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ABSTRACT

The atmospheric propagation of pulsed, focussed, laser
beams is calculated. The beam intensity is obtained by solv-
ing the equation of geometric optics and the equation of
energy conservation simultaneously using a perturbative scheme.
In this way the modification on propagation due to change
caused by the index of refraction absorption of energy from
the beam itself is included in a linear approximation. The
problem of calculating the index of refraction change in a
quiescent atmosphere is formulated generally with detailed
expressions, valid for all times, given for the case of a
paraxial Gaussian beam. Formulas for beam intensity are
given as graphical results presented for the on-axis inten-
sity of a focussed Gaussian beam.
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A PERTURBATIVE TREATMENT OF THERMAL BLOOMING

IN PULSED LASER BEAMS

I. INTRODUCTION

The purpose of the present report is two-fold. First it presents a

general method for handling problems of geometric optics in weakly inhomo-

geneous media, i.e. problems where the inhomogeneity may be considered to

be small and treated as a perturbation on a homogeneous background. The

method presented yields the intensity of the light beam being considered

directly, without ray-tracing being necessary in the inhomogeneous medium

once the relatively trivial case of straight line propagation in the homo-

geneous medium has been worked out. Focusing is thus readily included.

Second, the method is applied to the problem of thermal blooming,

i.e. to the distortion of a light beam caused by energy deposition from

(12)
the beam itself.('2 ) The non equilibrium case of thermal blooming of

a pulsed laser beam in a quiescent atmosphere (taken to be a perfect gas)(3,4,5,6)

is considered in detail, and applied to the case of a beam with Gaussian

intensity profile.

Section II contains an exposition of the perturbative geometric optics

method. Section III is a detailed outline of the hydrodynamics resulting

from the beam-medium interaction. Section IV contains the results, while

some of the calculational details are relegated to Appendices A through D.

II. GEOMETRIC OPTICS

The equation of geometrics optics is (vw)2 = n2 , or

vw = nT (1)

where w is the eikonal, n the index of refraction, and T a unit vector

tangent to the light ray paths.(7) In addition we have the conservation
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of energy

V-(I') = -0I (2)

where I is the beam intensity and ry the absorption coefficient.

The perturbation scheme now proceeds by expanding all quantities as a

series of terms of zeroth order, first order, etc. and solving the resultant

equations order by order. In zeroth order we have

Vw = n T (3)

V(IT ) = -&I0 . (4)
0 -10~~

We shall suppose the solution of these equations to be known. That is, the

light rays have known trajectories r(r ,s ) where r0 is the initial point of

the path and s is the distance measured along the path. The initial point

r shall always be taken to be in the x-y plane. The intensity at an arbi-

trary point is then found in terms of the intensity in the x-y plane by

solving Equation 4. This is done by using the fact that T -V= d so that
-' ds

0
Equation 4 is

dI
ds 0 Io V-TO= -aI. (5)

0

If J is the Jacobian of the transformation from variables xyz, to xo, y,
dJ (8)

s then ds° = (V-j)J, so Equation 5 may be integrated to yield
0

I0(r ,OsO) = e (Iojo) (so = °) (6)

The zero order equations are discussed in more detail in Appendix A.
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The first order equations are

Vw = n T + n T (7)
10 -1,1 1 0o

-(I 0T1 + I 1TO) = _aI (8)

Taking the scalar product of Equation 7 with T and remembering that T and
dw

T must be orthogonal in order that T be a unit vector gives - = n
0

Integrating this equation yields
o

w (r0 ,s) = w(ro) + n ds" (9)1 (r) 0 1 0 0 1 0

Equation 7 now yields T in the form T = - l -n T . This may be simpli-
i ~~~-1 n -1 1~o hsmyb ipi

0
fied by resolving the gradient operator into components along and perpendicular

to the zero order trajectories. Writing

V= T (T .V) -T x( xv) ET d 
- U o o0 o (.0 0ds p

0

then

T LVW . (10)
-1 n op i

The first order intensity equation, Equation 8, is integrated in the same way

as the zeroth order equation was to yield
5

I e 0 (JI)( = o) - e e 0 o .(s T )ds' A (11)

