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ABSTRACT

The Tokamak system is a toroidal electromagnetic field plasma
configuration in which the magnetic field ratio B,/By is large. This
toroidal configuration, which is one of the simpler magnetic confine-
ment geometries, has led to relatively high plasma temperatures, den-
sitjes, and containment times. The growing amount of experimental
data, which needs to be explained, reveals the need for complicated
theoretical plasma models similar to those which have been applied
to pinch plasmas over the past several years.

It does not seem possible to explain the experimental data by
using the present two-fluid model applying the usual (classical) trans-
port coefficients, Two major model expansions are obvious: (a)
increase the number of fluids in the model, and (b) take into account
as many spatial dimensions as possible.

A fluid model that includes neutrals, electrons, and ions with
arbitrary charge Z is derived. Cylindrical symmetry is imposed, al-
though the transport coefficients include corrections for toroidai
geometry. Assumptions are discussed under which this model can be
applied to describe a Tokamak plasma consisting of neutral hydrogen,
protons, electrons, and nine ionization stages of oxygen impurities.
Some methods are outlined for the numerical (difference) solution
of the resultant system of highly nonlinear partial differential
equations.

PROBLEM STATUS
This is a final report on one phase of a continuing problem.
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FLUID MODELS FOR TOKAMAK PLASMAS

INTRODUCTION

The Tokamak system (Fig. 1) is a toroidal electromagnetic field plasma configuration
in which the magnetic field ratio B, /By is large. The duration of the By pulse is short com-
pared with the characteristic time period for B,. The plasma density is typically of the order
of 1013 ¢cm™3, the temperatures can exceed 1 keV (1), and the energy containment time
reaches 10 ms (2). Because of these qualities the Tokamak plasma has gained considerable
interest for controlled thermonuclear fusion research.

The growing amount of experimental data to be explained, as well as data that will
accrue from Tokamak devices being planned, reveals the need for complicated theoretical
plasma models (magnetohydrodynamic models) similar to those which have been applied to
pinch plasmas over the past several years. These models can be evaluated only by numerical
techniques. A two-fluid system comprising heat conduction of electrons and ions, ochmic
heating, temperature equipartition, and field diffusion has been solved by Y. N. Dnestrovskii
et al. (8,4). Calculations for the same combination of effects, but with different assumptions
for the transport coefficients, have been reported by H. Luc, C. Mercier, and Soubbaramayer
(5,6) and by R.A. Dory and M.M. Widner (7). The influence of impurities has been included
by the present author (8).

It does not seem possible to explain the experimental data by a two-fluid model apply-
ing the usual (classical) transport coefficients., One improvement might be expected from
deriving new transport coefficients which incorporate possible turbulence effects due to in-
stabilities. This does not affect, however, the basic fluid model for the plasma.

On the level of the fluid description, two major model expansions are obvious. The
first one concerns the number of fluids. In the experiment some influence of neutral par-
ticles and of impurities like oxygen has been observed (2). The second expansion refers to
the geometrical dimensions taken into consideration in order to include deviations from
symmetry and macroscopic instabilities.

In the following sections a fluid model that includes neutrals, electrons, and ions with
arbitrary charge Z is derived. Cylindrical symmetry is imposed, although the transport co-
efficients include corrections for toroidal geometry (neoclassical theory). Assumptions are
discussed under which this model can be applied to describe a Tokamak plasma consisting
of neufral hydrogen, protons, electrons, and nine ionization stages of oxygen impurities.

The author is presently at the Max-Planck-Institut fur Plasmaphysik, 8046 Garching bei Miinchen,
Germany.



2 DIETHELM DUCHS

Fig. 1 — Co-ordinates for a Tokamak plasma config-
uration. The ratic of B, to By {magnetic field along
the toroid axis to magnetic field perpendicular to the
axis) is large for such devices,

Finally, some methods are outlined for the numerical sotution of the system of partial
differential equations which corresponds to the multifluid model.

On the basis of this report, a computer program has been developed. It wiil be applied
to the data of existing and planned Tokamak devices, and the results will be published in
future reports and papers (10).

FLUID DESCRIPTION OF PLASMA

Considering a fluid model for the description of a plasma, we make the basic assump-
tion that we understand the plasma sufficiently well as soon as its densities n;,, its flow
velocities vy, its temperatures T),, and the electromagnetic field quantities E and B are given
as functions of space and time. The subscript k indicates that we might have to deal with
several kinds of fluids, such as electrons and ions with varying charges, or neutrais. Each
type of fluid (component) obeys the laws of conservation of mass (Eq. (1)), momentum
(Eq. (2)), and internal energy (Eq. (3)). For the electromagnetic field, we have to satisfy
Maxwell’s equations {Egs. (4) and (5)}. The conservation equations are

%’;ﬁ + Qiv{ng vy ) = An, {1
g .
g{(nkmkvk) + (Vk * grad)(nkmkvk) + nRpmpVy, (le Vk) = gfﬁd Py + Fk + APk {2)

% (—g— nkka) + div (g ”kkavk) =—div gy, —pp divvy, + AE, (3)

and Maxwell’s equations are

4B
T —¢ {curl E) {4)
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and for the neutrals the forces are
Fo=0. (11

The electrons lose momentum in recombining collisions and exchange it elastically with
neutrals and ions:

AP, = —n n,ZQm N, — ngn, (M mg/m,+mg) <aeﬁueﬁ (v, —Vg) + P, (12)
According to Spitzer {(11b) we can write
Pez‘ = RQE??SP j = —Pie' (13)

For the ions, the ionization and charge exchange collisions are important, in addition to the
kinds of collisions mentioned for the electrons.

