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ABSTRACT

Thermal blooming of a laser beam is described by a
model equation for the trajectory of a selected profile ray.
The model equation is applied to an examination of optical
focusing for increasing transmitted power density. It is
shown that the model equation is asumptotic in the far field
to the geometric far field solution based on Snell's law for
a stratified medium.
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ATMOSPHERIC PROPAGATION WITH THERMAL BLOOMING

INTRODUCTION

Thermal defocusing of high-energy laser beams in liquids is a well known phenom-
enon (1-11) that has been used to measure weak absorptions (2). The analogous phenom-
enon in the atmosphere has been investigated in a simulated experiment (12).

As an intense laser beam propagates through the atmosphere, part of its energy will
be absorbed by constituents of the air. This absorption will cause local heating with de-
crease in air density and refractive index in the beam. The bending of light rays toward
regions of higher refractive index will cause the beam to spread. This phenomenon is
referred to as thermal blooming or thermal defocusing, and it is the purpose of this re-
port to develop simple equations descriptive of this effect under certain assumed condi-
tions.

It is assumed that there is no wind and that convection and conduction can be ne-
glected. True conduction is negligible, and conduction by microturbulence will be considered
negligible for truly static air. Gravitational convection will be present but may be ne-
glected for short time regimes because severe thermal blooming requires but avery small
density differential.

As the atmosphere is rarely static, one might wonder what utility there is to a de-
scription based on such an assumption. The point is that static air represents the worst
situation from the standpoint of thermal blooming and yet is the one situation that allows
a simple closed form description of the development of thermal blooming. When wind is
taken into account, a completely different and somewhat more approximate approach is
needed. The figures for static air serve as references for the improvement due to wind,
which will be considered in a later report.

It is assumed that the beam power density and the refractive index are radial Gauss-
ian functions with the same spread parameter at a particular range and time. The as-
sumption that the beam distribution remains Gaussian implies that there is no ray cross-
ing, whereas the far field solution shows that ray crossing must be complete, that is, that
the beam is turned inside out. It is important therefore to select as the profile ray one
that is compatible with the far field solution. One can then hope that ray crossing will
tend to balance out at intermediate ranges and that a solution that is asymptotically ac-
curate at z = o and z = o will be reasonably so at intermediate ranges.

Incidentally it is not necessary to use a Gaussian function for this method of solution
to apply. It is, however, necessary to assume that the functional form of the radial dis-
tribution remains the same as the beam spreads. Alternate convenient distribution func-
tions are

P + cos- ) ! -i
b2 (1)

P o , r> AdlKE
and
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P = 1 + Cos 0 ' ° < F < b,

P = O. r > fi b .

(2)

It is assumed that the total power in the beam is independent of range. With an ab-
sorption coefficient of 8 x 10-7 cm-1 , high-power beams will have done most of their
bending in the first few kilometers before an appreciable fraction of the total beam power
has been lost. For example at 2 kilometers the overall path transmission is

e (Z= = 16 = 0.85 .

THE MODEL EQUATION

Normalization of the Distribution

Consider a spreading beam as shown in Fig. 1. Let a(z, t) be the characteristic
beam radius with value a. at z = o. The ray r = a will generate a flared tube which
will be considered the beam profile.

:o rZ Fig. 1 - Beam geometry

Assuming that the radial distribution of power is Gaussian and remains Gaussian,
the power flux can be written

P = N e-1

where N is a normalization constant. The total beam power W is then

W = 2rTN f e-r r dr = 7Ta
2

N I

0

Therefore

p = W _r2/a2
7Ta2

The Eikonal Equation

The change in refractive index An due to a change in density Ap is

(3)

(4)

(5)

(6)
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ApAn= (no - 1) - (7)

= (n 0 -1) t 0p (8)

at W 2/ 2
=( n- - - e -r 

where a is the absorption coefficient, Cp is the specific heat at constant pressure, p is
the density, o is the ambient temperature, and t is the time.

