
NRL Report 7219

Two-Dimensional Systematic Point Count
for Volume Fraction Analysis

from a Poisson Theoretic Approach

JAMES P. GRIMES

Research Computation Center
Mathematics and Information Sciences Division

and

BURTON N. NAVID

Radar Techniques Branch
Radar Division

March 31, 1971

NAVAL RESEARCH LABORATORY
Washington, D.C.

Approved for public release; distribution unlimited.



CONTENTS

Abstract ii

Problem Status ii
Authorization ii

LIST OF SYMBOLS iii

INTRODUCTION 1

THE TWO-DIMENSIONAL SYSTEMATIC POINT COUNT 2

Areal Analysis 2
Probability Assumptions 2

APPLICATION I 6

APPLICATION II 7

Description of the Method 7
Relation of Application II to the Point-Count Method 9

BIBLIOGRAPHY 10

APPENDIX - Supplementary Equations 11



ABSTRACT

In many fields of scientific investigation, the structure of cellular aggregates
or random arrays of discrete particles imbedded in some solid is observed on a
two-dimensional section and inferences drawn therefrom as to the real struc-
ture in three dimensions. A fast, reliable method for the quantitative determina-
tion of the percentages of these micro- or macroconstituents would be of great
benefit for structural studies in the solid state.

One of the techniques most often used for the estimation of volume frac-
tions from measurements made on a random two-dimensional section is that of
the two-dimensional systematic point count, i.e., that the fractional number of
regularly dispersed points falling within the boundaries of a two-dimensional
feature on a plane provides an unbiased estimate of the areal fraction, and con-
sequently of the volume fraction, of that feature.

The two-dimensional systematic point count is demonstrated here from a
Poisson theoretic approach. In addition, two methods of application are in-
vestigated: one using a normal approximation, the other, the Poisson distribu-
tion. The relationship between the latter and the point-count procedure is
also indicated.

PROBLEM STATUS

This is a final report on one phase of the problem; work is continuing on
other phases.

AUTHORIZATION

NRL General and Administrative Function 78-1601

Manuscript submitted October 26, 1970.
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LIST OF SYMBOLS

A Total area examined

Aa Area of a phase
Af Areal fraction of a phase (Aa/A)
a Area of an individual a feature
C, D Constants

d Spacing of a square, two-dimensional lattice

E [ Expected value of [ ]

k A constant

m Number of occurrences, an index
N Total number of lattice points applied
N(A) Number of a features in A

Nf Fraction of lattice points occupied by a features, (Np(A)/N)
Na Number of a features per unit area

Nai Number of a features of area ai per unit area

Nai(A) Number of a features of area ai in A

Np Number of lattice points occupied by a features per unit area
Np(A) Number of lattice points occupied by a features in A
Npi Number of lattice points occupied by a features of area a, per unit area
Npi(A) Number of lattice points occupied by a features of area ai in A
n Sample size

P Probability

r Number of different sizes of a features

V Volume of structure

Vf Volume fraction of a phase
V Volume of a phasea
x Sample mean

Z Chi-square variate

z Standard normal variate

a Phase whose volume fraction is being estimated

a Significance level

ly Precision or tolerance

X Parameter of the Poisson distribution

v Parameter of the Poisson distribution
a Standard deviation

a2 Variance

The Chi-square distribution
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TWO-DIMENSIONAL SYSTEMATIC POINT COUNT FOR
VOLUME FRACTION ANALYSIS FROM A

POISSON THEORETIC APPROACH

INTRODUCTION

In many fields of scientific investigation the structure of cellular aggregates or random arrays of discrete
particles imbedded in some solid is observed on a two-dimensional section and inferences are drawn
therefrom as to the real structure in three dimensions. The petrologist's thin section, the biologist's
microtome slice, and the metallurgist's or chemist's plane-polished or etched sections are well-known ex-
amples, although the problem is a general one. A fast, reliable method for the quantitative determination
of the percentages of these micro- or macroconstituents would be of great benefit for structural studies in
the solid state.

