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QUANTIZATION AND SOURCE ENCODING WITH A
FIDELITY CRITERION: A SURVEY

INTRODUCTION

In information theory, it is generally known that characterizations of the optimum
source encoder and source code for a given source are extremely difficult to obtain. In
fact, a large part of information theory is devoted to this and similar problems. Evalua-
tion of the optimum encoding performance is also difficult, but more progress has been
made in this area. Such evaluation is usually based on a theoretically derived optimum
performance curve, called the rate-distortion function, which is obtainable without knowl-
edge of the optimal encoder description. The solutions to these two companion problems
have been the goal of many information theorists.

Optimal source encoding for an entire class of information sources is considerably
more difficult and complex. In this situation, the evaluation of the best possible encoding
performance has been carried out in only a few instances, and characterization of the opti-
mal source encoder has not been achieved. Implementation of optimal source encoders
for classes of sources, it is hoped, will not be too complex.

For these reasons, quantizers have been considered for encoding discrete time infor-
mation sources and classes of these sources because of their simple implementation, their
familiarity to engineers and the volume of associated research results. In this survey we
provide a brief analysis of an exhaustive list of references up through 1975, which has
been categorized according to the significant research and development issues in the areas
of quantization, source encoding, and their interrelationship. The goal is to provide an
information base for further research and development.

The next section discusses the relationship between source encoding with a fidelity
criterion and quantization; it thus serves as a prelude to the survey. The literature survey
is divided into two topic areas, source encoding and quantization. A brief summary and
conclusion constitute Sec. 4.

The author apologizes to those whose work has been omitted.

RELATIONSHIP BETWEEN SOURCE ENCODING WITH A
FIDELITY CRITERION (RATE-DISTORTION THEORY)
AND QUANTIZATION

Source encoding with a fidelity criterion, as introduced by Shannon [52], or rate-
distortion theory [6], as it is now called, is a major area of information theory [1-63]
and is also the mathematical basis for data compression [6,14]. Rate-distortion theory

Manusecript submitted November 5, 1976




4.M. MORRIS

is concerned with specification of the noiseless communication channel or noiseless memory
capacity for an acceptable reproduction error or distortion level at the receiver or user,

The rate-distortion function is the basis for this specification and the foundation of the
theory. Hence, knowledge of the rate-distortion function is of considerable benefit to

the communication system designer, and the determination of rate-distortion functions for
various sources and classes of sources has been an active area of research,

The rate-distortion function R(d} for a given information or signal source and a given
distortion measure, specifies the minimum channei capacity or the minimum source infor-
mation required for reproducing the entire source output at the receiver with an average
distortion of d or less (i.e., to achieve fidelity d). This function is computed by minimi-
zing the mutual information, between the sourece and the channel cutput, over all possible
channels that generate a distortion level of d or less. In general, this computation uses
variational techniques [6,11,33] and is not easy. For a distortion measure that assigns
d = 0 (for perfect reproduction of the input at the output), R{0) is just the entropy of
the source. R{d) decreases monotonically with d and usually becomes zero at some finite
value of distortion, say d,,,,, indicating that no information need be transmitted to
achieve a distortion value of d,,,.

An equally active research area is the search for source-encoding techniques to achieve
the rate-distortion function values for given distortion levels. Early research in this area ~
dealt almost exclusively with the search for optimal source-encoding techniques yielding
performance improvements that would justify their cost and added complexity, This
research was fruitful only in some areas, e.g., space communications and high-density
data storage [B9]. Many source-encoding theorists recently have been engaged in finding
good suboptimal source-encoding techniques that are easy to impiement [1,2,13,35,40,
56,59,63].

The main objective of using a source-encoding technique such as guantization is to
achieve an acceptable balance between the distortion in reproducing the input and the
cost of acquiring, fransmitiing, and/or storing the additional data needed for perfect
reproduction of the input. Amplitude guantization of source signals is probably the
first source-encoding technique, and it is easy to implement [80,90,93,98,111], e.g., in
analog-to-digital conversion. In fact, quantization can be considered the cornersione of
sampled-data theory and systems {68,83,90,98,101,110,112]. Considerable research has
been conducted on complete or partial source encoding of stochastic sources by quanti-
zation [9,40,64,66,68,70,72,73,75,82,84,87,92,94,97,99.100,102,109,111,112,114,116}.

