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FREQUENCY-AGILE RADAR SIGNAL PROCESSING

INTRODUCTION

Modern radars sometimes incorporate pulse-to-pulse changes in carrier frequency (a) for
the sake of increasing detection probability, (b) to reduce vulnerability to jamming;.and :(c) to
reduce probability of interception. However, coherent processing such as a cohergnt:
target indicator (MTI} is often necessary to suppress clutter echoes, which means:th
the period of time coherent processing takes place, the carrier frequency sh'.o‘ul:d b
stant. It is possible, in principle, to perform coherent integration of a train of frequency-
hopped echoes. However, the response of such a system to small changes in range and
doppler frequency causes problems beyond the scope of this report. Thus, we consider a
frequency-agile radar that transmits groups of N identical pulses, where carrier frequency is
fixed within a group (block) but is varied from block to block. ' o )

In this report we address the problem of choosing the optimum value of N (the number
of pulses in a constant-frequency block), assuming random frequency modulation from block’
to block. The total number of pulses M transmitted during the antenna beam dwell time is as-
sumed to be fixed. The method explored here shows that a substantial improvementsin -re-
ceiver sensitivity results from an optimum choice of N, especially for large values; of:

Fundamental detection theory is reviewed in the next section and is subsequenily‘applied
to three receiver models, which are defined and analyzed. The appendixes provide needed de-
tail to justify the method of calculating the performance of the receiver models.

PROBLEM DEFINITION

Here we consider the probiem of selecting optimum processing for a sequence’ of M radar
echoes, which are divided into M/N blocks of N pulses per block. The carrier frequency S
(see Fig. 1) is assumed constant within a block; random changes in carrier frequency are as-
sumed from block to block. M and N may take any integer value. An optimum PIOCessor is
defined as one that minimizes the input signal-to-noise power ratio % required for given proba-
bilities of detection P, and false alarm P,,. If no further constraints are added, the optimum
processor will be the well-known maiched filter [1]. Since the waveform s(¢) is known exactly
(except for time of arrival), a linear filter, having an impulse response A{f) = as(—t + 7).
would maximize the signal-to-noise ratio at its output and, hence, minimize detectable power, S
{the constant, Ty 2 pulse width, and Sis sometimes termed receiver sensitivity), -

Al present, difficulties in implementation prevent coherent integration of frequency-agile
echoes. Such a processor is known to have been implemented in software [2,3], but not, to the

Manuscript submitted June 2, 1977.
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Fig. I — Block-to-block frequency-agile radar signai fJu = parrier frequency)

best of our knowledge, in hardware. Hence, we consider coherent integration of each bioek of
N pulses and noncoherent integration of M/N blocks. We wish to find a specific value of N
which minimizes the input signal-to-noise ratio & required for detection.

PROCESSOR MODELS

Figures Za and 2b represent examples of the processors examined in this report. The
processor of Fig. Za is optimum under the above constraints, whereas the second processor
{Fig. 2b) has the advantage of simplicity since only one cutput channel is required.
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Fig. I — Block-to-block radar signal processing sysiems

A fiiter matched to a single doppler-shifted block of M pulses is identified by an impulse
response matching the rectangular block of N puises (Fig. 1}, Since the doppler frequency is
unknown, it 15 necessary to provide multipte filters 1o span the interval between doppler ambi-
guities. This leads to the incorporation of the well-known fast Fourier transform {FFT) as ii-
tustrated in Fig. 2, both processors are identical up through N magnitude detectors operating
on Noutputs from the A-point FFT, It is assumed that the filter block, labeied MF, is matched
to the waveform of each pulse.
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Detection theory [1,4] defines a maximum-likelihood detector for the case of a SIgnal hav-
ing one unknown parameter to be a bank of matched filters, which span the range :
tainty (in this case doppler frequency), followed by threshold detectors operating on he filter
oulput magnitudes. From this point of view (maximum-likelihood detection), an Ng_om_tF_FT
processor is optimum for detecting a target on the basis of a single block of pulses. We there-
fore incorporate, in the models of interest (Fig. 2), optimum N-pulse coherent processing.’

