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Finite-Time Stability of Linear Differential Equations

LEONARD WEISS* AND JONG-SEN LEE

Mathematics Research Center
Mathematics and Information Sciences Division

Abstract: A unified approach to finite-time stability of linear autonomous differential
equations is developed in this report. Linear algebraic machinery is used to derive new and
computationally feasible results, and also to obtain elegant proofs of known theorems. Con-
nections are made to the Liapunov-like theory of finite-time stability. Corresponding results
are also derived for a class of stochastic linear systems.

INTRODUCTION

Finite-time stability differs from classical stability in that one is interested in the behavior of system tra-
jectories which originate within an a priori fixed region in the state space over a given fixed time interval
(which may be finite or infinite). Over the past 25 years, exploration of various facets of this concept has
been made by a number of workers (see Refs [1-21 ] ), many of them motivated by the fact that in a variety
of practical situations, the finite-time concept of stability is more pertinent than the classical concept. The
theory, in its early stages, was mainly (though not entirely) concerned with linear differential equations ([1-
8] ), proceeded through some preliminary probing toward a qualitative nonlinear theory ([9-121 ), and then
underwent systematic development using a particular Lyapunov-like approach initiated in [13-151 and con-
tinuedin [16-21].

In this paper, we bring the development full circle by presenting some new results in the theory of finite-
time stability for linear autonomous differential equations. Not only are these results computationally at-
tractive, but the techniques used to obtain them allow elementary and elegant proofs of known theorems
to be given, and enable succinct characterizations of finite-time stability to be made for certain classes of
linear differential equations.

Extensions of the aforementioned results to the case of linear systems driven by "white noise" are made,
and these also result in easily computable criteria for finite-time stability.

PRELIMINARIES

The symbol 1 *11 denotes the euclidian norm on Rn If A is an n X n real matrix, the set of eigenvalues

of A is denoted by {X(A)). If the eigenvalues are real, X(A) - max { X(A)}. The spectral norm of A is

denoted by IA 11* ~ [1(A'A)] 1/2 where A' is the transpose of A.
Consider the system of linear differential equations

x (t) =.A x(t), t > 0 1

*Also, Department of Electrical Engineering and Institute for Fluid Dynamics and Applied Mathematics, University of
Maryland,College Park, Maryland. Dr. Weiss' work is supported in part by the Air Force Office of Scientific Research
under Grant AFOSR 69-1646.

NOTE: A presentation of the results in this manuscript was given at the SIAM 1970 Fall Meeting, Oct. 12-14, Boston, Mass.
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WEISS AND LEE

where A is nXn, real and x(0) 4 x0 . The unique solution of (I) at time t is given by

X(t, x0) 4 x(t) = eA t XO . (2)

Our objective is to investigate (1) for the following type of behavior.

Definition 1. The system (1) is stable with respect to (a,j3,T),a 6 (3, if 11 x0 11 < a implies 11 x(t) 11 < a

for all t E [0, T).

A FUNDAMENTAL RESULT

The theorem given below will be used in conjunction with the linear algebraic techniques developed in
the next section to generate further stability results.

THEOREM 1. A necessary and sufficient condition for the system (1) to be stable (Def 1) is

||eA t < • f, for all tE [0, T) . (3)

Proof for each fixed t,

1Ix(t) I = IIeA t x0I 11 eAt Il | x0 || (4)

with equality achieved for some x0 (independent of 11 x0 1l). Hence, 11 x0 11 < ( V te [0, T) if and only if
A t 11 * 11 xo 11 < ( V te [0, 7) and the latter holds on [0, 7) with 1l xo 11 < a if and only if (3) holds.

Since our aim is to obtain results which are computationally tractable, our effort in the succeeding two
sections is mainly devoted to translating (3) into computable conditions on the coefficient matrix A.

SOME USEFUL LEMMAS

The statements designated as Lemmas 1, 2, and 4 below are well known. Lemma 3 is less well known
(see Dahlquist [22] for the inequality), and we provide a novel proof for it.