0

Equations 9, 10 and 11 yield the first order intensity for any given zero order

problem, in which the first order index of refraction change is known. We

shall consider only the case of paraxial beams focused a distance t' down the
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z-axis. As discussed in Appendix A the distance s is then just z and J =

(l,_)2, while effectively V =enoting difftt
1 1 z2 with V d t iereniaion with

respect to the initial variables r0 . We also impose I = 0 at z = 0. The

equations appropriate to the case of paraxial beams are then
z

1l 1 ( z VO n dz' (12)
-~1 no ( Z) n

0

and

( e -;2 |e (1 -e, )V-(I T )dz (13)

0

It should be remembered that the integrations are to be carried out along the

rays, i.e. with r0 held fixed.

Equations 12 and 13 will be applied to the case where the first order

index of refraction modification, n, is due to heating of the propagation

medium by the beam itself. The hydrodynamical calculations necessary for the

description of this index change are outlined in the next section. Before

proceeding with the main development however, it is interesting to note a

different application of these equations where the correct answer is known.

That is, to the problem of diffraction of a paraxial, Gaussian beam propagating

in a medium of constant index of refraction. To first order, that index of

refraction change which will reproduce the effect of diffraction is (9)

1 n 0 V2VFo 14
1 2 k2 or * (14)

0

U)Here k is n c , the wave number in the medium of constant index n . Taking
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the zero order intensity as

I = P e r2I[a2(l{(_ (15)
0 a(l Z) 2

and assuming no absorption, Equations 12 and 13 yield

r2 (-2)
Il =II( - - 1) -a (16)
1 o a 2l Z)2

so that

[ 1 2 1) Z)2] (17)

Equation 17 is just the first order expansion in powers of of the correct

wave optics expression
1= 2e - r2/a2D2 (18)

Ta D

with

D2= (I _ Z)2 + ( ) (19)

III. HYDRODYNAMICS

The hydrodynamic equations of a perfect gas in the presence of a beam of

radiation I (r,t) which heats the medium are

dp + PV.v 0 (20)dt

Pdt_ VUp (21)

dp _ P dp (y-l) al (22)
dt P dt=
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where P, p, and v are the density, pressure and velocity of the gas, y is the

ratio of specific heats, and a is the linear absorption coefficient of the

medium. The time derivatives are substantial derivatives a + v-V . Writing

P = P + P1, P = P + P. v = v + v we linearize about the constant Po,

Po assumed to be present in the absence of the radiation. Restricting the

treatment to a quiescent medium, v is taken to be zero. Also, consistent

with the perturbative approach, the intensity I responsible for the heating

will be taken to be that of the undistorted beam. The linearized hydrodynamic

equations are then

api
1t + P V.v = 0 (20)'

av
o at = - sp (21)

ap c 2 ap

at at 1= (Y-1) (XI. (22)

2 YP0Here c = - is the square of the speed of sound. Using Equations 20' and
P0

21' we eliminate p1 from Equation 22' obtaining

v2 P 1 321 (y-l) a IPi -- 2 6t 2 - c2 at (24)

This equation may be solved by using the appropriate Green's function,

P (r,t) = - (Y-l) a2 G(rt,r t') a, (r',t) d3r'dt (25)

and then 23' may be integrated directly to obtain p1
t

Pl(r't) = - (y-i) a2 I(r,t')dt' + 12 P(r,t) * (26)
C O 
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The boundary conditions are that all first order quantities are zero at

t = -- and the retarded Green's function is to be used. Since the velocity

of light is so much larger than the velocity of sound the simplest approxi-

mation is to take the light velocity to be infinite. The beam is then re-

garded as an infinitely long heat source that is turned on and off at given

times. Taking the z direction as the beam axis we assume beam gradients

in the x-y plane to be much larger than those in the z-direction so it is

appropriate to ignore all derivatives in z, in which case the problem is

two dimensional, and the appropriate Green's function is just

-1 O(T-R/c) (27)
2TT (7

VT2 R2 /c 2

where R = r - r , T = t - t and c is the velocity of sound. All vectors are

now to be taken as two dimensional and lying in the x-y plane. 6 is the unit

step function, O(x) = 1 for x > o; 0(x) = o for x < o. The pressure is now

P (r1i t) = 1 | (T- R2/c2 31 (r' t') d2r dt (28)

