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FREQUENCY-AGILE RADAR SIGNAL PROCESSING

INTRODUCTION

Modern radars sometimes incorporate pulse-to-pulse changes in carrier frequency (a) for
the sake of increasing detection probability, (b) to reduce vulnerability to jamming, and (c) to
reduce probability of interception. However, coherent processing such as a coher eq!nt moving-
target indicator (MTI) is often necessary to suppress clutter echoes, which means that; during
the period of time coherent processing takes place, the carrier frequency should be Ield con-
stant. It is possible, in principle, to perform coherent integration of a train of frequency-
hopped echoes. However, the response of such a system to small changes in range and
doppler frequency causes problems beyond the scope of this report. Thus, we consider a
frequency-agile radar that transmits groups of N identical pulses, where carrier frequency is
fixed within a group (block) but is varied from block to block.

In this report we address the problem of choosing the optimum value of N (the number
of pulses in a constant-frequency block), assuming random frequency modulation from block
to block. The total number of pulses M transmitted during the antenna beam dwell time is as-
sumed to be fixed. The method explored here shows that a substantial improveimien:! 'in re-
ceiver sensitivity results from an optimum choice of N. especially for large values of'"At

Fundamental detection theory is reviewed in the next section and is subsequently applied
to three receiver models, which are defined and analyzed. The appendixes provide needed de-
tail to justify the method of calculating the performance of the receiver models.

PROBLEM DEFINITION

Here we consider the problem of selecting optimum processing for a sequence'of M radar
echoes, which are divided into MIN blocks of N pulses per block. The carrier frequency ff.
(see Fig. 1) is assumed constant within a block; random changes in carrier frequency are as-
sumed from block to block. M and NV may take any integer value. An optimum processor is
defined as one that minimizes the input signal-to-noise power ratio M required for given proba-
bilities of detection Pd and false alarm P,.. If no further constraints are added, the optimum
processor will be the well-known matched filter [1]. Since the waveform sOf) is known exactly
(except for time of arrival), a linear filter, having an impulse response h () = as( -t + To),
would maximize the signal-to-noise ratio at its output and, hence, minimize detectable power, S
(the constant, TO , pulse width, and S is sometimes termed receiver sensitivity).

At present, difficulties in implementation prevent coherent integration of frequency-agile
echoes. Such a processor is known to have been implemented in software [2,31, but not, to the

Manuscripi submiued June 2, 1977.
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best of our knowledge, in hardware. Hence, we consider coherent integration of each block of
N pulses and noncoherent integration of M/IN blocks. We wish to find a specific value of N
which minimizes the input signal-to-noise ratiosR required for detection.

PROCESSOR MODELS

Figures 2a and 2b represent examples of the processors examined in this report. The
processor of Fig. 2a is optimum under the above constraints, whereas the second processor
(Fig. 2b) has the advantage of simplicity since only one output channel is required.

SwtTCHING

DETECTORS MATRIX

SiTI + NWTI-

SITi + N(V
at

THRESHOLD
DETECTORS

DETECTORS

AqY=N PEAK
SELECTOR

Fig, 2 - Block-to-block radar signal processing systems

A filter matched to a single doppler-shifted block of N pulses is identified by an impulse
response matching the rectangular block of N pulses (Fig. 1). Since the doppler frequency is
unknown, it is necessary to provide multiple filters to span the interval between doppler ambi-
guities. This leads to the incorporation of the well-known fast Fourier transform (EFT) as il-
lustrated in Fig. 2; both processors are identical up through N magnitude detectors operating
on N outputs from the N-point FFT. It is assumed that the filter block, labeled MF, is matched
to the waveform of each pulse.
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Detection theory [1,41 defines a maximum-likelihood detector for the case of a signal hav-
ing one unknown parameter to be a bank of matched filters, which span the range, of uncer-
tainty (in this case doppler frequency), followed by threshold detectors operating ohthj e filter
output magnitudes. From this point of view (maximum-likelihood detection), an N-point FFT
processor is optimum for detecting a target on the basis of a single block of pulses. We there-
fore incorporate, in the models of interest (Fig. 2), optimum N-pulse coherent processing!

