holds true, and therefore we know that the electro-
magnetic field does not separate into pure TE, and TM, fields, but it can be derived by
two scalar potentials e, and h,, which are expressed as a linear combination of two
“partial” fields given by

#1(x, ¥, 2) ~ expl- j(B1% + Byy)] sin - 2 (127)
b3(%, 3, 2) ~ expl-j(Bep® + Byy)] sin 20 2. (128)

Here, 4 and .5 may be either real or imaginary quantities; i.e., ¢, o may be either an
oscillatory or a decaying function of x (see Fig. 6). This last consideration suggests a
natural way of indicating the spatial behavior of the various modes in the slab’s cross
section. In fact, if one labels with S a nonoscillatory ®;(x) and with V an oscillatory
®;(x), then the nature of the total fields may be identified as follows:

_339531’532‘:2 <0
VV—>5§1,;3§2 >0

8 V_)le <0, 63262 >0 (or vice versa).
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Fig. 27 — Geometry used to study
z-dependent modes :

o hot
. z = .
- FREQ. [GHz] h = .5cm
4TV, = 1780 Oe
12 & = 145
: Hi = 220 Oe
A }
10
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o2 w =Vl + 0wy
c ] g

_.Fig. 28 — Existence regions for VV, VS, and S§
modes on the f vs By coordinate plane :

The existence regions for these fields for a typical case of interest [21] (with 4nMg =
1780 Oe, H; = 220 Oe, €, = 14.5, 8, = n/h = 6.28 rad/cm) are shown in Fig. 28. Wave-
numbers 8Z; change their sign as they cross boundary lines 82; = 0. The boundary lines
partition the coordinate w-vs-8, plane into five regions within which the sign of ﬁ,%,- re-
mains constant. From this diagram, it is apparent that “true” surface waves exist only in
the shaded regions. o o

41

AITITSSYIOND



PIETRO de SANTIS

In all other regions, the x-dependence of the total electromagnetic field inside the
ferrite is expressed by the superposition of an oscillatory and a decaying function; there-
fore, one cannot establish a priori whether the electromagnetic field is surface-wave or
volume-wave in character. Obviously the overall character of the mode depends on the
relative amplitude of the oscillatory and decaying components. Note that at points A, B,
and C in Fig. 28 both 63,- and ﬁg are equal to zero, representing a field which propagates
along the z direction with 8, = m/h. Therefore they are defined by the equations

= wleMo(uy £ Hg)] 1/2

>3

or

- T ' -
W1+ wp(w - o) 1V2 = - (egHoe,) ™2
WI1 = W (@ + wg) M2 = — (equoe,) 2

Brillouin Diagram for 8, = n/h

Let us now solve the boundary value problem associated with the guided wave
propagation along the structure shown in Fig. 27, limiting ourselves to the case B, = w/h.

Insidé the ferrite, the general expressions of e, and h, are given by Eqgs. (65b) and
(66b), which we repeat here for convenience:

- - .. T o
e.(x, 3, 2) = (A]xG + AIX, +A3xg + ABxp) sin T 2lexp(-j8,), (129)
andv

-~ - - - . T . .
hy(x, 3, 2) = (AThyX] *+ AThy X + AghoX; + AJhyx3) sin (7 z) exp(-jByy)  (130)

where the simplified notation has been used x'i’z = exp(t jﬁxl,zx).

. Furthermore, the y components e, and hy are given by Eqs. (65a) and (66a),

' —— ‘ e A )
ey (5, ,2) = (AT X5 + AJFXG +AGfix; + A3f) sin (7 2) exp(- 18,9, (181)

- + 4+

P | . m .
hy(x, v, 2) = (A5 + ATE0XE + A3g3X; + ABghxy) sin (7 z) exp(-j8,y), (132)

with
fy ==-iBy(mg + hymy) - jByq1(mg + hymg),
f] =-iBy(mg + hymy) + jBea(mg + hymg),
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fo =-iBy(mg + hamy) - jBrg(my + hymg),
fy = "’jﬁy(‘rnd + hzmlj *iBya(mg + hgmg),
g iy my ham) - (g thymg),
& = —J'ﬁ&(ms +hymg) +jB;7c1(m4 +hymy),
gy = =By (ms + homy) = jByg(my + hgmy),
gy = ~iBy(mg + hgmy) + jByo(my + hgmy).
Outside the ferrite, in the air regions, the EM field caﬁ be represehted by a super-

position of TM, and TE, modes, which can be calculated from Eq. (39) in the limit
Mg = 0, seer = 47 = 1, and €, = 1. Performing this limit, one finds that

B, ojewy ,
e, = B? -6(2) Ve, - ﬁf _B% i2xVih,, (133)
hy = 19 iyxVe, + i Vih,. - (134)
CoBE-8 T -6 | o

Here the first term represents the TM, (h, = 0) part of the total field and the second
term the TE, (e, = 0) part. In Egs. (133) and (134), the expressions of e, and h, must -
be chosen in such a way as to satisfy radiation condition at |x| = oo, Therefore,

e,(x)= A expl-apx) x>0 - (135)
h,(x) = B exp(- zX) £>0 o | (13.6)
_ A - N |
e,(x)=Cexpla,x) - x<-W . - . . (137)
h,(x) =D exp(o,x) x<-W - 7 (188)

while the z and y dependences are the same for all the components and are respectively
sin (w/h)z and exp(- jﬁy ¥). The transversal decay constant ¢, must be such that all the
field components satisfy a wave equation in air, i.e.,

axu=[63—63+<—}” . | (139)
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Hence, in order for a,,, to be real, the following inequality must be satisfied:

2
T
g2 > B2 - (7> . (140)

Upon substitution of Egs. (135) and (138) into Egs. (133) and (134), one finds

e, = (Af, + Bfm) exp(- &,x) x>0, | (141)
hy = (Ag, + Bg, ) exp(- ayyx) x>0, . (142)
e, = (Cf; - Df,,) exp(0,,x) x <0, - (143)
and ‘ |
hy = (; Cg, + ng) exp(a,,x) x<0, g : (144)
with | | |
fo =By

fn = -J"*"#o“xu

é:e = - Jwegyy,

ém = 6yﬁz = fe

" and © indiéates normalization with respeét to (Bf - 6(2))‘1.