The experimental investigation which prompted this study was an effort to determine the void content
in filament-wound composites at low void levels. Standard chemical analyses of the void content of these
composites at such low void levels yielded negative results and thus proved to be totally unsatisfactory.

The techniques most often used for estimation of volume fractions from measurements made on a
random two-dimensional section are based on one or more of the following principles:

1. For an areal or Delesse* analysis: that the areal fraction of a three-dimensional feature inter-
cepted by a random plane provides an unbiased estimate of the volume fraction of that feature.

2. For a lineal or Rosiwalt analysis: that the fractional intercept on a line passing at random through a
two- or three-dimensional feature provides an unbiased estimate of the areal or volume fraction, respec-
tively, of that feature.

3. For a point-count analysis: that the fractional number of randomly or regularly dispersed points
falling within the boundaries of a two-dimensional feature on a plane, or within a three-dimensional feature
in a volume, provides an unbiased estimate of the areal or volume fraction, respectively, of that feature.

The property of being without bias referred to in these principles implies only that the expected value
is equal to the true value, not that an analysis will be free of error.

In this report, only the point-count principle will be considered, and more specifically, the two-
dimensional systematic point count as opposed to the one-dimensional or random point count.

The following restrictions or assumptions will underlie the results:

1. That the feature under consideration occur as discrete particles randomly (or uniformly) dis-
tributed in three dimensions. This assumption implies that the volume fraction is small.

*A. Delesse, "Procede Mechanique Pour Determiner la Composition des Roches," Annales des Mines, (1848).
tA. Rosiwal, Verh. Wein geol. Reichs 32:143-175 (1898).
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2. The intersections of a feature with the plane of polish will be assumed to occur as discrete areas and
to be randomly (or uniformly) distributed on the plane. This follows from item 1.

3. Only statistical errors will be considered; however, in an actual analysis there will be errors in measure-
ment as well. Such errors may lead to a biased estimate of the volume fraction.

THE TWO-DIMENSIONAL SYSTEMATIC POINT COUNT

Let the phase or constituent whose volume fraction is to be estimated be denoted by a and the remaining
phases as a single phase Ps.

For this procedure, it is considered preferable to use a systematic array of points, such as that provided
by the corners of a two-dimensional lattice. This has the advantage that only the points falling on an a
phase need be counted, since the total number of points applied to a structure is predetermined. This
method appears to be experimentally expedient and to have statistical advantages as well.

A square, coarse-mesh lattice will be considered here, although the method may be implemented in
general. A coarse-mesh lattice may be defined mathematically as one in which the spacing is restricted such
that

po + p1 = 1 and pn = 0, for n > 2,

where pn is the probability that an a feature will occupy n lattice points.

Areal Analysis

It is commonly accepted in the literature and has been shown by Delesse and others that the expected
relative area of a given feature is equal to the relative volume of that feature. A mathematical justification
of this is given in the Appendix.

The probability pa that a given feature of area ai will occupy a lattice point is a1/d2 where l/d2 is the
number of points per unit area (for a square lattice, d will be the lattice spacing). See the Appendix.

Probability Assumptions

1. The probability of the occurrence of an a feature in a given subarea AA on a random plane becomes
proportional to that area as AA -+ 0, i.e., P(a feature occurring in AA) - XAA, as AA -- 0, where X is the
same for all AA in a given plane and for all planes of the same orientation.

2. The probability of more than one a feature occurring in an area AA is zero by comparison.

3. The occurrence of an a feature in an area AAi is independent of an occurrence in any other area
AAj, i~j. This holds regardless of the respective size of the AA or of the area of the a feature.

A process governed by the preceding probability laws is said to be a Poisson process. Therefore, with
these assumptions and that of randomly distributed a features on the plane of polish, the number of a
features of a given size within a given area will follow a Poisson distribution. Thus, P(k, a features of area
aj occurring in A) =[(A)k e -XiA] /k! for finite area.A, when i = 1, .. ., r, the number of different size
a features; thus
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E[Na1 (A)] = XiA

2 [Na 1(A)I = XiA,

E[Nai(A)I/A = Xiregardless of A;

that is,

E [Nail = Xi.