The problem can also be treated in 3-dimensions with finite light velocity,

and Appendix B has such a treatment. Essentially, Equation 28 remains valid

with times t being changed to t-z/cL where cL is the speed of light. We will

continue to use Equation 28 as it stands, but remember that t means time

measured relative to the time of arrival of the pulse at the z-plane being

considered. Taking I as being turned on at t = 0 and off at t = T with con-

stant magnitude between,

I(r,t) = I(r)O(t)6(T-t) * (29)
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Then

and t

p (rt) = - (y-l) U2 I(r)O(T-t)dt" + 1 2 P (rt) (31)

0

For t < T then,

P (r. t) 2=__ 2t | R I(r')d r (32)
~ Vt2 -R

c2

and

P (r,t) c2 I(r)t + (r,t) (33)

Equation 32 may be rewritten in a slightly different form for clarity of inter-

pretation. Since the observation point r is fixed we may transform the variable

of integration in Eq. 32 to R = r -r. Then

P (rt) = ()a t _ I(r+R)d2R . (52)
2T~c Vt2 -

2/C2

The pressure pulse at a point r is thus seen to be produced by the heat de-

posited by the beam at all points R which lie within the distance ct of the

point r, i.e. which can be reached by a sound wave from point r.
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The long time behavior of the hydrodynamic variables can be readily

derived from these equations. Assume that the beam intensity falls off

fast enough in the x-y plane, so that there is an Rmax beyond which we can

take the intensity to be essentially zero. Then for times so large that

a sound wave from the most distant part of the source has had a chance to

pass over the point r we have t > Rmx . The square root in Equation 32

may then be expanded in powers of R/ct and the dominant term yields

Pi= (YlaP (34)
1 2TTc2 t

with P = I d2 r being the power in the beam. Thus the pressure dies out

and leaves the density with a linear behavior, P = (y-1) g it.(4'5'6)

The behavior for small times is more complex. However for distributions

I(r) that can be expanded in a power series in r the pressure can be

expanded in a power series in time. The details of the expansion are given

in Appendix C. The results are

P1(r, t) = (y-l) tE (2n+l) (ct) 2 n (V2)n I (35)
n=o

P1(r t) = (Y-I)Ct E (2n+1)! (ct)2n (V2) I * (36)
n=l

Note that the n = o term of the pressure has cancelled the first term in the
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density as given by Eq. 33 leaving at least a e3 dependence. '5,6) It would

be expected that any physically reasonable intensity distribution could

be expanded as has been done here, but if a model is used in which the

beam is truncated, then these expansions are only valid for points r which

are at least a distance ct from the edge. Thus for short enough times,

all but the outer layers of a truncated beam can be represented this way,

while for ct greater than a, the radius of the beam, no point can be thus

represented.

As an important example of the preceding development consider a

Gaussian intensity profile,

r2
I-=-p; e a (37)

with P' the power in the beam and a the l/e radius which is in general a

function of z. Appendix D gives the details for this example. The re-

sult is

r2 2n

P1 (r,t) = (^y-l)catreaL.. (2n+1)! ( ) M(n+l,n+ 2', (- )2) (38)

where M is the confluent hypergeometric function in the notation of Abramowitz

and Stegun.i 10) The density is

Pi = ~ c2 = a M(1'3_(I )
(39)

r2co2

+-2 v -e E (2n+l) a n+ 3 (T
n=l
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For small argument, m(abx) 1 + ax, so for short times, i.e. for- ct
b ~~~~~~~~~~a

small, we find

Pi (Y-l)at e r2 /a 2 P (40) n

p1 = (y-l)t e -r/a a (3 )((ae >) (41)

in agreement with what is found using the lowest terms of Equations 35 and

36. The behavior for large times can be obtained using the properties of

the hypergeometric functions for large negative argumentm(a,b,x) )
2 T~~~~~~~~~~~~~~~~( b -a)

( _) .(10) Then, for (-) large we find

Pi= (Y-1)aP (42)
rr2c2 t

and

p -y 1O p 2 e - r 2/a2 +
P1 C e 4/ ( (43)

in agreement with the general results following from Equations 33 and 34.