It will be noted that in Eq. (8)

ft P dt
0

has been replaced by Pt. The nature of this approximation may be judged from Fig. 2,
which shows a plot of P for r = a as the envelope of a set of Gaussian distributions. For
example consider some down-beam point with radial coordinate r, where a < r at t = 0
and a = r as the profile ray bends and passes through the point r. It is when r = a that
the profile ray solution applies. For definiteness let r = 15 cm and let a = 10 cm at
t = 0. From Fig. 2, P = 1.07 at t = 0 and P = 1.63 when a = r. For a linear decrease
of P with time,

ft P dt = Pavt = 1.35 t
0

whereas Pt t = 1.63 t. Thus the approximation increases the predicted severity of
blooming.

With the beam propagating along the z axis the deviation of the beam toward a higher
refractive index is expressed in the equation (from Ref. 13) for the radius of curvature R,

1 l dn dn

R ndr dr

since n = 1. The index of refraction n is

n = n - An

so

n ° n (n° a2 e (11)
cpop

Then the radial index gradient is

dn ( at W 2r er 2 /a2 (12)- = (no - __ -_12
dr '0 C Op 7Ta2 a2
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7 8 9 10 I1 12 13 14 15 16 17

Fig. 2 - Profile power density as an envelope
of a set of Gaussian distributions

Combining Eqs. (10) and (12) gives

1 2 (no - 1) o Wtr r2/a2

R <o7TCpop a4

, at r = a,

1 2(no- 1) a Wt

R 7TeCPO Pa3

But

I d 2 a

R dz 2

and Eqs. (14) and (15) combined give the Eikonal equation for the ray r = a:

d2 a _ 2(n. - 1) aWt
dz2 7ieC 0 p a3

or

d 2 a k2

dz2 a3

where

and,

(13)

(14)

(15)

(16)

(17)
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2= 2(no - 1) aWt
7TeCP Op

Solution of the Eikonal

If

da d2 a
P =- and - =

dz dz 2

Eq. (17) becomes

Integration with p = o at a = a. gives

dp k2

Pd-- a
da a3

dpPa- 
da

(18)

(19)

(20)P2 = k2 (a - A)

and

da k
p s -= - a_2 - a 0

dz aaO

Integration with a = aO at z = o gives

(21)

(22)a2 = _ Z2 + a 2
a 2 + 0,0

which may be recognized as a hyperbola starting from
z= 0 and asymptotic to the cones

ak2

a02

Numerical Applications

r = a0 at z = o with dr/dz = o at

(23)

Assigning the appropriate numerical values to the
(16) gives

atmospheric parameters in Eq.

k2 2(no- 1) aWt Wtx 10 7

a0
2 ne eC Ppa02 513 a0

2

where

(24)
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(n 0 - 1) = 3 X 10-4,

a = 8 X 10-7 Cm-1,

p = 0.96 joule-g- 1 ,

6= 300 0 K,

p= 10-3 g-cm 3 ,

W= watts,

t = seconds.

From Eq. (22)

a2
- Wt Z2 X 10-7 a2

513 a0
2

0 (25)

For Wt = 5130 and a( =10 cm Eq. (25) gives

a2 = Z2 X 10-3 + 100 (26)

and for Wt = 51,300 and a. 10 cm Eq. (25) gives

a2 = Z2 X 10-1 + 100 . (27)

If Pm is the power flux at the center of the beam at z = 0, then

= Wt. (28)
77 a 02

and for the preceding cases

t=5130 (9
Pm = 100 T= 16.3 joule-cm 2 (29)

and

Pm = 10077 163 joule-cm- 2 . (30)

The beam profiles are plotted in Fig. 3 from Eqs. (26) and (27).

The effect of initial diameter on a constant-energy beam is shown in Fig. 4.

In Fig. 5, the energy density at the beam center is kept constant as the initial beam
diameter is varied. In the far field it is seen that the direction and consequently the
diameter is set by the energy density of the beam at z = 0.

