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ABSTRACT

The trajectories of light rays and the intensity pattern of a laser
beam as a function of time and of distance down the beam are de-
termined. It is assumed in this calculation that (a) the medium is a
homogeneous, isotropic, and initially quiescent gas, {bj convection,
viscosity, and thermal conduction may be ignored at early times, {c}
changes in total beam power as a function of distance downbeam may
be ignored, {d} a specific model of energy deposition is valid, (¢} the
medium may be described in equations of hydrodynamics and
thermodynamics and obeys the Lorentz-Lorenz Law, and (f) geomet-
rical optics applies to the problem. [t is shown that this model can be
solved exactly; long- and short-time behavior of the solutions is dis-
cussed, and the times for the onset of convection are estimated.

The phenomenon of laser defocusing is shown to change rapidly
with time; a definition of thermal blooming is given, and it is shown
that the region of blooming moves up the beam toward the face of
the laser. The intensity pattern at a fixed point in space is shown to
change its profile, going over to a bright narrow annutar ring whose
radius increases with the passage of time.

Parameter combinations required for studies of various aspects of

the blooming phenomenon are pointed out as the mathematical de-
velopment progresses,

PROBLEM STATUS

This is a final report on one aspect of laser propogation studies;
work on other aspects of the problem continues,

AUTHORIZATION
NRL Problem R05-31.303
Project ORD-0832-129/173-1/U1754 No. 2

Manuscript submitted October 12, 1970.
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THERMAL BLOOMING OF LASER BEAMS
IN GASES

I. INTRODUCTION; STATEMENT AND FORMULATION OF
THE PROBLEM

The problem of the extent to which an intense laser beam passing through a gaseous medium is “de-
focused” by its heating effect upon the gas is discussed in this report, which covers only the classical aspects
of this propagation problem.

As is well known, an initially parallel laser beam will propagate in vacuum and will retain its parallel
character except for diffraction effects imposed upon it by the finite aperture of the source and the non-
zero wavelength of the radiation. In a medium, however, such a beam is partially absorbed, causing that
part of the medium through which it traverses to be heated; the index of refraction along the beam path is
thereby reduced and the light rays of the beam are deflected into regions of higher index of refraction. The
beam diameter thus increases as a function of distance from the source along the beam path. The beam is
said to be “thermally defocused;” this phenomenon is also succinctly referred to as “thermal blooming.”

We assume that the aperture from which the beam emanates is circular and that the power density (per
unit area) is circularly symmetric. We let the axis of symmetry be the z axis. Then a quantitative measure
of the thermal blooming of the beam will be the distance a light ray is from the z axis, at a distance z from
the aperture, as compared to its initial distance 1o from the axis. Furthermore, since the thermal blooming
phenomenon is a dynamic one, we seek to calculate the trajectory of a given light ray as a function of time;
hence our objective is the determination of the equations for all the light rays in the form r = r(xy; z, t) or
the form z = z(ro; 1, t) where r is the radial distance from the z axis and t is the time. Also, we seek to
determine the power density distribution on a plane perpendicular to the axis of symmetry at any point
down the beam as a function of time.

Because the problem is intrinsically very difficult, we are forced to introduce some simplifying assump-
tions, which are discussed below, together with our expectations of what the real situation would be if
these restrictions were relaxed.

1. We assume that the gas is initially homogeneous, isotropic, and quiescent.

In real gases there are currents, density fluctuations, and temperature gradients, of course. In typical
laboratory experiments these can be minimized by enclosing the beam path. Under ordinary conditions in
the laboratory, however, these phenomena are quite pronounced. Their combined effect will be to lessen
the blooming phenomenon. In the open atmosphere, winds and turbulence are uncontrollable phenomena
which will indeed play an important role in determining whether or not blooming, among other things,
occurs. Time scales for blooming will be determined under the idealized assumptions in this paper, and we
shali estimate the times at which other gaseous effects become important.

2. We disregard convection, viscosity, and thermal conduction in the gas.

For gaseous media, neglecting viscosity for slow motions is not at all objectionable. Convection is quite
another matter; by ignoring it we are in effect “turning off”” the earth’s gravitational field, which has im-
portant consequences. Therefore our solution of the problem here can only be approximate and must be
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limited to those times below which convection effects are very small. When convection does set in, &
“steady state” for the “laser beam/medium” system is established. Our theory will not describe the system
in the steady state but fhe transient effects only. We shall determine an estimate for the time required for
convective effects to become pronounced.

Whether or not thermal conductivity may be ignored wili depend upon the kind of gaseous medium
used, the temperature gradients induced, and the time scales involved. The effect of a targe thermal con-
ductivity is to hasten the onset of a steady-state condition if it acts alone; in concert with convective ef-
fects, it could tend to prolong the time until the onset of the steady state. In any event, our expectation is
that thermal conductivity in the gaseous case may be ignared for a wide variety of interesting physical
systems.

3. We ignote the variation of the intensity of the initial laser beam: down the beam axis due to absorption.

This assumption is equivalent {o saying that, prior to any serious blooming, the beam is heating the gas
uniformly in z. The purpose, and the effect, of this idealization becomes clear in the detailed calculation;
it renders the problem tractable by causing the thermodynamic and hydrodynamic properties of the gas to
be independent of z. The assumption is representative of the real situation provided one does not consider
regions that are too far from the laser face; indeed this assumption sets the limit, in terms of the absorption
fength, of applicability of the theory to the regions downbeam. In our caleulations we shall ignore this
limitation on distance, with the consequence that the heating effects at large distance, and subsequently the
thermal blooming effect, will be overemphasized when compared to the real situation. This in no way in-
validates the resulis for the regions where the approximation is good. {In applying the results of the theory
to any given experhmental situation, one must be aware, however, that this assumption is related to assump-
tion 7 of geometrical optics, given below. We will devote a paragraph to this peint at the end of this section.)

4. Model for the deposition of energy into the gas.

We replace the heating effect of the laser beam on the medium by a heat source which heats the gas
locally in the same way the laser beam does at the time when the beam is turned on (t = ). The effect
of this assumption is to convert the problem to that of calculating the light ray trajectories in an atmos-
phere that is being heated up by an external fixed heat source. When the light rays begin to deviate sig-
nificantly from their original (t = 0) trajectories, i.e., when blooming begins to set in seriously, it would
seem as though our model of energy deposition is no longer realistic. However, we shall see later that this
is not as serious an objection as might be thought, and our model will allow us to determine the times and
locations where blooming becomes important to a good degree of accuracy.

5. Model for the medium.

We assume that the gas motions are described by the equations of hydrodynamics and thermodynamics,
that conservation of energy holds, and that the index of refraction of air for the wavelengths at which the
laser operates is related to the density by the Clausius-Mosotti (Lorentz-Lorenz) Law, Finally, the atmos-
pheric motions will be studied for “short” times only, where “short” times will have to be determined by
the characteristics of the medium and the rates of energy deposition.

6. Model for the distribution of energy in the initial laser beam,

We assume that the source of the laser radiation lies in the x-y plane and possesses rotational symmetry
about the z axis. 1f ry be the distance of 2 point from the origin of coordinates, the intensity of the radia-
tion is Hrq ). It will be seen that no further specification of the power distribution in the source Is necessary
to solve the problem; in different words, the equations for the light rays and intensity profiles downbeam
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will be determined in terms of I(r). For specific quantitative numerical results, we shall have to select a
suitablie form for the function I(ry}, of course.

7. We work within the framework of geometrical optics.

By this assumption, we assume that any portion of the beam may be described locally by a light ray or
set of light rays traversing the medium. Within this framework, we are thus ignoring the coherence aspect
of the laser. If the fields become too strong (i.e., at too high a power density) nonlinear effects may become
important and our analysis will be inappropriate. For low powers, this will not be a serious limitation. We
also will lose fine interference details in the intensity profiles. For beams of moderate size this will not be
serious either.