Constant-Velocity Target Detector

It can be argued that the processer of Fig. 2a is optimum for the signal specified.in, Fig. 1.
An echo from a target of velocity v will be integrated in doppler filters identifis by the
relation f;; = 2f,v/c, where [, is the doppler frequency corresponding to the canrle
f; of the ith block. Since the echo will appear in different doppler channels .as.
a switching matrix is required to deliver all M/N coherently integrated blocks_tq
priate "video" integrator corresponding to target velocity v. It is noted that A¥ !
channels are required, where AV is the range of target velocities and Av = c_’/ NT, f; =
)T/2NT, is the mean velocity resolution of the FFT doppler channels. :

Although we do not prove optimality, this processor integrates all echo energy over an
M-pulse dwell time of the antenna beam on a target prior to combining with noise-only chan-
nels. Thus, this processor is expected to be more efficient* than that of Fig. 2b, which' com-
bines doppler channels prior to video integration in the peak selector. The integrated ouputs
form the basis of an estimate of target velocity; ie., all M/N outputs (|y;|) due to a target of
velocity v will be connected via the switching matrix to the corresponding velocity ch:a-n_n.el_* in-
tegrator, say v;. Hence, the threshold detectors, set to select the largest response,. will. most
probably select the one containing the target signal. In this sense, the processor of Flg 2a may
be referred to as a velocily estimator, where v; is an estimate of target velocity v.

Reference Processor

Here we define a reference processor which is identical to that of Fig. 2a except that only
one velocity channel (hence, one video integrator) is required since we assume th_a_t- larget
velocity is known. The effect of this assumption is to avoid the need to correct calculated SNR
values for doppler uncertainty. If the doppler frequency is unknown, the threshold values
must be increased, as A F/Av increases, to maintain a constant false alarm rate.

Peak Filter Output Integrator

The advantage of processing block-to-block agile signals, using the system. of. Fig. 2b
rather than that of Fig. 2a, is obvious; no switching matrix and just one integrator are.required.
On the other hand, a disadvantage stems from the fact that no doppler information is. available
from the peak output integrator. When samples of noise only are added to samples containing
signal plus noise, the signal becomes more difficult to discern from noise, and the increase in
signal power required to maintain a given detection reliability (P ' and Pja) is referred to as
collapsing loss. However, as will be shown later, the performance for Fig. 2b is only sllght!y
worse than that for the reference processor defined above.

*This ferm is used to express efficacy of signal-to-noise ratio improvement; efficiency in mathematicak slatlsllcs lakes
on a different meaning not intended here.
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DETECTABLE SNR FOR REFERENCE PROCESSOR

We now develop, for the above-defined reference processar, an expression for & the in-
put SNR required for specified detection and false alarm probabilities. To obtain this SXpros-
sion, we assume that SNR is improved linearly with N in the coherent integratar (FFT}, and
we make use of the standard curves of #, needed (for different combinations of P, and Pt
at the input to the magnitude detector as functions of / = M/N, the number of noncoherent
integrations, The calculation of é@y (P, =09, Pfa =07 %1071 is plotted in Fig. 3, based
upon the five statistical models defined by Swerling [S} for targets with fluctuating cross sec-
tion. Probably, the maost frequently used is Case I, which corresponds to Rayleigh scan-to-scan
fluctuations (all ] pulses correlated). Cases I and 11T differ only in the statistical distributions
assumed. The results in Fig. 3 clearly iHustrate the greater penalty inflicied by the Case
scan-to-scan fluctuations as compared with the Case {1 pulse-to-pulse fluctuations for large
values of [, the number of integrated puises. Note that for I = 750, Case il noncoherent in-
tegration (NCI} is more efficient than Case I NCI by about 8§ dB.
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Fig. 3 — Comparison of coherent and noncoherent integration of
radar returns fram Swerling-maodel targets {for F, =08, PM =07
% 10717 tafter Rivers, SEMCOR Rept, SD-75213-1}