LEMMA 1. Iff(A) is a well-defined function of a matrix A, then XE ( X(A)) implies f(I) E
{) (f(A))) 

Proof See [23].
A

LEMMA 2. If A isa symmetric matrix, then l|eA || *eX(A).

Proof. Follows from Lemma 1.

LEMMA 3. For any n X n real matrix A,

||eA ||* eX ((A' +A)12) (5)

with equality if and only if A is normal.
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Proof. Any nXn matrix A has a unique decomposition A =AI +A2 where Al = (A+A')/2 and

A2 =(A-A')/2. Now, eA =eAi +A 2 =eA, eA2 if and only if AI andA 2 commute. (AI andA 2 commute

if and only if A is normal.) Hence, under such conditions, ljeA 11 = lleAl eA2 11* and since A2 is skew-

symmetric, A' = -A2 . Therefore, we have

(lleA 11*) = X (e-A2eAleAleA2) = X(e2 Al) eX(A'+A).

This proves the equality part. To prove the inequality, we start with the Rayleigh quotient [24] representa-
tion of 11 * 1 ,i.e.,

A x' (A'Ax
X(A'+A) = max +A)x

= max J x'(t) (A'+A)x(t) d
x(.) o 1Ix(t) 112

• max x'(t) x(t) + x'(t) x(t) dt
(X(x*) 10 lx(t) 112

.x=Ax

• max fx(1) d x(t) 112 )

XO 1o llx(t) 11 2

(l1X(l) 112 A 1 1eAx 112
2 max In = max In l = ln max
XO l X0 11 2 XO X0 X/ 11x 2 Xo l Xo 112

• In( || eA l*)2,

which implies

leA 11 * e A((A + A)/2)

Finally, we shall make use of the well-known relationship (see [24] ) between the spectral radius of an
nXn matrix A and its spectral norm, namely,

LEMMA 4 . max I(A) I) 6 ||A ||

APPLICATIONS OF THEOREM 1 AND LEMMAS 1-4

The following result is new and characterizes finite-time stability for a class of linear systems via an
easily computable criterion.
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THEOREM 2. Let A in (1) be normal. Then (1) is stable (Def 1) if and only if

X (2(A+ A' <) 1 In (61a) .(6)

Proof By Theorem 1 and Lemmas 2 and 3 we have

Stability (Def. 1) '> eAt II* 6 P/a , for all t C [0,T)

- e A ((A' +A )tl2) 6 P/a, for all tC [O. T)

Using a 6 (, then a simple calculation shows that (6) is necessary and sufficient.

This generalizes, via our simpler and more direct argument, an earlier result by Kaplan [21] for the case

when A is symmetric. The techniques developed in the last section also allow other known results in
finite-time stability to be obtained directly. For example, as an immediate corollary of Lemma 3 and
Theorem 1, we obtain

THEOREM 3. (Dorato [8] ). A sufficient condition for (1) to be stable (Def 1) is

X ( (A +A')) 6 1 In (P/a)* (7)

Even more striking is the simple and direct proof which can be given of the following necessary condi-
tion, originally established (see Kaplan [21] by means of a long induction argument.

THEOREM 4. The system (1) is stable (Def. 1) only if

max (Re(,(A)) ) 6 < ln (3/a). (8)

Proof By Theorem 1 and Lemma 4 we obtain, as a necessary condition for stability (Def. 1),

max (|X(eAt)I} 6 P/a for all te[0,T) . (9)

By Lemma 1, this implies

em a (Re(X(A))) 8 t 3 /a for all te[0,T)

which implies, in turn, that

em a Re(X(A )) (T-e) 6 P/a for all arbitrarily small e >0 . (10)

Taking the logarithm and the limit as e - 0, yields (8).

CONNECTIONS TO NONLINEAR THEORY

Let V: Rn X [0,T) - R be a continuous function with continuous first partial derivatives. Let

4
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V(xt) = ( grad V - dx) +aV

Vm (t) min V(x,t)
II x 11 =a

VM (t) = max V(x,t)
1I x 11 =a

B (a)~ {x GR: 11 x 11 < a,

and let B(a) be the closure of B(a).
Consider the following theorem*, which holds for certain nonlinear as well as linear systems.