With the above assumptions, the problem of blooming will be seen to be capable of solution for a limited
time span. We repeat that there are two considerations that limit the times for which the solutions we get
are applicable—assumptions 4 and 5 must be met simultaneously. There are also two considerations that
limit the distances and laser sizes—namely, assumptions 3 and 7 must both hold simuitaneously. In those
regions of space where diffraction effects due to finite aperture size and finite wavelengths manifest them-
selves, the assumptions may be inappropriate because the diffraction spreading may be comparable to or
larger than the spreading of the beam due to blooming. The effect of assumption 3 is to limit the applica-
bility of the theory to be developed to a downbeam distance z, < a~!, where a is the absorption coef-
ficient of the medium. Ignoring thermal blooming, the downbeam distance to the point zq where the dif-
fraction effects have caused the beam radius to increase by, say, a factor of two, is of the order of
zg = 2a% (X, where a is the initial beam radius and A is the wavelength. Therefore, our assumptions are
applicable only to the cases for which z < z4, or for whicha > A2a*. Now in the laboratory almost any
gas may be doped to increase its absorptivity a and render this inequality valid. Indeed this has been done
to demonstrate the effect. Therefore there are experimental situations of interest in which all our assump-
tions are compatible and applicable.

Finally, we remark that any theoretical effort to quantitatively analyze the thermal blooming phenome-
non cannot ignore the fact that much of the studies made thus far have been made with liquids which are
both viscous and thermally conducting. Our assumptions have eliminated these important cases but we
prefer to defer the treatment of liquids to a later paper. The physics essential to a quantitative study of
the phenomenon is contained here, and the other factors, while important, add complications that do not
serve to further illuminate the problem.

In Sect. II the resulis of the calculations will be summarized and discussed, together with numerical
examples,

In Sect, III the basic equations for the light rays will be determined for any medium in which the above
pertinent restrictions are imposed, i.e., any medium for which the density, velocity, pressure, and tempera-
ture are axially symmetric, independent of z, and for which the Lorentz-Lorenz law holds. The intensity
of the defocused beam will also be determined. In Sec. IV, the response of the medium to the heating is
determined. In Sec.V, a rough estimate is made of the times required for convection to set in and for wind
effects to be severe. In Sec. VI, the results of Secs. III and IV are combined to determine the equations for
the light rays, and numerical computations are performed for particular models of a laser.
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I, SUMMARY AND DISCUSSION
Background Survey

Observations of the thermal defocusing phenomenon have occurred for several lasers and media com-
binations. Gordon et al.{1} studied the blooming using a helium-neon laser and several liquids. The phenom-
enon was put to use {o measure the absorption coefficient of several materials by Leite and collaborators (2).
Rieckhoff {3} has reported observations of blecoming and studied is relation to beam power. Studies of the
temperal evolution of the phenomenon in liquids have been published as well (4,5). Since these early ob-
servations the phenomenon has come under increasing scrutiny from both the experimental and theoretical
aspects. Brueckner and Jorna {6,7) have studied the problem by assuming the beam to be coupled to the
fluid by the mechanisms of electrostriction, the high-frequency Kerr effect, and thermal energy deposition.
Their principal results are to show that the laser/medium system is unstable in the sense that the coupling
mechanisms will tend to amplify small-scale inhomogeneities in the beam and in the density of the fluid.
Akhmanov et al (8) presented both a theoretical and experimental study of thermal defocusing in solids,
liquids, and gases. Their study included the effects of thermal conductivity, fluid flow, and the steady state
at which the system arrives in the case of liquids when convection is present. Blooming in gases has been
detected only more recently (9,10). Consequently, there is Hitle, so far, in the Hterature with which our
study here may be compared. From the discussion of Sect. 1, it is clear that we are presuming at the outset
that the power density is too weak for the coupling mechanisms of Brueckner and Jorna to play a significant
role, and the effects of convection and fluid motion as discussed by Akhmanov have not yet appeared.

Summary of Results

Qualitatively, the principle results of the present calculation may be summarized a5 follows, Both thermal
defocusing and thermal focusing may occur in a gaseous medium, depending upon the shape of the power
distribution across the face of the laser. For a power distribution that is monotonically decreasing, such as
a Gaussian or parabolic density, and for times large compared to the time required for sound to cross the
laser diameter, the beam defocuses; the amount of defocusing at a given distance down the beam increases
with time. If z; is the distance from the laser down the beam to the point where the beam, by some
measure, has doubled in size, then z, depends upon time and becomes shorter as time increases. The
blooming may be said to be traveling up the beam toward the laser; the velocity dz/dt is negative and in-
creasing, i.e., although the point z; is moving toward the laser, it is decelerating and will never, in principle,
reach the laser. In practice, of course, convection will set in to vitiate our hypotheses and the deductions
made therefrom, so our description fails to be accurate after a time t__,, that is characteristic of the system
for convection. While the defocusing is occurring, the intensity distribution down the beam must clearly
be changing with time. The results are fllustrated in Figs. 4, 6, and 7 for a parabolic distribution; in Fig, 4,
the light rays are plotted in terms of a reduced radial coordinate x = rfa and a reduced coordinate ¢ that
megasutes the distance down the beam; § is related to the actual beam distance by the refation { =
/2{ng — 1} (z/a) \/t}_tc where t is time that has elapsed since the laser has been switched on, t_ is a time
constant composed of constants of the medium and the laser, and ng is the ambient index of refraction.
With these scaled or reduced coordinates, only one set of trajectories need be drawn; from these alt trajec-
tories at all times may be derived. Also, besides a scaling in time, there is complete scaling in beam sizes
and lengths, and certain resuits hold for all lasers and media (provided our model remains valid). For ex-
ample, we note from Fig. 4 that the size of the beam doubles at a value of ¢ ~ 2.3. Similarly, the reduced
intensity 1(r)/(W/ma®} may be expressed in terms of x = rfa, with { as a parameter. Figures4,5,2and 6
show that as { grows (or, if z is held fixed, we may say as time increases) the beam spreads out, hollowing
in the center, and a bright thin annulus of light develops. Also, if t is held fixed, then z increases as ¢ in-
creases, so we may simultaneously assert that at a given time the beam spreads out into an intense annulus
with increasing distance downbeam,
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This behavior of the blooming with z and t makes it clear that to observe the blooming phenomenon in
gases one must, for a given value of z, wait for the passage of time until the beam diameter grows, or go
down the beam a considerable distance to detect the beam spreading at very early times. The latier method
will probably be more reliable than the former method because convection will set in after a time 1,
which will alter the beam pattern completely. It is shown in Sect. V that t . is completely independent
of z (provided z is not too large) so that it is possible in practice to detect the blooming at a time t < t g,
by going downbeam far enough, provided this distance does not put the observer in the diffraction-dominated
zone. (As noted in Sect. I, this distance depends upon the absorption constant @, the wavelength A, and
aperture radius a; for most laboratory dimensions, therefore, one will not get into the diffraction-dominated
zones.)

Equivalent plots of light rays and intensity for a Gaussian intensity profile are shown in Figs. 8 and 10.
Clearly, the qualitative features are the same as those of the parabolic case. The result brings up the ques-
tion of the effects of beam shaping on the thermal blooming. It may be shown that if the laser intensity
profile is not monotonic, one may have both focusing and defocusing. It is also shown that the intensity
profile that minimizes the blooming is a rectangular function; indeed for that case, there is no blooming
in our model. There is no unique intensity profile that maximizes the blooming effect.

The response of the gas to the passage of the laser beam is simple to describe. Partial absorption of the
beam causes the air to heat up; at early times, the ensuing air motion gives rise to pressure changes, velocity
flows, and density changes. When time exceeds that required for sound to traverse the beam, the gas tends
towards an isobaric change. The resultant density changes then becomes identical to those that one would
obtain by simple calorimetric arguments applied locally to each point in the medium.