The curves of Fig. 4 were developed from Swerling Case 1l curves (frequency agility
biock-to-block}, making use of the following procedure and definitions. The detectable SNR at
the input, #, is improved by coherent integration so that Eﬁ?y = NZ, neglecting losses: hence,
a vatue of & may be found from Eq. {1):
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= (1/N) &, (M/N). ()
For example, note that for Case Il (Fig, 3), 2, (100/10}/10 =8 —10 = —-2dB = R..

DETECTABLE SNR FOR PEAK FILTER OUTPUT INTEGRATOR

The curves of Figs. 4 and 35, corresponding to the processor of Fig. 2b, required a more
complex calculation because of the necessity of accounting for the collapsing loss encountered
when noise-only channels are combined with a channel containing both signal and neise.
Thus, we make use of the fact that a portion of this processor has been analyzed for M-ary
communications [4]. In this case, the block diagram up through the peak selector is identical
to the optimum detector for a communications signal consisting of any one of N orthogonal
signal waveforms. The probability of etror (i.e., the probability that the output of at least-one
noise-only channel will exceed the ouput of the channel containing the signal) is computed us-
ing the relation of Eq. (2), which is further illustrated by the graph of Fig. 6;

oo lx — QE/N) )2
P.(e) =1 “f_ dx\/;_Eepr al 2/0

N -l
exp ( —y%/2)dy

, @

X 1
f—oo N2
where £and Nj are signal energy and noise power spectral density, respectively.

Returning to Figs. 3 and 4, note that the minima exhibited by the curves of Fig. 4.occir
because of the change in slope of the Case 11 curve {solid line) in Fig. 3,as /] = M/Nchanges
from small to large values. Its slope exceeds that of the corresponding coherent integration
curve (dashed line) for small f becoming smaller for large / As N approaches M (Fig. 4), I
decreases to small values causing the value of %’ (Fig. 3) to rise sharply, overcommg the de-
crease due to greater coherent processing.
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Hence, if we consider a sequence of /output samples from the peak selector, on.the aver-
age, P.f samples will be due to noise only; clearly (1 —P,)7 will be due to signal:
Collapsmg loss is well known [6] to be a function of the collapsmg ratio p,. where; if m is the
number of noise-only samples and # is the number of signal-plus-noise samples, then -

_mtn _ Pi+ (01 —P)I 1 o .::.: (3)

Pe " a-r)  1~pP

Although Marcum [7] calculated collapsing loss L, as a function of this ratio p,, his:curves (re-
printed by Berkowitz [8]), were computed for the case of a nonfluctuating target. The.approxi-
mation (L.=1 —P,), as discussed in Appendix A, is therefore used below to derive Eq: {4).

Since L, is a function of P,, which is a function of # and N, we are led to the f@llowmg
equation Wthh must be solved by successive appr0x1mat|0ns .
NZ =R, (M/N)/L Ry W) @
Y ¢ 1=-PA(AN) K
Equation (4) is obtained from the definition of, and approximation for, collapsing loss (see Ap-
pendix A) and the relationship R, = NZ for coherent integration. Note that L, is defined to
be a number less than one. :