Quantization is & nonlinear, zero-memory operation of transforming a source variable,
possibly random and possibly having a continuum of values, into an output variable
having a finite number (N) of values, The device performing this transformation ig called
an N-level quantizer, and its output is an N-step approximation to its input. Distortion
results from trying to reproduce the input from the output. A fidelity criterion (for
example a particular value of d} is assigned to provide a quantitative measure of the
approximation accuracy of reproduction. The most common fidelity criterion is a bound
on the mean weighted quantization error, where this error is just the nonnegatively
weighted difference between the guantizer input and output.
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Optimal quantization of a given source is a scheme that optimizes the distortion
measure for that particular source. In general, such quantizers perform poorly with
respect to other sources or distortion measures. Robust quantization, of a class of
sources, is a quantization scheme that quarantees a performance level or fidelity criterion
for all sources in that class [40,95,111,112]. In general, robust quantization is sub-
optimal for most sources in the class.

LITERATURE SURVEY
Source Encoding

C. E. Shannon presented the information theory in 1949 [51] and the rate-distortion
theory in 1959 [52]. Berger’s book [6] is the only one devoted exclusively to rate-
distortion theory. He includes an extensive bibliography and covers most previous
research results. Other books, such as those of Gallager [21] and Sakrison [49], have at
least one chapter covering the basics of this theory. Published papers devoted to rate-
distortion theory per se are those of Berger [3,5], Berger and Yu [8], Davisson and
Gray [16], Davisson and Pursley [17], Goblick [24], Gray [32], Gray and Davisson
[28-30], Gray and Wyner [31], Kieffer [36], Leiner [37], Leiner and Gray [38], Rubin
[42], Wolf and Ziv [568], Wyner {62], and Ziv [63, Part II]. Results of the evaluation
andfor bounding of rate-distortion (distortion-rate) functions (also the e-entropy of
Kolmogorov} were reported by many researchers, including Berger [3], Binia et al. [10],
Blahut [12], Dobrushin {19,20], Gray [25-27], Haskell [33], Marton [39], Morris [40],
Rubin [42,43], Sakrison [47,48], Tan and Yao [55], and Wyner and Ziv [60].

Although memoryless source models represent many meaningful applications it has
generally been acknowledged that substantial benefits from source coding can be achieved
for sources with memory [3,4,6,17,25-27,35,563]. Likewise, distortion measures incor-
porating symbol context dependences [8] or the concept of source coding when side
information is available to the encoder-decoder pair [32,37,38,62] have been found to be
applications with substantial coding gain potential.

The investigation of source-encoding techniques that achieve the performance prom-
ised by rate-distortion theory has been an active area of research, This investigation
parallels the earlier research for channel encoding techniques to achieve the performance
promised by the channel coding theorems of information theory. In the same manner,
this newer area of research is a major interest of coding theorists (e.g., Berger, Jelinek,
and Wolf [7], Jelinek [34], Jelinek and Schneider [35], Slepian and Wolf [53], Viterbi
and Omura [57], Wolf [59], and Ziv [63]). Many others have reported results in this
area [1,2,13,18,22,12,32]. Implementation of the various encoding techniques is gener-
ally not simple, although current large-scale integration technology is making implemen-
tation complex easier to handle. An exception is source encoding by quantization.. For
example, Berger [9] demonstrated an equivalence between perfectly entropy-encoded
optimum quantizers and infinite block-length permutation codes, Chang [12] expanded
and implemented Berger’s results, and Morris [40] showed that the uniform quantizer
generates an adequate rate-distortion bound (within 1 or 2 bits per second of Gaussian
curve) for a class of sources that includes the Gaussian.
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Classes of Sources

Published results on source encoding for a class of sources are few, and most of
these results are recent. This problem has been treated by Berger [5,6], Davisson [15],
Dobrushin [19,20], Morris [40], Neuhoff [41], Sakrison [47,48,50], Tan and Yao [95%,
and Ziv [63]. Berger used a two-person statistical game approach, with respect to a
distortion measure, for a class of sources and a class of encoding schemes. He determined
the exponential rate of growth (with block length) of the minimum number of code
words needed to achieve a specified distortion level. Dobrushin gave an expression for
the e-entropy (a point on the rate-distortion function) of a class of sources. In both of
these investigations, the class of sources were limited to discrete-time, discrete-amplitude
sources. Morris theoretically verified the robustness (minimax) of the uniform quantizer
for a class of discrete-time, memoryless sources with bounded amplitudes and then used
this result to derive an upper bound on the rate-distortion function for that class of
sources. This bound is achieved by the uniform quantizers. Sakrison, in two pioneering
papers [47,48], extended Dobrushin’s results to continuous-amplitude, discrete-time
sources and to random processes. He stated that for a “compact” class of sources, the
rate-distortion function for the class of sources is just the supremum of the rate-distortion
functions of the individual sources and hence is more easily computed. In Ref. 50,
Sakrison investigated robust encoding schemes and worst-case sources. He showed that
for a class of ergodic sources satisfying a moment equality constraint, the Gaussian source
is the worst-case source. He then conjectured that an optimum encoding for the worst-
case source is the desired robust encoder. Tan and Yao presented a method of explicitly
evaluating an absolute-magnitude-criterion, rate-distortion function for a class of inde-
pendent and identically distributed sources having probability densities with constrained
tail decay. Berger, Morris, Sakrison, and Tan, and Yao appear to be the only investi-
gators making contributions in this area for the last 5 to 10 years.