Let us now impose the bounda'ry conditions at x = 0, W requiring the continuity of 7
e,, h,,e,, and hy. When this is done, one obtains a system of eight equations in the
eight unﬁnown amplitudes A, B, AI, A7, A;, Ay, C, and D. The associated determinantal

equation is given by

detM =0, ' : (145)
where
(-1 0 1 1 1 1 0 o )
-fo -fm fi i fz f3 0 0.
0o -1 hy hy  hy h 0 0
- -8 ] g & £ 0 0
M= Ee m ,} o E 2 -0, W
0 0 X3 X1 X2 X2 W 0 w
- - - - =0y, -0y
0 0 fix] fixi fixz faxg -fee ™" -fme -
0 0 mXT RyX] hyXs  haXz o o R ,
- - - - “Sxv ~Oxy
L 0 0 &X; &1 &% €%z €€ % -gme D,
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Fig. 29 — Dispersion diag‘ram for z-depen’d-
ent (B, = 7/h) modes in the structure of
Flg 28 :

In M, the first and the last two columns refer, respectively, to the fields inx>0
and x < -W. The four central columns refer to ferrite region ~-W < x < 0. Equation
(145) must be solved by computer. Some numerical data are reported in Ref. 21 for
specific cases of practical interest. Here we limit ourselves to present the qualitative
behavior of the dispersion curves of the z-dependent modes. This is done in Fig. 29. The
most striking feature of this diagram as compared to the z-independent case is the absence
of a z-dependent magnetodynamic mode. Note that, on the contrary, a z-dependent
modified magnetostatic modes does exist which extends in the SS region. In Fig. 30, each
curve is characterized by an.index m such that [(m - 1)m <B,;W < mr]. The curves
with a star indicate that the mode becomes TE,(TM,) in the limit A = co. Equation (145)
might be also solved for By as a function of distance h between the two metal plates,
other quantities being fixed. Unfortunately, ho such computations exist in the published
literature for the case under consideration; i.e., ferrite slab in air. L. Courtois [21] has,
however, carried out similar computations for a slab of ferrite immersed in a fictitious
medium characterized by a unitary refractive index and a relative characteristic impedance
Z, variable from zero to very large values. Obviously, in this case, the boundary condi-
tions at x = 0, -W require

ez(o) _ ez(" W) _
hy(©) " hy-w) - ZaZo
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— h

Fig. 30 — Influence of h on B, l

with Zg = (4o /60)1/2. The limit cases Z; = 0, oo, respectively, correspond to the cases of
" perfect electric or magnetic walls. The utility of using such a fictitious external medium

rests on this possibility of recovering all cases intermediate between the above limit cases.
For a perfect magnetic wall (Z; very large), the qualitative results of Fig. 30 are obtained
-[21]. In this figure, note that for h = oo (i.e., §, = 0), By tends to the values relative to
z-independent modes. These modes are either surface or volume modes (see pages 21 to
-+ 23). For h =0, 8, = fy;ie., all modes tend to become loosely bound to the structure.
Typically, for h < 0.5 cm all z-dependent modes with the exception of the magnetostatic
. 'mode undergo a drastic cutoff phenomenon and only n = 0 (z-independent) modes
propagate.

COMPARISON OF MAGNETOSTATIC AND
MODIFIED MAGNETOSTATIC MODES

Consider the ferrite slab of Fig. 11 and recognize that the associated magnetostatic
boundary value problem is defined by ‘ ’ . o

1 Veprh=0 o S (146)
2. h=-V¢ ' : - | (147)
3. $1(-W)=y(-W) S (148)
$2(0) = ¢3(0) - : _ (149)
3¢, 3y 09,
T CWITH G W)y 5 W) - (@s0)
3% 3¢y 3¢ _
M 5 (0) -j#g - (0)= 5= (0) (151)
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where ¢ is a scalar potential. Assuime ¢ to be independent of z and have a y-dependence,
exp(- jB,y). From Eqgs. (146) and (147) one finds

2 2 . )
™ 2 TP (152)
ox2 ay2
or
%29 : -
P =By¢. . (153)

Among all possible solutions of Eq. (153), let us choose those approprlate to the
guided wave modes of our structure. One readily finds

$1(x) = A exp(ayx) x<-W . (154)
=] BcosBypx +Csinf,x o : : .
#2() { B cosh axfx +C sinh W<x<0 " (155)

¢3(x) =D exp(- ,,x) x>0 : (156)

with «,, real and positive and Byfs Qr real. Substitution of Egs. (154) and (156) into
the Laplace equation (153) indicates that it must be

=B§>0, | o (157)
B =-p2>0, . (158)
=2 > 0. & o (159)

Obviously, Eq. (158) cannot be satisfied by any real value of B,r; therefore, ¢4(x)

cannot be represented by trigonometric functions. Only hyperbolic functions are admissi- -

ble. This is equivalent to saying that no volume wave solutions exist. _

Let us now impose the bouhdary condvitions‘Eqs. (148)Yand (151) to obtain ‘

s N . \ r N\
exp(- &, W) i -cosh o, W | sinh o, (W i 0 A
Y EO M S AU PP
o, exp(- ozan)!uloz 7 sinh o, (W :-ulaxf cosh o, (W :
I ' [ 0 | | B
: + ;12{3 cosh o, W 1 -uzﬁy sinh o, ;W | =0,
_________:_________+ ________ 7 === .
0 i 1 ' ; ‘ 0 (=1 C (160)
l
[ B '
0 : e 107 K28, | = ®xq D
whose determinantal equation is ’
-2 coth B, W = pog + -ul . (161)
1 : '
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Fig. 31 — Dispersion curves for magnetostatic modes
and modified magnetostatic modes

This equation represents the magnetostatic modes of the slab and yields the Brilloum
diagram in Fig. 31. It coincides with Eq. (99), whlch represented the slab’s modes in the
limit By, >> Bo(€,tesc)1/2 > .