Applying Eq. (13), we obtain

AP; =ngn, Smyvg —non; @ my; — naengpi
- %0 . - 14
nor;m; ({5 *0ce) Yip ) Vi~ Vo) 14

In these equations 0,4 {0;q) denotes the cross section for elastic electron (ion)-neutral col-
lisions; o, is the cross section for charge exchange. The rate of change for the momentum
of the neutrals can be expressed as

APy =-ngn, 8 mgVg + nn; @ myV;
+ R R %-{-U vin ) (v; —vp)
Qe 9 CcE i0 i Q

+ngngm, Qeﬁ IJ:eri)> (v, —vg ) {15}

In a similar way, we construct the expressions for the energy rates of change. The coefficient
of equipartition between electron and ion temperature is denoted by ¢, , and ionization
energy by x. The remaining symbols arve self-explanatory. The eleciron and ion energy rates
are given by

AF =_§"kTe nn; @ Z—ngn, Sx

e

+ 02 — P, —ngn, kT, — kTy)

3 kT, — kT,
L e %l (16)
2 e'vy ( ceq )
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Ceq

and
3 3
AEI- = ‘2“' kTO hpoh; S - “2-le nin, Q
kT, — kT,
+ —2— neni (“’Ie——'-!') - noni ﬁ (le - kTo)

+r; (v —vp)2. a7

The energy loss due to radiation is denoted by P,. Frictional heating is described by r; and
rq for ions and neutrals, respectively. For neutrals,

A.EO ="‘2‘ka nine Q —"ngO neno S

+rp (v; ~vg)?. (18)
The collision cross sections, averages {(e.g., (Ue0 Veo) ), and the functions S, @, «, 8, r;, and
ry are collected and investigated in more detail in Ref. 12.
GENERAL SIMPLIFYING ASSUMPTIONS
We have arrived at a rather formidable number of equations for the variables n,, n;,
Rgs Ves ¥, Vg, Te, T;, Ty, and B. Tt is quite obvious that the system is much too complicated
for analytical methods. Also, a numerical treatment of such a set in three dimensions and in

time exceeds the capacity of the largest computers which are available today.

In order to simplify the system of equations we will make several assumptions; we will
not, however, try to justify these assumptions.

The quasi-neutrality condition
n, = Zn; (19)
eliminates the continuity equation for the ions.

Inserting Eq. (1), we can rewrite the left-hand side of Eq. (2) as

ngmy (ga‘if' + (Vk * grad)vk) + mpVp, Ank.
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For the following we will neglect the inertia terms, i.e.,

ov
Ny My, (a—f + (v * grad) Vk) =~ (, (20}

as being small compared to the rest of the equations. In certain cases (e.g., charge-exchange-

created hot neutrals of very low density in Tokamak discharges) this simpiification might
have to be revised.

Ag the remainder of the equation of motion for the neutrals, we obtain
0=—mgyv, {n,n; @ —n,ng S} —grad pg

—hghmoVg S+ an,mpv; @
o
+ ronym; <(—;—0 + GCE) vig >{¥; —vg)
+tngh.m, (aeﬂve()> (Ve —¥p). (21)
We resolve this equation for the particle flux ngvy:

ngvg = [“ grad py ¥ rgnet, {Teo¥en) Ve

+ (”emt) Q +ngmy <(f§:0—+ GCE) ”so>) ni"x’j’ {%EE mg @

U.
* <(—2!{‘}' + "CE) Uio> + g, <0eﬁveﬁ>] : (22)

This expression for the particle flux has to be used in the continuity eguation for the neu-
trals. The {irst term can be recognized as the usual particle diffusion term.

In order to arrive at a generalized Ohm’s law, we multiply the electron and ion equa-
tions of motion by m; and m,, respeciively, and form the difference of both equations. We
use

Z
Me <1 ana 2 e <1 (23)
mj U
and the definition of the current density
j=n;eZv,—n,ev, =n.e(v;—v,). {24)
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Then, Ohm’s law becomes

=T -1 1 xB
mn e grad p; nge grad p, P v; )
1 m, Z
+ j -t ;
- c(])(B) n e nghg S V;

+%n0 [ni <(9£—°+ UCE) ”io> +1e(5 = (Oz0Y%0) )} (v; = Vo)

e
m .
¥ [nsp * 1l (2 + (degven) )] i (25)

The last expression suggests a small correction for Spitzer’s resistivity due to the presence of
the neutrals. (Reference 12 presents the conditions for which it can be omitted.) This cor-
rection is

m

Resolving Eq. (25) for ne (E + —v; X B), and inserting it into the equation of motion for
the ions, results in ¢

G-
noni [ZS mi + ml <(—2!g + UcE) Ui(> + meZ<_erve0>i| (Vl _'Vo)

=~ grad (p, +2;) + - ( X B)

+ 28 0y (28 + (0,000 ) i (27)

In principle this equation could be utilized for computing the ion particle flux n;v;. This
direct approach, however, breaks down for ny — 0.

ASSUMPTION OF CYLINDRICAL SYMMETRY

In the following, we restrict ourselves to ¢ylindrically symmetric plasmas (and boundary
conditions). At first we will prove that the radial velocities of electrons and ions are equal
under these conditions. Applying Eqs. (19) and (7}, and constructing the difference between
the continuity equations of electrons and ions, we obtain

~ i

) .
5[!'?12 (v —vg)] =0. (28)
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Since r is bounded,
rn, (vl —vg) = const
must be valid. Atr= 0, n, and the velocities cannot be infinite; therefore,
const = 0,

and

il

= e
Yy

vl Uy (29)

This equation will be useful for the transport of thermal energy in the equations for T, and
T

From Maxwell’s Egs. {4) and {5}, we find

aB OF 13
—_— o 2 - —
= {ﬂ, 7 ¢ - (PEe)} (30)

{which suggests that B, = 0), and

4m ., _f. 03B, 18
?;_{ﬁ,—ﬂar ;g;g-gﬁ)}. (31}

With respect to our special Tokamak field configuration {see the Introduction), we can assume
that

8B, 13 -
e crar(rEg) 0. {32)

A procedure analogous to the one which leads to Eq. (28) produces
Ey = Q. {33)

Inserting this result into Eq. {25) yields an expression for the radial ion particle flux which
also holds for ng — 0:

1, myZ ;
O=;v§, B, — n:e ngh, S vh

m a; ; .