The response to a uniform beam

I = 6 (a-r)

may also be worked out. The result is a complex expression in terms of

hypergeometric functions of one and two variables. However, the pressure

and density on the z axis, r=o, are simple, and serve again to illustrate the

general situation. The results follow directly from Equation 32' and are

for ct < a

P1 = (y-l)Of TTa2 t,

P =0
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and for ct > a P = (t _(t2

and P = - (-l) 2 a2
1 r 7a 2c2 c~2

Expanding the radicals in powers of a we see that the results for the long

and short time regions are in agreement with the general expressions ob-

tained previously.

The density changes given here can be related to index of refraction

changes using the Lorentz-Lorenz law, which we write in the form

n -1=3N P

where N is the refractivity. If the ambient density is P and has associated

with it an index of refraction n, then n - =3 NP . So if n = n + n0 0~ 2 o 0 2.

and P = P + P we have
0 1

n= N P (44)

Thus the first order density change defines a first order index of refrac-

tion change which is used to calculate beam intensity changes as outlined

in the previous section.

IV. RESULTS

The results for the case of a paraxial, focused Gaussian beam will be

presented in some detail. The zero order trajectories are

r (1 )r (45)

and the zero order intensity is
2

I- 2 2 e aD (46)

with
D2 (l z) ( 47)
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We remark that a is now just a constant, the l/e radius of the beam at the

aperture. The z-dependence of the l/e radius has been included in the factor

D, so the notation has been altered from that used in Equations 37 through

43. Also, in all the results to be presented the exponential absorption fac-

tors have been neglected.

The general results, valid for all r and z are given first. For the

short time case where

= 2(y-l)a' r )
1 3 (Y1 02~1I

we find

-r
2 2 4 /

4 . 3 N(y-l)t Se P e (1- + 1(4D 5D) (48)
I ~9TT 2 a6 a 7 

0

For the long time case where

_ (y-1)atI
c2 I

we find

I = 1 _ 2 N- (y_)at P -r a ( a (49)
0

Integrated intensities may be compared as well. Consider the total intensity

inside the circle r s a D a, i.e. the intensity originating from the area

r • aa at the aperture. We find

P-= 1y-l)t3A2pCy2 -2e2 (1-4D3 +3D4 )
POC 917r2Ie2 D4

and

Poa 'rr 2 c3 a 1-e- 2 D (51)
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for the short and long time cases respectively. In these expressions Pa is the

integral of I, P Oa that of I . The limit a = o reproduces the on-axis inten-

sity ratios obtained by putting r = o in Equations 48 and 49. The limit a = 0

gives P/Po = 1, which is just a statement of energy conservation. For the

on-axis intensity it is also feasible to use the complete time dependent ex-

pression, Equation 39. To calculate the on-axis intensity, the density is

needed to the 2 order in r. From Equation 39 we have

c Y-I t paD 2/ a2D2 [1 M(' 1,2n = 3 N P err/ [-M1 (aD) )

(52)

+ 3N ( a lt e-r 2 /a2D2 1 (e)2 M ())

The two hypergeometric functions may be combined using Equation 13.4.4 of

Reference 10, and defining V = ( )2 then Equations 12 and 13 yield

IV

-3N (Yl T42BZ i [1M( '2' a) ) (53)I0 2 c2 TTa4 5 ~ [M 2Y~ ~a, ']V.(

The expansion of this expression for early and late times gives just the r = o

limits of Equations 48 and 49. The form appropriate to an unfocussed beam is

readily obtained from Equation 53 by letting V - 1 + 2 z and dv - 2 dz . We

note also that in all cases the long time behavior is linear in time. This

is not observed in the laboratory experiment of reference 11 for which the

linearized hydrodynamics of this report is presumably inadequate.