SIMULATION OF PEAK SELECTION PROCESSOR

A simulation was implemented to compute the detection performance of a processor us-
ing peak selection of doppler channels. For comparison, the simulation was alse run:fo
cessor using only a single doppler channel. Figure 7 is a diagram of the simulatio
the processors and the signal and noise generators. B

k=0 DETECT LARGEST
SIGNAL — 1 oF sl
GENERATOR L j . INTEGRATOR- |- - ./
2nfk DFT  }—df - 10 ‘
A AL 2 2
I=Acos S5 - N=g V1o ] VO EM
o 2afk — ] — !
Q=-Asin ~ | ] | I
I || L
}_ k=0 DETECT
NOISE | [
GENERATOR [ ] INTEGRATOR | = 7
| = Bcos 2nRt M DFT b= /57 iy N
Q= Bsin Z:H — N=8 \/:02 ez M
B - 1.
B=XR-05 = t:
A L

MEASURE OF
RMS NOISE
INPUT

Fig. 7 — Simulation of "largest of " detector and singie doppler channel detector




WATERS AND LINDE

The processor of interest consists of a doppler fitter bank, implemented with an eight-
point discrete Fourier transform (DFT). Eight input samples compose a coherent processing
interval {CPl) and produce eight doppler outputs. The outputs are detected, the one with the
largest amplitude 1s selected, and the outputs from 10 CPIs are sumimed in a nencoherent in-
tegrator. Finally, the output of the integrater is compared 1o a fixed threshold and the detec-
tioti decision is made. The detection decision is based on a total dwell time of M = 80 samples.
The second processor is then implemented as a reference. This processor, identical except that
a singie doppler output is used, represents a case where the target doppler is known and no cel-
iapsing loss is suffered.

The inpuls 1o both processors are identical and consists of in-phase and quadrature {(/and
() components of signal plus noise. The signal components are

{, = Acos Zw};fk (Sa}
and
0. = Asin 2TLE (5p}

N r

where fis the doppler frequency, k the doppler filter number, and N the number of points in
the DFT. The additive noise has a uniform phase distribution and an approximately Gaussian
amplitude distribution given by

fy, = Bcos 2wR, {Gal
Oy = Bsin 27R, {6b}
and
12 )
B =Y (R—05), (6c)
T

where R is a uniformly distributed random number between 0.0 and 1.0

The first step in the simulation is to determine the threshold setting T for various false
alarm rates. The results shown in Fig. 8 were obtained by setting the input signal to zero and
measuring the probability of false alarm as a function of the threshold setting. Now, we can
use threshold settings al 2 desired Py, and measure Py by running the simulation with various
vatues of signal amplitude.

The results of the simulation of both processors are shown in Fig. 9, where the input
SNR is plotted as a function of P, for various Py,. Fora P, =0%and P, = 1073, the proces-
sar selecting the largest filter outnut requires 2.3 dB higher SNR than the reference processor,
For greater P, and smaller P, the performance of the "largest of” processor approaches that of
the single fitter case,

CONCLUSIONS AND RECOMMENDATIONS

We have shown that the choice of block size in a block-to-block frequency-agile radar is
impertant if maximum recefver sensitivity is ta be realized. The curves of Fig. 4 exhibit dis-
tinct minima in signal-to-noise ratio required for reliable detection, the locations of which
depend upon the tolal number of pulses available for coherent and noncoherent processing,
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These data correspond to a reference case in which it is presumed that the doppler frequency
of the target is known, so that collapsing loss is zero. The collapsing loss corresponding to the
vetocity-estimator processing (Fig. 2a) is easily determined from the reference case {to a goed
approximation) by computing the number of doppler resolution cells required to span the
range of target velocities. If this number is greater than AN, then the collapsing ioss is equat to
the SNR increase needed to reduce Pﬁ, by the factor N Here, collapsing loss arises from the
fact that more than one channel may contribuie a false alarm, requiring an increase in thres-
hold and SNR to maintain a desired false alarm rate.

Figure 4 also contains data corresponding to peak selectfintegrate processing {Fig. 2B} in
which multiple doppler channels are combined by selecting only the largest output for subse-
guent video integration. Tabie | compares the three processors for two values of total dwell
time, M =100 and Af = 200, where in each case the optimum N was selected.