In Fig. 31, we have also reported the exact dispersion curve (dotted line) for com-
parison purposes. From this figure it is evident that the reason for using the denomination
“modified magnetostatic modes> for the exact solution. Note that if perfect magnetic
wall boundary conditions are used (i.e., h = - Jﬁy¢ .0 at x = 0, - W), .the only possible
* solution is B = C = 0;i.e., ¢>2(x) =0 everywhere

BROADBANDING OF EGWs BY DIELECTRIC LOADING

In previous sections, it was shown that a ferrite slab with a surrounding structure
symmetrical with respect to its axial plane is a nonreciprocal structure with a Brillouin
diagram symmetric with respect to the w-axis. Furthermore, its dispersion diagram dis-
plays a magnetodynamic branch which terminates at a transition point, beyond which
only volume modes exist. In this section, we show that, if the ferrite slab is backed on
one side by a dielectric slab of sufficiently high dlelectrlc perm1tt1v1ty, a number of inter-
esting phenomena take place. Among them, perhaps the most relevant are the followmg

1. Asymmetry of the dispersion modes with respect to the w-axis in a Br1llou1n ‘
diagram

2. Shift of the transition point toward higher frequenmes ie., broadbandmg of the
magnetodynamic passband

3. Superposition of a reciprocal TFDE on the nonreciprocal one.
Let us now consider the TM, modes guided by the structure of Fig. 32 The
analysis proceeds along the same lines as for the slab’s case. The scalar potential e (x)
~assumes the followmg functional dependence on x: . : C
e (x)=Aexp(a,,x) - region(l) = (162)
e,9(x) = Bexp(k,gx) + C(- kR, gx)  region (2) (163)
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Ho
AIR -+ [FERRITE - AR
atw X

‘Fig. 32 — Geometry associated with a
dielectrically loaded ferrite slab

e,3(x) = D exp(k, %) + E(- kyqx)  region (3)

e,4(x) ="F"exp(-axvo_c). o . region(4)

where the wavenumbers satisfy the relations
T, = [33 -5(2) >0,
= ﬁg - 6gerd 2 0:

= 33 - ﬁ(z)frfﬂeff 2 0.

(164)

(165)

- (166)
. (167)
(168)

These considerations hold true both in the dielectric and in the ferrite sléb. There-
fore, indicating by S and V, respectively, the surface and the volume wave fields and by
the subscript f or d the femte or the dielectric slab, one fmds the following possible

mode clas51ficatlon
1. 8; 8,
2. Vg Vg,
3. 84 Vp

4. 8; V.

- (169)

Where these modes exist in a Brillouin dlégram can b‘eueasﬂy found on the basis of
the 1nequa11t1es of Eqgs. (166) and (168). This is shown in Fig. 33. From this flgure, one

sees that o2
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o kxf, and k %d change their algebraic s1gn as they cross the boundary lines

AITITSSYIONN



PIETRO de SANTIS

=0, i.e., 53 = B%
k25 =0,ie., B2 =p2¢, ' (170)
k2; =0,ie., B2 = Ble,rhegy | |
These lines, in cohjunction with horizontal line w2 = w (wWhere p g = ©0), ﬁartition the
w vs B, coordinate plane into seven zones within Whlch the algebraic sign of oz,zw, k,ch, and

k2, is constant. These regions therefore represent the existence regions for the modes
indicated in Eq. (169).

py=po\/5—rf .
wI * / ﬂo\[:d_>ﬁo\/—;r?

SURFACE
VOLUME
FERRITE
DIELECTRIC

Qa<”-

i wn

Fig. 33 — Existence regions for V Va» S[ Vi S Sd,
and Vlr S, modes on the w vs ﬁ coordmate plane,
where § = surface, V = volume, f = ferrite, and d =
dielectric

Note that the information provided by Fig. 33 does not necessarily mean that those
modes do exist. It merely indicates that, if the dispersion curves extend in a particular
region, the associated e,(x) has the behavior indicated. Let us now impose the continuity
of e, and h, at the interfaces x = 0, ¢, t + w. The dependence of h, on e, within the
fernte slab 1s provided by Eq. (26). In the air and within the dielectric, h, can be ‘
obtained from the same formula by letting oy = 1, €, = 1, and poge = 1, respectlvely.
Once the boundary conditions are imposed, one obtalns a system of six homogeneous
equations whose determinantal equation may be suitably cast in the form

1+ P exp(2k,4a) 1+ Q exp(- 2k, ;W)
PalP exp(2k,qa)-11  q; +p;Q exp(- 2k, W)

(171)
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with
pP= (lev + kxd )(kxd‘ = (X‘xv)m1 ( (172)
Q= (a;-pPo)py -pp™t | (173)
Oy .
po=7 o (174)
pg =-J Wity N S
i e
pr = — Ry + 2 By ' (176)
WMo Hest | Ky
i CM '
-] : 2
= |k t— 177
qf w#oﬂeff ( xf Ml By> | ( )

Note how P and @ are dimensional quantities while po, pd, j 73 and gy are susceptances.
In partlcular for kg4, k xf real and positive, they represent surface susceptances respec-
tively “seen” looking into an air, dielectric, or ferrite semlspace The nice feature about
casting the determinantal equation in the form of Eq. (171) is that the left-hand side
contains only quantities that refer to the dielectric slab, while the right-hand side is
relative to the ferrite slab. Thus the two particular cases of a dielectric or a ferrite slab
in free space can be recovered by letting W = 0 or 8 = 0 to obtain

’ 1+Pexp(2kxd0) Wy
=-j s 178
[P exp(2keg0)-11pg 7 ag . (178)
wuo - 1+Qexp(-2k fW)
j 179)

J
Oy qf + pr exp(- 2kxfW)

which are the correct characteristic equations appropriate to the two special cases under
consideration.

