
UNCLASS l r i ED

PLEASE RETURN THIS COPY TO:

NAVAL RESEARCH LABORATORY
WASHINGTON, D.C. 20375

ATTN: CODE 2628

Because of our limited suppty you are requested to
return this copy as soon as it has served your purposes
so that it maybe made available to others for reference
use. Your cooperation will be appreciated.

NDW-NRL- 507012651 (Rev. 9-75)

.02

0~~~

0

~m._

9 .4

.0

Z et

ca

4)

E
5

04 a~~

*0

e4

t-.

0

z

M

0
IC

4i)

* -

0

t
2

Cn

0

0

0

(n

z
z
x0

0N4:Z *-

2 ")
CqS~

i4)

"0

"0

-0



CONTENTS

Abstract ii
Problem Status ii
Authorization ii

INTRODUCTION 1

FIELD THEORY PRELIMINARIES 2

THE LIFETIME OF THE PROTON IN A BATH OF
BLACKBODY RADIATION 4

Collision Probability and Transition Rate U 4
Matrix Element Evaluation 12

DISCUSSION AND SUMMARY 16

ACKNOWLEDGMENT 20

REFERENCES 20

APPENDIX - Computational Details 21

i



ABSTRACT

In this first phase of a study on photon-induced beta decay, the
reaction rate for y + p-an + e+ ve is determined for conditions ap-
proximating those in stellar interiors. It is shown that the lifetime of
the proton in such conditions drops from infinity to only microseconds
as the temperature varies from 0 to 10120K. Hence the stability of the
proton against this reaction is not seriously altered and will not affect
nucleosynthesis (which depends on the availability of protons). How-
ever, the reactions y + n - p + e- + V-e and e- + p - n + Ve are not
restrained by threshold energy requirements. If the neutron's lifetime
is drastically reduced by this latter reaction to the point -that it cannot
live long enough to react with nuclei, then nucleosynthesis in stars will
be curtailed at very high temperatures. Attempts in this latter case to
proceed with calculations along the same line as the y + p calculation
run immediately into a divergence problem, as is shown here. The
correct handling of this reaction will be the subject of another report
when completed.

PROBLEM STATUS

This is a final report on one phase of a continuing problem.

AUTHORIZATION
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ON THE PHOTO-INDUCED BETA DECAY OF PROTONS
AND NEUTRONS IN STELLAR INTERIORS

INTRODUCTION

The theory of stellar structure and stellar evolution that has been developed in re-
cent years calls upon the data of nuclear physics very extensively (1); in particular, the
luminosity of a star depends very directly upon the rate of energy production in the in-
terior of a star through nuclear reactions. The kinds of nuclear reactions that act as the
source of energy depend upon the star and on its stage of evolution. But in virtually all
stages of evolution, proton reactions play a significant role, and in the late stages of
evolution neutron reactions are important. In all models of stars, the pertinent nuclear
reactions are studied under the assumption that the proton and the neutron are stable
particles, i.e., they maintain their identities for times much longer than the times re-
quired for the pertinent nuclear reactions to occur in the stellar milieu. It is thus very
important to determine the validity of this assumption.

There are, in fact, some reactions which will occur in the stellar medium which
cast some doubt on this assumption. For protons, there are two reactions which render
the proton unstable, namely

y + p-sn + e+ Ve

and

e + p n + ve

while for the neutron the reactions

y + n-p + e- + Te
and

e+ + n _p + ve

render the neutron unstable. Now at ordinary room temperatures and densities, these
reactions are completely negligible. Even at these temperatures and densities repre-
sentative of the core of stars on all portions of the main sequence we expect them to be
negligible. For example, for the y, p reaction a threshold of (mn + me - mP) C2 is required
for the reaction to proceed - an energy which is of the order of 1.80 MeV. If the photon
at the peak of the Planck spectrum has this energy, the temperature must be of the order
of 2 x 1010 0K, which is a temperature not reached in stars on the main sequence (2). For
the e,p reaction, temperatures of lx 1010 0K are required for this reaction to be signifi-
cant in depopulating the protons in a star. For the neutron reactions, there is not a sig-
nificant neutron population in the main sequence stars to render these reactions impor-
tant.
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However, in certain of the red giant stages,; and in phases subsequent to the red giant
stage, such high temperatures are approached. It is true that chemical evolution of the
star has depleted the hottest regions of their original hydrogen content, which would sug-
gest that the above-cited proton reactions would be unimportant once again; however, this
need not be the case. First, one must take into account the fact that thermonuclear reac-
tions which take place in this evolved matter will cause protons and/or neutrons to be
ejected as final-state products, and these in turn will react with the ambient nuclei.
Whether or not they react with these nuclei as protons and/or neutrons, or vice versa,
depends upon the lifetime of these particles against the reactions cited above, as com-
pared to the lifetimes of protons and neutrons against the specifically nuclear reactions.
Second, there is good evidence that convection currents may carry large quantities of
virtually pure hydrogen into the deep interior even in the red giant stage (3); such con-
vective currents could become a prolific source of neutrons if the photo-induced beta
decay of the proton has a lifetime constant which is short compared with the convection
time scales and with the diffusion times in the interior of the star.