III. DETERMINATION OF EQUATIONS FOR THE LIGHT RAYS AND
THE INTENSITY DISTRIBUTION ALONG THE BEAM

The Light Rays

Let R be the paosition vector from the origin of coordinates to a point P on a given light trajectory; the
origin is placed at the center of the aperture of the laser beam and the z axis is perpendicular to that
opening. The light path will be parametrized by the distance s along that path from the z = 0 plane. In
general, R = R(s, t), i.e., R will depend both upon s and upon the time. The beam will be assumed to be
switched on at t = 0. Cylindrical coordinates are appropriate to the problem as it has been formulated
(see Fig. 1). Hence

R(s,t) = r{s,t) + z(s,00K . (n
The equation for the light ray (11) is
d dRY _
& (0 G) v @)

where n = n(R,t} is the index of refraction. Because of the symmetry of the problem it is clear that if The
the unit vector paralle] to r, then
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ds 0

and

n(R,t) = n(rz,t)

—

—
Iy
|-

Fig. 1 - Cylindrical coordinate sys

tem centered at the aperture of
- the laser heam, with the z axis perpen-
A dicular to the aperture

-l

Using Egs. (1} and (3), the vector Eq. (2) may be rewritten as the pair of equations

L (pir) . om
ds ds ar '

and

3

(4a)

(4b)
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These equations may be integrated once by multiplying both sides of Eq. (4a) by 2ndr/ds, and both
sides of Eq. (4b) by 2ndz/ds, noting that the result may be expressed move succinctly as

d [ dr\ _ 8n® dr 59}
ds (nds) T or & (52)
and
2 2
4 (,dz}" _on” dz (5b)
ds ds 0z ds

& = (68)
and
dz n? (rg,0,t) 1 S, an? dz
- = 2 —_— = 6b
ds ‘/n2 (r.z.t) + n?(r,z,t) A ds dz ds' (6b)
where we have incorporated the initial conditions on the trajectories that
£l -o, (7a)
5 1s=0
and
dz
— =1. (7b)
ds s=0

Geometrically, the conditions given by Eqs. (72} and (7b) state that the bearn is leaving the laser perpen-
dicularly to the aperture.

The integrals in Eq. (6a) and (6b) cannot be evaluated unless we know the dependence of r and z on s,
i.., unless we know the trajectory, But this, of course, is what we are attempting here to determine. In
Eq. (6), the light rays are parametrized by s; it will prove more convenient to eliminate the parameter s
entirely. We assume the relations z = z(rg;s,t) and r =1(ry;8,t) to be solved for s as a function of z; then
the light ray may be written asr = 1(rg ;z,t} (with only a slight abuse of the functional notation} with the

boundary condition that r(re;0,t) = ro. Then with ds (dz/ds) = dz, the two equations may be combined
1o give

2 an?[i2).2 1) diz) 12
dz T
dr ar dz
=4 : (8)
dz “ n? [r(z"),2' t]
n%(ry,0,t) + j dz' —-[alz'_L
(&)
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Equation {8} is our version of Eq. (2} for the trajectories, where the cylindrical symmetry has been ex-
plicitly included. Clearly it is a complicated integro differential equation and is exact. When the assump-
tions of our model are included, Eq. (8} will simplify considerably,

The next problem is to relate the index of refraction to the density of the medium; the Lorentz-Lorenz
Law does this:

n’ — 1 Ap '
2 3 .

Where A is a constant for all practical purposes. Because n® — 1 ~ 0, Ap will be a small quantity and the
Lorentz-Lorenz Law may be taken as

n? =1+ Ap . ()

Inserting Eq. (9) into Eg. (8), we get

z ~or v 142
A j’ & gofr(z).2' 4 dr(g)
o

d ar dz
o {10)
dz L apl)Z )
1+ Apfro 0.8 + A f dz _a_._
A

[s]

In any experiment where the change in density is due to absarption of energy from the beam, it is more
frequently the case that the beam is studied over those distances for which the beam intensity is diminished
by absorption by only very small amounts. Hence the quantity 3p/8z will be small and, in the denomina-
tor, Ap + Aff dz'(3p/9z") will be small compared to unity and may therefore be neglected. Next we note

that
Z ] Z ] '
v [8p(rz,t) dr _ o de(rz ) dp(rz' t)
j; dz [ a3t dz'} _[ dz [ dz’ az’

o]

z a Ei’{ r} Z, t}
= ﬁ{I}Zat) — p{fo,g,f) - f dz,’ ﬁ azz yo ¥

Q

Therefore, the differential equation for the light rays becomes

= * ‘/A [p(r,z,t) = plre,0,t) — f .dz’ %ﬁ] (1

gl

In the problem considered in this paper, we regard the heat source (the taser) as turned off prior to time
t = 0. The medium is, by assumption 1, homogeneous; hence, we may write p(r,z,t) as

plrzt) = pg + przt) {12)

where o, = O fort < (. This equation is exact here and need not be regarded as one restricted to small
deviations from the initial ambient density, Then
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Z '
Ipy(r,z .t
I s AP 401z — a0 09 - f az «-ﬁl(ﬂ,-—) . (13)

[s]

Equation (13) is the one to use when assumption 3 of Sect. I does not apply. When that assumption does
apply, Eq. (13) simplifies to

Lo s A2 \/ o1 (0t) = pr(rod) (14)

whose solution is obtained by simple quadratures:

= + 1 ' Cll’r
FTU VA fr Vo ('t} = pi(ro t) (15)

Thus, in our model, if we know the density variation in both space and time, Eq. (15) will give us the
trajectories. For most practical cases the solution will have to be given numerically, of course. We make
one final observation before concluding this section, In later sections we shall restrict our considerations
to values of p; very small compared to pg; under these limitations the constant A can be related to the
index of refraction very closely, through Eq. (9), by

A= 2(110 - 1)
Po

where ng is the index appropriate to the density py. Then,

. 20 ! dr’
S FIC ) f Vo GD — o) (e

The ambiguity in the signature of the right-hand side is removed by considering that z is always a posi-
tive number, and the integrand has meaning only for those values of 1’ such that p(r',t} — p(ry,t) > 0.
For a given value of 1o, if the r' values are greater than 1o, we choose the positive sign; if the values of
turn out to be less than ry, we choose the negative sign.

Intensity Profiles Downbeam

Assuming we know the density distribution p as a function of both r and t, we may use Eq. (16) to de-
termine the light rays whose trajectories we write in one of two {orms:

_,
|

= 1(rg;z,t), with r(rg;0t) = 1o (17a)

or

z = (ry:r,t), with z(roe,t) = 0 . (17b)

The solutions may also be regarded, as they were initially in this section, as parameterized by the arc length s
from the laser aperture:
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r = 1(ro3s,b), (18a)
and
z = 2(rg8,t) . {18b)

The next problem is to determine the intensity distribution across a plane surface perpendicular to the
beam axis at any distance z down the beam (i.e., in the positive z direction).*

Fig. 2 - Sketch of some geometric guantities which enter into
calculations of the total laser beam power

Referring to Fig. 2, we see that the total power which leaves the source loeated on the x-y plane and
passes through the geometric figure with vertices labeled 1, 2, 3, and 4 is I(r )rodrydf. The light rays that
jeave each vertex of the plane geometric figure are iflustrated. At some distance s, along the ray from
vertex | there is a surface of constant phase which intercepts rays from vertices 2, 3, and 4. The radiation
passes through this surface at right angles to it. Let R be the vector from the origin to the center of this
surface. The power passing through this surface then is I(R)A, where dA is the area of the surface element.
Assuming no absorption by the medium (assumption 3 of Sect. I}, then

*In this section we will suppress the time variable t to simplify our notation.
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IR) = 100) 252 (19

If R, is the vector from the origin to the point where the ray from vertex 1 intercepts the surface, R, is the
vector from the origin to the point where the ray from vertex 2 intercepts the surface, etc., then

dA = df, - 4%,
where
d¢; = 1Ry — R} (20)
and
d? = R, — Ryl .

Let 54 be the path length from point 4, measured along the light ray from point 4, to the point whose
position vector is Ry, that is,

Ry = Rirg+drg 54,04 1/2d8) .
Clearly, from the cylindrical symmetry of the problem, s; = s, ; thus
Ry = R{rg+dry;ss 0-1/246).