A solutlon of Eq. (17 1)is obv10usly p0351ble only by computer for some numerlcal
cases of 1nterest Here we wish to concentrate on the effect of a high -dielectric-constant
layer on the propagatlon charactenstlcs of the surface modes of the ferrite slab. The
diagram of Fig. 34 represents the dlspersmn curves relatlve to a 1-mm- thick rutile’ (e,d
45) layer backing a 4-mm YIG slab. A number of 1nterest1ng features are present here.
They can be better appremated upon comparison to the single-slab case (dotted lines).

Let us start by considering the modified magnetostatic modes. One notices that the

By < 0 branch has been shifted toward higher values of By and extends completely in the
S¢Sy region labeled (3) in Fig. 83. The 8, > 0 branch, on the other hand, has been
“split” by the oblique dispersion curve relative to.the TE, mode in the dielectric slab.
Such a “‘splitting” phenomenon is indicative of a weak coupling between the above two
modes. The “weakness” of the coupling is indicated by the small distance that separates
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Fig. 34 — Dispersion curves for a YIG slab (W = 4 mm) backed by a
rutile slab (€3 = 45) 1 mm thick :

branch (1) from branch (2) and is justified on a physical basis by the fact that the
modified magnetostatic mode is essentially guided by the interface at a + W, which is
opposite to the loaded side x = a. Obviously, just the opposite is true for the 8, <0
branch, which is relative to a modified magnetostatic mode concentrated at the x = a
interface. : : '

Let us consider the magnetodynamic branches.  On the 8, > 0 side, the magneto-
dynamic branch of the unbacked ferrite slab is replaced by the TE, dielectric mode
branch, while for By < 0 it just coincides with the magnetodynamic branch of the single
slab for large values of Bxf (i.e., close to the lower cutoff) and, as it gets closer to the
Bxs = O line (i.e., the transversal decay rate decreases), it transforms into the TE, disper-
sion curve of the isotropic dielectric slab. Figure 35 shows the calculated e,(x) at points
A and C and compares it to that relative to points B and B’ (upper cutoff point for the
dynamic mode in the single slab). These diagrams clearly indicate that a considerable
TFDE is still present at the upper cutoff frequency of the magnetodynamic mode in the
unbacked ferrite slab. This is equivalent to saying that the magnetodynamic mode pass-
band has been enlarged. How much? The answer to this question can be given only by
calculating e,(x) at increasing frequencies. At high frequencies pg —> 1, and since
€4 > €., the electromagnetic field tends to become more and more concentrated with-
in the dielectric, while every nonreciprocal effect disappears. Figure 36 shows e,(x) at
16 GHz. At this frequency, there is only a reciprocal TFDE. - -
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Fig. 36 — Behavior of e, (x) at 16 GHz in the
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By>o

53

ITITSSYIOND



PIETRO de SANTIS

R - o
FERRITE

(a) OUTER
MEDIUM

FERRITE
o OUTER o
\ MEDIUM
(b) z‘i"-‘)“": v
R - R =CONST. CONVEX
GUIDING SURFACE
.-
OUTER
R MFDIUM
G S
: r . - )
L FERRITE ‘ . R
(c) ‘
R - CONST. CONCAVE
: GUIDING SURFACE .. ~ -~ .17
S - i ’

Fig. 37 — Schematics of convex (b) and concave
(c) guiding surfaces. Part (a) refers to the recti- -
. linear case. . et T

'CIRCULATING WAVES
Analysis of z-Independent Modes

In passing from a femte semispace bounded by a perfect magnetic wall to a ferrite
slab between two perfect magnetic walls, as we have seen, the unidirectional surface waves
transformed into surface modes displaying a nonreciprocal TFDE. - {9, 22, 23]

Here we want to see what happens to the z-independent unidirectional surface waves
of the ferrite semispace shown in Fig. 1la when guiding surface X = 0 is curved in the
x, ¥ plane either toward the ferrite region (convex surface; see Fig. 37b) or toward the
outer medium (concave surface; see Fig. 37c). -

Consider an unbounded ferrite medium, saturated along the z-axis by DC magnetic

- field Hy. Let us refer it to a system of cylindrical coordinates, r, 0 z. Based on Maxweli’
equations, the z-mdependent T™, modes have h,, he given by
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de M, Oe
(1 7%= 2 Yz
h,=]<r—55-. hmy >( WhoHerr) ™ | (180)

de, Ky ae
hg =-j ar ]M_ 30 (wllo#eff) ‘ _ (181)

and e, satisfies the wave equation

2 1 | azez 2 .
-—a—rz— +_7 —a—; + ; ﬁ + Boerueffez =0. (182)

a2ez 1 de

If we assume a f-dependence of the type exp(+ jnB), and let BO +Mesr = B, Eq. (182)

will reduce to
02e de 2 :
P +<B,2—£—>ez?0. (183)

or2 r or

Solutions of Eq. (183) are appropriate respectively to the convex and concave geome-
tries of Figs. 37b and c are shown in Table 2. In this t_able, one recognizes that

® When pog < 0, e,(r) is represented by the modified Bessel’s functions and no
special condition exists that limits the allowable values of the radial wavenumber 8, and
the azimuthal index n.

® In the concave structure, ez(r) is described by a Hankel’s function of the second
kind, which represents a radially outgoing wave at r = . Under these circumstances, the
surface wave radiates energy as it travels along the guiding surface. This means that one

Table 2 — Possible Functional Forms of e,(r)

(1) bt | Conditions
_ Concave
e,(r)=AHPB,r) | pg>0 n=n'+ jn"
. n" <<n'
e;(r)= AKn(or) | . peg <O | o, =jB,
| Convex
e,(r1) = AJy(B;1) Mot >0 | BR<<pp
e,(r;) = AL (0,7) <0 | o =j8,
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Fig. 38 — Schematic of a surface wave on a convex
circular eylindrical surface (Uegr > 0)

B:R

can still speak of a gulded surface Wave only if the imaginary part of the azimuthal index ‘
n" is much smallér than the real part n'. If this condition is not satisfied, most of the
power goes into the radiation field and the azimuthal surface wave propagatlon is heavily

attenuated.