Table 1 — Comparison of Processor Performance
(P, =09, P, =10 7%

.
Processor M NGpl SNR B) L (dB)
Reference 1060 17 =35 g

200 33 -68 1]
Velocity Estimator 100 17 —7.75 .85
{Fig. 2a) 200 33 —5.15 165
Peak Select/integrate 100 20 —Z.1 1.5
{Fig. 2b) 200 50 5.1 1.7

It should be noted that the SNR penaity for using the simpler system involving just one
tategrator is less than ! dB for M = 100, and less than 0.1 dB for A/ = 200, However, we
must consider the effect of the approximation used in calcutating performance of the latter sys-
tem. Basically, the approximation involves two assumptions discussed in greater detait in Ap-
pendix A

1. We assumed #, m@}, in deriving Eq. {4) used to compute SNR for the peak
select/integrate system.

1. The effect of the peak selector on signal and noise distributions was ignored; e, Py
and .F_’fb were assumed to depend only on %, the SNR at the threshold.

Tahte 2 compares the data calculated from Egs. {1} and {4} with Monte Carlo simulations
of the reference and the peak select/integrale processors. No approximations are involved in
Eq. {1} except those used by Marcum, and the signal in the development of Table 2 is
nenfluctualing, The results clearty indicate that the simulation and the calculation for the refer-
ence processor agree within 0.2 dB; the simulation for the peak selector is higher by 4.5 dB
than the computed result involving L. =1—F, and 1.1 dB for the case involving
L. =/t — P, These collapsing loss expressions, described in Appendix A, hold for large
and small SNR, respectively. It might be inferred from Table 2 that the effect of the second
assumption {mentioned above) is to yield optimistic results; hence, L. =1 — P, provides a

10
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more accurate estimate of SNR. This would tend to agree with the expected influence of the
peak selector upon the noise statistics; i.e., it is reasonable to expect the distribution change to
increase F,. It has been suggested that L, depends more heavily on N than on M, the; total

number of integrated pulses [9].

Table 2 — Comparison of Performance Estimates Obtained from
Egs. (1) and (4) and Corresponding Monte Carlo Simulation*

Processor Method SNR (dB)

Reference Eq. (1) —4.9

Reference Simulation —4.7
Peak Select/Integrate Eq. (4) (LC =1—-P) =33
Peak Select/Integrate Eq. 4) (L, = ﬁ ) -39
Peak Select/Integrate Simulation 28

*P,=09,P =10 M =80, N =38

In conclusion, it should also be noted that the processor of Fig. 2a provides an estimate

of target doppler as well as nearly optimum sensitivity. Further attention should be. given to

this technique. For example, a measure of reliability of velocity data for targets of: various

speeds and accelerations could be defined and tested. Although the utility of frequency-agile

systems depends on the range of frequencies available and interference with other users of mi- -
crowave bands, doppler ambiguities are reduced and blind speeds are eliminazied by this 1ech--
nique, so that an.estimate of radial velocity is available on each scan of the antenna. Velocity

data should tend to reduce track-while-scan errors and the hand-off delay to weapons systems.

o0
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Appendix A

COLLAPSING LOSS ASSOCIATED WITH PEAK OUTPUT
SELECTION AND INTEGRATION

In this appendix, we are interested in finding the value of & needed to provide the re-
quired detection reliability measured by F,; and Ffa {detection and false alarm probabilities) for
the system illustrated in Fig. Al. Since N-1 noise-oniy channels are combined with the chan-
nel containing the signal in a peak selector, the SNR delivered to the integrator is degraded; o
compensate, .@y must be increased by an amount defined here to be the cotlapsing loss L.
The necessary increase in %, may be approximated by introducing the diagram of Fig. Al
Here, #, is the SNR needed 1f all integrated pulses contain signal plus noise and we define col-
lapsing loss as

L, =R,i9R,. (A1)