In a similar fashion
1
R1 =R Ip5) ,9+5d6 f

R2 =R (IO S ,3"'%(18 ) .

To the first order in d@

- aR(I'u;S| ,9) d

38 8.

R2 "'"Rl

Now R(rg8) = r{rgs)F + z(1g ;s)ﬁ, where 1(ry;8) and z(r,s) are independent of . This fact is of course
the analytical formulation of the cylindrical symmetry requirement. Then

R _ ot
0 - t{rg 8) VR

The quantity 8%/36 is a unit vector orthogonal to f; hence we get the geometrically obvious result
d2, = IRy — Ry} = 1(ry;s)d@ . 2D

Next, if dry is chosen small enough, then s,—s; = ds is a quantity of the same order as drg. To first
order in these quantities,
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Ry — Ry = Riro+drgs, +ds) — Rizesy) = %) drg + %—f) ds .
Qfs To

Now Ry and R, are two vectors which end on a surface of constant phase, that is to say, the optical
length 7 = fnds from vertex 1 to R, is the same as the optical length from vertex 4 to Rs. Hence the dif-
ference above may be written as

_|aR BRY ds
R, R, = [aro)s + a\S)ru ﬁrﬁ),-} drg

where the notation ds/dry ), means the derivative is to be taken at constant phase. To make the meaning
of this clearer, we note that Eqgs. 18 may be inverted to read

s = s(r,2),
{22}
and

o fg (I’,Z}.

Thus given a point 1,z we can compute the origin of the ray in the laser apertare from Eq. {22) and its path
length as well. Now fix a value of r,z and choose another value at r+dr, z+dz such that this new peint lies
in the surface dA drawn in Fig. 2 (with the same values of @ of course). This leads to a new origin ro+ Ar,
and a new length s+ As; their ratio AsfAg, taken to the limit, is cur quantity 35/9r, Je-

It is important to note that the inversion of Eq. (18) may not be unique, but that instead of leading to
solutions such as Eq, (22), it may lead to sets of solutions

§; = 5{r.z) .
L i=12,...N . (23)
i = L5112}

In this event, several light rays (N of them) will be crossing through the point ,z,8. When we are speaking
of only one Hight ray, however, we shall ignore the subscript i.

From Ry — R, and a little algebra, we get

ar ar\ s K AN AN
= e e e ate Y g ‘
de; = drq [afe)s + as)ro a{e)J +[a;9)s ES)IO Bre)r:} } 24y

Therefore, the intensity in the direction of dR/ds at R is

_ Mrg)rg | | Br ar s\ |2 Dz 7\ 8s\ )2 -1/2
w ' [aro)s ' E)s)ro 3r0>J ¥ d1p J * asf, Bro)T - (25)

Since we assume that the equations for the trajectory are known, the quantities dr/ g ), Bt/ as},u s

dzf o1 ), and azfas}[o can be calculated. it remains to express 8s/dr, ), in terms of known quantities. Let
8r and 8z be increments in r and z due to changes in 1, and s that take us from one point on 2 surface of
constant phase to another point on the same surface. Then
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or = O dry + o ds,
drg s s/
[

and

5z =E) dry + LA ds,
al'() s 08 I

The ratio of these last iwo equations gives

ar or os
) T
or To/s I, O 9%r

2] az oz Js
T — + —
a1 ds)  drg -

0

Solving for the desired derivative,

a_r) NS
95 aro S oz T al'o 3

5};>T=—%) _a_r) az) . (26)

0s v oz A 0s -

Now the differential vector SR = 81 + 62!?, where &r and 6z are the increments above, lies on the sur-
face of constant phase and is therefore orthogonal to the vector dR/ds where R = R(x,;s) is the vector from
the origin to the trajectory. Thus,

dR _
SR 45 - 0,
or
a;) 8 +_az) 8z =0
os Js
o Iy
Therefore,

¥>—- . (27)

Putting Eq. 27 into Eq. 26, we get

(28)
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Inserting Eq. 28 into 25, one obtains, after much algebra,

_ ok, 1
HR) = » TN\ o 5 . {29
Brg f, 05 N as - Brof

This is the intensity per unit area at R in the direction of dR/ds due to a ray which emanated from

R(rs) = rof. However, the above result is formulated in terms of the parameter s. As in the first part of
this section, we prefer to eliminate s in favor of z. If the equation for the light ray is written as r = 1(rg;z,t),
we note that the quantity we have designated as dr/dz is in fact

.a—r)
as
-d—r- = if_ = s
dz BZ>I 9z o)
" B
Ig
and Eq. 29 immediately becomes
“dr \?
1(R) = o) o (5)
R CAN 7
org ] dz arg )
Regarding r as a function of 1y and, alternately, s or 2, in the spirit of thermodynamics, we note that
8o/, O/, az " o f, ’
and therefore
2
ore ¥ * ()
I(R) = /0 1. L. 3hH

T
aro z
As has been noted before, I(R) given above represents the power crossing a unit area that is orthogonal to
the light ray through the point whose position vector is R. What can be observed experimentally is the

power per unit area on a surface perpendicular to the beam axis (the z axis). Label this intensity by l(R)
and note it is the above intensity multiplied by the cosine of the angle of incidence &, which is related to

the slope by
2] -1
o = 1+ @]
dz

Therefore

I( 7y = —Lello I(l'o)fo arl ) (32)
%))
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What remains to be determined is the quantity dt/3xo),. In fact, Bq. (32) is a final answer, provided that
t = 1(rg,z) is in a known functional form. OQur solution, Eq. (16), gives it in the opposite manner, namely
z = F(ry,1). Under “normal” circumstances, this would cause no problem, for by the method of implicit

functions we would simply write
9F\ _ BF\ ) éﬁ) -
dro /, or I o/, 010/,

which can be solved for the desired derivative 9r/3ry),. However a complication arises because of the form
of the function E(r,ty); a formal application of the rules of calculus to obtain the partial derivative of F
with respect to rp leads immediately to an infinity, so that 81/81,), cannot.be obtained in this way. How-
ever, on geometric grounds, it is easy to conclude that 31/0ro ), must generally exist, for a slight change

Ar in 1o at the face of the laser must lead to a slight change Ar in the distance r of the light ray from the
beam axis at a distance z down beam. Thus, lim Ar/Ar, must exist generally, Therefore to circumvent the
above difficulty, which stems from the fact that the integrand possesses a singularity (integrable of course)
at the lower limit, we resort to a very natural artifice. We define

I ’
F (to,0) = A f = ,fora> 0.
T, +a p1(t') = p1(10)

Computing 31/dry ), with this function will not cause any problems with singularities. We will then take
the limit asa — 0. In this manner one gets, after an additional integration by parts, in the limit as a goes
to zero,

N 01(ro) ' — - T el 1
aro>z Fol T VO el f YROT Vam e

Now we have already noted that for a given point r,z there may be several values of ry and s, i.e., several
rays may cross through a given point r,z. Denoting the individual values of 1y by rp; (i = 1,2,....N), the
intensity at r.z will not be given by Eq. (32), but by

N
it,2) = E El:ﬂiﬂi. L (34)
i=1

ar
al'()i>z
or P’l(foi)
—_1 = ' . \/—___
al’oi>z +_!;?1'““(r)" + p1(roi) V(1) — pi(roi)

where

(35)

fo1 (1’1)] 2 21 (f') 3] (foi)

Tpj

where we have reintroduced the signature ambiguity explicitly, the positive sign being taken for
r > 1y, the negative sign forr < rq.
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In practice these equations will prove to be more difficult to use than their derivations indicate.
Essentially the source of the difficulties arises from the fact that our trajectory [Eq. (16)] has the form
z = #{1p,r;t) rather than r = r{ry z:t).