® In the convex geometry, when e > 0, e,(r) is represented by a Bessel’s function of
the first kind which has an oscillatory spatial behavior. However, if 8, R << p,1 (see Fig. 38),
Py being the first root of the derivative of J,,1, it represents a surface wave with e, n,x at
r=R and de, (R)/ar > 0. When 8, R >> py1, e,(r) presents some nodes in the 0 <r < R region
and the field is appropriately called a higher order volume wave field. For §.R = Dris We
are in the presence of a transition between surface and volume wave fields. These deflm-
tions can be recast in a more precise manner by representing the p,; and p,; loci on a
B.R vs n coordinate plane. Here p,; is the first zero of J,. In Fig. 39, the continuous
line is defined by B,R = p,; and represents the boundary between the higher order Tano
volume modes and the Tg,g volume modes. The dashed line is defined by 8.R = = p,; and
represents the boundary between the TM;,, volume modes and the surface modes In
the shaded region n >> B, R, surface waves exist which are highly peaked at r = R.

‘As far as the sense of circulation (i.e., the algebraic sign in front of jnf) is concerned,
it can be determined very easily if one assumes perfect magnetic wall boundary conditions
at r = R. In fact, under these circumstances, it can be related to the slope of e,(r) at
r=R. To do that, let us recognize that h, (R) = .0, via Eq. (181), yields

=

2

de,(R)
= m

or

A1
e

3

D=

o a8y

respectively, for exp(jnf) and exp(- jnf). Now, from Fig. 40 one sees that for a convex
structure ' : ‘ ‘
de, (R)

or

while for a concave structufe
de,(R)
or
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Therefore, one finds that

[ Ky _
— >0 exp(jnd)
!
convex 1
— <0 exp(-jnd)
L H1
( Ky
— >0 exp(-jnd)
b
concave 3
— <0 exp(jnd).
!

If, instead of a perfect magnetic wall at r = R, one assumes that the outer medium
is air, the reasoning is slightly more complicated and one has to solve the exact boundary
value problem. Under these circumstances, the fields in air may be derived from

e,,(r) =BK, (Bgr) (convex,r>R) ' (185)
e,,(r)=BI (Bor).  (concave;r <R) (186)

and in particular hea’ h,, are obtamed from Egs. (181) and (182) by letting u2 0,
Megr = 1. ‘

The boundary condition to be imposed is now the continuity of h, /e, at r = R.
When this is done, the results of Table 3 are obtained. Here the upper and lower
algebraic sign in front of n are respectively appropriate to the exp(jnf) and exp(~ jnf)
cases. Note that for the concave case, when p e > 0, n is a complex quantity. For this
reason, this case will be treated separately. For all the other cases, one can infer the
allowed sense of circulation from the analytical properties of the ratios

K (X) Ip(X) I(X)
Lo *rLmo e

More specifically, it is sufficient to recognize that the first and the last ratios are respec-
tively negative and positive quantities while X(J,(X)/J,,(X)) is positive for surface waves
(see Fig. 38). The results of this type of analysis are reported in Table 4 and summarized
as follows:

® For a concave geometry, when p.e < 0, counterclockwise propagation is alwayé
possible while clockwise propagation with exp(jnf) is possible only if
4 “2

LIS n—,
|#eff| §' iy
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Table 3 — Characteristic Equations for Circulating Waves

Concave
H,(X) Hy Le |
Hn tn -;l—- p’eff § I (i) Mogp >0 ) (187)
Kn(@)  Hy I,(%)
K@ o ° i = el § 775 LG e <0 (188)
Convex
In(X) ﬁ E.(%) g
Jn(X) —r-t .“1 Heff§ K (f) Heff 0 | (189)
I;,(x)_;iz_ I A P
* I(x) _"n. iy tegel § ——— K, (5) #gff 0 (190)
(ﬁrR =X, ﬁoR = g, xrR =x)

Table 4 — Allowed Propagation Senses and Existence Conditions for Circulating Waves

ol “2 Ailowed Propagation Sénses
Heff_' Left-Hand Side |  Right-Hand Side m ‘and Existence Condition -
K;z _ , _1;1 . u, #2' e_jné. ‘
Hegr <O X —<0 |tepel & th— |—/— >0 : -
K, I, By My T 1
L—\(-—J ) . elnd m | ¢ n >n 2
<0 e ™
F2 >0 | el : v
2 2
Hest > O 'XJ_n>0 “efff_ri“nf n o >#eff‘§j{‘£
R n- . ' K, ek IR ‘ . e T n
: : . % <0 edn0 '
(surface wave) <0 My
. ‘ ‘ ] ejne _’
I, K, Ho | Mgy ' -
I.leff<0 X_I_>O —lﬂeffli‘—}z— tnpn-— _->0 4 u
n n ! Ky ~jno — > 2
;Y—J | e’ |Meff| f n
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® In a convex geometry, when puge > 0, “one has to distinguish between the cases of
positive or negative ug/u; (see Fig. 3 for the frequency regions where these conditions
are satisfied). ‘

When #2./;‘11 >0 (w'> wg + wy,), only clockwise propagation with exp(jnf) is
" possible and subject to the condition

”2 ) K;z
nl—1 > e & —
eff Kn

When yo /1y < 0, the allowed propagatlon is counterclockmse and subject to the same
condition. Note that when n(uq /ul) Megr § K /K'n the right-hand side of characteristic
Eq (189) vanishes and the solution is X = 8,R = p;,,,- For m = 1, this solution is 8,R =
pnl ; i.e., we are in the presence of a transition between surface-wave and volume-wave
fields. At the transition, the structure behaves as an isotropic dielectric of relative
magnetic permeability u.g surrounded by a circular magnetic wall of radius R. These

results are summarized in Fig. 41.