Finally, in the collapse of the interior of a star evolving to the supernova stage, ex-
tremely high temperatures are reached with a prolific production of neutrons. In some
theories of nucleosynthesis, too many neutrons are produced; it would appear that the
y, n reaction cited above, which has never been included in such theories, will place lim-
its on neutron production and consequently affect the distribution of the elements produced
in such an explosion. For these reasons, we feel that a study of these reactions is war-
ranted.

In this report, we will calculate the lifetime of the proton against photo-induced beta
decay as a function of the ambient temperature, the source of the photons being the black-
body radiation in the ambient medium. The result is found to be independent of all stellar
parameters except the temperature. While the e, p reaction has a lower threshold, and
might therefore be expected to be dominant over the y ,p reaction, we note that the life-
time of the proton against the e,p reaction depends directly upon the density of elec-
trons, while this is absent in the problem at hand. Further, the number of photons per
unit volume increases with the temperature; hence, for a given density there will be a
temperature at which this reaction will be more important than the e, p reaction. Bahcall
has treated the electron-proton reaction (4).

In the next section, the necessary field theoretic preliminaries that set the method of
calculation are discussed; in the section following that, the integrations required to de-
termine the lifetime are developed. Finally, the last section is devoted to a discussion
of results and related problems.

FIELD THEORY PRELIMINARIES

To determine the scattering amplitude for the reaction y + pe-n + e + ve, we shall
use standard field theoretic methods (5) and the usual perturbation expansion of the
S-matrix which is good for the cases of electromagnetic interactions and for the weak
interactions. The electromagnetic field interacts with all charged particles and is there-
fore coupled to both the electron field and the proton field. The four fermions p, n, e+,

and ve interact directly with one another through the weak interaction, which we take to
be in the form of the V-A theory of Marshak and Sudarshan (6), and of Feynman and
Gellmann (7). The fact that the axial vector coupling constant for neutron decay is not
identical in magnitude with the vector coupling constant is ignored here. To treat this
case exactly complicates the calculation without being particularly illuminating, and our
result will not deviate significantly from that in which ICA/CvJ = 1.18.

*See, for instance, Ref. 1.

2



NRL REPORT 7124 a:
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The perturbation Hamiltonian is thus taken to be

H(t) Hey(t) + Hpy(t) + Hw(t) (1)

where c:

Hey(t) = -ie f d3x:oe(x) yI0e(x)A,(;X)
V

Hpy(t) = +ie d3 x: p(x) y ap (x) A(x): 2

V (2)

HW(t) = g f d3X: n(x)(1-y5)yp(x)obv(x)(1-y)Y"e(x):
,f- v

+ adjoint

with e = -4.803X10- 1 0 esu and g = 1.418x10-4 9 erg-cm 3 .

The field operators will be expanded in plane waves as follows:

_f2

f(X) =E {US:fl- S -iq X+ V(q) d (q)eiq(x3)'fCqV t U ( q) b+(q)e -

A'(x) = T c { amkE��( ke + a+(k) em(keikx 

km

where the subscript f stands for any of the four fermions p, n e+ and Ve. Here, we
give the neutrino a finite mass at the outset of the calculation, taking min, -° 0 after the
calculation is concluded. Clearly, our plane waves are normalized to unity in a box of
volume V.

The initial state will be characterized by the wave numbers and polarization numbers
k, m and p, u of the photon and proton, respectively. The wave and spin numbers of the
final state particles are designated by n, r for the neutron, e, s for the positron, and v, t
for the neutrino. To the lowest order in the coupling constants, the S matrix elements
for this process are given by

(fiS ek) = - 2z/.. mC
2 <2i M~k2 2 m Vp+k n+e+V (4)

V5h KI kV -wV' -fwvV X c.nV f VTnV

where
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311A z Al + X I

Ve= +U, (n)(1 - y5) yUU (p) Ut (v)(1 - yS) yL

/iy * (-p + k) - Flp\
,-fl= - ,() 1 y)yjj x -r~f)(1Y5) \ (p+ k)2+ FLp

2/
/-iy (e-k) -\(.-)k X2 + e)

(5)

and

/If = mfClf/K .

The terms V xe and NllP correspond to the Feynman diagrams shown below.

(v, t) (e,s)

Vxe

(n, r) (v, t) (e, s)

Nix
) (p+k)

(pu) (k,m)

VPX

THE LIFETIME OF THE PROTON IN A BATH OF
BLACKBODY RADIATION

Collision Probability and Transition Rate X

The quantity ( f I Si) specified in the previous section is the scattering amplitude
for the process y + p -n + e+ + v described above for the initial and final states. The
quantity I (f I S i ) | 2 represents the probability that given one photon per unit volume, and
one proton in this same volume v, a collision will occur between the two within a time t,
leading to this particular specified final state. The total probability that this particular
initial state will give rise to a collision in time t leading to any allowed final state is
obtained by summing up the probabilities for all final states:

dPi(t) = 2E
f inal

states f

l(flSlioI2

E f d _ d3 eV d vV (fISi)
- r a t (27T (27T) (277 )3 IfSi? 