Davisson [15], Neuhoff et al. [41], and Ziv [63], among others, have treated
another form of source encoding, for a class of stationary sources, called universal coding.
An encoder is called universal if the performance of the code, designed with only the
knowledge that the true source is a member of a given class of sources, converges in the
limit of long block Iength to the optimum performance possible if one knew the true
source. Different types of universality, which correspond to different notions of con-
vergence, are defined. Davisson considered universal noiseless coding; i.e., perfect repro-
duction of the source, where the performance measure is a function of the coding redun-
dancy relative to the per-letter conditional source entropy. He also gives a short history
of universal coding. Neuhoff et al. investigated universal coding with a fidelity criterion
with the added constraint that the admissible codes have a given fixed code rate. The
performance measure was some function of the distortion vs the minimum information
rate. Ziv pioneered universal coding with a fidelity criterion [63, Part II]. He also con-
sidered universal coding for the performance measure, probability of coding error, using
a fixed rate {63, Part I].

Implementation of these encoding technigues for classes of sources is generally
difficult {e.g., Gilbert [23]), with the exception of quantization. In fact, for the problem
formulations treated in Refs. 19, 20, 47, and 56 the encoding techniques for achieving
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the rate-distortion function (¢-entropy in Refs. 19 and 20) performance, and the charac-
terization of the worst-case source of the class, are not known. One exception seems to
be for the class of sources with a given bound on the variances or with a given variance
[47,560]. In these two cases, the Gaussian source is the worst-case source [561]. However,
the form of the corresponding optimal encoding technique for the class of sources (ie.,
the robust encoder) has only been conjectured [50]. For this reason, the robust quanti-
zation results of Morris [40], Morris and VandeLinde [95], and VandeLinde {111,112]
have practical significance for memoryless sources.

Noise-Corrupted Sources

Source encoding of noise-corrupted source signals has had limited attention from
rate-distortion theorists [44,49]. Assuming source-independent random noise and a mean-
squared distortion measure, Sakrison [44] and Wolf and Ziv [49] formulated the problem
in Hilbert space. Sakrison needed sufficiently long word lengths (i.e., large dimensionality)
to take advantage of the assumed ergodicity of the source. Wolf and Ziv’s results were
applicable to any work lengths. They concluded [44,49] that the optimal encoding
technique is first to compute the optimum conditional estimate of the source and then
to encode this estimate optimally as if it were the source output. They derived expres-
sions for the minimum possible distortion measure value, whose computational difficulty
is generally greater than for the noiseless case. The problem of characterizing and imple-
menting the optimal encoder still exists, since the source estimator is now the ‘“‘source”
to be optimally encoded.

Quantization

W. F. Sheppard, according to Bruce [70] and Smith [108], was the first to study
a system of quantization. Sheppard, in 1898, essentially performed a round-off operation
before making computations on the entries of a table of values {107]. The most refer-
enced research work on quantization are probably the papers of J. Max [92] and B.
Widrow [114]). Max considered the problem of the optimum N-level quantizer for the
minimum mean weighted quantization error for a given signal. He also considered the
optimum N-level uniform quantizer (i.e., equally spaced quantizer level values and egually
spaced transition values). For the mean-squared error and sufficiently smooth signal
density problem, Max showed that the centroids of the signal density area in each quan-
tization interval are the optimum quantizer level values, and the midpoints between the
optimum level values are the optimum transition points. The actual values must be
computed recursively from the resulting necessary condition equations. Explicit results
were given for the Gaussian source code. Widrow provided theoretical verification of the
earlier experimental results of Bennett [66] by showing that the instantaneous quanti-
zation error, which is a signal-dependent error signal, can be considered statistically inde-
pendent uniformly distributed noise when the number of quantization levels N satisfies
a condition analagous to the Nyquist sampling theorem. He considered the uniform
quantization operation as an area-sampling operation on the signal probability density
function, When quantization frequency N is twice as high as the highest frequency
component in the signal density function, the moments of the quantizer output signal
are the same as the moments of the sum of the quantizer input signal and a statisticaily
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independent noise uniformly distributed in a guantization interval. Satisfaction of this
condition, according to his quantizing theorem, also allows complete recovery of the
original probability density, given the quantizer output probability density.