Constant-Velocity Target Detector

It can be argued that the processor of Fig. 2a is optimum for the signal specified in.Fig. 1.
An echo from a target of velocity v will be integrated in doppler filters identified by the
relation Ad, = 2 fv/c, where kfa is the doppler frequency corresponding to the cartier :fquency
4i of the ith block. Since the echo will appear in different doppler channels. as/&canges,
a switching matrix is required to deliver all MIN coherently integrated blocks to..14t:e..appro-
priate "video" integrator corresponding to target velocity v. It is noted that A ecity
channels are required, where A V is the range of target velocities and Av c/2NT,.4 =

k/2NT, is the mean velocity resolution of the FFT doppler channels.

Although we do not prove optimality, this processor integrates all echo energy over an
M-pulse dwell time of the antenna beam on a target prior to combining with noise-only chan-
nels. Thus, this processor is expected to be more efficient* than that of Fig. 2b, which' com-
bines doppler channels prior to video integration in the peak selector. The integrated:. ouputs
form the basis of an estimate of target velocity; i.e., all MIN outputs (Iy,I ) due to a.target of
velocity v will be connected via the switching matrix to the corresponding velocity channel in-
tegrator, say v;. Hence, the threshold detectors, set to select the largest response, .will. most
probably select the one containing the target signal. In this sense, the processor of Fig. 2a may
be referred to as a velocity estimator, where vN is an estimate of target velocity v.

Reference Processor

Here we define a reference processor which is identical to that of Fig. 2a except that only
one velocity channel (hence, one video integrator) is required since we assume that target
velocity is known. The effect of this assumption is to avoid the need to correct calculated SNR
values for doppler uncertainty. If the doppler frequency is unknown, the threshold values
must be increased, as A V/Av increases, to maintain a constant false alarm rate.

Peak Filter Output Integrator

The advantage of processing block-to-block agile signals, using the system of Fig. 2b
rather than that of Fig. 2a, is obvious; no switching matrix and just one integrator are required.
On the other hand, a disadvantage stems from the fact that no doppler information is::available
from the peak output integrator. When samples of noise only are added to samples containing
signal plus noise, the signal becomes more difficult to discern from noise, and the increase in
signal power required to maintain a given detection reliability (P4 and P1ea) is referred to as
collapsing loss. However, as will be shown later, the performance for Fig. 2b is only slightly
worse than that for the reference processor defined above.

*This term is used to express efficacy of signal-to-noise ratio improvement; efficiency in mathematical statistics takes
on a different meaning not intended here.
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DETECTABLE SNR FOR REFERENCE PROCESSOR

We now develop, for the above-defined reference processor, an expression for R, the in-
put SNR required for specified detection and false alarm probabilities, To obtain this expres-
sion, we assume that SN R is improved linearly with N in the coherent integrator (FFT)X and
we make use of the standard curves of PY§ needed (for different combinations of Pt and Pp]t 
at the iniput to the magnitude detector as functions of I = M/AM the number of noncoherent
integrations. The calculation of _g% (P4 = 0.9, I7f = 0. x 10 -t)) is plotted in Fig. 3, based
upon the five statistical models defined by Swerling [$1 for targets with fluctuating cross sec-
tion. Probably, the most frequently used is Case i, which corresponds to Rayleigh scan-to-scan
fluctuations (all I pulses correlated). Cases I and III differ only in the statistical distributions
assumed. The results in Fig. 3 clearly illustrate the greater penalty inflicted by the Case I
scan-to-scan fluctuations as compared with the Case II pulse-to-pulse fluctuations for large
values of I, the number of integrated pulses. Note that for I = 750, Case 1I noncoherent in-
tegration (NCI) is more efficient than Case I NCI by about 8 dB.
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The curves of Fig. 4 were developed from Swerling Case It curves (frequency agility
block-to-Mock), making use of the following procedure and definitions. The detectable SNR at
the input, 6, is improved by coherent integration so that = N , neglecting losses; hence,
a value of 6* may be found from Eq. (1):
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For example, note that for Case 11 (Fig, 3), I y 00/I0 /I0 8 I10 -2 dB = .