(n, r)

4

y�'U.(p)'6t(v)(1-y1)y1'V,,(e) I
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Now if N7(k,m) is the number of photons of polarization m per unit volume in wave num-
ber space, then

dPf(t)= VN.(k ) - dfi ( t) Mm t)(2_,)3C
= 21 V4 N,(km )d3kfd 3 nfd 3 ef d 3vI(fISi)12.

M, rI, S (27T)

(For a Planck distribution, N7,(k,m) is really independent of m, of course.) Summing
over all possible photon momenta gives the probability that the proton (pu) will trans-
form, together with some photon, into some final state of the desired configuration in
time t:

Pp(t) 2 VB fd3kNy(k,m)fd3nfd3ef d3vI(fISIi)I 2

m, r, ,t (277)

If the probability is N(p, u) d 3 p that the proton is in a state (p, u) to (p + dp, u), then by
averaging over initial proton states we get

P(t) = 21 B 4 f d3 kN (k,m) fd3pN(p,u)f d3nfd 3 ef d 3 vI(flS~i)12.
2 r s tu (27) 12 

For an equilibrium photon and proton distribution, Ny and N are independent of m and u,

respectively, leaving

P(t) = 21 e 2fd 3kNy(k)fd 3pN(p)f d3nfd 3ef d3vI(fISli)l2
2 rs~(277) 1

with
fN(p) d 3 p = 1

and

fNy(k) d 3k = -N 7 (T)
2

where Ny( T) is the total number of photons at a temperature T in a cubic centimeter.

As is well known, the quantity

= Jim P(t)
t

is finite, independent of t and V, and is the well-known transition rate whose reciprocal
is -, the lifetime which we seek.
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= fd 3kN (k) f d3 pN(p) lim 1 1 V4 fd 3 n f d 3 e f d 3V I(fS i)1
t2't.- ( 277)1

Utilizing Eq. (5) of the previous section, we may write the transition rate in the form

f d~k fd 3p
a, =Jd.k N (k) J-dp N(p) G(pk) (6)

where

G(pk) = 7- e2g2 1jp 1 nl 1eALvf d3n fd 3 e fd 3 v 21 hem ) 2a(p+k-n-e-v)
2 3 c2

( 2 7T) J OJ OJ t u

Here q0 = oq/c, the u's are reciprocal Compton wavelengths, and we have used

(277) 4
r im Vt8 p+ku++I c 8(p+ k - n- e- v)

As a kind of check, one can easily show that the dimensions of co are indeed sec 1 .
Using the customary properties of the Dirac delta function, one may readily cast G into
the form

G (pk) 2(27)8 - 2_2c ip inie, rf d 4n f d 4 e f d 4v

x O(no)8 (n2 +Yn 2) 0(eO) 8(e 2 +i1e2) 0(V,) 8 (V2 )

x 2 hewm(k) . 3Rl h2 8(p +k-n-e-v) * (7)

where a = e2/1-Kc is the fine-structure constant.

The above expression is an invariant function of p and k; hence it can only be a
function of p2, k 2, and p * k. But p2 = P2 and k2 = 0, so G may be regarded as a
function of p * k only. Equivalently it may be regarded as a function of (p + k)2 only.
Putting (p+ k) = q, we can designate G(p,k) now by G(q2), abusing our notation only
slightly.

Without actually evaluating G(q2), its Lorentz-invariant character enables us to
reduce the expression for co somewhat. We have

,=fd 3k Ny(k) Jd P N(p) G(q2)

Now

N (p) = °3/ exp (mpc2 /kT) - Xop01 (8)
(27711Lp)2 L -iC P

6
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where c
° 0 kT

and

pO = +/p 2 + p 

is the Boltzmann distribution for the protons. Although this form is not exact, it is
nevertheless indistinguishable from the correct one for the temperatures inserted in all
astrophysical problems. The photon distribution is that of Planck:

NY(k) = [exp (+Xoko) - 1]

where A. is the same as in Eq. (8) and ko = ak/c. Then

x3/2
0

3/ 2
(277,up )

42)L 3/ 2

( 27rLsp )3 2

m pc 2\r d 3k r d 3p exp [-Xo (p, + ko )]
Jexp - - -7 G(q2)

(-\kT ko J 'o 1 - exp (-AOk 0)

exP(-T )fd4kO(ko) 8(k2 ) f d 4p6(p0 ) 8(p2 +11P2)

exp (-X0 q, ) 2

1 - exp (-A k0 ) G(q)

More convenient choices of variables of integration are q = p + k and k; thus

4X3/2

(27711,p)

pc2 O~~~~~(k) 8(k 2 )6O(q0 ~k0) 8 [(q-_k)2 +11,,2)
exp r2fd4 qG(q 2 ) exp (-AXq,) fd 4 k