® In a convex geometry, when p 4 < 0, clockwise propagation is always possible,
while counterclockwise propagation is only possible for

!

Mgge) € —K— > ng /i)

n

SURFACE WAVE

H2 Kn
" Hefs S K
{b) .
. X _:]_n_ -0 TRANSITION i
e,in \ n ,
Fig. 41 — Behavior of e,(r) in convex circular P L Mg C Ky
‘geometry when Meg; > O X="pp " Wy Hef I K
AR Ber
. VOLUME WAVE
)
! .
| U Kn
X — >0 nf—«<
! In u Heft f
»
1
L Bor

=
~
D
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Fig. 42 — Mode chart for a TMggg mode in a YIG resonator (diam. 3 cm)
bounded by (2) a perfect magnetic wall or (b) by air

Let us now consider the solution of characteristic Eqs. (188) and (190). The choice
of the dependent and independent variables is made on the basis of the specific applica-
tion for each structure. In general, the above circular structures are used as surface-wave
resonators. At a given applied DC magnetic field H,, one observes the resonance peaks
of the transmission (or absorption) frequency spectrum. Then one changes H, and
observes how these peaks shift in frequency.  Each peak corresponds to a particular
surface-wave resonance, i.e., to an integer value of azimuthal index n. Therefore, one
piece of theoretical information that one would like to extract from characteristic Egs.
(188) and (190) is to know how a particular resonant frequency ws (s = cost) changes as
a function of Hy. The set of curves w; vs Hy for fixed values of s is called the mode
chart of the resonator (see Fig. 2). Figure 42 shows the theoretical curves obtained for a
TMggo mode in a YIG resonator (diam. 3 cm) bounded by (a) a perfect magnetic wall or
. by (b) air. Note that for Hy < 47Mg the ferrite is partially magnetized; therefore, the
tensor in Egs. (5) and (7) has been used in conjunction with Eq. (9). One interesting
feature of these curves is that as Hy, is increased from zero to high values, the resonant
frequency begins by decreasing and then increases. Such peculiar behavior has also been
observed experimentally in microstrip resonators (see Fig. 2).

Propagation Along Concave Surfaces When g g > 0
In the previdus paragraph we have seen that a surface wave along a ferrite-air inter-

face becomes leaky (i.e., it radiates energy as it travels) when the gdiding surface is curved
toward the outer medium (concave geometry) in a plane perpendicular to H, and the
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effective permeability is positive. Within the ferrite medium, e,(r) is apprbpnately o
described by Hankel functions of the second kind H (2), the 1ndex n=n'+jn" being a
complex quantity with (n")2 >0, (n' )2 > 0. If the radiation losses are small, the surface
wave suffers a small attenuation in the azimuthal direction and can be regarded as a
“complex” surface wave in very much the same way as the complex surface wave in the
presence of magnetic losses studied in pages 37 to 40. : :

Let us now consider the geometry in Fig. 37c and assume that a perfect magnetic
wall exists at r = R. From the previous section, we know that the z-independent TM,
field may be derived from scalar potential

e,(r, 0) = AH{D(B,r) exp(- jnf)

when

Ky _
HMegr > 0, — >0.
Ky

These two inequalities are satisfied for w > wg + w,,. From Eq. (184), the characteristic
equation is found to be ‘ ‘

H;;(X)= By S T -(1'91)
Hn(X) “1 ’ » ’

with X = §,.R. This equation must now be solved for n, subject to the conditions .
G) Xread " | B
(ii) n = ny + jng, with ng <<n;.
An approximate solution of Eq. (191) is possible if one knows the relative magnitude

of n with respect to X. To do that, one may recall that for very large values of R, Eq.
(191) must reduce to the characteristic equation of the rectilinear case (see Eq. (81), i.e.,

H, « n . '
tim = == e 2 92
R—>o0 *'n B, (“%_“2)1/2

n By Ko

tim &=-2=—2 o o (193)
R.—)ooX ﬁr“ (12 - p2)1/2 ST e

From Eq. (193), it is apparent that the relative magnitude of n with respect to X,
for large R, is a function of frequency via p; and py. More specifically,

~w< lim — <1

R
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for
Wo + Wy <w <o,

the frequency range of interest. Let us now .suppose that we are,_operatih‘g at a fréquency
w sufficiently higher than wgy + w,; so that n and X are of the same order of magnitude.

Under these circumstances, the expressions provided by Erdelyi for the Bessel func-
tions of the first and second kind can be used: ‘

I (X) ~ (2rnM)™Y2 exp [nM -n sinh'l(—;‘l{—ﬂ , " (194)

Y, (X) ~ - 2(2rnM)~1/2 exp [- nM + n coth™1 (%)] , . (195)

1/2

2

(1-_X_) .
n

These expressions are valid if

where

(2n? + 3X2)2 << 24 n2 - x2 %, (196)

To estimate the range of vahdlty of Eq. (196), let us assume as a first approximation

that n =~ ByR where f, = Bo(€rit1)1/2 is the longitudinal propagation constant relatlve to
the rectilinear case. Thus, Eq. (196) becomes

24RMS - o
F(®) = 5 >>1, -(197)
My (5u2 - 3u2)
where
. w 5 - Rwo a _ C0
W= - ’ = T - .
@ AN

For a YIG medium with w,, = 1.5 wy, F(®) is reported in Fig. 43 and satisfies the
condition (Eq. (197)) for R > 3.5. Let us now express H, (x) as H, = J, +jY, and
observe that for n and X large and of the same order of magmtude IJ (X )I << Y, (X)) so
that Eq. (189) may be approximated by

W% nfe | (198)
Y(X) aX[Y,Xx)12 X M |
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Fig. 43 — Plot of F(w) for 0.448 < R
< 7.168. (From Appl. Phys. 4(2), 167-
174 (Aug. 1974). Used.by permission.) ‘

Consistent with the condition ng << nq, let us now expand Eq. (198) in the com-
plex n plane, in a Taylor series centered at n,. Equating real and imaginary parts, we get