Other Performance Measyres

Most of the research on quantization schemes considered the mean weighted quanti-
zation error as the distortion measure, with the mean rth power gquantization error the
most common of that group. Other measures considered were based on special applica-
tions or information theoretic viewpoints that reflected the level of knowledge in the
respective application areas. Signal-to-noise ratios were used as the distortion/performance
measure for digitizing speech and picture signals in Refs. 73, 81, 82, 84, 102, and 108.
The mean rth power of the quantization interval length, within which the signal is found,
was used for determining bounds on quantizer performance Ref. 77. The quantizer output
entropy was used as a basis for comparison of quantizer performance from an information
theoretic viewpoint in Refs. 79, 80, and 94. An overall system performance measure may
be used in some applications where the quantizer is considered just another part of a
system. The overall system performance was the optimization goal in Refs. 68, 8Y, 90,
and 110. Purton [102] and Smith [108] considered zero-memory prefiltering and post—
filtering (called companding) of the quantizer input and output, to eyuatize S/N over the
typical range of the speaker volume means, Their papers, especially Ref. 108, are prob-
ably the best treatments of companding. Cummiskey et al. {24], Gersho and Goodman
{78}, Golding and Schultheiss [81], Goodman and Gersho [82], and Jayant [87] in-
vestigated adaptive quantization to achieve the same equalization of S/N ratios. In this
formulation, the interval size of the uniform quantizer is adjusted for the next signal
value, which is predicted from knowledge of the previous values. Elias [77] derived lower
bounds on his distortion measure for input signal density constraints of absolute contin-
uity and finite domain. He aiso presented a good literature survey and an extensive
bibliography. Messerschmitt {94} showed that the maximum-output-entropy gquantizer
and the minimum mean rth-power quantization-error quantizer are approximately the
same, within a multiplicative constant, for a maximum-output-entropy goal. He required
the source signal densities to be uniform or exponential in form. Goblick and Holsinger
[80], in an important paper, used curves of the output entropy vs mean-squared quanti-
zation error as a basis for comparison of Gaussian source digitization schemes. Their
often quoted result is that the uniform quantizer (Max’s optimal quantizer} performance
curve is 1/4 bit above the rate-distortion function (the theoretical limit) for the Gaussian
source. Gish and Pierce [79] presented an asymptotic (in N) comparison between the
uniform quantizer and the rate-distortion function for mean rth-power guantization-error
distortion measure and reasonably smooth signal densities. They showed that the uniform
quantizer yields an output entropy asymptotically smaller than that of any other quantizer,
for reasonably-smooth signal density functions and a fairly general class of mean weighted
guantization error distortion measures. Larson {891, Lewis and Tou {98}, and Tou [110}
used the system performance index or measure and considered the quantizer as just a
small part of a dynamic sampled-data system. Bertram [68] obtained an expression for
the upper bound of the error caused by quantization in such systems. Viswanathan and
Marhoul [113] used a spectral sensitivity measure on a desired spectrum shape as the
basis of quantizer optimization for application to digitally transmitted, linear predictive
system parameters.
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Optimal quantization with respect to the mean weighted-quantization-error distortion
measure was investigated by many researchers after the paper by Max, the primary moti-
vation being the interest in digital techniques, which began in the early 1960s. Bruce
[69,70] developed a dynamic programing algorithm to specify the quantizer parameters
that minimize this distortion measure (Ref. 70 has an extensive bibliography). The
quantization-error weighting function in this formulation is not assumed to be symmetric
or convex. However, unless the weighting function is convex, one must search for many
possible relative extrema to obtain the optimum parameters.: Roe [103] extended Max’s
results to mean rth-power quantization-error distortion measures and to signal density
functions that are sufficiently differentiable to allow Taylor series expansions about the
transition points. Algazi [64] and Wood [115] presented other approximation techniques
for reducing the computational complexity and size of the quantization-parameter optimi-
zation algorithms given in previous papers [69,70,93,103]. The results of Algazi and
Wood are based on large N and on sufficiently smooth signal density functions. Morris
[40], Morris and VandeLinde [95], and VandeLinde [111,112] used a functional analysis
formulation to verify the robustness of certain N-level quantizers in a minimax sense for
the classes of sources.