\kT 1 - exp(-A0ko)

where the last factor is an integral which may be evaluated exactly. Indeed,

6(ko) 0 (qo - ko) 8 (k2) 8 ( (q- k)2 + ,P2 )
f d 4k

1 - exp (-Xoko )

la 6 (qo)
2 _ In
2 j j

exp

exp

i-X (,p2 + q2)

L 2 \qo- lq I )

'X0 (~,:; )

Then the transition rate becomes

277r / 3/2 2
CO = - _

A 0 (27Tup

exp MPC2\ Cd 6q 0 G(q 2 ) eXp (-rn
exp kT )i I qj 0(qo)0 ) eP-0q0) In

exp F- 2 (o-hqh)I -1
exp [- A0 / p2+q2

L 2 \qo +Iqj /1 j

- 1

- 1

7
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Because the integrand is independent of the direction of the vector q,
gration may be done immediately. Putting

d4 q IqI1- = dq 0 IqI d IqI dOq = 1 dqO dx dO
2

where x = q 2 , we get

the angular inte-

4772 / 3 / 2
C= - - exp l-i_

A 0 \kT /\2 771 ,,

;exp

fdqO fdx 0(qO)G(x- qO2) exp (-Xoq0) In

exp

I X (1p2 + x q0o2

- 2 \ q7 ~,x )
Ao /"p2 + x- q02-

2 goq + i

In this expression we have placed no limits on the integrations over x and q0 . There
are natural limitations on the domains, however, that will appear when the function G is
actually evaluated, but it is easy to see what these domains are without detailed evalua-
tion of G(q2). First, we note from the definition of G that it is a Lorentz-invariant
function; hence we may choose an inertial frame that makes its evaluation easiest, ex-
press the result in an invariant fashion, and thereby have the integral for all inertial
frames. Second, we note that G expressed as an integral over neutron, electron, and
neutrino variables has a delta function in the integrand. Now this restricts the variables
no e, v and their corresponding energies to those values such that

q = n + e + V

and

q0 2 + A/e2 + Nfe2 + + .
In the inertial frame that coincides with the center of momentum of the initial state, we
have q = o. Thus for the momenta n = e = v, we have

q = kn + He '

For any q0 < (G1n + y1e), the a function must necessarily vanish, and then G(q2) will
vanish. Hence

G(-q 2) = 0, if q0 < lun + /Le '

or

G (-q 0
2 ) = 0 (q0 ) 0 (q0 - /) G(-q0

2 ) ,

= 0(q 0 ) 0(+q0
2 -/12) G(-q0

2 )

where

An + ILe 1 '

Casting this result in a covariant form, we get

G(q2) = 0(q0 ) 6(-q2-1, 2 )G(+q2 ) .

zi.A

8
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Now in terms of our new variable x,

G(q2 ) = 0(q0) 6(q0
2-g 2-x)G(x-q 0

2 )

= (qo) 0 (q 02 -2) t9(q02 - ,2-x) G(x-q 02 )

This shows that G(q2) A 0 only if q0 ' a, while o s x s q 2- 12; these are the limits on
the q0 and x integrations. Thus

4772
co = - - exp

A0

mpC2 / A )3/2

kT (2:,,L)

2 2

x f dq0 J dxG(x-q 2) exp (-Aoq0 ) In
P o

This expression may still be reduced to a single integral.
integration so that

4772
co = - - exp

AO
(m kcT2\ kT /

First interchange the order of

( i"70 ) 3/2

x fdxf dqOG(x- q0 2) exp
o fV~,~ 

exp

(-AOqO) In -

exp

- 0 i ,P2 + X - gO2)

-2 \ q. - / x 

I -
2o (\p2 + x- q/2)

2\ qO +\ /-

Make the change of variable from q. to w where

w = qJ2 - x > p 2 ;

thus

2772 /mpc2\ / Ao \
co = - -eexp -A0 \ k T / \ 2771 2

exp

x 0 dx r w G(-w) exp (-A O-) In
0 2 -~ I X e

exp

C:
I-.

:P.

-r

- 1

-i

1

ij
F-

. A 0 ( /, P2 - W � ]

2

X0 tL 2 - W ,�X
P

2 � 1w -+x + 4

AO ( 2 + X - q02exp - __ -1
2 qO x

exp XO (/,P2 + x - qO, - 1

2 qO + I/--
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2772 (M,,C2'\ (A~ 
= - - exp ( )

A 0 \ jk} 2711, 

°M exp (-A \/w0 v-+ x)
- x fn dx - In

0 /W +x

Next put w = 112; then

272112 3 A0 2

A0 2 711/p) e

J. N. HAYES

f dw G(-w)
2

rexp

exp

xp c2kT
kT 

A 0 / Lp2 - w

2 I /w+ x -y/x

2 \- + + V/2

f de G (_ 1
2 )

e xp (-Ax0 r/,c2 _+ X)

v 2k + x

exp [- 2 -t2
In L Nv s - -- v I

LXP [ ( pp - 2 ] -1

1 2 \F 4/I

I The further transformation x = 1126y is useful; since e • o, y ranges from
Further, dx = 1126 dy, so