Of primary interest is the intensity in the focal plane. In order to get

finite results, diffraction must be included in some approximation. Unfortunately
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inclusion of diffraction to the first order, Equation 17, is no help in this

regard. The procedure adopted here will be to take the distance A at which

the rays cross the axis to be slightly larger than the focal length f. Taking

2 = f/(l - ) yields trajectories

r Z + Z 2 r (45)'

This gives the beam a spot radius of f- at the focal distance, in agree-ka
ment with the wave optics expression, Equation 18. The procedure adopted here

should be a reasonable approximation in those cases where z2 is small. The

procedure is not unique, however, and a discussion of this point is contained

in reference 12 as are results obtained by different treatments of diffrac-

tion. In discussing results in the focal plane, it is convenient to make

several changes of variables. We define 9' (k Ca' so that 0' goes from

zero to one, and also introduce the transit time of a sound wave across the

beam at the focus

f kac (54)

and finally, a combination of constants having the dimension of power,

Trc3 a

f -2 N (y-l)ak f (55)

The on-axis intensity ratio is

1 -2 P(A)2() f I L1 - M ()2 2)] dC' (56)
0 f ~ (f2 V(TI
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Using the properties of the hypergeometric function given in the pre-

vious section the short time and long time limits of Equation 56 may be

derived. They are

I l- 1 t (57)

and

2 ( f) f (58)

In the short time expression, Equation 57, higher order terms in f have been

neglected.

Although time has been scaled according to tf in the above equations,

this is not the time unit most appropriate to the long time behavior. An

examination of Equation 56 shows that tbe long time limit is only reached

for times greater than the transit time of a sound wave across any part of

the beam. The largest such transit time is a . the transit time across the
c

aperture of the beam. Thus Equation 58 is only valid for times larger than

c , which is a more appropriate scale for the long time behavior. This fact

also places a restriction on the beam powers for which the present theory

can be expected to be valid. Since 2 p t must be less than 1, putting theftf
time equal to a yields

c

P I Pctf I f
2 f a 2 ka 2 f

Since f has been taken to be small, this critical power is much less than
f

f . Figure 1 shows a plot of the on-axis intensity ratio for kf- = 0.126
f.

and p = 0.01. The curves labelled short time and long time are plots of
Pf
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Equations 57 and 58 respectively. The unlabelled curve is a graph of

Equation 56 obtained by expanding the hypergeometric function in a series,

integrating term by term, and numerically evaluating the resultant series.

The horizontal axes show the time as scaled by tf and by- . It is evident

that the long time linear behavior is accurate to within a few percent for

all times.

The approach to the long time limit shows up more readily when the

power is not held constant, but rather the total energy in the pulse is fixed.

Define
172

E Pt = Tc (59)

Then taking the time t to be T, the total pulse length, we have

Pt E

Pftf Ef

where E is the total energy in the pulse. Equations 56, 57 and 58 are modified

accordingly, and we have for the short and long pulse length behaviors

I 1 4 E T (60)

and

I E
I= 1 - 2 E. (61)
o f

The energy Ef is independent of the optical parameters of focal length and

diameter so that Equation 61 predicts a long time limit which is dependent

only on the pulse energy.

A criterion for the maximum pulse energy for which the present theory may

be expected to be valid can be derived from Equation 61. Since 2 E must be
Ef
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less than 1 the criterion is simply

E <1 E
<2 f-

For example, for a 10.6 Jim laser beam propagating in air with an absorption

coefficient of 2 x 106 cm1 the energy Ef is approximately 60 joules.

Figure 2 shows a graph of the on-axis intensity ratio for fixed pulse

energy with E = 0.1 for beam parameters of jf2 = 0.126 and f = 0.014. The

horizontal axis is pulse length measured in units of tf. The crosses indicate

the short pulse intensity ratio as given by Equation 60. Since the pulse

length is plotted in units of tf Equation 60 is independent of f and the

crosses denote the short pulse length behavior of both curves. Similarly,

Ef

this limit is just the line I 0.8
0
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APPENDIX A

GEOMETRY OF THE UNPERTURBED RAYS

The geometric relations for the unperturbed rays are quite simple because

they are not curved. The fact that the rays are focused does cause some comp-

lication, however, especially since the paraxial approximation is not made until

the end. This appendix serves to define the geometry and give some of the

details which ensue because of the focusing. To avoid an over abundance of

subscripts, the subscript zero denoting zero-order quantities will not be

written. Figure Al defines the quantities being used. The trajectories are

simply

r =r + s T (Al)

with the tangent vector given in terms of the initial coordinates by

T --o (A2)