In the far-field approximation when

a
2 Wt Z2 X 10-7 (31)

513 a0
2
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Fig. 3 - Effect of the beam energy on blooming
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Fig. 4 - Effect of the initial diameter on a
constant-energy beam (Wt = 513 joules)

and thermal blooming is dominant, it is seen that delivered energy is independent of beam
energy Wt and is determined by the solid angle of the source aperture as seen from the
receiver. Thus

Wt 513 ao2

7T a2 7T Z2 x 10-1

= 163x 10 7 1 , (32)

where o = a02/z2 is the solid angle subtended by the source aperture at the receiver.

7c-
:,rX.

-rI

Wt 51300 JOULES
/ Im 163 JOULES -CMm'

- /5130 JOULES
m t 16.3 JOULES - CM

1 2 3
RANGE (KILOMETERS)

*0 _ Wt ; 513 JOULESS

0

1 2 3 4 5 6 7
10 RANIOE (K LO~~METERS)

0O
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Fig. 5 - Profiles for constant energy density at
the center of the initial beam (Pm t = 16.3 joule-cm- 2)

EFFECT OF OPTICAL FOCUSING

It is natural to investigate to what extent optical focusing may be useful in increasing
the power density at a distant receiver.

As before, the energy deposited in the atmosphere is assumed to have a Gaussian
radial distribution. Let the slope of the profile ray be m. Then Eq. (19) integrates to

P2 - _ k + A .

2 2 a 2

Substitution of the boundary conditions p = m at a = ao gives

Thus

m2 k2
A=2 + -2 .2 2 ao

da L2 k2

P = - -1/-- 2 
dz ao2 a2

where L2 = k2 + i
2 a 2. This can be written

! fdz = 1 f 2L 2 a da
ao 2L2 JL 2 a,2 -k 2 a 2

(36)

to give

(33)

(34)

(35)

I 1
3 4 5 6 7

RANGE (KILOMETERS)

I-
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VL2 a2 - k 2 a2 = + B (37)
L2 ~~0 a0

With z = 0 at a = a0, Eq. (37) gives

a
B = 2 . - k , (38)

which, when substituted back into Eq. (37) leads to

a2 = k z2 + (mz + a0 )2 (39)
a02

For the atmosphere, Eq. (24) gives

k 2 Wt x 10-

a02 513 a02

and Eq. (39) may be written

a2 = WtX 101z 2 + (mz+ a0 )2 (40)
513 a02

It is immediately obvious from Eq. (39) or Eq. (40) that a is a minimum at a particu-
lar range if the beam is focused for that range. Thus a is a minimum at range z whenam = -- .(41)

z

As a practical matter the improvement achievable by optical focusing may be trivial.
This will be the situation if the spread due to thermal blooming (or other mechanisms)
is large compared to the original aperture. In Eq. (39), a is little affected by ao if
kz/a >> a O. This will be illustrated by a numerical example. For Wt = 1850 joules and
ao = 10 cm, Eq. (40) becomes

a2 = 36x 10o0 z2 + (10+mz) 2 (42)

This equation is plotted in Fig. 6 for the three slopes m = 0, m = -2.5 x 10-5, and
m = -5 x 10-4 corresponding to no focusing, a 4-km focal point, and a 0.2-km focal point.

THE FAR FIELD OF A THERMALLY DEFOCUSSED BEAM

The far field refers to the final angular distribution of beam energy relative to the
beam axis. In this analysis, diffraction effects are neglected, and the initial beam is as-
sumed to be a plane wave with a Gaussian radial power distribution at the aperture. The
assumption of a Gaussian distribution is not necessary but is consistent with the earlier
model. (The appendix treats a non-Gaussian, finite distribution.) Because of the cylin-
drical symmetry, each ray travels in a plane passing through the beam axis, and the re-
fractive index gradient direction lies in this plane. Under these conditions Snell's law
for a stratified medium may be applied if the down-beam flaring of the heated region is
neglected. Snell's law says that if the direction of the refractive index gradient is