V. DETERMINATION OF DENSITY CHANGES

In this section we witl study the impact of the heating effect on the medium due to the turning on of
the laser. In the first subsection, we will write down the relevant hydrodynamic equations, their linearized
form, and the initial conditions pertinent to our problem. In the second subsection the linearized equations
will be solved exactly in terms of quadratures by using Laplace and Fourier transform method. The long-
and short-time behavior of the solution for the density, pressure, and velocity are neatly delincated in this
form of the solution,

The Linearized Hydrodynamic Equations and Initial Conditions

The hydrodynamic equations, together with the conservation of energy, are

ov ) _ VP
T + v V\’ --p— y (363)
8p -
-a—t' + V- oy = 0 5 {365}
and
d /1 Jp o .
pdt(zvz -%-2--5)4-?’ p¥ = pQ , {36¢)

where d/dt is the customary substantial derivative of hydrodynamics, and 3p/2p is the internal energy per
gram of the gas, taken here to be an ideal gas. Here we have turned off the earth’s gravitational field, fe,,
we are ignoring convection, and we are also ignoring thermal conduction. For the small changes in tempera-
ture anticipated and for a gasecus medium, thermal conductivity will be small. Convection is another
matter for the realistic problem. We shall have to estimate the times at which it becomes important to set
timits on the times for which our solution here will be valid, This will be done in Sect. V., The quantity Q
is the energy deposited per second per gram of medium by the laser. It will be related to the laser proper-
ties more explicitly later; for the present, we need not define it any further than to say that Q is a heat
source that turns on at time t = 0,

We assume that the initial state (for thme t < 0) is a steady state from which the desired solution de-
viates only slightly. Thus

(Rt} = vo(R,t) + v, (R1), (37a)
p(R.t) = po(Rit) + p1 (R}, {370}
p(R}t) = PG{RJ) + P (R>t) . {3?9}

The functions v 04, and py are thereby required to satisfy Eqs. (36) with Q set equal to zero. p; and my
are taken to be small quantities compared to py and py. Furthermore, for the problem we are considering,
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o = 0,and po and p, are constant in both space and time, while the quantities vy, p, ,and p; of the first
order vanish for times t < 0. Incorporating these conditions into the hydrodynamic equation and lineari-
zing them in the usual way, we find that the first-order quantities must satisfy

20 g:‘ = - Vp , (382)
Bh eV, (38b)
and
o200, (380)
where
¢ =3 Bo (39)

and ¢, here, is the velocity of sound in the gaseous medium.

Solution by Transforms

Let vy (R;s), p1 (R33), p1(R;s) be the Laplace transforms of v; (R, t), p1(R,t), and p1 (R, t), respectively,
with respect to the time variables. Let O(R;s) be the Laplace transform of Q(R.t), again with respect to
the time variable. Bearing in mind the initial conditions, the Laplace transforms of Eqgs. (38) become

spovi(R;s) + Vpy(Rs) = 0, (40a)
sp1(Rs) + po V- ¥(R;s) = 0, (40b)
sp1(Rss) — c*spy(Rys) = POQ(R s) . {40c)

Let ¥, (k;s), 51 (k;s), By (k3s), Q(k ;) be the Fourier transforms with respect to the space variables of the
quantities v; (R;s), p; (R35), p1 (Rs), and Q(Rs), respectively. We choose the asymmetric form of the
Fourier transform:

g1(Rg) = (-2—,,,10—3 fdkﬁl(k;S)e"""R . | 41

similar equations holding for the other three variables. Inserting Eq. (41) into Eqs. (40), the Fourier
transform quantities are required to satisfy

posvy (k;s) — ikpy(ks) = 0, (422)
sp1(ks) — ipok * ¥ (ks) = 0, (42b)
s[pi(kss) — ¢?B1(kss)] =-§- Po 6(k;5) - (42¢)
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Ta proceed further, we need an expression for Q(R,t}. Let I{r, } be the intensity distribution across the
face of the laser. Let a be a characteristic length describing the distribution, and let W be the total power
emitied by the laser. Then Kry) may be expressed in terms of a dimensionless distribution function f by

I(ro) = ﬁ—va‘; f(%) (43)

where f is normalized so as to make

o0 2
j !‘erﬂ -[ dé i(l‘ﬂ.} =W ) {44)
0

0

ie.

f dx xf(x} = -]2- . (45)
0

Then in keeping with assumptions 3 and 4 of Sect. I,

: aW /1 ‘
t} = fl= t 46
AR = == (L) e (46)
where ©(t} is the Heaviside step function. Observe that the combination of constants aWpe ta 2¢™2 has
the dimension of reciprocal time; we thus define the first of a number of characteristic time parameters for
this problem:

_3 Tpea’c?
©TF Taw “n
From these equations,
aW ry 1
ORs) = =25 f(a) > (48)

Solving Bqgs. (42) for 5, {k;sY and using Eq. {(48), one readily obtains, withk = ki,

Bules) = — 22 ol 09 (49)

C

where f'(k} is the Fourier transform of f{x/a). From the tables of Laplace transforms, Eq. (49} is easily
inverted to give

Bk = (1 - S oo (50)

From Egs. (48) and (41), we get the density function

0 == p0 [ 1(E) - L g [ e Bt R ] (1)
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Because f(1/a) is known, the Fourier transform ?(k) is known, and therefore the solution for the density
has been reduced to quadratures. Solution (5 1) is exact for the linearized problem and the mode! we have
proposed. The second term on the right-hand side of Eq. (51) includes the transient effects associated with
the propagation of sound in the medium. We shall indicate here that it tends toward zero rapidly when t
grows larger than afc. For, if f(r/a) is a confined distribution in the plane, a two-dimensional wave packet
if you like, then f(k) is likewise a two-dimensional wave packet in k-space with a typ;cal width of, say, kg ;
the wave packets satisfy the uncertainty principle, i.e.,ka > 1. In different words, f(}\() - 0 rapidly for
k>a~!; thus for values of ct >> a, sin ket is oscillating rapidly in the regions where f(k) differs significantly
from zero. The Riemann-Lebesgue lemma tells us that this term goes to zero as t tends towards infinity;
the above arguments ﬁhow us that the long times involved here are those times for which t > afc. This re-
sult also justifies our’statement above that this term is associated with the transient effects involving the
propagation of density changes or sound. Thus the density in the long-time limit is

p (R = — pg t—t- f(%) , for t >> afc . (52)
Cc

However, the small terms that have been dropped are important from a theoretical point of view in that
Eq. (52) alone will not solve the equation of continuity and the initial condition simultanecusly, which is
simply another way of saying that Eq. (52) is not an exact solution.

The short-timehlimit, under certain circumstances, can become important. Because of the “wave packet”
characteristics of f(k), for t <<{ a/c, an expansion of the sine function in the integrand of Eq. (51) will
afford a good approximation to the value of the integrand, provided enough terms are taken. We take only
the first two terms for purposes of illustration. We get for the short-time approximation

c?t? r
— vzf(;) , for t << ajc . (53)
[

pi{rt) = + po

This exhibits a considerably different functional dependence upon t. If more accuracy is desired, higher
powers of the expansion must be included. If t_ is so short that py ~ po for small times using Eq. (53),
then the long-time regime is not reached before the whole linearization scheme becomes invalid.