-d

where A = Aez and d2 = r 2 + £2. In terms of the spatial coordinates,

A -r
-% 

T - (A.3)

- A/(s r)2
In terms of coordinate components

x (1 S)x

y (1 S)y (A4)

Z~~ = 0
d 

from which the Jacobian is computed to be

= xyz ( )2 A (s{xyz \ xyz = 1 - -\ X *(A5 )
oyoy xOyo \ d d

dI
It is instructive to calculate this also using the relation -s = (V T)J

with V-T given by -2 -2
V. T ~~ = d-s (A6)

'rr _ )2 d-

20



from Equation A3. The operator 7p of the text is calculated using the rela-

tions inverse to A4,

x0 = x/( l -)

yo = y/(1 - () (A7)

Z 2 ffA + (X 2 + Y2 )/(l _ Z)2

After some manipulation we find

r e r2 r
V = 1 + (r Yo) + d d (A8)--p (1-s/d) {.9 tidz -Zs d sA8

r2

The paraxial approximation neglects terms of the order , which results in

d = t and s = z.

Then

vp = X [70 + = ro-V + (A9)

In the text the 2 term is neglected since it eventually occurs quadratically

while the last term is neglected since it operates on the intensity which is

assumed to have negligible gradients in the z-direction. However, to obtain

the correct tangent vector, it is Equation A9 which should be used not merely

the first term as used in the text.

xy

S __

Fig. Al - Geometry of zero order rays
rot 
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APPENDIX B

PULSES WITH FINITE LIGHT VELOCITY

In this appendix we present the details of the calculations which lead

from the treatment of a beam of arbitrary shape traveling with the velocity

of light to a two-dimensional beam traveling with infinite velocity as used

in the text. We ignore all spatial dispersion and treat the source as having

a sharp front in space. Taking the pulse to be turned on at t = 0, off at

t = T in step function fashion, and to be steady in between we have

I(r,z,t) = I(r,z)[0(t)G(T-t)O(cLt-z)0(z) (Bl)

+ e(t-T)0(cLt-z)e(z-cL(t-T))8(t)J

This gives

= I(r,t)[6(t-z-) - 8(t-T- )]G(Z) * (B2)

Cylindrical coordinates are used here with r denoting a vector in the x-y

plane.

The retarded Green's function in 3 dimensions is
(t-t --)-1 6 c (B3)

with R the magnitude of the 3 dimensional vector from point r,z to point

r, z * Using Equations A2 and A3 in the expression for the pressure, Equation

5, we have

Pi(r, zt)

p-) It ( z[6( c 8(t -T c )]G(z )d2r'dz dt' (B4)

(V-ia L z\~'')8t I - r z 2/

= 4rr 0
23 \ ~ ,' L T(t--i-z-d r'dz dt (B4)

4TTc2 |[ - c 6(t- T CL c)] f (z')d2r'dz . (B5)

Only the first term of Equation A5 survives for t < T, but in any case the

second term can be obtained from the first by the substitution t - t - T. To
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carry out the integration over zi define

g = (Z '-Z) c + Rf
CL

F-

(B6) 6

-fl

Then

c 2~~CL - g - g 2 1

with the plus sign appropriate

C R

z < Z -___ . In these

AL)

2-dimensional vector from r to

g the quantity Ad is replaced

dz X _ =

dz

_ R
for z / > z - cL__ and the minus sign for

equations R denotes the magnitude of the

r . In the transformation to integration over

by

dg

( 2i 

(B8)

with the plus and minus signs chosen as above. The integration is thus

divided into two regions according to the value of z and the result is

Lz~ Ot~ L- R)D
P(rZ.t) (= r)rc J(t t c(SL i.)2 c)