9



TUCKER AND DeWITT

I ) o 2 3 4 5 6 7

60

30-

40-

60

Fig. 6 - Effect of optical focusing
on the beam profile

constant for a ray passing through a nonhomogeneous medium, then n sin ¢) is constant,
where +i is the angle between ray direction and gradient direction and n is the index of
refraction of the medium. Let Qi be the angle between a ray and the beam axis in the far
field, and let the ray start parallel to the beam axis from a aperture point where the in-
dex is n. Applying Snell's law to find the far-field angle in terms of the near-field in-
dex gives

cos sly = n ~~~~~~~~~(43)

10~~~~~~~~~~~

From Eq. (11), for small sl

20 -~ 

3 0 - (no- 1) C W (44)

and, with n0 ~ 1,

Fi. [2 (n6- 1) a ] eof oc 0 (45)

Also

do, r (46)

Now if SAQ) is the far-field radiant intensity,

S(Q) 2ngrQ(-d~) = P(r) 2Tnr dr (47)

or

10
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d V
qS(0) d= -P(r) r,

<-is

(48) 11

-1

rrand from Eq. (46)

S /VI) (- ) P(r)r
(a02 

S(0) = 2 P(r)

Substituting for P and V from Eqs. (6) and (45) gives

C, op ao2

2 (no - 1) at

(49)

(50)

0 ' , <• [2 (no -
Cp cOp 7Ta 0 ] 2/]

and S(o) = 0 elsewhere. The upper bound for V, follows from Eq. (45) with r = 0. The
rays from the point with greatest index change show the maximum angular deviation.

The far field is described as starting from a point of infinite intensity and spreading
as a disk with radius proportional to t1/ 2. The intensity within the disk is spatially uni-
form but varies with time as t- 1. In the far field the beam is radially inverted, or turned
inside out. The edge of the beam is formed by the rays from the center of the initial beam,
and ray crossing is complete.

When focusing is used, ray crossing may be induced in the near field, and in many
situations the far-field equations will allow quick estimates of what to expect. An exam-
ple is given below of the application of the far-field equations to the situation where the
receiving area is smaller than the initial beam. Focusing is assumed.

When the received beam is smaller than the receiving area, the total beam power
may be considered to be delivered. Let the receiving area be a disk of angular diameter
2l. From Eq. (45) the beam will expand to the receiving area in time

(51)
( = 0 - 1)p 02 o2

2 (no - 1) c6W

and the total energy delivered at some subsequent time t will be

or

with
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E = Wt1 + 7Tc/
2 f t 9 O a t

I fl 2 (n. - 1) o6 t

t
= Wt 1 + WtI3 log, 

tI

= wt, o <t <t 1

= Wt1 (1 + t l )

Letting

ao = 100 cm,

d = receiving diameter = 100 cm,

K R = range= 106 cm, and

ti = 1 sec,

one has

Is = 5 x 10-5

W = 1.5x 104 watts,

and

E = 1.5 7x 104 t 0 0 < t < 1,

E = 1.5 W x 104 (1 +log, t), 1 < t .

Equations (53) are plotted in Fig. 7. Energy on target increases linearly until the beam
area equals the target area at time t1 . After t, the effect of thermal blooming slows
energy deposition to a logarithmic increase with time.

ASYMPTOTIC BEHAVIOR OF THE MODEL EQUATION

The derivation of Eq. (39) insures that in the near field, i.e., as z - o, the predicted
slopes and curvatures will be correct. It is easily shown that this description is asymp-
totically valid in the far field, i.e., as z - Co.

Applying Snell's law for a stratified medium gives

n cos 0l = n0 cos 2 ' (54)

where n is the index at z = o and r = a(, f1l = m is the initial slope of the profile ray,
and p2 is the far-field slope of the profile ray.

t1 < t

t < t . (52)

(53)

12
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Fig. 7 - Received energy determined
from far-field equations (power density
of 1.91 watts-cm- 2 at a 10-km range)

IS

14

13

12

10
j;

0
- 8

I0

7

6

5

4

3

2

0 1 2 3 4 5 6 7 8 9 10 11 12
TIME (SEC)