The sum of independently distributed Poisson variates is again Poisson distributed. Thus, the number
of a features of all sizes within a given area will be Poisson distributed;

P(k, a features in A) = (XA)k e-XA

where X = (Ql + . . . +Xd), and

E[N(A)] = XA,

U2 [N(A)] = XA,

E[N(A)I/A = X regardless of A;

that is,

E[Na] = X.

The probability that a given number, say j, of a features of area ai will occupy lattice points in A, given
that there are a specified number k of area ai in A, is given by

(k) (aii( ikj

However, in these analyses, the number of a features of area ai in A is unknown.

Therefore,

Po, a features of area ai occupying lattice points) =

- k.A (J) 'aI ( d )

For all k < j, the probability will be zero; thus the sum might just as well run from k = j . . . o, i.e.,

E ' ( k k!

k~j k 
a\i (1 d-2

\d2)/ kd 2 )
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= e X (XiA)i
jai V
kd21 , ~

-X.A (XA ai)

= e-xiA/ iAa.)

1 d 1

I(XA)k

k!

(XjA)kj

k!

j ~~~k-j
(k) (_ ai
ji ) d2/

k! / 1 --
j!(k-j)! k d2)

[(XiA) (1 - ai/d2)]ki

j !(k-j)!

Letk - j = v;

vO0

[(XiA) (1 - aj/d 2 )1I 

j !v!

-xiA + XiA (1 -ai/d 2)I( iX I
=e i ( 2

-?.A ai1d 2 (\Aa.'\j/
e ~~d2 ,//!

Thus, the number of lattice points occupied by a features of area ai will also follow a Poisson distribution:

E [Np1(A)] =XiaA/d2

a2 [Npi(A)l = Xja1A/d2

E [Np1(A)1 /A = Xiai/d2

that is,

EINpil = Xja1/d
2

.

Again, using the additive property for independently distributed Poisson variates, the total number of
lattice points occupied by a features follows a Poisson distribution:

Po lattice points occupied by a features) =

e-XaA/d(2 / /.\ I

4
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where

Xa = (X1 a, + . . . + Xrat), and

E[Np(A)] = XaA/d2

[2 INp(A)I = XaA/d2

E[Np(A)]/A = Xa/d2 ;

that is,

E[Np] = Xa/d2

and

XaA (Xia, + * *.. + Xrar)AE[Np(A)]/N =Nd2 = Nd2 = E[A ]/Nd2

Since l/d 2 number of lattice points per unit area and equal to the number in the limit (see the
Appendix),

Nd2 = A.

Thus

E[Np(A)] = E[Aa] ,or EF p(A)1 = ErAal
N A ,o -A~J -

Therefore, E[Nfj = E[Af I = Vf, as indicated in the introduction (item 3), i.e. that the fractional number
of regularly dispersed points falling within the boundaries of a two-dimensional feature on a random plane
has been shown to provide an unbiased estimate of the volume fraction of that feature.

In addition,

E[Np(A)] = T = XaN, or E-NP(A)] =
L INj

a2 [Np(A)] = da = XaN, or a2 [p(A)] = I o2 [Np(A)] Xa
.1L -N ] N 2N

E[Nf] = Xa

o2 [N] = Xa
f N

u(Nf) I_ 1 I 

E [Nf] Xa va vN

and

Thus,
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Therefore, for randomly dispersed features, the variance of the analysis is independent of the size of the
features. Of the several methods used for volume fraction analysis, this procedure appears to have minimum
variance.

From the above, the relative standard deviation (i.e., a-/Vf,where C is the standard deviation of Vf)
in the volume fraction resulting from statistical errors will be approximately the reciprocal of the square
root of the number of lattice points occupied by a features. This number does not include experimental
errors.