*ree ™0 [”f (52 + ock) vi0) *+mels= (oeoveny )] (wh = v§) +meig.  (34)
€

In order to present uf_ in its more familiar form, we multiply Eq. (33) by B, and evaluate

Eq. (27) for j3 B, by multiplying the z-component of Eq. (25) by By and find
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v (33‘ +Bg + ey non; (ZS m; +m; <(T;‘9_ * C’CE) ”f0> tme Z (UeOUe0>))

=Te 210 5 (v} B, - viBy)

_m, z ng (_’b_ <(%’0_ + UCE) ”i0> +8— (%0%0)) [By (v} —v?)

ne
. a.
— B, (v} —v)] + 2, non! (ZS m; + m; <(7’Q + UCE) Ui0>

]
+m,Z <Ue0UeO>) —cE,Bg —n, c? a—r(p‘ +p,) (35)

What we did here was actually construct the Poynting flux E X B from Ohm’s law (Eq. (25))
and insert j X B from Eq. (27). Without the corrections for neutral gas (ng = 0), we arrive
at the usual expression

. 1 G ck, By
i = 2 —_— Y N | =Y
r “’"“(Bsws) ar Pe P (Bswzs‘) (©9)

where the two terms constitute the familiar particle diffusion and pinch effect.

It might be worth mentioning that for the temperature Eq. (3) the knowledge of vl is
sufficient in cylindrical symmetry since v occurs only in the “div” operators. The friction
terms in Eqgs. (17) and (18) are usually negligible or well enough represented by the radial
components of the velocities.

INCLUSION OF EFFECTS RESULTING FROM TORUS GEOMETRY
Modifications

Up to this point we have developed a system of equations for the ion and neutral densi-
ties, for their radial velocities, for the temperatures T,, T}, and T,, and for the electromag-
netic field components. We have imposed the conditions of cylindrical symmetry so that our
plasma parameters depend only on radius r and time {. We intend, however, to apply this
model to a toroidal Tokamak plasma. There, the torus geometry induces several important
effects. The radial ion velocity, for example, is strongly influenced by the Galeev and
Sagdeev trapped particle motion (13) and by A.A. Ware’s (14) pinch effect. We also will
miss the Pfirsch-Schluter corrections (15). Fortunately, taking into account these effects is
possible without increasing the number of parameters and coordinates—that is, these correc-
tions can be expressed by variables of our present cylindrical model.

We will use the so-called neo-classical transport theory (16). It has been worked out for

an electron-ion plasma. This theory distinguishes between three different regimes according
to the collision frequency »:
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{a) the “banana regime,” where

vR [/ rB r\3/2
or (#5) < (%)
(b) the “plateau regime,” where
r \3/2 R rB
B <)<
{c} and the “classical regime,”” where
vE { rB
_<R33)>1' {39

The major radius of the torus is denoted by R; the quantity B represents the magnitude of
the field, and the thermal velocity is defined by

20T
op =y —. {40)

The collision frequency has to be treated separately for ion-ion and for eleciron-ien collisions.
In the latter case we find that (1'?}

1 4/%7 ZZe% n; In A
y ==Y  rsec™1] (41
LA 3/m {kT,)3/2
where {using cgs-units)
3(kT, )3/ for kT, < 36.19 ¢V
—_——— for 19e¢
od WTZER, ‘ (42)
h 3X761X10‘6Xk'}‘e for kT, > 36.19 ¢V
or A eV,
0/T Z e3\/n,

The analogous formula for the ions is

174 n.1n A,
yﬁ=—£-= 4/ e*Z% n, !31}211 [sec1] {43)
Tii 3/ m; (RT})

where

1/2
3 kT; <kT) (44)

Aii = 272 g8



NRL REPORT 7340 11

Particle Flux

It has been shown (18) that electron-ion collisions defermine the particle flux in the
present problem. Recently M.N. Rosenbluth et al. (16) derived for the ““banana regime’ the
relation

E,c r
—-2.44 (B—B 1/1;) (45)

In this formula, p,g is defined by

o _ 2m, kT, c2

Peg =gz lem?]. (46)

The expression in brackets corresponds to the diffusion term in Eq. (36), and the last term
describes the Ware pinch effect.

In the “plateau regime” we use (19) the relation

2 /B 35 cE 10
o =—/T(1)* (Bovze) (gg (35Fa) | po , 12n) (a7)
r 2 R Br])ei 8 BB € nar

For the classical case the anomalous pinch effect may be neglected (19); however, we must
apply the Pfirsch-Schhiter factor as a correction for torus geometry:

B
1+ L i 48
=142l (R BB) (48)
Using Eq. (48), with n /n, = 1/2, we obtain
_ 2 kT, m, c? 1 dn
'”*“’ef(w)“’;s:- (49)

Heat Flux for Electrons

Reviewing our basic system of Eq. (1)-(5), we notice that the heat flux consiitutes the
fourth velocity moment of Boltzmann’s equation. Since we want to close our system of
variables with the temperatures, we always have to make assumptions for the heat fluxes.
In the present problem we again utilize, of course, the results of the neo-classical transport
theory.



12 DIETHELM DUOCHS

We assume again that electron-ion collisions are dominant for the electron heat flux.
For the ““banana regime,” Ref. 16 obtains

2 ,
gt =T Fle ﬁ'eel/z —rst | o T\ g 1 *T
€ Tei R kT, or kT, or -
13 RT; E T '
+1.53—-3(1+ IV +1.75nkT, | =22 1/: (50)
n or kT, Bg JV R

If the collision frequency belongs to the “platean regime,”” we have

r n.kT.c okT,
RZ \ eBy € ar

3
@=-5 VT (51)

where p,, is formed by replacing Bg with B2 in Eq. (46).

The classical heat conductivity must also be corrected by the Pfirsch-Schititer factor,
Eq. (48), which has here a slightly different numerical factor of 1.6. The basic formula is
taken from Ref, 17:

q° =_nekTe Tei (11 X2 +9g) 1+16 IB; 2| BkT, 52)
€ me X4+51 X2+6G RBB ar

where X = w,7,;. The cyclotron frequency is

el
w, = . (53)
myc

The coefficients v;, 7y, 9, and 65 depend on the ion charge Z and are given by a table in
Braginskii’s article (17}.