DETECTABLE SNR FOR PEAK FILTER OUTPUT INTEGRATOR

The curves of Figs. 4 and 5, corresponding to the processor of Fig. 2b, required a more
complex calculation because of' the necessity of accounting for the collapsing loss encountered
when noise-only channels are combined with a channel containing both signal 'and noise.
Thus, we make use of the fact that a portion of this processor has been analyzed for :M-ary
communications 14]. In this case, the block diagram up through the peak selector is identical
to the optimum detector for a communications signal consisting of any one of N orthogonal
signal waveforms. The probability of error (i.e., the probability that the output of at least one
noise-only channel will exceed the ouput of the channel containing the signal) is computed us-
ing the relation of Eq. (2), which is further illustrated by the graph of Fig. 6;

{ I J lx ex- (2E/IN) 1/2 ]2

P (E) 1 -f_ dx h,- xp 2

[Ir V 1 exp ( -y/2)2 N -] (2)

where Eand No are signal energy and noise power spectral density, respectively.

Returning to Figs. 3 and 4, note that the minima exhibited by the curves of Fig. 4 occur
because of the change in slope of the Case 11 curve (solid line) in Fig. 3, as I = M/N changes
from small to large values. Its slope exceeds that of the corresponding coherent integration
curve (dashed line) for small I becoming smaller for large /. As N approaches M (Fig. 4), 1
decreases to small values causing the value of gil (Fig. 3) to rise sharply, overcoming the de-
crease due to greater coherent processing.
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Hence, if we consider a sequence of Ioutput samples from the peak selector,onP:the aver-
age, Pr1 samples will be due to noise only; clearly (1 -Pr)l will be due to signal plus noise.
Collapsing loss is well known [6] to be a function of the collapsing ratio pC where, if mn is the
number of noise-only samples and n is the number of signal-plus-noise samples, then

,n+ t P1I+ (1 -Pr) l lP
it= (I - sP,)/ = PI,,Y A:,

Although Marcum [7] calculated collapsing loss LC as a function of this ratio pc, his curves (re-
printed by Berkowitz [8]), were computed for the case of a nonfluctuating target. The approxi-
mation (L I -P. P as discussed in Appendix A, is therefore used below to derive Eq. (4).

Since LA is a function of P,, which is a function of 6 and N, we are led to thetfollowing
equation which must be solved by successive approximations:

NS?=6y (M/ N)/LC = 1-RP (M N)

Y -~~ ~Pr (6*,N)
Equation (4) is obtained from the definition of, and approximation for, collapsing loss (see Ap-
pendix A) and the relationship M*Y = N6* for coherent integration. Note that Lc is. defined to
be a number less than one.

SIMULATION OF PEAK SELECTION PROCESSOR

A simulation was implemented to compute the detection performance of a processor us-
ing peak selection of doppler channels. For comparison, the simulation was also run: for a pro-
cessor using only a single doppler channel. Figure 7 is a diagram of the simulation: showing
the processors and the signal and noise generators.

Fig. 7 - Simulation of "largest of " detector and single doppler channel detector

7
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The processor of interest consists of a doppler filter bank, implemented with an eight-
point discrete Fourier transform (DFT). Eight input samples compose a coherent processing
interval (CPI) and produce eight doppler outputs. The outputs are detected, the one with the
largest amplitude is selected, and the outputs from 10 CPls are surmmed in a noncoherent in-
tegrator. Finally, the output of the integrator is compared to a fixed threshold and the detec-
tion decision is made. The detection decision is based on a total dwelt time of M = 80 samples.
The second processor is then implemented as a reference. This processor, identical except that
a single doppler output is used, represents a case where the target doppler is known and no col-
lapsing loss is suffered.

The inputs to both processors are identical and consists of in-phase and quadrature (land
Q) components of signal plus noise. The signal components are

I = A cos 2Tw k (5a)
N

and

-A sin 27rfk (5b>
N

where f is the doppler frequency, k the doppler filter number, and N the number of points in
the DFT. The additive noise has a uniform phase distribution and an approximately Gaussian
amplitude distribution given by

IN =B cos 2rR, (6a}

Q = Bsin 2irR, (6b}

and
1 2

=S (R-0S5IY tc6

where R is a uniformly distributed random number between 0.0 and L 0.

The first step in the simulation is to determine the threshold setting T for various false
alarm rates. The results shown in Fig. 8 were obtained by setting the input signal to zero and
measuring the probability of false alarm as a function of the threshold setting. Now, we can
use threshold settings at a desired P, and measure P4 by running the simulation with various
values of signal amplitude.