0 to infinity.

exp (-A\0 TeL+x)

1W2 + x
In

( X - / ]2C
exp -K(11'VTP_ 4e± ±x r -1Iexp L 7 1-x~~J1~~~~~~~~~2J 6 x I

exp (- A 0 F TY )
ln

exp

exp
A 0 11P2 1- 2 

21,,1 \T+ V + ' j 1

These tedious transformations will be drawing to an end soon, but first we put 1 + y = t2;
then the right-hand side of our last equation becomes

21 1 V[f dt exp (-A 0 1u 1 t) In
1

exp
XAO~l (6 - .0 )

2J1

1(t - Ft 2- 1

e Xp ( t - t 2ei )
2 ~6

1

Ii

Ij

x fi dx

0

fin

= 1 1 ef dy
0

-

-

x 0 � /-LP2 - I-L 26- - 1

- 2 /, rev1:+::::::y� -'ry-) -

- 1

- 1

1

( t - / t2--)exp
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where ALP/2112 60 and we have used the identity (t - - i)(t + - 1) = 1. We next
integrate by parts. The above expression becomes

expk AXo t)+( )) (~ t -2- Je Xp[( (e- )o ( t ..
ex\ 2 /T \t - 1/ ]- 

(t -)- I)-

exp [-AL je\ t + (OL(66 ) (t -V1 )] 1
/I (6~~~~~~~~ ~ ~~ ( A ) - dt 4-V0)\6 (tt - t- 1)1 

+ ) r dt L + / (ft t 2 -i).
\/6 I 7t2 .1 exp XOL 2(e (t- +t/2 1)j 1

L 2ep es b c

Let t - /t-2- 1 =Z; then the above expression becomes

P (6- 6) f1dZ
exp

2
1

exp 2(Z J 6o)
1- exp_

2 +e Z

.+

In the first integral put Z = 1/4; then the above expression becomes

1(6 4 eo) K dC + dZ
0

- u 1(6 .e )f ~ d
=- 6°' Fo dZ

Oe

exp I
A0 11 N/e

2 o 
+ 1)]

.
[ Ao(e- eo)z

1- exp - Z 
2 / Z

Finally, put (A011(6 - 60)/2 V'6) z = x; then our last expression becomes

' expL ,( + A
4

L2
1 1
2( 4 - ,0 )2\

2 rCO - e - Be0 4ex /
A 0JJdx 1 - exp (-x)

and our transition rate becomes

'm dt
J -2

11

(6 - 60)
t-I �-e
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4772112 l AO\ /-mc2\ de 
A 2 \27T1/,,/ kT /Jf