Heat Flux for Ions

The most important part of the plasma heat flux is carried by ions. In the “banana

regime’” we use {18)
2 kT,
a? =-0.68 (—--_n Rio 1/1_ ( *) (54)
Tff R or

with

2 _ 2??’1‘; th 62
6~ 78 o BZ

in analogy to Eq. (46).
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In the “plateau regime,” we find (19)

q%’=-—3— v rp;n; kRT; e\ OkRT;
2 By R2Ze or
where
2 _ 2 m; ka CZ
Pi =73 .2 g2

is obtained by replacing By by B in the similar expression for p;g.

The classical case has again been given by Braginskii (17)

5
n; kT, T X ( ‘2" X2 + 465) SBT.

qf =— g =
* m; (X4 + 2.70 X2 + 0.677) or

where X = w;T;;, and

The correction ¥ is the same as in Eq. (52).

Modifications Due to Toroidal Averaging

13

(55)

(56)

(67)

(58)

The formulae for the banana regions are obtained by averaging over toroidal surfaces.
Unfortunately, the “adiabatic compression’ terms do not emerge from this procedure in a

form as simple as in the purely cylindrical case. For the ions, we have to write

10
-p; divviﬁ—;a—r(rnkTi v,)

d kT,
v, (kT,.-5~"— 0.17n = ) ,
r r

and in the electron temperature equation we have

. 10
—D, d1vve->—;a—r(rnkTe v,)

an . KT,
~u, (kT,. a—': ~0.17n -aT') .

(59)

(60)
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For similar reasons we have to modify Ohm’s law. Equation (25) would yield for the axial
component of the electric field

1 .
E, ==~ uBg*nig

if we omit the corrections due to neutral gas. From neoclassical theory, however, we arrive
at

P . 1 1 r ¢
z=??]z - = _Ti' — [
VEeEB
1—1.9]/i 1—1.91/E 0

R R

kT, akT,-) 61)

on
X (—2.45 (BT, + kT;) e 0.7n -E;e +0.3n = )

The ohmic heating raie H is given by
H= Ezjz . (62)

It might be worth keeping in mind that M. Rosenbluth’s expressions are derived only
for the banana collision frequency regime and only in the limit of small aspect ratio r/R.

ELECTRICAL RESISTIVITY AND EQUIPARTITION TIME

In order to complete the compilation of coefficients, we note here also the electrical
resistivity. Basically, we use Spitzer’s formula

=18me Pei

> {63)
€

For Z = 1, the quantity § assumes the value of 0.51; for Z > 1, it decreases slightly and
can be represented by the formula

0.457
5 a—

= —————+ (.20, (64)
1.077+Z

Some experiments indicate an enhancement of the resistivity as soon as the slectron
drift velocity

exceeds the sound speed
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b = 2kTe.

is
m;

Approximating the experimental results we would have to multiply 1 by the function

2
y=1.222 (5’2> ~1.888 (-"—11) +1.766 (65)
Vis Uis

for UD/Uis >1.
In Egs. (16) and (17), we defined the equipartition term to be

3 kTe'—kTi
eq

In Spitzer’s book (11) we find for the equipartition coefficient needed here

c

3m, m; (kTe +ﬂi) 3/2 (65)

e 28\/2'1?22 etIn A,

Usually we can neglect the ion contribution in the temperature dependent term.

M, g

ESTIMATES FOR CORRECTIONS DUE TO NEUTRAL HYDROGEN

In the previous two sections we have compiled the transport coefficients for a fully ionized
plasma consisting of electrons and ions of charge Ze. As indicated in the third and fourth
sections (e.g., Eq. (26)), these coefficients might be modified by the presence of neutral
hydrogen. In this section we will estimate the importance of such corrections in the low-
temperature regime (BT, = 10 eV} either at the beginning of the discharge or near the walls
where neutrals are likely to exist. We start with Eq. (26) and insert the following quantities:

In A = 10,

Gp0 ~ 5X10716 [cm?)

kT
S~ 2.3X1078 ¢13.5/kT, 1325 fem® s71].

In these and the following expressions of this section the temperature kT has to be in units
of electrovolts. Equation (26) can now be written in the form

1.5X1075
(kT,)2

m—[

n
+—2 (6.3X1079¢18.5/kTe + 3x10—8}} :
n;
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Depending on kT, and the degree of ionization, the correction term exceeds the first one for
{ng/n;)(kT,)2 > 500. {66)

Under conditions near ionization equilibrium the correction, therefore, is negligible.

In view of the neutral gas terms in Eq. {38) we will now estimate the ion velocities uf
and v7. To this end we assume that the center-of-mass velocity is zero in the & and z direc-
tions, which provides

m, )
= . 87
en; (mi+Zme)J ik

Ui
For the angular component

B e\ C OB
: en;m; ] 4w or

We need the B, field, which for a Tokamak can be roughly represented by

B. =~ Bzﬁ
2 r
1+—cosé
R
In the limit where r/R << 1, we obtain
0B, B,y cos . _Bo

ar r 2 R
R 1+—cosﬁ)
B

Inserting typical data (B = 100 cm, B, = 30 G, and n; = 1013 cm™3) we obtain
vf ~ 5X10%[em sec™1].

The order of magnitude of

me s
= e
en,- m;

might be calculafed from both the total curvent I, (electrostatic units}) and the discharge
radius B, {centimeters) through the relation

i, =Lix R%).
With I, = 100 kA4 and R, = 15 cm, we estimate

vf ~ 5X10%fcm s71].

"
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For comparison, the thermal speeds for protons are of the order vih ~ 107
—1
cm sec t.

We turn now to Eq. (35) and compare | B|2 with

- o; m
Ly = ¢2 m, non;m; [S + ,<(—2'2 + OCE) Ui(> +E?- (Oe0 ”eo)] .

The sum of the ion-neutral collision rates is about 5X1078 cm?3 sec™1. With , ~
6X1014 (kT,)"3/2, we arrive at

Ly = 5X10724 nyn (RT,) 3/2 [em™1 g sec™2].
Since B has a magnitude of several kilogauss, we conclude that
Ly <<B2.

It seems quite unlikely that v’(') becomes much bigger than v:.'; this also allows us in Eq. (35)
to drop the term proportional to vf,.