Another form for p, may be obtained by using
fk) = 20 8(2) f dr'r'f(la-) To(kr')
0
Putting this into Eq. (51), the density may be written as

pLR.Y) :1% tf(i) —% j; dr'r’f(-r;) fo dk Jo(kr") Jo(kr) sinkct b . (54)

The k integration can be done exactly, but the result is so complicated it will serve no purpose to write it
down here. Suffice if to say that the k integration reduces the problem to a quadrature over f, which clearly
exhibits the fact that the second term in Eq. (54) is associated with those facets of the changes in the
medium that involve a finite time of propagation of the local effects. These integrals in general will be very
difficult to perform even for reasonable f(r/a) and, unless one has a combination of laser and medium
characteristics that will guarantee us that the long-time limit cannot be reached before the linearization ap-
proximation breaks down, there is no point in trying to evaluate the second term.,
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The pressure as a function of position and time becomes

R D= Lo f dr'r'f(ar——> f dk Jokr'y Jofks) sinket . {55)

te a
0 1]

Since we have already shown that this integral is tending toward zerc when t begins to excead afe, we may

state that the expansion of the air becomes an isobaric process after times of the order of afc. For very

short times, on the other hand,

2 e * [ =
py (k1) ~ & fof f dr’r'f(r;) f dkk Jo(kr') Jo(kr)
li] 0

<

S A
t, a r ’

0

from which
_ Ppet gy
piRL) = ~ f(;) , for t << afc . (56)

The velocity can be reduced to

WR) = :_,3_ dr'r’f( ) f dJo(krtho(kr_) sini}é{;i/?) ' 57)

Ast >> aglc, this quantity does not vanish. For small times

282 o ]
R ~ - L f arvi() f i Hol 5, ey
0 0

C

But

f dk k ﬂﬁdrﬁz Tolkt') = % f dkkJo (kr) Jo(kr') = f—r 1)
0]

r
o
o]

iR ~ - £L f'(— ?, for t << afc . (58)

The resuits oblained above for py,p; ,v; for short times are also those obtained by a powers series expan-
sion of these quantities in time.
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The above results are consistent, in a rather negative fashion, with laboratory experience. For most
laboratory experiments, laser beams are of the order of 1 mm in diameter, so that afc ~ 1073 sec. Witha
total power of 1 watt anda ~ 1079, then te ~ 4X 107 sec. Now assuming that p; /oo =~ 0.05 is the
maximum density change for which the linearized hydrodynamic equations are valid, the long-time limit is
in the range of 1072 sec > t > 200 sec. Since normal air circulation in the laboratory will certainly sweep
the heated air from the path of the beam in times much shorter than 200 sec, no appreciable density changes
occur due to heating under customary laboratory conditions, and hence no blooming will be seen. Thus, to
see blooming and density changes, special precautions and special combinations of parameters must be
taken, or high-power lasers must be used.

V., TIME SCALES

In the previous section we have solved the problem of an exact determination of the density of the gas
as a function of time within the framework of our model, We have seen that two relevant time scales have
emerged from the discussion, a time scale t_ characteristic of both the medium and the laser, and an essen-
tially geometric time scale t, = ajc. Although we have not vet given a quantitative description of the
blooming phenomenon, the theory of Sect. III shows the connection between the blooming phenomenon
and the density changes. But the model on which these calculations are based is not wholly realistic be-
cause the effects of wind, convection, and random fluctuations are ignored, and the presence of these
phenomena can affect the blooming quite extensively. Hence it is important to get an estimate of the times

that are required for these manifestations to render our model inaccurate.

Convection

As the laser heats the gas, causing the gas to expand, these regions of lesser density will experience a
bouyancy force that will cause them to rise. The effect of this is to bring into the laser beam unheated
gas, which being more like the surroundings will cause the laser beam to bloom Jess. Clearly, after convec-
tion sets in, a steady state for the “beam/medium” system will have set in, with a small amount of thermal
defocusing occurring in a noncylindrically symmetric fashion. Because the medium possesses inertia, a
certain characteristic time, t., ., will be required to pass before the effects of convection become dominant.
Clearly, if the thermal blooming characteristic times t; (or t,) are much longer than .., then convection
will set in, requiring that special precautions be taken to be able to detect the blooming. If t, << t.,,
on the other hand, the blooming will take place in a readily observable fashion. (Here we have assumed
what will prove to be the usual case, i.e., that t., not tg, governs the blooming.) Now we must estimate
tCOHV‘

Consider the volume of air in the immediate vicinity of a point a distance r from the beam axis. Its den-
sity is po + p,(1,t) where p,, of course, is a negative quantity. If 5V be the volume of this element of the
medium, it experiences a buoyant force upward whose magnitude, according to Archimedes’ Principle, is
given by 6F = — p,8Vg where g is the acceleration due to gravity. Ignoring volume changes which are
second-order effects, we calculate the motion of this element by Newton’s second law. If s(t) be its dis-
placement from its initial point at time ¢, then

= e ©
tC

We take the element initially at r = 0; for this position, the effect of convection is maximized. Then

f(0) ~ 1. We shall define t,,, as that time by which the heated element will have moved upward by one-
tenth the beam diameter, i.e., s = a/5. Then
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/3 3.1 1/2
¢ _ 3atE _ i 7a“ ¢ pg _ (59)
COnY 5g 10 aWg

In a certain sense t_ as a characteristic time for the laset/medivm combination is a misnomer, for the
density change will be equal to p, at time t = t.. Since this will certainly violate the linearization approxi-
mation, we should not comnpare 1y, with 1., but rather with a suitable fraction thereof, say I, = (1/20)t;
this means we are limiting density changes to no more than 5% of the ambient density. Then

foony _ 20 ( 402w >1f3
— ==\ s a ] - {60}
te a \15gmc"po
For a laser for whicha ~ 107% ecm, W = 1l watt,and 2 = | mm in air (pg ~ 10_3), we obtain
teony = 1072 T,. Hence for an ordinary laser operating in the laboratory under ordinary conditions, con-
vection sets in prior to any large density changes {§g/ps < 10-3) so that the blooming will be difficult to
see and a steady-state condition is rapidly established by the convecting air. Furthermore, the density
changes ate 5o slight before and after convection has set in, and usual laboratory distances are so small, that
the beam passes through the air relatively undisturbed. Since t, =~ 4X 10% sec, then t.,, ~ 10-2
(5X1072)X4X10° = 2sec. Air motions in the laboratory will probably mask any convective effects, as
these time scales show,

The phrase “blooming will be difficult to see™ in the above paragraph needs clarification. H wilt be seen
in the following sections that even t, turns out not to be too good a parameter to characterize the blooming
phenomenon. The reason for this is simple—blooming is both a spatial and temperal phenomenon and no
single time parameter can fully characterize it. Thus blooming, as we shall see, occurs at any time after the
laser has been turned on. For very short times afterward, one has to go downbeam quite a distance before
it becomes manifest, assuming it is not masked by diffraction. Under usual laboratory operations, this may
not be feasible; special conditions such as long beam paths may have to be set up, or the gas may have to be
doped to make it more absorptive to reduce these lengths. The latter case tends fo accelerate the convective
process, so one must therefore be prepared to observe the beam at correspondingly shorter intervals. It is
with these precautions in mind that we have used the above-quoted phrase.

Wind

As with convection, mass motion of the air induced by any means will remove the heated air from the
beam, causing the blooming phenomenon to be diminished. In the laboratory, ordinary air circulation can
be 2 source of such motion, unless the beam is enclosed. For beams in the open atmosphere, winds and
vertical convective currents assaciated with local meteorological conditions may sustain such mass motions.
We term all these motions “wind.” Let v, be the local wind speed perpendicular to the beam axis. We de-
fine t,, as that time required for the wind to move a given element of air one-tenth the beam diameter
{beam radius = a}, a criterion we used for convective times. Then

a
ty = m . (61)
One effect of winds, apart from reducing the amount of blooming, is generally to cause a deflection of

the beam into the wind. The amount of deflection will depend upon the wind speed; hence, fluctuations
of wind speed along the beam axis will thus cause fluctuations in the amount of deflection, complicating a
description of the beam. Hence the description of the blooming phenomenon given in this paper cannot
possess validity for times significantly greater than {.
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A second effect of wind, provided that conditions are right, is to cause turbulence, i.e., fluctuations in
the parameters of the medium that are pertinent to the refraction of the beam. When turbulence occurs, it
may profoundly affect the beam intensity profile, which in turn will alter the heating of the medium. When
such conditions prevail independently of the time at which the laser is turned on, we cannot define any
characteristic time before which the theory here can be valid. The density fluctuations are always present
and occur at all points on the beam axis. The extent to which they affect the beam will depend upon the
power absorbed, the size of the beam, the size of the density fluctuations, and their distribution along the
beam axis, among other things. We do not here estimate any of these effects on the blooming of the beam.
Therefore, the present theory only can be applied to beams in the open atmosphere when the atmosphere
is quiet. But the theory can be used to place upper limits on the blooming phenomenon even when the
atmosphere is not quiet.