APPLICATION I

As previously shown, the number of lattice points occupied by a features in area A, Np(A), follows a
Poisson distribution with parameter

=XaA

When the value of the parameter is sufficiently large, the Poisson distribution may be approximated by
the normal distribution with mean and variance equal to the parameter value of the Poisson. A comparison
between the two distributions shows that the normal approximation may be used when the parameter value
is greater than 9.

Therefore, central confidence intervals for the parameter v of a Poisson distribution, with v greater than
9, may be given by

(X- -v) v i =±za

(where x is the sample mean, n the number of samples, and za is the value of the normal deviate correspond-
ing to a confidence coefficient of I - a). On solving for v,

/z2 ) 

-2 +-2 ) v + x2 = 0

or

z2a z z

vXA+ +±Tn2

with the ambiguity in the square root giving upper and lower limits, respectively.

To the order of n7112 the confidence interval for v is equivalent to

V = Xi ZaN1T,

from which upper and lower limits are seen to be equidistant from the mean x.

Letting n = 1, R = Np(A), and v = XaN results in

z2 z4

NaX = Np(A) + a + ZNp(A) + 4a
2 a 4()+

6
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or

Np(A) +aZN + I z2 Np(A)+- *N 2N N a 44

For example, if a = 0.05, thenz a= 1.96, and

NaX = Np(A) + 1.92 ± -/3.84 Np(A) + 3.69

If a priori information concerning the approximate volume fraction is known, than an estimate of N
required for the normal approximation to be valid may be ascertained. Let this estimate of the volume
fraction be Xa; then NaX > 9 implies that N > 9/Xa.

Assuming the normal approximation to be valid, then an estimate of N for a given precision or tolerance
level may be determined; i.e.,

NaX ± ka NK

or

NaX I1 +...ka

where ka is the value of the normal deviate corresponding to the 1 - a confidence coefficient.

For example, if a = 0.05, then NaX [1 ± 1.96/Nv'W] corresponds to a 95% confidence interval.

For a given precision or tolerance y, let

k
--L= 7

and on solving for N, this gives N = k2 X/72 Xa.a

Again, if a = 0.05, then ka = 1.96, corresponding to a 95% confidence interval, and N = 3.84/72 Xa.
As before, using the estimate Xa for the volume fraction, N may be estimated.

APPLICATION 11

Description of Method

A somewhat more precise method for estimating the parameter v of a Poisson process is the following.

If a Poisson process is observed until a specified number m of events has been counted, then the amount

Nm of observations required to obtain the m events can be used to form confidence intervals for v, the
parameter of the Poisson process, using the fact that 2 vNm is x2 distributed with 2m degrees of freedom.
Let C and D be values such that if Z has a x2 distribution with 2m degrees of freedom, then

P(Z < C) = a/2 and P(Z > D) = a/2
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(where a is the chosen significance level). Then

1- a = P(C < 2vNm 6 D) = P C 6 v 6 )

Consequently, (C/2Nm, D/2Nm) is a confidence interval for v, with confidence coefficient 1 - a. Thus,
letting v = Xa gives

a D =1-a,Xa < 2N)p ( C <

where Xa = E[NfI = Vf.

By arbitrarily assuming the estimate of Xa to be the midpoint of the interval, i.e., (D + C)/4Nm, the
relative deviation from the midpoint, (D - C)/(D + C), may be considered as a measure of precision or
tolerance. Therefore, the estimate of Xa may be given by

( D+C\ D-C
(24N) (1+ D+C)

Let y denote the precision or tolerance; then

D-C
D+C '

At a given significance level a, using standard tables of the x2 distribution with 2m degrees of freedom, for
any given value of m, the values of D and C can be found. Thus, the tolerance y corresponding to these
values of D and C can be determined.

Conversely, for a given tolerance y and a given significance level a, the m value required so that the D
and C values will yield a tolerance equal to or less than the given value is obtained. Some representative
values are given in the following table.