Finally we have to compare the terms
Ly=mgcZnySv?B,le

and
m,cn ag.
Ly =—2—2 [<(“21“g + OCE) Ui(> +8— (Og9 er)] B, (/f ‘U%)

with the term
L3 =CTe jz BB .

The last expression arises from cE,Bp. Application of the above-mentioned estimates and
approximations leads to

Ly ~ 1.7X1012 n, B,,
Ly ~1.4X10711 ny B,,
and

I
L3 A 1.7X106 Tﬁea—li
RZ (kT,)

where I is in amperes, kT, in electrovolts, By in gauss, and R in centimeters. The ratio of
Ly + Ly and L3 provides us with the criterion

h
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ng B, R? (kTe)?’fz

= 1017, {68)
I, By

which specifies the limit above which the neutral gas terms become dominant. At the center
{r = 0}, Bg always vanishes, but so does v? inL, and L,. For a typical set of parameter
values (ng = 1013, kT, = 10, I, = 10%, By = 50, R, = 15 and B, = 3X10%) in the initial
phase of the discharge, the correction from L; and L, amounts to a few percent. Similar
results are obtained for increasing I, and By in the interior of the plasma, as well as near the
wall.

Thus we can conclude that for the particle flux given by Eq. {35), all corrections due to
neutral gas are negligible.

Since v} is only about one order of magnitude higher than v? , we might extend this

conclusion to the electric field component E, (Eq. (25)) and thus simplify Ohm’s law
considerably.

TWO NEUTRAL GAS COMPONENTS

Under conditions where recombination is small, we are in the present model left with
the processes of ionization and charge exchange in order to extinguish or create neufrals. In
a discharge, we will start with cold neutrals being ionized at relatively low femperatures. In
Iater phases only, near the {cold) boundary, neutrals will be left af noticeable densities. On
the other hand, neutrals will arise from charge exchange collisions displaying the temperature
of the ion. According to this picture we will assume two components for the neutrals. Since
the temperature of the cold neutrals is not expected to vary much, we neglect Eqgs. (3) and
{18) and replace them by a constant

kT, = const.* {68)
For the hot component we mentioned already,
BT, =kT;. {70)

We have to consider, however, two equations of continuity for which we take into ac-
count the following source terms:

Aﬁh ="Tny R, S+ n; n, Q + <UCE Ui0> ﬁc ni (71)
and

Iﬁnc = _nc i, S- <O'CE Ui0>nc ﬂi. (72)

*We use the subscript k for “hot component,” the subscript ¢ for '‘cold eomponent.”
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With ng = ny, + n,, Eq. (8) is still valid, of course.

Applying the estimates of the foregoing section and the formula @ ~ 10713 (13.5/
kT,)1/2 em3 571, we can reduce the radial component of Eq. (22) to

1 D,
o 73
Rg Uy (n,-mi <[(Ui0/2) + GCE] Ui0> ) ar +hng v, ( )

as long as

e < ax104 (74)

) Te

with kTe. given in electrovolts. This condition is practically always fulfilled.

From areview of Egs. (15) and (21), we learn that we can make use of Eq. (73) for
both neutral species by replacing ng with n, or n, and employing the appropriate tempera-
tures.

IMPURITIES (OXYGEN)

There exists experimental evidence (8) to the effect that the walls of the discharge
vessel or the pumping system release high-Z elements in such quantities that their influence
on the plasma is not negligible. Mainly, oxygen contributes to losses through radiation and
ionization. Yonization also modifies the electron density due to the great number of ioniza-
tion stages, even though the impurity concenfration is considered to be a small percentage
of the plasma density, i.e.,

9
) 0;,<<n,. (75)
i=1

We further assume that the impurities have the same temperature as the plasma ions and that
their diffusion (flow velocities) is small compared to the ionization and recombination
process. In order to describe these impurities, we follow the procedure of Ref. 20:

a0 \

_f;:l ==ne Oy 8 +n, 01 (0 *+ 79 Mg )

30,

_g, =n, ok‘“l Sp—1 —h,0p (Sk *Qet F Vi1 ) e (76)
1 Opyy (0 + 7, )

d0g

00 - 0 Sy, Oy g+ a0 J

I
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The subscript £ denotes the stage of ionization and runs here from 1 to 8. Formuiae for the
radiative recombination o, and the collisional recombination 4, are taken from Ref. 20; at
the relatively low densities of present Tokamalk discharges, the three-body recombination vy,
is negligible. The jonization rate coefficients S, were updated by approximating graphs pre-
sented in a recent publication {21).

In the following formulae, we use the notations x = log; o (T, ) and y =log; 4 (8). The
percentages in parentheses behind each formula give the root-mean-square and the maximum
deviation from the values given in Ref. 21 for the range 1 eV < kT < 104 ¢V, and
10716 ¢m3 571 < 5. The subscripts follow the spectroscopic notation {1 is associated with
neutral oxygen.)

—2.9063 x — 15.342 ™% + 1,5355 ¢ %2 for x < 1.2; (13%, 21%)
—0.5533 x — 3.1989 x™1 — 4,3587 forx > 1.2; (3%, 7%)

i
Y1

Yo =—0.94488 x ~ 32.134 ¢~ + 8.8149 ¢*2 for x < 1.2; (14%, 28%)
¥g =—0.05623 x2 — 2.9465 x~2 ~ 6.6862 for x > 1.2; (2%, 5%)

¥3 =—10.827 x2 +27.882 x — 27.504 forx < 1.2; (9%, 17%)
vz =—0.05852 x2 — 3.9097 x~2 —~ 6.8502 for x > 1.2; (3%, 8%)

¥y =—1.285x — 9.5417 x~1 — 1,1978 for x < 1.8; (10%, 20%)

¥4 =—0.45583 x — 5.8989 x~ 2 — 6.1611 for x > 1.8; (1%, 2%) > {77

¥y =—2.3318 x — 14.108 x~1 + 2.6555 for x < 1.8; (3%, 8%)
¥5 =—0.49385 x — 7.328 x72 — 6.2156 for x => 1.8; (2%, 5%)

yg = —7.5127 272 — 0.38242 «~1 — 7.4312 for x <1.8; (5%, 9%)
¥g =—0.46353 x — 8.0959 x~ 2 — 6.637 for x = 1.8; (2%, 4%)

yg =—54.94x3 + 10.266 x™1 — 11.447; (5%, 156%)

vg =—67.015 x3 + 13.062 x~1 ~ 12.891; (3%, 8%).