V1. TRACING THE LIGHT RAYS
Qualitative Considerations

In Sect. IlT we derived the equation for the light rays, in terms of quadratures, as a function of density,
using the approximations appropriate to our model for the system. Adjoining the linearization approxi-
mation, in Sect. IV we succeeded in obtaining the density changes in time and space in terms of the proper-
ties of the medium and the laser. Using the long-time form, which will describe most systems, the com-
bined results may be written as

1/a dx
- — & (62)
e

where

$ = VEm D = % (63)

a

The virtue of putting the equations in this form lies in the fact that from a plot of § vs r/a and 1y /a one
can read the coordinates of points of any light ray at any time from one fixed set of trajectories. Further,
the ¢ vs r/a plot will be valid for any laser of any size in any medium provided only that its intensity dis-
tribution be given by f(r/a) and that considerations be restricted to the regions where diffraction effects are
negligible, Hence a great deal of data can be compressed into one plot. (We are assuming, of course, that a
numerical integration will be required here.)

A function f(x) characteristic of many lasers is the Gaussian function exp(—x?). However, before going
to specific numerical results, a great deal may be said about the blooming process using only Eqgs. (62} and
(63) and the fact that the distribution is monotonically decreasing toward zero. First, the denominator will
be positive only for x > ry/a; hence we choose the positive sign and values of r/a > rq/a. The slope of the
curve given by Eq. (62) will always be positive (i.e., d(r/a)/d{ > 0); hence r will be an increasing function
of , as is to be expected on qualitative physical grounds. Further, for a ray which originates at a large
distance ry from the z axis, f{rp/a) will be small; f(x) will also be small, so that the integrand of necessity
is very large for any given value of 1. For the same 1, but a smaller rq, the integrand will not in general be
so large. Thus, the rays closer to the beam axis diverge more than those further away, a result that has been
obtained before. Thus, qualitatively, the { vs r/a plot will look like that of Fig. 3.
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I3
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Fig. 3 - Tvpical light ray trajectories plotted in terms of
the reduced coordinates ¢ and x

Next, consider a light ray that emanates from a given point ry/a and on the {'vs r/a plot. There exists a
value §‘ﬁ of { where the ray will have deviated away from the { axis to a distance of, say, frp/a, where
§ > 1. This value {z will correspond at a given time t to zg(t} where

at

24(t) = \/— T (64)

Equation (64) shows that the point zg, at which the radial coordinate r of this light ray is firg , moves
progressively closer toward the laser as time passes, and it moves with a velocity

t a*t z ()
R e T (65)
232 Vim, -0

A second fact that can be discerned immediately is that the light ray ultimately becomes a straight line
asz — oo, with a slope given by

= 8 = - To) ‘[ b
tané = dZ);Hw A, — D a) o (66)

Typical angles are drawn in Fig. 3. Since the maximum value of f is unity, this stope has a maximum value,
at a given time, of

%)z—rw max B Z(HG - 1} E <6?}

Clearly, these slopes increase with time, as Eq. (66) indicates. The term “blooming” is apt, indeed.
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Further, the inside rays “bloom’” at earlier times and shorter distances than do the outer rays. This leads
to a “hollowing out” of the beam. Thus, the intensity distribution of light on a surface perpendicular to the
beam will begin to show a diminution of intensity in the center, and a peaking in an annular ring (convec-
tion being neglected still), and then a further and rapid diminution.

In the region where the blooming has become serious, that is, where the light rays are deviating seriously
from their original path, and also further down the beam, the model of energy deposition that we have used
breaks down. The light rays, being more dispersed, have ceased to heat these regions. But the blooming is
due to the accumulation of small deflections upbeam where the model still holds good. Hence we may con-
clude that, to a first order, the breakdown of our model for energy deposition is not serious,

Excepting the last paragraph, our comments above have to be modified somewhat if f is not a monotonic-
ally decreasing function. Even if f is monotonically decreasing, if we look at the very-short-time behavior,
there are differences in details because f gets replaced by V£, which is not monotonic any longer. However,
the broad picture is still unchanged.

Next we look at ’I\(r,z,t). Substituting Eq. {(52) into Eq. (35) gives
,(Toi)
fl— N :
_a_r> A ff(_.O_l) f(_fu) - f(.r_)
oo/, f,(r> a a a

r dr’ f(%) 5 l .
L T VB

This equation shows that the right-hand side of Eq. (34) may be computed once and for ali without regard
to time, just as the right-hand side of Eq. (62) may be computed. To translate these results into an inten-
sity as a function of r and of t for a fixed value of z, however, becomes a rather more complicated problem.
To see where the problem lies, we ask how, when Egs. (68) and (34) are combined, does time enter the
problem of couphngi for fixed z, for rand t? If we look at a fixed value of r, we then note that a light
ray passing through r,z at time t will not pass through it at 2 later time, but instead a different light ray
emanating from a different ro must be found. Thus, for r,z held fixed, ro; will be functions of time. 1t is
clear that the numerical problems grow as N, the number of rays crossing at r,z at time t, increases., For
some choices of f(x), N may change with space and time, that is, in some regions of space only two rays
will cross through each point for one time interval, and then later become three rays or more.

(68)

Numerical Results for a Parabolic Power Distribution

The most desirable choice for f(x) is the Gaussian function, but it does not yield resuits that are tractable
analytically, and numerically the situation becomes complicated so quickly that the details quickly over-
shadow the general broad results. Thus, for didactic purposes, we select a simpler distribution for which
many of the results may be obtained without extensive numerical computation. We take

201 -x*),x <1

f(x) = (69)
0 , x> 1
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where

fm dx xf(x)=%.

0

The relation between { and 1 is readily determined by simple integration to be

Xy cosh (\/5 F,x<t (10a)

L+ VIt [\/gg - In (i_i_“_"ff_)] x> 1 (70b)

Xg

where x and xg are the quantities /2 and rq/a, respectively. These curves, for different choices of xg, are
plotted in Fig. 4, It can be seen that for x < 1 no light rays cross one another. This is ¢lear from above,
since Eq. (70a) shows that the curve that begins at arg is always a multiple of that which begins at 1, pro-
vided that r < a. Forx > 1, only two light rays cross at a given {,x as can be seen by plotting x, versus x.
This is done in Fig, 5. Figure 4 shows that the beam about doubles its size for those combinations of z,t
such that /2 ¢ assumes the value 2.3, We shall say that the blooming has become serious for these com-
binations of z and t. That is, we regard this as a definition of the description *“the blooming has become
serions.”

i

] 3 H : ! i | S N S N | L P | [N P & L H i L H i
0 04 08 12 6 20 24 28 32 36 40 44 48

{2g—

Fig, 4 - Light 1ays, in reduced coordinates, for the parabolic
intensity distribution
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Fig. 5 - Plot of x,, as a function of the reduced
coordinates x and ¢

From Eqgs. (70) we can readily compute the derivative, arfar,). = dx/dx,); and thus obtain the
intensity. One gets, after a bit of calculus,

2cosh? /2 ¢ ~ x%) <

, I = a
cosh? /2 ¢
f(r,z,t) - 71
W 201 —x3)%x%;
e a

b xIx3; (1-x)+1-x3;]
where, for a fixed value of ¢, that is, for a fixed distance z down the beam and at a given time t, Xg, and
Xg2 are the two values of xo which, when inserted into Eq. (70) give the same value for x.