Random Vector Quantization

Quantization of random vectors has been reported by only a few researchers, This
type of formulation is especially important to information theorists because of their
interest in encloding of signal source sequences (cften called n-dimensional message, or
block encoding), which is characteristic of multiplexed systems. Schutzenberger [107],
in a relatively early paper, investigated the reciprocal relationship between the mean rth-
power quantization error and the quantizer output entropy for the quantization of finite
dimensional signals. He gave a lower bound to the distortion measure, which is propor-
tional to N-t/n_ His results require continuous, bounded signal density functions that
have a finite # moment for some 8§ > r and have a finite entropy. The constant of
proportionality was not explicitly presented. Huang [85] and Huang and Schultheiss
[86] treated the quantization of random Gaussian vectors. They determined a matrix
transformation that converted the correlated elements of each vector to uncorrelated
elements and then quantized each element in an optimal manner. Zador [118], in a
later, unpublished work, gave an asymptotic result that is similar to that of Ref. 105.
Berger’s [9] work on optimum quantizer and permutation code equivalence was formu-
lated for random sequences, Segall [106] treated the problem of optimum allocation
of the total number of available bits (quantization levels) among the components of a
memoryless, stationary vector source. He gave an optimal decorrelating scheme for a
source with dependent vector components.

Performance Experiments

Research concerned with the results of performance experiments on specific quan-
tizers has been a very important field of quantization research. Bennett [66] was one
of the first at this type of research. He demonstrated in his timely and important paper
that the quantization-noise (error) power spectral density was uniformly distributed over
the input signal band. He assumed a uniform quantizer with “more than a few number
of intervals” and a Gaussian source with a flat band-limited power spectral density. After
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analyzing his results, he suggested tapering the quantizer interval lengths so that the weak
speech signals occurred in the shorter intervals and the strong speech signals in the longer
intervals. This is the fundamental idea behind companding [102,108], as discussed earlier.
O’Neal [99,100] investigated the performance of differential pulse code modulation and
delta modulation systems for transmission of Gaussian and television signals. This method
of encoding is often called predictive quantization, since only the quantized difference
between the current signal value and the predicted value is transmitted. He also looked

at the resulting quantization error. Damas et al. [768] and Thompscon and Sparkes [109]
experimentally investigated the effects of additive random noise, calied dithering, on the
signa! for the purpose of whitening the quantization noise. This procedure seems to be
very effective in digital picture processing. Arnstein [65] treated the quantization error

in predictive coders for first-order Gaussian Markov sequences. His results indicate that
the prediction error is close to Gaussian and that correlation of successive gquantizer outpuis
does exists.

Sensitivity Anaglvsis

The application of sensitivity analysis to quantizer optimization or performance
evaluation has not been treated in the literature with any depth. A lack of an adequate
sensitivity measure may have been the major inhibition to earlier use of sensitivity analysis.
Viswanathan and Marhoul [115] were concerned with an accurate representation of the
power spectrum for synthesizing good-quality speech. Thus, a spectral sensitivity measure
was the basis for their quantizer optimization of the linear prediction parameter., Gray
and Davisson [85] applied a generalization of the Vasershfein distance between source
random variables to derive an upper bound on the difference in quantizer performance
for different sources, Their bound provides a measure of the performance loss or mismatch
that occurs in applying a quantizer to a source for which it was not designed.