6 X 2oU 2(e - o) \

~~~~~ f~~~~~~0kco xp 0ffV 4sex (9)

x dx-
JO 1 - exp (-x)

It can be shown that this last factor that we have been transforming, the integral over x,
can, for temperatures below 1012OK, be approximated by the modified Bessel function
K1(A o which in turn may be approximated by its asymptotic values

X(0l AS) exp (- A01 4)

this reduces cw to a single integral over f. We shall see, however, that G(A 2 6) is suffi-
ciently complicated such that a good analytical evaluation of the integral becomes possi-
ble only in a temperature region that is far too low to be interesting. Hence we shall
resort to a numerical computation of the integral over e, and therefore we shall do the
same for the x integral above. We note that the above expression for X is exact, within
the framework of first-order perturbation theory.

Matrix Element Evaluation

Because the final state of the reaction Y + p - n + e+ + ve is a three-body state, the
evaluation of the matrix elements is quite tedious and difficult. In this subsection, only
the highlights of the calculation are presented, the details being relegated to an appendix
or, if they are consequences of standard field theoretic techniques, being left to the
reader to establish.

The sequence of expressions to be evaluated is readily discerned by reference to
Eq. (7) which defines G(+q2 ). The quantities VX were given by Eq. (5). Because the
theory must be gauge invariant,

2. 4

2. EL "(k) ET(k).1AYlx = E ex'(k) E T(k)11)1
rstu m=1 rstu m1l

E I 8AX,(-l) A ANX'1I~ = Ei: SA*X(_)ax4 (10)
rs tu rstu

where a repeated Greek index is understood to be summed. The first step in the evalua-
tion of G is therefore the determination of

z ~A%(_1)8X 

This can be done from the standard trace technique of field theory; in the appendix, we
show

12
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r~~~~~~~~~~~~~~~~~~rrSt U Lpl~n{LegL (p* k)2(e *k)2 {le( )+/p( )] k )r

-e * kp - k [( q * (k - e) ) + (e *(q - k) ) ]1 (I11) a.,

After converting three-dimensional integrals to four-dimensional integrals by introducing
the appropriate Dirac delta functions, G may be cast in the form

G ( q2) =1 ap f d4 e 0 (eo) 8( e2 + e e2

22777 h 2C

[ y 2 (p * k)2 + tL 2 ( e * k)2 ] q *(k - e) -e * kp * k [(q *(k - e) )-2 + ( e *( q- k) )2] X~~~~~~~x~~~~~~~~~~~~ 2
(p * k) (e * k)2

x f d 4n f d4V6(no) 0(v,) 8(n 2 +1_Ln2) 8 (V 2
) 8(q - e - n - v) n v

The neutron and neutrino integrations may be done exactly:

f d4n f d4vO(no) 0(v,) 8(n2 +lan2) S(v2) 8(q- e n- v)n - v77( [ 2q-e + l2] 22
4 (q- e)2 ( 0 1Q6~qe21f2

The expression for G is thus reduced to just an integral over the electron variables:

G(q2) = g 2 22 2 +2)0(qo-1O) 20 -(q- e)2 -1 2

24776 h2cen

I[q-e )+ Ln 2~ fe k +_1 ,2 q (k -e) +2 p -ke -q
(q- e) p k (p 2 k 2

2 2~ 2pk

+1 (_ (q (k- e)) + ( q * e) ) e q (k- e)
e * k p * k (e k)2

Recall that G is an invariant function of the invariant q2 ; it will be easier to do the re-
maining integrations in the center-of-momentum reference frame. In this case, q2 = _qo2
To get the value of G in any other reference from its value for the center-of-momentum
value of q we need only replace q0 by JA7 everywhere; in fact, however, we shall only
require its value in the center of momentum. Hence we set q = 0; then the separation of
the various terms into factors independent of the direction of _e and those dependent on
the direction of e is evident; the direction of e appears only in those factors involving
e * k. Such a separation facilitates the evaluation of the integrals over the angular co-
ordinates of e. The step functions are independent of the angular coordinates and there-
fore pose no restrictions on them, but they do pose restrictions on the limits of integra-
tion of the variable e0 ; clearly le • e,0 • [q0

2 + 1,e2 - (/1n2/2q,)]. The Dirac delta function
8 (e2

+ Le2 ) will enable the integration over the variables I e I to be done immediately.
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The integral is thus reduced to a three-dimensional integral. In the center-of-momentum
frame, q = 0, and

q * k p - k = (2 q2
2 p qJ

ko= q * k/qo = (q0
2- /p2)/2qo

With cos (k, e), we also have

e * k = + q (eO- le| 7q)

From these results, we may cast the terms of the integrand of the right-hand side of
Eq. (10) into the following forms:

e-k eO - Ieh
p - k qO

I 2q * (k - e) + 2 p * ke * q

(p k)2

(q . (k- e))2 + (q * e) 2

e * kp * k

qe 4qo eO

eo-I.13 2 - ,2

2 /,P2 4qe 3 0e

qO 2 -~p2 (q 2 _k2)2 gI - f 

q 0 q 0 8q 2 e02

eo - Ie 71 eo - 1eI17 (q2-p 2)
2

q0 (1
eO e117

4qO eO

Iq 2 _-I 2

8qO2 e 0
2

(q 2 - 11 2))

_- e IeIqO
eo -Iel | 

q2

(es- IeI 17)2

( 21e2

1q2 - 2

4p q0 e0

(q 2 - HP2) 2

qO2

( eO - I e | 17) )

We continue with the evaluation of G (_11U2 f) by noting that

fd4e6(eo) O(qO1 ) O(-e(qe- e)2 -A1n2)8(e2 +11e2) F(eO, Ie I Qe; q,)

( q 0 . -ILe Hn2)/2qO

2 2 2
de O leJ2- 1e 2

f dOeF (eo , je0
2 - ke2 Qe^; qO )

and

/e 2q - (k - e)

(e . k)2
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and that

f df~ eO - lei 71 47Teo
e q 0 q 0

f dO 1 =4T 

f dn~ 1 277

eo - ?7 Te. 2 - 1,e
2 e 0

2 - 2

(e 0 + eleO 2 1e2"
In I-e2 ,

eO -e V 02 / 0

I d.dhet
1 e 47T,

( eO. - 71 /le(2 ~- H2) / He

then

2 2( qO2 2 2G(-qO ) = -2-7 al

(2eO
q0

+ 2g1I + q In ( + e02 - 1 e g
V/e 2 _ /, 2 e 0 -eO2 - /e2

In this last expression, replace eO by 1lex and q, by u T'; then, G(-/ 1
2,) becomes

G(-/,26) = 23 S h22e 3g (6)

where