The results of the simulation of both processors are shown in Fig. 9, where the input
SNR is plotted as a function of P4 for various P%. For a Pj =0.9 and P~j = I t0, the proces-
soc selecting the largest filter output requires 2.3 dB higher SNR than the reference processor.
For greater P4 anti smaller P~f, the performance of the "largest of' processor approaches that of
the single filter case.

CONCLUSIONS AND RECOMMENDATIONS

We have shown that the choice of block size in a block-to-block frequency-agile radar is
important if maximium receiver sensitivity is to be realized. The curves of Fig. 4 exhibit dis-
tinct minima in signal-to-noise ratio required for reliable detection, the locations of which
depend upon the total number of pulses available for coherent and noncoherent processLng.

8
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WATERS AND LINDE

These data correspond to a reference case in which it is presumed that the doppler frequency
of the target is known, so that collapsing loss is zero. The collapsing loss corresponding to the
velocity-estimator processing (Fig. 2a) is easily determined from the reference case (to a good
approximation) by computing the number of doppler resolution cells required to span the
range of target velocities. If this number is greater than N, then the collapsing loss is equal to
the SNR increase needed to reduce P by the factor N. Here, collapsing loss arises from the
fact that more than one channel may contribute a false alarm, requiring an increase in thres-
hold and SNR to maintain a desired false alarm rate.

Figure 4 also contains data corresponding to peak select/integrate processing (Fig. 2h) in
which multiple doppler channels are combined by selecting only the largest output for subse-
quent video integration, Table I compares the three processors for two values of total dwelt
time, M = 100 and M = 200. where in each case the optimum Nwas selected.

Table I -Comparison of Processor Performance
(P4l =0,9, P =o -8)

Processor I NOPI (dB} L(dB)

Reference 100 17 -3.6 0
200 33 -6.S8 0

Velocity Estimator 100 17 -2.75 0.85
(Fig. 2a) 200 33 -5.15 1.65

Peak Select/Integrate 100 20 -2.1 I'S
(Fig. 2b)1 200 50 -5.1 1.7

It should be noted that the SNR penalty for using the simpler system involving just one
integrator is less than I dB for M = 100, and Less than 0.1 dB for M = 200. However, we
must consider the effect of the approximation used in calculating performance of the latter sys-
tem. Basically, the approximation involves two assumptions discussed in greater detail in Ap-
pendix A:

1. We assumed 2. S-y in deriving Eq. (4) used to compute SNR for the peak
select/integrate system.

2. The effect of the peak selector on signal and noise distributions was ignored;, ie., Pt
and Pf were assumed to depend only on 2&, the SNR at the threshold.

Table 2 compares the data calculated from Eqs. (1) and (4) with Monte Carlo simulations
of the reference and the peak select/integrate processors. No approximations are involved in
Eq. (1) except those used by Marcum, and the signal in the development of Table 2 is
nonfluctuating. The results clearly indicate that the simulation and the calculation for the refer-
ence processor agree within 0.2 dR; the simulation for the peak selector is higher by 0.5 dR
than the computed result involving Lt. = I - ., and 1.1 dB for the case involving
£ I -F,. These collapsing loss expressions, described in Appendix A, hold for large
and small SNR, respectively. It might be inferred from Table 2 that the effect of the second
assumption (mentioned above) is to yield optimistic results; hence, L, = I- P provides a

10
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more accurate estimate of SNR. This would tend to agree with the expected influence of the
peak selector upon the noise statistics; i.e., it is reasonable to expect the distribution change to
increase Pf, It has been suggested that Le depends more heavily on N than on M, the total
number of integrated pulses [9].

Table 2 - Comparison of Performance Estimates Obtained from
Eqs. (1) and (4) and Corresponding Monte Carlo Simulation*

Processor Method SNR (dB)

Reference Eq. (1) -4.9

Reference Simulation -4.7

Peak Select/Integrate Eq. (4) (L = 1- P) -3.3

Peak Select/Integrate Eq. (4) (Le = 1 )3.9

Peak Select/Integrate Simulation -2.8

*pd =.9, P - 4 M = 80, N = 8

In conclusion, it should also be noted that the processor of Fig. 2a provides an estimate
of target doppler as well as nearly optimum sensitivity. Further attention should be given to
this technique. For example, a measure of reliability of velocity data for targets of various
speeds and accelerations could be defined and tested. Although the utility or frequency-agilc
systems depends on the range of frequencies available and interference with other users of mi-
crowave bands, doppler ambiguities are reduced and blind speeds are eliminated by this tech-
nique, so that an.estimate of radial velocity is available on each scan of the antenna. Velocity
data should tend to reduce track-while-scan errors and the hand-off delay to weapons systems.
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Appendix A