Noige-Corrupted Sources

Al previously referenced research treated the ideal case of noiseless input signals to
the guantizer, Only a few investigators treated the guantization of noise-corrupted signal
sources. In 1956, Myers [28] considered the uniform quantization of uniformiy distri-
buted sources with additive random Gaussian noise, He showed that for smaii-variance
noise, the quantizer output would be essentially the same as the noiseless case, and an
increased number of quantization intervals would yield goed improvement in the total
error. For large noise variances, the quantizer output would be incorrect a large percentage
of the time, and an increased number of quantization intervals would vield very little
improvement in the total error (i.e., the noise would dominate the total error). Myers
suggested the probability of a correct reading-as a measure of quantizer performance or
as a measure of allowable noise limits. Myers appears to have been the first to have
treated this type of problem. Bruce [70] extended this work and others by determining
an algorithm for computing the optimum quantizer parameters that minimize the mean
weighted-quantization-error distortion measure for noise-corrupted signal sources. The
corrupting noise need not be additive. The other problem constraints are the same as his
noiseless quantization problem. For the mean squared-error case, Bruce showed that the
optimal N-level quantizer is identical to the optimal N-step approximation to the optimum mean
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squared-error filter for the source. In general, the quantizer was viewed as merely an
N-valued zero-memory filter. Kurtenbach and Wintz |88] determined optimum and
optimum-uniform quantizer structures under the mean squared-error measure for the
system that transmits digital data over a noisy channel. Their proposed design procedures
required the channel transition probabilifies to be related to the bit exrror rate. Gordan
[83] very recently presented an engineering-oriented discussion on noise effects in analog-
to-digital converters. This was similar to Myers’ work. Morris [40,96] investigated the
performance of an arbitrary quantizer for discrete-time, memoryless, noise-corrupted
signal sources with a given amplitude bound. A functional analysis approach was used to
derive the results on worst-case corrupting noise for arbitrary sources and quantizers. His
results corroborated the findings of Myers.

Estimation and Control with Quantized Data

After these few results were obtained from the study of the optimal quantization
of noise-corrupted signal sources, several researchers investigated the problem of signal
estimation given the quantized data. This is a difficult problem because the conditional
density functions are in general complex. Meier et al. {93] considered the effect of
guantization of the linear measurement on state estimation of an unforced linear dynamic
system. For linear estimation and certain assumptions on the density function at each
time step, they presented a predictor-corrector filter of the Kalman filter form, for which
the measurement noise covariance is effectively increased by an additive term representing
the quantization noise. For nonlinear estimation and Gaussian assumptions, because the
resulting conditional density functions would be non-Gaussian, approximate methods
yielding tractable recursive estimates were presented. These approximate methods are
based on the most probable state trajectory estimate or the most probable state and noise
trajectory estimate. Curry et al. [74] and Curry [75] presented a general method of
computing statistics, conditioned on quantized measurements, based on properties of the
conditional expectation. On application to Gaussian discrete-time linear systems, a Kalman
filter type of estimator was obtained. For nonlinear estimators, two approximation
methods were used for obtaining tractable estimators. The first method uses a power
series expansion of the Gaussian density function to approximate the mean and covariance
of the conditional density function for a one-stage problem. The second method uses a
Gaussian fit algorithm on the conditional density function at each stage, which yields a
Kalman filter type of estimator., Clements [71] and Clements and Haddad [72] determined
expressions for the conditional density functions from which approximate conditional mode
and mean estimates can be determined. They treated nonlinear systems in this context.
By using Taylor series expansions and making some assumptions on the system equations,
predictor-corrector filter equations were obtained for the estimators. These equations
reduced to the Kalman filter equations for linear systems and no quantization.

References 71 and 72 are more general than the others because they treat the state
estimation of fairly general nonlinear systems, However, Curry’s book [75] appears to
be the only one devoted entirely to estimation and control of systems with quantized
measurements. It also contains an extensive bibliography.
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SUMMARY AND CONCLUSION

Significant research results relating to encoding information sources have been high-
lighted in this survey. Particular attention has been given to the application of quantiza-
tion and its importance in source encoding in a fidelity criterion context.

Since source encoding with a fidelity criterion (i.e., rate-distortion theory) is a
relatively new area of research activity, the literature is largely theoretical. Most research
has been confined to determining source encoding schemes and rate-distortion functions
for independent, stationary, Gaussian sources with respect to mean weighted-squared-error
distortion measures. Some theoretieal results have been obtained also for certain deviations
from this model, most notably for the minimum rates of Gaussian sources without the
independence or ergodic assumptions and for the performance of specific coding or quan-
tization schemes with respect to the standard models. Although the earliest results were
generally lacking in practicality or implementahility, with the exception of quantization,
they did provide insight and an understanding of the problem.

There are still problems that are unsolved or in early stages of development. These
include development of adaptive and/or robust practical source encoders for classes of
general sources, sources with memory, nonstationary sources, and sources with vector
outputs; development of adaptive and/or robust quantizers for these same types of sources;
application of more subjective distortion measures or fidelity criteria for sources with
memory and symhbol context dependencies, such as in speech or visual images; and deter-
mining the rate-distortion funetions for these sources and distortion measures. Successful
investigation of these areas would considerably advance the use of this theory in felecom-
munication systems design.
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