From Eq. (71) we see that,at t = 0,¢ = Oand the intensity is I{r,2,0) = W/ma® f(r/ha) for all values
of z—i.e., the beam is unaffected at the instant the laser is turned on. Also, forz = 0,1 = I(r,0,t) =
W/ma® f(r/a), i.e., the power distribution across the face of the laser is unchanged in time. This must be so
of course as it is essentially our boundary condition (see Sect. I1.}). The reduced intensity Tiwina® is
plotted against rfa in Figs. 6 and 7 for various choices of the parameter {, i.e., for various choices of com-
binations of z t. If z is held fixed, then as { increases, the different curves of intensity distribution show
the change of intensity on a fixed plane as time passes. The beam clearly is hollowing out into a ring of in-
tense radiation whose diameter is growing with time as t1/2,

The region of serious blooming occurs at those combinations of z,t such that+/2 ¢ = 2.3;i.e.,

, = 2.3a lﬂt_c
Wnp—1 ¥Vt

Therefore
dz _ 2.3z e 1 2
dt  4mo1 Yt ot 2tC (72)

The speed with which the region of serious blooming approaches the laser is —dz/dt.
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Fig. 6 - Reduced intensity as a function of reduced radial distance x for a
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Fig. 7 - Light rays, in reduced coordinates, for the
(Guassian intensity distribution

Very Smooth Monotonically Decreasing Power Distributions;
the Gaussian Distribution

The case of the parabolic distribution discussed above was singular in several senses of the word. First,
the integrals could be calculated exactly so that the general development was not needed in full. Second,
the first and second derivatives possess a discontinuity at x = 1, and indeed vanished for x > 1;hence
the full apparatus of the general theory could not be applied.

In this section we treat a more general case, the case in which f(x) is not only monotonically decreasing
but possesses at least three continuous derivatives. A case in point is the Gaussian distribution which ap-
pears Lo be very realistic in many instances; numerical results will be given. Equations (62) and (68) thus
apply, but since we have in mind the need for numerical computations, we cast these equations into a more
readily conputed form. The need for such a recasting is evident, since both Egs. (62) and (68) contain in-
tegrals whose integrands possess singularities. Integrating by parts, Eqs. (62) and (68) become

_ Vixe) — f(x) X ' f“(x’) Vixe) - f(x')
=Y ——— ) f dx — ;
f'(x) X [(F'&xH?

(73)

and

a_x)§ ., f(xo)  2f'(xo)f"(x) [f(xo) — ()]

0%o £'(x) [F'e01°
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* £ (3 (%)) 2
+ VDT 100 [ ' Vi)~ T — gf(g}i WL e

respectively, while the reduced intensity distribution becomes

A _ f(Xo )xo
ix.0) —an: N (75)

)l

where the sum is over all X, which yield the same ¢ for the same value of x when inserted into Eq. (73).
For the Gaussian case,
2
fixy=e* {76}

The variable x is related to r by x = 1fa, where a, here, is now a point at which the power decreases by a
factor of e of its central value.

The trajectories and intensities for the Gaussian case were computed on a digital computer; several of
the light rays are shown in Fig. 8. The expected phenomenon of blooning appears as in the parabolic case,
but the ray crossing now can become more complicated.

o 05 Lo L3 20 23 3.0 3.5 4.0

Fig. 8 - Plot of x, vs. x for the Gaussian intensity distribution
with ¢ as a parameter
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Fig. 9 - Reduced intensity as a function of reduced radial distance x for the Gaussian
intensity distribution with { as a parameter

To discern how many light rays cross through a given point x.§ (in reduced coordinates), refer to Fig. 9.
The curves plotted there are the values of x that a given light ray starting at xy will assume when having
gone downbeam a distance {, Thus, to find out how many light rays go through point x,I", we draw a
straight line parallel to the ordinate axis going through the value x on the abscissa. The number of poinis
of intercept equals the number of rays that go through x.{, and their ordinates xo will tell where, on the
face of the laser, the rays originated, For values of { less than 3, approximately, only one ray goes through
each point x,{. For values of { larger than 3 (we stress again that this number is only approximate since we
had no analytical means of determining the exact number}, there will be two points x; .§ and x, ,{ through
which two rays pass. For all points x ¢ such that x; < x < x,, three rays cross at each point. The effect
of these ray crossings on the intensity distribution curve is quite pronounced as an examination of Fig. 9
will show. The abscissa and ordinate of this graph are the same as those for the parabolic case graphed in
Fig. 6. For { < 3.0, we see that blooming proceeds in a rather smooth fashion. However, for { = 3.0,
4.0, and 5.0 there is an abrupt infinite discontinuity at two points in each case, between which the intensity
is quite high, and outside of the interval defined by these points the intensity is relatively quite low. The
phenomenon becomes more pronounced as § grows, and the length between the points where the intensity
becomes infinite increases as ¢ increases. The infinite discontinuities owe their origin to the fact that two
light rays from neighboring points on the laser face cross. In the full three dimensions, these rays form a
caustic surface and the geometrical optics limit is no longer appropriate. Diffraction will play an important
role here, causing the intensity to remain finite everywhere. Hence, the infinite peaks must be regarded as
only indicative of a very high intensity.
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The intensity profiles for the parabolic and Gaussian cases demonstrate quite dramatically how sensitive
the details of the blooming phenomenon are to the original profile across the face of the laser. Since our
model of energy deposition is only a first approximation to the correct expressions, our results here reflect
this choice of model to some degree. In particular we expect the results to be applicable in those regions
near the face of the laser or at early times. While it is true that the annular structure of the defocused beam
has been seen experimentally, we cannot expect that our results will compare in all details with experimental
results when the defocusing is severe, In contrast, we mention the case of the laser for which the intensity
profile is rectangular; as will be shown in the section on “A Variational Problem” below, this laser beam
will not bloom and, furthermore, our model of energy deposition is exact and the calenlation is completely
self-consistent.

Nonmonotonic Power Distributions

If f{x} is not monotonic, the light rays evolve in a more complicated fashion. Easy qualitative descrip-
tions of the light rays can be obtained by noting that Eq. (62) for the trajectories is idemntical in form to the
energy integral for a particle in 2 one-dimensional conservative potential, with { being the analogue of time,
f(xy) the analogue of the total energy, and f{x) the potential energy. It can be shown qualitatively in this
way that nonmonotonic distributions can lead to focusing, as well as defocusing.

A Variational Problem; Minimizing the Blooming

From the examples of the preceding paragraphs it becomes clear that the choice of the initial power dis-
tribution (or “beam shape™ as it is sometimes called) will have rather profound effects on the spatio-temporal
developrent of the laser beam in the medium. It becomes 2 reasonable guestion to ask if there exists any
distribution f which will minimize the effects of blooming? (One could ask if there is an f which will
maximize the effect of blooming. Since, in most uses of lasers, it is desirable to preserve the initial degree of
collimation of the beam, this function f would be of interest for the purpose of avoiding this case.} Of
course, we must find a mathematical characterization of the phrase “minimize the blooming effect.” To
this end, we assume we may use the long-time form for the light rays given by Eq. (62}. The blooming will
be minimized if, for a fixed deviation x — x, of a light ray from its initial distance from the beam axis, the
“distance” { down the beam axis is maximized. Thus we want to choose an f such that for every x and x4,
¢ is maximized.,

A solution to this problem is very simple: if f(x) = constant, { is always infinite, i.e. there is no blooming
at all, Physically this is clear; if all the air is being heated by the same amount and the density changes are
the same everywhere, light will propagate through without deflection. The trouble here is that such a beam
possesses an infinite total energy and is therefore unacceptable as a physical situation. Another way of
putting this is that Eq. (49) is violated. Thus, our problem is to vary f so as to maximize { and stilf have
Baq. (49) satisfied. Again the solution iz at hand:

1, 0=<x<=1

f(x) = 7
0, I <x <o,

H is clear that this choice of f causes no blooming at all and our model of energy deposition now becomes
exact, although the whole problem becomes trivial after the fact. The interest in this result Hes in its vivid
ithustration of the fact that a beam whose “shape” is as flat as possible will have the least amount of bloom-
ing. The blooming will be most pronocunced for those rays in the outer parts of the beam. (We note that
these comments are applicable only to the region where diffraction effects are small.)
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The blooming effect is maximized if { takes on its smallest value for every pair Xo X. Such a problem as
this has no solution.
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