-

Even the relatively high deviations for v, lie well within the estimated error (21) for the
curves approximated.

The power {per unit volume) lost through ionization and recombination can be ex-
pressed by

8

3

Bi= ) %7 (8,0 = %n Ojua) + 5 T, an Ojay a8
i=1

where X; is the ionization potential.
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For energy loss due to radiation, the most important resonance lines are taken into
account [20]:

1/2
P, = 2X108 xg (:’?’) n, (Og e 15/kTe +0g e~16/kT,

e

+ 0y e~ 16/kT, 4 05 e 20/kT, 4 06 (e—IZIkT +e"83/kTe)
+2 0, e 575/kT, +2 0y e—655/kTe)_ (719)

The radiation power is normalized to the ionization potential Xz for hydrogen atoms.
Bremsstrahlung is important in the keV temperature region and taken into account (11c) by

_ [2nRT N2 28 meb 22 nin, 2./3
br 3m, 3hm, 3w

=1.334X10719 22 nn, /RT, [ergscm 3 s71] (80)
if kT, is given in ergs and the densities in em™3. This formula brings up the question of

which Z should be used, since we basically want to treat the plasma as a three-fluid system.
We will adopt here the model of an average ion charge

9
ng+ ) Z0;
e 2 n (81)
9 9
it 300 nem o @G=10,
=2 i=2
because
9
g =ne—) . ZO;. (82)
=2

This average charge Z varies, of course, with the location, depending on the status of ioniza-
tion. We already neglected the diffusion of the impurities; the assumption of a small ratio
me/m; is not affected by oxygen. For these reasons, we do not introduce an average mass m;.

SYSTEM OF DIFFERENTIAL EQUATIONS FOR A TOKAMAK PLASMA
FLUID MODEL

In this section we collect the equations previously derived and rewrite them in a form
which is suitable for numerical treatment. The right-hand side of each equation shows, first,
the terms which are common to all three collision frequency regimes, then, following the
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dots, the terms which are specific to the banana, the plateau, and the classical regimes, re-
spectively. In the actual calculation, the proper regime should be chosen for each time point
and each volume element.

The equation of continuity for the electrons assumes the form

on, > 30;
— =f, (N *n)8y —n,ng @y + Z Ly e
ot s at
where, in addition, we add
{a) *banana regime”
J12 B 4 o, n, 2080
oooooooo r ar 0&1 ne a 2 e a
okT, okT;
2 " e i
+agn’ £ — oy n2 ™ ) (83)
(b} “plateau regime”
13 on 3{(rBg)
........ +—— RT,) —2+
r ar (ﬁl( ) ar & or

and

(e} “‘classical regime”

The coefficients are defined in the following way for the banana regime:

_8rZinA,; jce\? (2nmer)14'2
0 3 (Bg) kT, R

By =112 [1+ RTy/RT,) hg
hy = 0.43 ho/kT,

hg = 0.19 hy/kT,

244 X 4 X BZ (In A )(ce)? [2mm, r\112
80738, (WE-1.97) kT,

gy = go/{47 kT,)
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r 1
= 0.69 —
&3 g0 ]/;ngTe
- 0.42 A
84~ 02280 R By kT,

With these auxiliary definitions, we obtain finally

1
By

e

oy =hy +gyr

Gy = &1

g =ggr—hgy

oy =hg +g,r.
In the plateau regime, we find

p. - 3X0.9X35XrBy (kT,)”
1" 82,/2R2Zet n, (InA,;)B,

_ 09X358 (51)2 (mekTe)1f2
2 32B, (1-k;) \eR x

8 _2(mm, kT,)L/2 (rc)2
1 B, Bg(1-k;) \Re
ﬁ2=k2/r.

The classical diffusion is described by

y _18ZInA,; fec 2 [2nm,\1/2 R 2+ r\2
Loy 3 r kT, B, Be) '

The equation of continuity for cold atoms (kT}) is quite similarly structured:

on 19 on
EQ =—ncneSH —CannH +‘;‘ g (51 a_rc') -------

23
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whaere, in addition, we add

{a) “‘banana regime”

--------

{84)
{b) “‘plateau regime”

and

(¢} *‘classical regime”

In addition to the previously defined coefficients, we obtain

5. = rkT,
b nm; (UL + Cy)

where L {= {0;,0;9)) stands for the elastic collisions rate, with £7, in the argument. Also,
€4 < klfne
€9 = ﬁgfne.

The only major difference in the equation of continuity for the hot neutrals comes from
their time- and space-dependent temperature £7;. Defining

r

3 =
2" n;m; (AL +Cg)’

with 2T in the arguments for L and Cy, the density of hot neutrals n;, is determined from

anh
Ft_. =— nhneSH + nenHQH + CHHCHH
18 3kT; an
= = (Sgny ——E+ 5, kT, —2) ...
rar(znh ar 2 {a">
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where, in addition, we add

(a) ‘“banana regime”

19 on, d(rBy).
....... +— — —= +
: r ar (“1 Ty T %2R T
{kT,) a(kT;)
+ Qg npn, o %4 Malte “—"‘ar’ (85)
(b) “plateau regime”
13 0(rBy)
........ + = — kT, — +
r or (El h B le €2 h Ty,
and
(c) ‘“‘classical regime”
LA o,
........ - o Y1 g ar .