R -2 = L
Yn]_(X) + 7TX {an [Yn(X)] n=n1 X 1 ] (199)
ol [Y"‘(X )] o2 (200)
2| an Va0 | pen,  aX[Yp (X012
where use has been made of thg Wronskian formula
’ ’ . v 2
Tn(X)Yn(X) - T(X) Y (X) = . (201)

Equation (197) via Eq. (193) can be further approximated tjc")‘

2 e 9 N1
S ANET I S (."_1) . ‘
RSP S
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whose solution, within a first-order approximation, is

n=n. 4 1M
17 M0 9 0
R

where the notation n, =’6$,R_ ‘h'és been used. 'From Eq. (198), letting
Y.(X) | n1>2 v
Y,(X) (Y S

ng = — [Y (X)]‘2 [1-(1” .
n= n10 n10

Equation (205) can also be recast in the form

, 2> - o
Ha\™ Ko “2)
n, =n,,{—] exp|- 2ny, {tanh~1 —= - =1}
1 _10<“1> P 10< _ Ky

one obtains

(203)

(204)

(205)

(206)

The two quantities ky; = n; /R and kyy = ny/R have been plotted on a normalized
Brillouin diagram in Fig. 44 for the same numerical case as in Fig. 43. "All wave numbers
are normalized to wq/cs. In the Wggr > 0 region, all curves are truncated at a certain fre-
quency to keep them within the limit uy, << M. Furthermore, the & g1 curves have been

>

Heff<0 2

oM

a
K 92x10

Fig. 44 — Dispersion diagrams for leaky surface waves propagating

along the r = R surface of the structure shown in Fig. 37c. (From

Appl. Phys. 4(2), 167-174 (Aug. 1974). Used by permission.)
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extended into the p. < 0 region. Here they have been calculated by replacmg the K (x)
functions (see the left-hand side of Eq. (188)) either by their large-argument approxima- -
tions (for @ close to4/1 + Wy,) or by their small-argument approximations (for w close
to 1 + &,,). The two portions of the curve relative to these approximations have been
subsequently connected to each other and to the curve in the g > 0 region.

FRINGING FIELD EFFECTS

Relation of Surface and Edge-Guided Waves

In the previous paragraph guided-wave propagation was studied in dielectric structures
separated from the outside medium by either plane or curved surfaces (see Fig. 45a).

Here we want to show that the results of the previous paragraphs are also useful for
somewhat different guiding structures wherein the guiding effect is performed by an edge
rather than by a surface.

More specifically, we refer to a microwave integrated circuit (MIC), wherein the edge
of the RF conductor is responsible for guiding the electromagnetic wave (see Fig. 45b).

(A) : _ (A
(o
SURFACE
Zg IMPEDANCE
SURFACE WAVE .
STRUCTURE O 0 X.
8) &7
. |
EDGE
Z,| IMPEDANCE
54 o 77 X

EDGE FINISHED WAVE
: STRUCTURE

Fig. 46 — Relationship of surface waves and edge-guided waves v
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If one looks at Fig. 45a and 45b, one can hardly recognize any similarity between
these two structures. If, ‘however, one looks at the possible types of analy51s applicable.
to the two cases and recogmzes that a transversal resonance technlque 18 appropnate in
both cases, one apprec1ates that the only difference between ithe two cases is the replace-
ment of surface impedance Z; w1th edge 1mpedance Z Once this replacement is made,
the same formulas should apply in both cases.

Obviously, the main difficulty is the evaluation of edge impedance Z.,. Is'it-a well’
behaved and easy-to-compute or easy-to-measure function of such parameters as the
applied DC magnetic field, the operation frequency, -and the height of the MIC line? -The
answer is yes if Z, is suitably normalized. It turns out that a suitable normalizing quantity

-is Zg: Therefore, let us introduce a dimensional parameter p = Z,,/Z; and call it the
fnngmg field parameter. In the following section, it will be shown how the use of p
allows one to apply the surface-wave theory to an edge-guided wave structure.

Transversal Resonance Teehnique' ‘Iﬁ{nectilinear Case
‘Let us apply transverse resonance techmques to.the: structure of: Flg 45a. ‘Let us
consider TM, surface-wave fields. /At x = 0, wave impedance zf looking toward: X = = oo
plus wave impedance z looking toward x = + oo, must equal zero; i.e.,
Z;+2z,=0, atx=0. (207)

This is equivalent to

e,(07)  e,(0")

= = , (208)
hy(07) hy(0+)
namely (see Eqgs. (75) and (76)), o
<— ' 1 I“l2 axe j._,
z,= ———— |« e — =z 209
f ( xf ™ By) 'wﬂo - s ( )

w”’O“eff

This is the result relative to the _surface-wave structure. For the edge-guided wave struc-
ture, let us replace z "by z pz so that the charactenstlc Eq. (209) becomes

Y A , ’ _
Oyt 7‘: ﬁy * Plegr ax'a = 0. L (210)

This equation can be plotted on a Brillouin dlagram W VS B vv1th p varymg between 0
and 1. Note that p = 0 corresponds to the situation of a perfect magnetic wall and p = 1
to a surface wave structure. The results are reported in Figs. 46-48 for Hy = 2, 3, 4 kOe,
respectively [24,25]. '
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Fig. 46 — Dispersion curves calculated from Eq. (208) with 47M, = 1780 Oe and
Hg = 2000 Oe. Data points refer to the EGW resonators shown in the insert of Fig.
47. (From P. de Santis, IEEE Trans. MTT-24(7), 409-415 (July 1976). Used with
permission.)
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Fig. 47 — Dispersion curves calculated from Eq. (208) with 47M, = 1780 Oe and
H, = 3000 Oe. (From P. d& Santis, IEEE Trans. MTT-24(7), 409-415 (July 1976).
Used with permission.)