Note that the output SNR, %, is the same for both diagrams (Figs. Al and A2).
Although it is known that, in general, equal detection reliabilities (P, Pp ) will not be
achieved by making %, the same in Figs. A}l and A2 because of the differing statistical distri-
butions caused by the effect of the peak seiector (Fig. Al}, comparisons of date conmrputed from
the results of the following analysis indicate that this effect is small.
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Fig. Al — Noncoheren! integration of peak-selected doppler filtered signals

Y

SNR=JF y et D

P

Ry =U-PYR, Ro=11-PrIR,

(bl

Fig, AZ — Single channei modei with equivalent output SNR
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We assumelthat SNR improves linearly with 7, because of video integration, so that, in. .
Fig. A1,%, = 3 %.. A signal is assumed to be present in just one of the N doppler chan-

i =]
nels and SNR is assumed to be %y. Equal amounts of noise are assumed in all channels. On
the average, P,/ integrated pulses are due to noise only (ie.,%,, =0) where P, is the so-called
error probab:hty described in the foregoing sections and in Appendix C. Hence if 933 1s as-

sumed constant for [ pulses, then #,; = &% for the remaining (1 — P,)[ terms, and

1 —p)1

Ry = 2L % =0-P)R,. (A2
i=1 .

In Fig. A2, &, =%,/1 = (1 — P,)&,, since R, is the same (Eq. (A2)) as in Fig. Al and &,
is assumed to be constant. o

Now, to evaluate L, *.@ /.@ we introduce an expression connecting .@y w1th 33.’
Equation (A3), given by Davenport and Root,* makes clear the nonlinear dependence of.%’ on
92 The same expression connects ?A” and 92 :

R 2

. b
z kP1+2§/2y'

where k, =1 for a rectangular sine wave signal envelope. Equation (A3) holds for Gaussian
noise, a square law detector, and where %, is defined as the ratio of output signal and noise-
only powers. Although the equation for g2, varies with assumptions regarding detector. law.and
SNR definition, we are dealing here with a mechanism affected only slightly by the functional
dependence of %, on %,. In the following paragraphs, this is demonstrated by comparing
values of L, obtamed by calculations based upon two assumptions: (a) %, .9? and (b) .9? -as
given by Eq (A3).

R (A3

Let Z, -f(.%‘ ), where an example of the function fis given in Eq. (A3). Note that
thf; collapsmg loss L may be expressed in terms of the inverse function f ™% Since
ey =1 (% }, we may substitute this expression into Eq. (A1), and we have

A C AR el L (A0
Cort @ sty

where the right-hand side of Eq. (A4) makes use of the substitution .@ = (1 —-:P_;.)'.%’z,
derived from Eq. (A2). T

If we let %, ~ %, then Eq. (A4) reduces to the form introduced in the text in Eq. (4)
ie, L, =1 —P,. if we require greater accuracy (especially for Z, < < 1/2), we must use
Eq (AS) obtained from Egs. (A2) and (A4).

P AN ]/1+299y | ()
g = —_—t ] (A5
1 +122, (1-P)R? T

*W. B. Davenport, Jr. and W. L. Root, 4n lntroduction o the Theory of Randem Signais and Noise, McGraw-Hill,. New
York, 1958, p. 266.
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In solving Eq. (A3) for &, two roots result; the root leading to negative values of # ', Was dis-
carged.

Equation (A5} is plotted in Fig. A3 for several values of P,. Note that the approximation
/1 — P, = L, holds for small values of %, < < 1/2with L, =1 —F for &, > > 1/2.