COLLAPSING LOSS ASSOCIATED WITH PEAK OUTPUT
SELECTION AND INTEGRATION

In this appendix, we are interested in finding the value of R needed to provide the re-
quired detection reliability measured by Pt and Cfa (detection and false alarm probabilities) for
the system iltustrated in Fig. Al. Since N-I noise-only channels are combined with the chan-
nel containing the signal inma peak selector, the SNR delivered to the integrator is degraded; to
compensate, ay must be increased by an amount defined here to be the collapsing loss Le.
The necessary increase in R may be approximated by introducing the diagram of Fig. A2.
Here 'M is the SN R needed if all integrated pulses contain signal plus noise and we define col-
lapsing (oss as

Le -A'/m.zy. (Al)

Note that the output SNR, go, is the same for both diagrams (Figs. Al and A2).
Although it is known that, in general, equal detection reliabilities (P 1, C) will not be
achieved by making go the same in Figs, Al and A2 because of the differing statistical distri-
butions caused by the effect of the peak selector (Fig. Al), comparisons of data computed from
the results of the following analysis indicate that this effect is small.

DEMODULATORS

NOtSE
ONLY

SIGNAL-
PLUS-NOISE

SNR1 =l? V

Fig. Al - Noncoherent integration of peak-selected doppler filtered signals

SNR=6?%

st2 =( -P~ W

Fig. A2 - Single channel mode! with equivalent output SNR
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We assume that SNR improves linearly with 1, because of video integration, so that, in

Fig. Al,A 0 = X, A'. A signal is assumed to be present in just one of the Ndoppler chan-
-i 

nels and SNR is assumed to be A' . Equal amounts of noise are assumed in all channels. On
y

the average, Pr' integrated pulses are due to noise only (i.e.,RA,, = 0) where Pr is the soncalled
error probability described in the foregoing sections and in Appendix C. Hence, if At is as-
sumed constant for Ipulses, then NA', = A' for the remaining (1 - Pr)Iterms, and

(I (I -
A'0o = P4g = (1- Pr)16t (A2)

i =1

In Fig. A2, Az =A' 0 /I = (1 - Pr),q, since R0 is the same (Eq. (A2)) as in Fig. Al and 6e,
is assumed to be constant.

Now, to evaluate I4 A '/j9 we introduce an expression connecting M' with A'
Equation (A3), given by Davenport and Root,* makes clear the nonlinear dependence of QP on
Ay'. The same expression connects A'§ and A'..-

A2

A, -kp I + 2 1 , (A,3)

where ,¶, = I for a rectangular sine wave signal envelope. Equation (A3) holds for Gaussian
noise, a square law detector, and where Q, is defined as the ratio of output signal and noise-
only powers. Although the equation for P4z varies with assumptions regarding detector law and
SNR definition, we are dealing here with a mechanism affected only slightly by the functional
dependence of Mz on A'y. In the following paragraphs, this is demonstrated by comparing
values of L, obtained by calculations based upon two assumptions: (a) M, - A, and (b)'A: as
given by Eq. (A3).

Let A' = f (A'Y,), where an example of the function f is given in Eq. (A3). Note that
the collapsing loss L, may be expressed in terms of the inverse function f'l. Since
A',, =-f -' (A'2), we may substitute this expression into Eq. (Al), and we have

f 1 (A" ) f [1 P 2
f 2I fX7 [(1 -P) Ife (A4)LC. = ff 1 A',

where the right-hand side of Eq. (A4) makes use of the substitution Q' = (1-iPr)A'z,
derived from Eq. (A2).

If we let 9? -9 My then Eq. (A4) reduces to the form introduced in the text in Eq. (4);
i.e.,L =1- Pr. If we require greater accuracy (especially for Ay'3 < < 1/2), we must use
Eq. (A5) obtained from Eqs. (A2) and (A4).