Trc2 A/t- Z )2~ (1 c)2 R

+ I (r

Z -- C t -C 

1 . .( 2)O Z - C2 t - C i )17
22

- (c)C
2 ,

f Z -)C2. tcr)] 2 /I 0Z -- t+ c d2I LC
(term with t - t-T).
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The symbol F_ stands for the same square root appearing immediately after

the integral sign,

VI = [(t - CZ )2 -(1- C ) 21* B0

The terms 2 are of course extremely small and will be dropped in what

follows. The step functions appearing with the beam intensity factors are the

result of solving the half space problem, i.e. imposing z > 0. For z > ct

both of these step-functions are 1 for all R. This is due to the fact that

the influence of one portion of the source on another travels with sound

speed, and for z > ct the edge effects due to terminating the source on the

z = 0 plane are not felt. For small distances, such edge effects are present,

and for distances< ( c ) ct the first terms in the bracket of equation B9
CL

ceases to contribute at all. For distances z > ct then we have

(Y-l)CX G( t - R F
P (rzt) = t L | ( B1l)

3. 4icc2 j 2

CI(r", z - c t -c ) + I(r', t - 2 t + c) d2r
CL

with

Lt - ) - ( B12)
CL

Finally, assuming that the intensity changes negligibly in a distance ct we

can take the intensity to be independent of R and to be equal to its value

24



at z
( -lc)a

P (r,z,t) =
1 2cc2

z R
I ( t ---c -

CL

I(r',z) d2r'

- (term with t 4 (t-T),

The approximation of the text consists in assuming the variation of the

intensity to be slow enough so that this result is true for all z > o.
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APPENDIX C

POWER SERIES EXPANSION OF THE PRESSURE

In this appendix we give the details of the expansion of the

pressure as a power series in time. Equation 32 of the text gives

the pressure as ( a l)R , R
P(rt) = j ' c)I(r+R-d23)

Expanding the intensity about the point r, we have

n~I(r+R) =1 . I (r). (C1)
n

Inserting Equation Bl into Equation 32' and writing the integration over

R in terms of polar coordinates with cp being the angle between vectors R

and r, the angular integrations needed are

|R- V)nI (r)dc (C2 )

(,,n nf b 
writing (R'V) as R Coscp + sincp a and expanding the gradient term

by the binomial theorem leads to integrals expressible as Beta functions,(lO)

which are in turn expressed as products of Gamma functions. The result is

LF 1 ,. V~nld2Tc n nc~
(R,. | Yt)nldW = - I Rn (V2)~ I (C3)

22 ( 2

for n even. The integral is zero for n odd. The remaining integrals to

be carried out in Equation 32' are then of the form

RJ RnF .c RdR. (C4)
J ht2 -

26



Defining R2 = c2 t2 x this takes the form

1

1 (ct)nC2 x n/2 dx
2 V \I -x

which is also a Beta function('oand is just 2 n(ct) cat (+2)2

The use of Equations Cl, C3, and C5 in Equation 32 leads immediately

to Equation 35 of the text.
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APPENDIX D

PRESSURE AS A SERIES OF HYPERGEOMETRIC FUNCTIONS

Although Equations 35 and 36 of the text can be used to derive the

density and pressure expressed in terms of hypergeometric functions, it

is much easier to go back to Equations 32 ',

P = ~~~~~ -~I ( r+~R) dR
1 2iTc2 J _el t- 2/ c

r2

writing I(r) = Ne and defining R = c2 T2 x tte pressure is

1
r2 

(7-l)at - 2z 
P (r) = ('Y- 1)ate 0

0

- 2ctrlA) coscp/a2 - C2 t 2x/a 2
dxdcp . (Di )

The angle cp is the angle between the vectors r and R.

The angular integral is just the Bessel function I , (10)so
0

l -2)Qt er2/a2f Io(2ctr )ec2t2x/a2 (D2)

o l-x

If in turn, the expansion I (t) = M ) is used in Equation D2

the pressure is k

( 7-l)Cat 2 2 2kPr /a2 (kor)P1 = ~2 ~e 
2~~~~

1 1 | xk eC 2 t2x/a 2

k! kJ 0-

Each integralis expressed as a confluent hypergeometric function using (10)
1

M(a,b,x) = (a)r(b) ext ta-l (1t) b-aldt

This leads directly to Equation 38 of the text.
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