1.a W T T T T T T —T T T T
P =01

0.8 '—‘ —
P, =05

06 — b
P, =0.7

~
04 -
l_ P =09

0.2 P, =085 N
P, =099

a.0 It L H i { : P 3 I [ i —

.01 .08 a1 0.8 1.0 . 06
5

Fig. A3 — Collapsing loss {Eq. {A5}} vs. signal-to-noise ratio
:??y and error probability Pr
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Appendix B

SIGNAL-TO-NOISE RATIO CALCULATIONS
FOR SWERLING CASE II

Original works by Marcum* and Swerlingt have been discussed by many authors. A, re-_
port by L. F. Fehlner§ includes calculations for the pulse-to-pulse fluctuation case, Swerlmg
Case 11 (SW-2). All five of their statistical models are illustrated in the curves of Fig. Bl The
purpose of this appendix is to present expressions for P, and Py, for SW-2. T

MINIMUM DETECTABLE SIGNAL-TO-NOISE RATIO, & (dB)

— e COHERENT

AN
5 NONCOHERENT \
AN N AN
N
~ AN
10 | l I { I T LN TR
1 2 5 0 20 50 100 200 500 1000

NUMBER OF PULSES INTEGRATED, I

Fig. Bl — Comparison of coherent and noncoherent in-
tegration of radar returns from Swerling-model targets (for
P =09, Pﬁr =07 x 1071 (after Rivers, SEMCOR Rept.
SD-75213-1)

*J. 1. Marcum, "A Statistical Theory of Target Detection by Pulsed Radar, Rand Research Memo RM-754, Dec 1947
and RM-653, July 1948 (reprinted in /RE Trans. IT-6, (No. 2), 59-267 (1960).

tP. Swerling, "Probability of Detection for Fluciuating Targets,” Rand Corp. Research Memo RM-1217, Mar. 1954 (re-
printed in IRE Trans. IT-6, 269-308 (Apr. 1960).

§L. F. Fehlner, "Target Detection by a Pulsed Radar,” Johns Hopkins Applied Physics Laboratory Report TG 451 Jul.

1962.
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Equation (B1)} expresses the probability of detection P, and false alarm Py for SW-2 in
terms of 22 and the number of noncoherent integrations, £
T

{+# —v ., f—1
_q - ey ,
P, =1 fo [ T ]d}, 4133

where Pfs = P, when # =0 and where the parameter T equals the detection threshold level
normalized to the rms noise at the detector input.

Note that the SW-2 curve in Fig. Bl was obtained from Eq. (Bl) with P; =09 and T
such thar

P, =07x107M =1 |

1 - -1
] ’ [iﬁ——] dy. (B2}

{—11
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Appendix C
COLLAPSING RATIO CALCULATION

Van Trees* discusses "M-ary" detection of signals in additive, white Gaussian:nt The
expression is presented in Eq. (C1) (alse in Eq. (2) in the text) for error probabili (e ).
This quantity, used in this report to compute the collapsing ratio p,. and collapsing:. loss Lc, is
given as

= ~ QE/INy) 1?12
P,(e)=1—fjwdxé-;expl[x ;o ].]

N-1
exp ( ~y2/2)dy} .

* 1
I. &
The double integral in Eq. (C1) has been evaluated extensively by Urban:_
values from his report were utilized in our analysis as follows:

Urbano’s tabulated function P, (a) is identical to the second term of (C1) if éubﬂitutions
for Nand a are made and if the variable of integration is changed appropriately, Thus, -

. .
e e_m]dyﬂ dz. (€2
I = |

= 1 e —z%/2
P# (a) = Tﬁ— f_m e "2

Letting z = x — a results in

—lx—a]’
PN(G) ='\/’%'—ﬂ'f [f

By inspection of (C1) and (C3), we may write,
P (e) =1 - Py(a) (C4)

if we let a = /2E/N;, where E is the energy in each input signal waveform and N is the in-
put noise power density.

N-l
dx. (C3)

*H. L. Van Trees, Detection, Estimation, and Modulation Theory, John Wiley and Sons, Inc., New York, 1968,
t R. H. Urbano, "Analysis and Tabulation of the M-Positions Experiment Integral and Related Error Function In-
tegrals," AFCRC Report TR-55-100, Apr. 1955,
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