Expanding gives

n -

But from Eq. (11) for r = a = aO

nO

SO

and, since nO n = 1,

aLk 2

0

This is the asymptotic form of Eq. (39) as z - co, i.e.,

13 :_.

r-f

mr:1

E-4.71 X IO
4

t, 0 < t < I

/E=4.71 X 104 (I+joge t), I >I

_ / POWER DENSITY 1.91 WATTS -CM-
2

AT 10 KM RANGE

I I I I I I I I I I

nm2

2 n

no/22

2
(55)

(no- 1) atW

CpOp7Ta 2e

k2

2 a02
(56)

no/ 2
2 k 2 nm2

2 2 a0
2 2 (57)

(58)
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,ma
f32 = lrn-

3-

rk2 (inz + n)o 12

=/- ± m
V a2a 0

CONCLUSIONS AND SUMMARY

A model equation (Eq. (39) has been derived to describe the phenomenon of thermal
blooming in static air. The equation describes the path of a profile ray with the correct
slope and curvature in the near field and the proper direction in the far field. In the in-
termediate field the solution to the ray path is approximate.

Aside from the approximations made in the derviation of the model equation, which
should not invalidate qualitative or rough quantitative predictions, one important environ-
mental assumption is made. This is the assumption of no wind and static air, which rep-
resents the worst situation from the standpoint of thermal blooming. The figures obtained
for static air will be extreme numbers that can serve as references for the improvement
due to wind. The static air solution is a transient solution involving time. When wind is
present, it will be more convenient to look for steady state solutions. This will be done
in a future report.

14
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Appendix

FAR FIELD WITH FINITE APERTURE

The far-field pattern refers to the directional intensity distribution of the aperture
considered as a point source, and, since diffraction is being neglected, it is here gen-
erated solely by the geometrical optics of the heated atmosphere. The detailed distribu-
tion in the far field is expected to be a function of the radial power distribution at the
aperture. The far field for a radial Gaussian distribution has been found to be a disk of
uniform spatial intensity but starting as a point and spreading in time. It will be of in-
terest to examine the far field for another functional distribution of power density and in
particular for a distribution that sharply defines a finite aperture. Let0 ( ro2 ) (A1)

P 0 r > ' '

where ro is the radius of a finite aperture.

In place of Eq. (45) we will now have

1,2 2 (no-- 1) ctOp r2 ( (A2)

or, with

2 (no - 1) at
K = ~ 

cpop

2= KP (1 -- r) _KP (A3)

which, when differentiated with respect to r, gives

C, "l/J = , _ (A4)
dr r 0

Equation (48) still applies, i.e.,

d,
S (m)1_- -P(r) drd r

and making use of Eq. (A4) gives

16
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S (V) (- KPor) { 

S (Q) = ° ,2

0

(A5)

(A6)

where from Eq. (A2)

q/>m.. = (KPo )

To compare Eqs. (AS) and (A6) with Eq. (50) let a, be related to r0 so that beam
power W and maximum power density Po are the same for the two distributions. For the
finite aperture,

W = 2T !' Pr dr

= 27T'PO f (r - r dr
r 2l

or

For P r0
2

W r
2

For the Gaussian aperture it has been shown that

W = 77tPo ao2,

and the condition for matching W's and Pots is that

a 2 - 00 2
Rewriting Eq. (50) in terms of K and ro gives for the Gaussian distribution

(A8)

(A9)

S (d,) = - = - , 0 < ,/, < KSQ ) = K 2 K
(A10)

S(VI)= r 0 VJ > K!Po

and for the finite aperture

(A7)

or

r
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J= K2 !' 02 0<L \• K!'0 ,
0 ~~~~~~~~~~~(All)

SQL,) = 0 , 0 > V'W,

where in each case

2 (n 0 - 1) at
K=

C~ Op

At the same instant of time, it is seen that the far-field disks have the same diam-
eters as expected but that the intensity within the disk is not uniform for the finite aper-
ture. It varies as /,2 from S s o for ,/, = o to S = r0

2/K for A = /K!'. The disk edge
intensity is thus twice the uniform value of intensity found for the Gaussian distribution.
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