Table 1

Precision Levels

Number of | Significance Level, a
Events

0.01 0.05 0.10

9 0.71 0.59 0.51

12 0.66 0.52 0.46

15 0.59 0.47 0.41

20 0.53 0.42 0.36

25 0.48 0.38 0.32

30 0.44 0.35 0.29

40 0.39 0.30 0.26

50 0.35 0.27 0.23

8
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For other values of a and m, the corresponding values of y can be determined by using tables of the x2 dis-
tribution with 2m degrees of freedom.

As in the previous procedure, if a priori information concerning the approximate value of the volume
fraction is known, then Nm can be estimated by letting (D + C)/4Nm be an estimate of the volume frac-
tion, i.e., for a given a and y, the value of m required so that (D - C)/(D + C) = y can be approximately
determined, and consequently the D and C values. Then, the estimate of Nm is given by

m 4XaD+

where Xa is the estimate of the volume fraction.

Relation of Application II to the Point-Count Method

The latter appears to be a more precise method than that of the normal approximation, but its relation-
ship to the point-count method is somewhat more obscure. The following procedure will attempt to show
the relationship between the second method given and that of the point count.

The / may be approximated by a normal distribution with mean /2=1 and variance 1, where n
is the degrees of freedom associated with the x2 distribution. Thus, the variable V2Xam is normally
distributed with mean Ni4;= and variance 1, where 2m is the degrees of freedom associated with the x2

distribution for the variable 2XaNm.

As above, let (D + C)/4Nm be the estimate of the volume fraction. Then by letting

a/2-C = -V4k~l - k-a

and

V25_D = -,/4-m- I + ka,

(where ka is the value of the normal deviate corresponding to a I - a confidence level), and solving for D and
C, it can be shown that

D+C m I k
4 Nm m Nm 4Nm

For Nm sufficiently large, the last two terms on the right may be disregarded, giving

D+C m
4Nm Nm

For example, if a = 0.05,ka = 1.96,

D+C m 1 3.84 m m+0.72
4 Nm -Nm 4 Nm 4Nm Nm

Similarly, for other values of a and for Nm sufficiently large, (D + C)/4Nm can be shown to be approxi-
mately the relative point count.

9
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Appendix

SUPPLEMENTARY EQUATIONS

VOLUME FRACTION

Delesse (1848) proved mathematically that in a uniform rock the volume proportions of the various
minerals are equal to their areal proportions viewed on a random section.

Elementary calculations show that the relative area of a features in an arbitrary cross section is an
unbiased estimate of the relative volume of that feature, i.e.,

E[Af] = Vf

Consider an arbitrary cross-sectional area of a single a feature ta; then the E (ta] = (volume of ta)/
(height of ta). Likewise, consider an arbitrary cross-sectional area of the structure w; then E [w] = (volume
of structure)/(height of structure).

Let the height of the a feature be equal to the height of the structure by zero extension. Then the
E [ta] /E [w] = (volume of ta)/(volume of structure).

If ta/w and w are independent, then E[ta/w] = E[taj /E[w] = (volume of ta)/(volume of structure),
implying E[Af] = Vf. In this paper, the independence of ta/w and w is implied by assumption 1, page 2.

PROBABILITY OF COINCIDENCE OF A LATTICE POINT AND A FEATURE

As previously stated, the probability, pi that a given feature of area ai will occupy a lattice point is
given by a 1/d

2 . To show this, consider a coarse-mesh square lattice applied at random to the plane of
polish. Let

M = number of lattice points applied to the plane including boundary points,

ai represent equal areas of a given feature, and

A = the total area occupied by the lattice.

Then the probability that a given feature with area ai will occupy a lattice point is given by p', = Mai/A.

If k is the number of lattice points on each side of the array, then M = k2 , k = NI and C - 1)2d2 =A

where for a square lattice d is the lattice spacing. Thus, pi = (Mai)/ [(k - 1)2d2 ] = (MaI)/[(M - 1)2 d2

and asM-+ M c, p1
- ai/d 2 .

Since k2 / [(k - 1)2 d2 ] is the number of points per unit area, as k - co, l/d2 is approximately the
number of points per unit area.
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