The equation for the temperature of the electrons contains losses due to recombination Qg,
ionization of hydrogen (x;;, 8g), bremsstrahlung (Eq. 80)

§2 =Pbr/n2’

line radiation from oxygen impurities (Eq. 79)

ionization losses from oxygen

8
0= 2. %50
j=1

as well as losses from radiative recombinations

8

3
§6 = Z —z'kTe Oij Oj+1.
j=1
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The equipartition between electron and ion temperatures is determined by

1
m;

_4ZetinA,; [2rm, \1/2
kT, )

The heat flux is in the banana regime defined by

r8ZinA,; (ec)2 (27rme ,.)112
K B P ——

° 3 By R kT,
iy = 1.81 kg
Ko = 0.27 kg
kg =1.53x,

and by

1757842 (n Agdice)? (% me 1 )”2
o=

3(/R~1-9/7) By kT, \ kT,
?\1 =?\u{’(4ﬂ' F')

1
By

r i

?\3=0.69?\0 l/:-—
R By

i
)\4=0‘427\.ﬂ 1“'_'.
R By

The transport of thermal electron energy is regulated by the coefficients

Ag = 2.44 A,

=

Ny i S

Tj= 0{10=174)

while the “compression” is taken into account through the terms multiplied to:

vy =(hy/r)+gs vy =017
Vg = g1/ vy =017 w93
s = g3 — (ha/r) vg =0.17 vy
vq =(hg/r) + g4 vg =017 v,
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For the ohmic heating terms, the electrical resistivity coefficients have to be defined.

48 Z In A; (ce)? (R 27 m, )1/2
Mo =

3 WE-19PEkT, \ kT,
1
M in o
2.44 r 1
Mg 44 Ty R By
0.69 r 1
N3 03 Mg R By
0.42 r1
Mg V24T Y 5 By’
Using these definitions, we obtain for the ohmic heating
1
L =
17 gmr2

1 .
b —M—rﬂj(}*z,‘l)-

The equation for the temperature of the electrons, finally, emerges as

2 (3 3
ot (Ene kTe) =_§kTe Ne Ny Qp — (ny +n.) e X Sy
— {1 (1 —RkT/kT,) n2 — o n2
“ g +Sa*tSe)n, ot (86)

where, in addition, we add

(a) ‘“‘banana regime”

129 okT
—_—— — 2 e
........ + T o [(Kl 7\3 kTe) n, ar
ok T; o(rB
+ (Kz + l‘l kTe) ne2 ? _kl nkTe _(;";"B_)

3
— (kg + Ay kT,) n, (T, +ET}) %}
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13 on 3(rBy)
- f 4 v
rar [ne *Te (TI ar 2 gy

kT, AkT,
+T3 i, ar T Tyht, ar

an,\ 2 on,\ [ 9(rBy)
* vy kT ("é’f) + vy RT; (”é}g)( ar )
on okT on okT;
ey 1y, (S22) (%57) — v matr (52) (57
Cpn (2135) (aka)_p " (a(ng}) (akz})
2% \ ar ar 47 ar or

okT (akT«) (akT-) 2
- 2 el — L 2 L
Yo 1 ( or ) ar g T ar

2
+1y (a(;ff’)) +ip {kTe+kTi)(ane) (3{?‘3@})

o ar
kT, \{3(rBg) ok T; 3(rBg)
Ty Tt ( are)( ar Tta e arl ar
{b) “plateau regime”
N 10 (x o akTe)
........ - n
rar\ 2 o

3(rBg) )

+.1.'_._a__ kT 2.3_13?.4. ET
py RT,) 5 T P2kl

r or

d{rBg })

+n, kT EE- T (kT)a—ngﬂv
e™%e 5 \TO Ve 5y L

3(rBg)\ 2
T ( B‘ra )

and

{¢) “‘classical regime”
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A few more definitions are necessary for the ““plateau’” and the “classical” collision regime:

@ kT)”z(rc)z
Ky = T m —
4 2ByB, e”e Re
_3,
P 9 1
—31k
P2 27 2
1r0=k1/nc

Tfl = kz/(rne)

BZInA,; [ec\? [2m, \1/2
g =——n———= — .
5 12kT, 7 \r ™ kT,
The coefficient kg for the classical heat conductivity can be computed from Eqg. (52). The
ion temperature is calculated from the equation

d 3n, 3
'é'; '2‘"Z-kTi =§nHSH(ncch+nhkTi)

3 3
_""2" ka Rgr R, QH —_kTi nc ngy CH

2
+¢ L —kTy/RT)n2 ... .. ... (87)
where, in addition, we add
(a) ‘“‘banana regime”
la okT;
........ +— — 2
rar ('ul e Tor )
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19 3 3
+—a—r-[neki“f (61 e . g, 2B0)

r ar ar
okT ok
+63 Ry £ 94 Ng 'Efr_’)]
2 3n,\ [0(rBg)
-wr, () v () (P52)

on \/okT, ) (Ein (akT-
kT; + R i - Bvabion
IR ( ar )( ar b1 e RT; ar ) ar )
on orT; o(rBg}\ (okRT;
Vet (.5;2) ( Brl)+y4ne( ar 3?‘1

" (akT)(ale) 5 (ak.T,-)z
— 1 = n
6 \ 75 ar CR

{b} “plateau regime”

1a( ak'f,-)
........ + - =
ro ar

d
= (;‘13 (kT, )(kT) T 4y BT,

3{rBy) )
or

Ry 19 ( on, a(ng))
+ =L kT, = — |mp BT, —2 +
A Proor o m ar

and
{c} “‘classical regime”

+1§_( (kT}4akT)
........ r 3 Ky ar

13 an
Ho- — k.—e)
rar(ﬂﬁne T or

The heat conduction in the banana regime is given by
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_r'0.68h‘lAii ec 2 —,Tm.,->1/2
f1 3 (Ba) (kT,-R '

The transport of thermal ion energy is related to that of the electrons through
0;=7;/2 (= 1, 4).

For the plateau regime, we have to define

3 2
g = ( ik ) (2 m; kT;)1/2
2By B, Z \ ZeR
Mg =py/Z.
4 = Pa/Z.

The classical heat flux contains

(2.5x2 +4.65) X 9B, [1 + (rB,/RBy)?]
(x% +2.7 22 + 0.677) X 16 m m; c €7 Z6 n,, (In A;)?

Ug =

where x = w;7;;. The transport is determined by

ke =371 /(22)}.