A' (1 -R } I1+2 1
' +4 = 11 +2 | (IAS)

'W. B. Davenport, Jr. and W. L. Root, An iniroduction 1o rthe Theory of Random Signals and Noise, McGraw-Hill, New
York, 1958, p. 266.
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WATERS AND LINDE

In solving Eq. (A3) for My, two roots result, the root leading to negative values of 9 was dis-
carded.

Equation (A5) is plotted in Fig. AS for several values of Pr Note that the approximation
, 1- P.- L holds for small values of g 3 < < 1/2 with LC i -P, for 9. > > 1/2.

o.0 _
G0.0 0.05 0.1

M.Y
0.5 1.0 5.0 tOO

Fig. A3 - Collapsing loss (Eq. (AS)) vs. signal-to-noise ratio
Ay and error probability P
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Appendix B

SIGNAL-TO-NOISE RATIO CALCULATIONS
FOR SWERLING CASE II

Original works by Marcum' and Swerlingt have been discussed by many authors. A.re-
port by L. F. Fehlner§ includes calculations for the pulse-to-pulse fluctuation case, Swierling
Case Ii (SW-2). All five of their statistical models are illustrated in the curves of Fig. BE, The
purpose of this appendix is to present expressions for Pd and Pf0 for SW-2.
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NUMBER OF PULSES INTEGRATED, I

Fig. B1 - Comparison of coherent and noncoherent in-
tegration of radar returns from Swerling-model targets (for

Pa= - 0, P = 0.7 x I 0-10) (after Rivers, SEMCOR Rept.
SD-75213-1)

'J. 1. Marcum, "A Statistical Theory of Target Detection by Pulsed Radar, Rand Research Memo RM-754, Dcc. 1947.
and RM-653, July 1948 (reprinted in IRE Trans. IT-6, (No. 2), 59-267 (1960).
tP. Swerling, "Probability of Detection for Fluctuating Targets," Rand Corp. Research Memo RM-1217, Mar. 1954 (re-
printed in IRE Trans. IT-6, 269-308 (Apr. 1960).
§L. F. Fehiner, 'Target Detection by a Pulsed Radar," Johns Hopkins Applied Physics Laboratory Report TG,451, Jul.
1962.
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WATERS AND LINDE

Equation (BI) expresses the probability of detection Pd and false alarm for SW-? in
terms of 9 and the number of noncoherent integrations, I.

P'd =- I •jI~ dy. RIf (I -Y yI P

where Pf, = Pd when 9 e 0 and where the parameter Tequals the detection threshold level
normalized to the rms noise at the detector input.

Note that the SW-2 curve in Fig. R1 was obtained from Eqc (R1) with d - O.9 and T
such that

',,fa =037 x 01 0 = 1-i TIe -Y | 1Jd (B>2
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Appendix C

COLLAPSING RATIO CALCULATION

Van Trees* discusses "M-ary" detection of signals in additive, white Gaussiannoipe., The
expression is presented in Eq. (CI) (also in Eq. (2) in the text) for error probability P ().

This quantity, used in this report to compute the collapsing ratio p, and collapsing loss 4, is
given as

Pr(E =1 +°° 1 f Ix- (2E/No)1/2121
up W -I -1- dx - I; exp 1x- (2 EO 1,dxNTex 2 1

* |1 \/5j;exp _y2/2 ) dy (CI)

The double integral in Eq. (Cl) has been evaluated extensively by Urbanoqt ,!,hbe of
values from his report were utilized in our analysis as follows:

Urbano's tabulated function P (a) is identical to the second term of (CI) if substitutions
for Nand a are made and if the variable of integration is changed appropriately. Thus,

1 r~~ jpZ2+G le /2 V
p9M (a) = __ e z2/2 1 l- J dyj dz. (C2)

Letting z = x - a results in

1 1+' -lx,-a]2 1, _2/2 N-1 C3
PN (a) 1e_ I2 ed/j (C3)

By inspection of (Cl) and (C3), we may write,

Pr (e ) = 1 -PNr (a) (C4)

if we let a = NIT7EI77, where E is the energy in each input signal waveform and No is the in-
put noise power density.

'H. L. Van Trees, Detection, Estimation, and Modulation Theory, John Wiley and Sons, Inc., New York, 1968.

t R. H. Urbano, "Analysis and Tabulation of the M-Positions Experiment Integral and Related Error Function In-
tegrals," AFCRC Report TR-55-100, Apr. 1955.
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