THEOREM 5. The system (1) is (uniformly[) stable (Def 1) if and only if there exists a real-valued func-
tion V(x,t), as above, and a real-valued integrable function ep(t) such that

(i) V(xt) < ep(t), for all x E (B(g) - B(a)), all t E [0, TI)

(ii) j p(t)dt < V,4 (t 2 )- V `(t 1), all t2 > t1 , and tI , t2 E [0,T) for e > 0 arbitrarily
t,

small.

To relate Theorem 5 to previous results, we note first that V(x,t) can be chosen as V(x) since (1) is

autonomous. Consider

V(x) = In lix 11. (11)

Then

*x'Ax
V(X) liX 112

Now, with A I and A2 defined as in the proof of Lemma 3, we have x'A 2 x = 0, and so

-X'AX A
li <1 X(A1)

V(x) =1 X 112 t( 

A
Let ep(t) = X(A 1 ). Then Theorem 5 yields the result

fT X(AI)dt < ln( )

or

X(AI) < T In (-f ) for e > 0 arbitrarily small.

*This is actually a trivial perturbation of Theorem 1 in [15], the difference being that VA-6 appears in this case rather
than VM as in [ 15]. This occurs because the definition of finite-time stability in [15] allowed an initial condition
11 x 11 = o. The proof is exactly the same.

tUniform finite-time stability is defined in [ 15] and is equivalent to stability (Def. 1) for systems of the form (1).
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Taking the limit as e - 0, we get

(A ) 1 I1 ()

which is the result designated as Theorem 3.

Remarks: 1. An extension of Theorem 5 to the case of nonuniform finite-time stability has been made
by various people working independently (c.f., for sufficient conditions, [18] and [19], and for converse
theorems, [20] and [211 ). The extension replaces hypothesis (ii) (assuming initial time 0) by

IT
J p(t)dt < VmP (T) -max V(x, 0).

olix 116 a-e

With this extension, the function V(x) = In jix 1I yields a known sufficient condition (see [8] ) for stability
(Def. 1) of the linear time-varying system x(t) = A (t)x(t), t >0, namely,

fT (2X I (A'(s) + A(s))) ds 6 In(p)
0

2. If A in (1) is normal, then the Lyapunov-like function (11) will always be conclusive in the test for
stability (Def. 1).

3. It is interesting (though not surprising once one sees the pattern of results) that the natural Lyapunov-
like function associated with finite-time stability of linear systems is not a quadratic form, but the logarithm
of the latter.

UNEAR SYSTEMS DRIVEN BY WHITE NOISE

In this section, we consider linear systems of the form

x~t) = Ax(t) + Bu(t),t>0 (12)

where A is nXn, B is nXm, and u (Q) is a vector white noise with zero mean and covariance matrix
Q(t) (i.e., E {u(t)}= 0 and E {u(t) u'(s)} = Q(t) 8(t - s), where E is the Expectation, and 6 is the
Dirac delta.)

For any nXn matrix G, let tr(G) be the trace of G. Then we have

Definition 2. The system (12) is mean-square stable with respect to (a, 0,,y, 7), a < f3, if the conditions
E~iix(t)112 } < a2 and tr(Q(t)) _2 for al tE [0,T] , imply thatE {ix(t)112 }< s2 forall t E

[0,T].

The main result in this section depends on the following Lemma.

LEMMA 5. Let F be an nxn symmetric matrix and let f denote the set of nxn nonnegative definite
matrices.

6



Then

tr(PF) (3
X(F) = max P(13)

Pe I

Proof: Let S be an nXn orthogonal matrix such that S'FS =A = diag (Xi). Also let S'PS = D.