(2 {+ 22~R )/2p9/ Te/;

g(S) =2-

{2 e x 4 (6 + 60) 1

l - + -6

2 x)x2 + 1, e2 _ In 2

d x VF. 2 -- .~/' VS
W!2 + I-e,

- x
21111e Ve

,6 e x4x3/ 2

Y ( - e 2

i e _ ( 1
11e x21kV

+4Ae x Te
1 " _ 1 0

8ge 2 X26 \

+ -
112 (f f)2j

1 x + I2
\x - X-2- -- 1I/

If it were not for the presence of the factor [(112e+1 12)/(2Y11e VT) - X] 1 this integra-
tion could be performed analytically. This factor varies in value from 11 1/L/21Ue at x = 1
to u//211e V/e at x = (,A2 C+ 1Le2 - 1n2) /( 211te \V) . For e very nearly unity, this factor re-
mains nearly a constant. For low enough temperatures, g(6) is multiplied by

15

2...O 11A2 [(q e) + I1 ]de0 Ve 02 - ,2 -(q- e)
2
nI 

+ qo
2
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R [(n + me) 24 
exp [[ kT I

so that values of g for e significantly different from unity are reduced over those near
unity by exp [-(Tnn + me)/kT] c2(f6j- 1), a very small number. It would appear that we
could thus approximate g (e) by evaluating the factor [(112 + 11) /(e21111q ) - x]-1 at
some point near x = 1. But caution is necessary since such an approximation scheme
will not give results valid for temperatures that might be interesting in cosmological
theories and also because g (1) itself is zero. Further, the remaining integral, though it
may be evaluated exactly, does not yield a function that renders the t integration tract-
able at all. To get any results, in this fashion, that are at all convincing appears to re-
quire restricting the temperature to values below 1090 K, whereas we know that a large
value for X is likely only at 109 0K or higher. For these reasons, we leave g(f) in the
last form and resort to a numerical computation of the integrals to give X as a function
of temperature. The results of the computation are compiled in Table 1.

DISCUSSION AND SUMMARY

It is important to note that the transition rate and lifetime as tabulated is in need of
a correction that is temperature dependent. The correction has not been made in this
report, but even so, the trend of the results is clearly delineated by the given values of X
and Tr. The necessary correction to the given results stems from the fact that at high
enough temperatures, the radiation field creates its own positive-negative electron pairs,
and these are always created in the lowest allowed energy states. The probability that a
given positron state will be occupied will be between zero and one-half; hence the avail-
ability of final states to the emitted positron is limited. Indeed, the positron phase space
factor must be modified by subtracting the number of occupied positron states. Hence
if p (e) represents the density of positron states at an energy e, as used in this report,
the correction to the density amounts to subtracting p(e) . (eE/kT+ 1)-i, or by replacing
p(e) by p(e) ee/kT(ee/kT+ 1 )-I; e, of course, includes the rest-mass energy. For tem-
peratures less than 6x109 K, this correction is very small (-5%); for temperatures
greatly in excess of 6 x 109 K, the correction amounts to multiplying X by one-half, or
to doubling the lifetimes r. Hence, the orders of magnitude of the results are not af-
fected, and the qualitative features of the results are preserved.

J. N. Bahcall (4) has given the lifetime of the proton against the reaction e- + p- n + Ve
as

1175 ± 30
Tcp K sec

where, for nondegenerate matter, K is given by

K - 28-5 e e-x(x 2 + 6x+ 12)

with

X = mc 2 /kT

and
x 2. 54,8

16
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Table 1
Numerical Computations Give the Following

Values for Mo as a Function of T

T9 | o (sec 1) 1/co = r (sec)

0.100 6.34x 10- 96 1.58 X 1095

1.000 4.17x10-1 6 2.40X1015

2.000 1.47 x 10- II 6.80 x 1010

3.00 2.47x 10-9 4.05 x 108

4.00 4.92x 10-8 2.03 x 107

5.00 3.83 x 10-7 2.61 x 106

6.00 1.79x 10-6 5.57x 105

7.00 6.10X 10-6 1.64 x 105

8.00 1.68x 10-5 5.93 x 104

9.00 3.98 x 10- 5 2.51 x 104

10.00 8.38 x 10-5 1.19X10 4

11.00 1.61 x 10-4 6.18 x 103

12.00 2.91 x 10-4 3.43 x10 3

13.00 4.96x 10-4 2.02 x 103

14.00 8.05X10-4 1.24x10 3

15.00 12.58x 10-4 7.95x10 2

100 69.7 1.43 x10- 2

1000 1.39x 107 7.20 x 10- 8

17 '-

Ir-

"I.

Nondegeneracy is assured if p/T 3 /2 < 1. 52 x 106; we shall restrict ourselves to a range
of p and T where the nondegeneracy criteria are met in order to get a qualitative com-
parison of this reaction to the y + p reaction. Under these conditions, Tep reduces to

PTep - 8.63 x 10 9 + 6.54 (12.90 + 5. 14 T9 + .341 T9 2) 1 (gm-sec/cm 3 )

The following short table of values of pTep versus T9 indicates how prep behaves

T 9 T ep (gm-sec/cm3 )

1

2

4

6

8

10

100

1000

1.63 X 1015

1.22 x10 12

9.44 x109

1.56 x109

7.53 X108

3.95x108

2.20 x106

2.50x102
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Figure 1'shows a plot of 'r(y +p), as well as of rep for p = 103 and p = 104. The ex-
pected crossover does indeed occur, clearly at lower temperatures for lower densities.
At temperatures of 10 12 K, the stability, or lack thereof, of the proton is determined
almost solely by the y,p reaction, except for extreme densities.

The instability of the proton cannot be an important factor for a star unless the tem-
peratures where protons abound are of the order of 6x 1090 K or higher. Hence, the
process has no effect on main sequence stars at all, as was shown in the introduction.
Such high temperatures are reached in stellar interiors only in those stars that are in-