68



NRL REPORT 8158

A PSS G S A A A IS U N B S ST EAT U TN (A N S I U N E S

200 250 300 350 400 450 500 By, im™)

Fig. 48 — Dispersion curves calculated from Eq. (208)with ATM, =
1780 Oe and Hy = 4000 Oe. (From P. de Santis, IEEE Trans.
MTT-24(7), 409-415 (July 1976). Used with permission.)

Determination of the Fringing Field Parameter

To determine the numerical values of p appropriate to an MIC edge-guided wave
circuit, we measured the transmission spectrum of the edge-guided resonators shown in
the insert of Fig. 47. The physical characteristics of these are reported in Table 5.
Assuming the periphery of the resonator to be of length L, the resonances w; occur at

s

ﬁws—'z

assuming negligible curvature effects. The corresponding values of frequency ws and
wavenumber 3y s were reported in the diagrams of Figs. 46 and 48. The shaded areas

indicate the regions where the experimental data points fall. From these results, it turns
out that a value of p = 0.5 is a good approximate value for 2 < Hy < 4 kOe.

Radial Resonance Technique: Circular Case

We have just considered MIC disk resonators and assumed their radius R to be so
large as to neglect curvature effects. Curvature, however, can be taken into account if
one uses ‘“‘radial” resonance techniques [23] instead of the usual transversal resonance
techniques.

Let us consider a radial transmission line charactenzed by radlal wavenumber §, =
Bo(€rMesr)/2, and characteristic impedance

69

$=1,2,3.., (211)

AATITSSYIIND



PIETRO de SANTIS

Table 5 — Geometrical Characteristics of the EGW
Resonators Shown in the Insert of Fig. 47

: ' AK
%
Type of Resonator h R (rad /¥n)

(1) Disk — | 15 | 66.66
(2) Circular hole — 15 | 66.66
(8) Rectilinear + circular | 10 | 15 54.99
(4) Rectilinear + circular | 20 | 10 | 61.09

*All lengths are in nanometers.

Note: From left to right, the vertical columns indicate

(1) the length of the rectilinear portion; (2) the curvature
radius of the circular edge; (3) AKy = 21/L, the increase in
longitudinal wavenumber between two successive resonances.
L is the total length of the guiding edge.

_ ezf(r)
= 2arhgp(r) ° (212)

where e,¢(r) = J,(B,r) for pegy > 0 or = I,(B,r) for pee < 0, and hgyy is given by Eq. (181).
This transmission line extends inside the ferrite medium for 0 <r < R and at r = R joins
another transmission line characterized by

B, = 8o (213

and
_ Cz (r) 214
% Darhog(r) ’ (214)

where éza(r) A Kn(BOr) and hy, is defined by Eq. (181) with Mg = 0. The latter trans-
mission line extends in air for R <r < oo,

Let us now impose the following resonance connection at r = R:

zp = pz, . (215)

to‘obtain
Ip(X) L ke N K, (%) (916
7 X) =tn m puefff———Knm . (216)

Equation (216) with 0 < p < 1 is the characteristic equation for edge-guided waves
in a disk resonator. For p = 1, it coincides with Eq. (189) and represents surface-wave
propagation. For p = 0, the perfect magnetic wall case is recovered. Equation (214) can
now be plotted as a mode chart as in Fig. 42. Figure 49 represents the diagrams of
Fig. 42 completed with the 0 < p <1 cases. Also, in this case, the actual value of p can be
determined by superimposing the experimental points on the theoretical results.
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Fig. 49 — Mode chart for TMyg, modes in a disk resonator (diam. 8 cm) for 0 < p < 1.- Circles
indicate experimental points. (From P. de Santis, IEEE Trans. MTT-25(5), 360-367 (May 1977).
Used with permission.)

In Fig. 49, we have reported the wg resonant frequency as a function of Hy. From
this figure it is apparent that for Hy > 4nM,, p = 0.4 is a good approximation, while for
the unsaturated region 0.5 < p < 1. If one applies this procedure ton = 1, 2, ..., 8, the
results of Fig. 50 are obtained. From Fig. 50, one recognizes that for a saturated ferrite
p = 0.5 for X-band operation and p ~ 0.35 for C-band operation.

CONCLUSIONS

The theory underlying EGW propagation has been presented. It has been shown that
z-independent, unidirectional surface waves may propagate along a ferrite semispace
bounded by a perfect magnetic wall over a frequency band that extends from zero to
infinity. If one recognizes that a perfect magnetic wall boundary condition is approxi-
mately satisfied at the edge of the RF conductor in a ferrite stripline or microstrip circuit,
one may understand why very large bandwidths are predicted for EGWs.

In practice, at least two factors limit such a large bandwidth: magnetic losses at the

low-frequency end and higher order mode excitation at the high-frequency end of pass-
bands. : v
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Fig. 50 — Numerical values of p as calculated from diagrams of the type shown in Fig. 49.
(From P. de Santis, IEEE Trans. MTT-25(5), 360-367 (May 1977). Used with permission.)

Both limitations were analyzed. While the former can be overcome by use of better - ‘
quality ferrites, the latter is strictly dependent on the finite reactance existing at the edge.
‘Dielectric loading of the edge is a means of increasing such a reactance and approaching
the perfect magnetlc wall situation.

Curvature and fringing field effects introduce additional problems in the practical
realization of EGW devices. In particular, a curved edge supports leaky modes when the
curvature is concave and g > O inside the ferrite.

 Fringing field effects are of importance in microstrip structures and in general are,
difficult to evaluate. A semiempirical technique was presented to predict the effect of
fringing fields on the EGW dispersion curves. A fringing field parameter p was introduced,
and it was found that a numerical value of 0.5 ~ 0.4 was suitable for most cases of
interest. If the applied DC magnetic field points in the direction of the coordinate z-axis,
the electromagnetic field associated with an EGW is z-independent. However, it was
shown that higher order z-dependent fields may exist. These fields may be effectively
suppressed by proper choice of the ferrite’s thickness.

The above results provide a deeper physical insight into the nature of EGWs and are
of great help in designing practical EGW devices.
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