Then

tr(PF) = tr(PSA S')

= tr(S'PSA)

= tr(DA)

=X 1 d, I + X2 d22 +. ........ + Xn dnn

6 A(F) (d, I + d2 2 + ... + dn n) , dii > °

6 X(F) tr (D)

Therefore it is possible to choose {d i I i = 1, . . ., n) such that

A tr(DA__ tr(PF)
X(F) = max tr(D) max tr(P)

dii ~Pe rD

Now consider

THEOREM 6. The system (12) is mean-square stable (Def 2) if and only if

a2 (l eAt i*) 2 +2 jf (ieA E Bi*) 2 dt •p2 ,fortE[0,T) (14)
0

Proof. Let P(t) = E ( x (t) x'(t)}. Then P(t) e P for each t, and differentiation yields

P(t) = AP(t) + P(t)A' + BQ(t)B'. (15)

The solution to (15) is given by (see [26])

P(t) = eA tP(O) eA't + Xf eA (t-s) BQ(s)B' eA'(t-s) ds.

Then

tr (P(t)) = tr (P(0) eA t eA t) + *f tr (Q(s)B'eA'(t-s) eA (t-s) B) ds
0

7MP T. R EPOP T 723 7
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and, by Lemma 4,

tr(P(t)) 6 (h1eA t II *) 2 tr(P(O)) + Jt (1 (leA (t-s) B 11
0

*)2 tr(Q(s))ds. (16)

Sufficiency of (14) now follows by substituting, for any fixed te [0,T], tr(P(0)) < a2 , and tr(Q(s)) <y2
for all se [O,t] into (16). To prove necessity, we first note that there exists a P(0) and a Q(s) such that
equality occurs in (16), and such that tr(P(0)) = a 2 and tr(Q(s)) = y2 for all se [O,t]. Suppose (14) does
not hold at some t = t1 e [O,t]. Then with P(0) and Q(s) chosen as indicated, (16) yields tr(P(t 5)) > ,2,
in which case tr(P(tl)) > p2 as long as tr(P(O)) < a2 and tr (Q(s)) = Py2 for all se [0,tj ]. Hence the

negation of (14) implies the negation of stability (Def. 3) and the theorem is proved.

We now develop results for the system (12) analogous to our earlier ones for (1). Let

p2 = Y 2 (IIB 11 *)2

p (A' A)

COROLLARY 1. A sufficient condition for the system (12) to be mean-square stable (Def. 2) is

(2 (A+))62T 2n) +P 2

(17)

(18)

Proof. Let

U(t) = ( 11 1 ) tr(P(0)) + f t
0

(IleA (t-s) B 11 *) tr(Q(s))ds .

Then stability (Def. 2) occurs if U(t) 6 f 2 V t e [0, TI for tr(P(0)) < a2 and tr(Q(s)) < y2 for all
sE [0,T]. Now

U < a2(eAt II * + 2
0 (HeAtBll ) dS.

By Lemmas 2 and 3 and the fact that 1I GHII 6* <G *IIHIi *

U(t) < a2 e(A' +A)t + y2 (IB ii *)2 ex (A'+ A) t d~

or

U(t) < a2 eX(A' +A)t + z2 (IBI * ) ex(A, + A)t -1I @ V(t)
X (A' + A)

Then stability (Def. 2) is implied by V(t) < .2 Taking the log of both sides, and using (17), yields (18).

8
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COROLLARY 2. Consider the system (12) and suppose that B= I and A is normal. Then (18)is a
necessary and sufficient condition for (12) to be mean-square stable (Def 2).

Proof From Theorem 6, we obtain the following necessary and sufficient condition:

rt
a2i (eAti*)2 + (h2 11 eAtl 1*)2 dt 6 <2 for all tE [0,11

Applying Lemma 3 allows the integral to be evaluated, and taking the log of the resulting inequality with
t = T yields (18).

The close correspondence of these results with those for deterministic undriven systems is completed by
given the following necessary condition for stability (Def. 2). Let

Re (X) = max (Re (X(A))

and let

y2

2(Re (X))

Then we have

THEOREM 7. Let B I in (12). Then the system (12) is mean-square stable (Def 2) only if

Re (;) 6 -l In 1 . (20)
T a2 +p1 

Proof The proof is similar in structure to that of Theorem 4 and follows from applying Lemma 3 to
the necessary condition (14).
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