The poloidal magnetic field By in the “banana regime” obeys the field diffusion equation

0Bg 0 1 a(rB’e) akT BkT-
— =~ + kT, +k —E +q £ _ L
at ar[1 ar 2 BT T) M8 e T TMale T,
In the “plateau regime” we have
0By 9 ( o(rBg) d(rByg) an, )
— = — - = B ~wq Bg kT, —~
t ar “s ar @z 76 or @15 or

and in the *classical regime”

0By 0 ( on, a(ng)>
3t " or \E1Bo 3t rws = )

The n’s have been defined already. In the “plateau regime,” we have
Wy =mylr

wz = 'ﬂ'llr

31
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w _1c? 4BZ(InA,)e? (2am,\1/2
® ram3 kT kT, '

£

‘The last definition needed for the classical regime is

EI = "}‘1/1“.

METHODS FOR NUMERICAL SOLUTION OF THE DIFFERENTIAL EQUATIONS

The system of Egs. {(83)-(88) is predominantly of the diffusion type and obviously
highly nonlinear. Together with proper boundary conditons, we will solve this system as an
initial value problem by finite difference methods.

Structure of Diiference Equations

The space-time grid in Fig. 2 helps to clarify the notation for the difference scheme.
The function A(x,1) is abbreviated at the grid points, e.g.,

A(xj,t) = Aj
Alxpt+At)y = A,

In the most convenient “‘explicit” difference scheme, A ; is computed from (known) quanti-
ties of time level ¢ without involving A;,; or A; ;. For the simple case of a linear diffusion
equation with constant coefficient o, however, the time step Af is severely constrained by
the condition

(Ax)

At <
= 20

(89)

.in order to ensure numerical stability. There exists no indication that, for nonlinear systems
of diffusion equations with variable coefficients, the stability conditions would be less
stringent.

We investigated, therefore, implicit difference schemes which in principle require the
inversion of a matrix with the dimensions of Ehe numbgr of space points N(j=1,.. .N)
since the equation for A_,- also contains, e.g., Aj+1 and A;q.

It turned out that the difference equation had {o be centered carefully. By “centering”
we understand the following: the difference approximation for the time derivative on the
left-hand side of a differential equation (e.g., (Aj — A;}/At) is centered around the time level
t + {At/2), Therefore, the right-hand side of the equation should be taken at this intermedi-
ate level. The analogous procedure holds for spatial derivatives. The diffusion coefficients
in our investigation were proportional to powers of A{x,?) and to powers of derivatives
QA {x,1)/9x. Detailed results will be reported eisewhere.
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) Aj—1 Aj Aj+1
t=t+ At » »* %
- A"_1/2 A~'+1/2
T ]
f=t+=Atl o ou O —
Aj—]_ AJ Aj—l
t - » < - =
Xj—-1 Xy Xj+1 X

Fig. 2—Space-time grid illustrating the relationships between the functions Aj, ﬁj, and fij. These functions
are used in the numerical (difference) scheme for solving the set of nonlinear partial differential equations,
Eqgs. (83)(88).

Of course, the centered nonlinear difference terms have to be linearized; to do this, the
following formulas are useful:

A=(A+A)2
AB=AB+BA—AB
(AB) = (AB + BA)/2
(ABC) = [C(AB + BA) + AB(C — C)] /2
P A A A -
(ABCD) = [CD(AB + BA) + AB(CD + CD) ~ 2ABCD] /2
N " a a Ly ~
(ABCDE) = {CDE(AB + BA) + ABC(DE + ED) + ABDE(C — 3C)]/2.
We also note the special cases occurring most frequently in the present Tokamak problem:
P - n
(A2B)= A[24B + A(B-B)]/2
(AZBC) = A[A(BC + CB) + 2CB(A — A)] /2
— A A
(A2B2) = AB(AB + BA ~ AB)

p— a -
(A4B) = A3(4AB + BA — 3AB)/2.
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Solution of the System of Difference Equations

As we mentioned in the preceding paragraphs implicit schemes require, in principle,
matrix inversion. Second spatial derivatives, however, are usually approximated by three
adjacent space points using the quantities at the unknown new {f) and the known old {t)
time levels. This produces tridiagonal matrixes for which an efficient method of solution
exists (22). It applies to one diffusion equation. In our present problem we have a system
of equations, and often the “shear terms™ (e.g., 04/9¢ = 32B/3x2) are of prime importance.
However, it is possible to generalize the mentioned method of solution. We begin with an
ansatz for m unknown functions A(1), .., A(m),

A{1} = 1} 411 i2 : 2 i A 1
AL = FRUALL) + FOADIAZ) + .+ FIImIA(m) + B(1)
1(2) = p(21) 401 22) (2 2m) 4 2
A2 = FEDAL + FIR2DIAR) + .+ F(2ZmAGm) + E(2)
>‘ (90)
A(m) = 1) 4(1 2) 412 N m
Afm) = FIMDALY + Fm2AZ) 4+ FmmAm | + B ))

With the Egs. (90) inserted in the difference equations, recursion formulas can be obtained
for the auxiliary variables F and E. Utilization of boundary conditions for these recursion
formulas, and the computation of the wanted quantities ﬁj {j = 1,N), is very similar to the
procedure used in Ref. 22, except that matrixes of the dimension m X m have to be inverted.

The Eqs. (83)-(88) have been written in such a way that the corresponding proper dif-
ference equations can be constructed immediately. The outlined methods proved to be
numerically stable. Only the truncation errors have to be considered in the choice of time
step and number of spatial grid points. Typically we restrict the time step by the require-
ment that

i

1A(R) — AlR)]
( . T T A ) <01 {k=1,..m). {91)

A final remark concerns the treatment of the impurities. The system of equations
given by Egs. (76) constitute a system of ordinary differential equations. In order to limit
the number of variables to be stored in the computer, the two-time-level Runge-Kutta method
has been applied to obtain a solution. Sometimes the time step from the condition given by
Eqg. (91) is too large for ionization and recombination processes. Then this time step is sub-
divided and the Egs. (76) are solved according to their own characteristic time scale, while
the electron temperature and density change only with the bigger step as long as these two
parameters are not essentially determined by the influence of the impurities. In the latter
case the condition expressed by Eq. (91} enforces a reduction of At.
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