cipient supernova; Chiu (8) has shown that the relaxation time of such a star for cooling
due to neutrino emission is of the order of 107 sec or less for temperatures greater than
109 0K. While r and r, have the same order of magnitude, 'r is not the proper number
with which to compare the proton lifetime; that number should be the collision time of
the proton, which is many orders of magnitude smaller at these temperatures and densi-
ties than is 'p . Hence we conclude that the reactions y + p-n + e'+ Ve and e- + pfn + Ve

are not of importance to problems of stellar interiors and nucleosynthesis in stellar in-
teriors. We mentioned in our introduction the possibility the hydrogen could be convected
into stellar interiors and that under such an eventuality, these reactions might be im-
portant; however, in presupernova stars, the hot cores are not convective (8). There-
fore, once again the proton may be regarded as stable.

The reactions cited here may be of relevance in certain cosmological theories of the
early stages of the universe, where temperatures of the order of 1012 'K are postulated.

log 
o o\\ \'\

lo -

Fig. 1 - Graph of proton lifetime vs
ambient temperature T for the y, p
and e, p reactions

18
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Even though we concluded that the photoinduced,8-decay of the proton is of no im-
portance for astrophysics, this study raises some rather interesting questions that are
being studied further. We have seen that in spite of the rather large threshold for the
y + p - n + e+ + ve reaction and the smallness of the coupling constant, rp possesses
such a steep temperature dependence as to shorten the lifetime of the proton to the order
of 1 day at 6 X109 OK. Now the neutron is supposed, in many theories of stellar nucleo-
synthesis, to be quite abundantly produced in stellar interiors and is needed to synthesize
the elements of high atomic numbers. The neutron in these theories is taken to be stable;
in fact of course, it is not, having a natural lifetime of the order of 104 sec; but since
this is a very long time as compared with the lifetime against all nuclear reactions in
the stellar material, the neutron stability is a good assumption. However, when we in-
clude reactions such as

y + n -p + e + ve

and

e + n-Up + Ve

we may once again question the validity of the assumption of neutron stability. Disre-
garding the second reaction, which requires positrons to be present, photons are always
naturally present in great abundance; we emphasize that now there is no threshold to
overcome. Hence the natural,/-activity of the neutron should be enhanced by the black-
body bath surrounding it. Now if the lifetime of the proton is cut from infinity at 0K to
105 sec at 6 x109 OK, when a threshold barrier must be overcome, to what degree will the
neutron lifetime be cut at the same temperature? To calculate this, the natural proce-
dure is to begin with the same interaction Hamiltonian as used in the second section
above. The pertinent Feynman diagrams are given below.

k

The calculation proceeds along the same lines as the present one did. One important
difference present however is that due to the lack of a minimum threshold energy; hence
photons of zero momentum may be absorbed. Determining the matrix element and its
square is tedious but straightforward. The transition rate is then the integral of the
Planck distribution for the photons with the square of the matrix element, the integration
extending from X = 0 to c =a where X is the circular frequency of the photons.

From the Feynman rules for writing the matrix elements from the diagrams and the
fact that the final state momenta p + e lie on the mass shells, the frequency dependence
of the matrix elements is c-3/2, so the square of the matrix elements is wo3. Hence
our integral over do is of a function whose behavior near c - o is given by

co
2 1 fTco2 1

1 coJ
3

CO
4

CO
2

exp (k'T- 1

C:I-.

rr

:;M
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Therefore the integral will diverge because of the singularity at co = o. This renders
the transition rate infinite and the lifetime of the neutron zero for any temperature T • 0.
The singularity does not appear to be renormalizable. It owes its origin in part to the
frequency dependence of the Planck distribution and in part to the use of perturbation
theory. If the Planck spectrum is replaced by a laser beam whose frequency is allowed
to go to zero, the matrix element still possesses this anomalous behavior. The source
of the trouble appears to lie in the use of perturbation theory for the electromagnetic in-
teraction. Fried and Eberly (9) have studied Compton scattering by a laser beam, by
means of perturbation theory in the external potential, and have shown that in any finite
order, as X -O0, the cross section becomes infinite; however, if the scattering is calcu-
lated to all orders and summed exactly, the singularity at co = 0 disappears and, for low
energy densities, one recovers the Thomson cross section. The success of this tech-
nique lies in the fact that the laser beam possesses a unique frequency; this allows the
infinite sum to be evaluated (as a continued fraction). It would appear that the Planck
spectrum affords us no such advantages. The problem is still under investigation, but no
conclusions can be drawn at the present time.
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Appendix

COMPUTATIONAL DETAILS

In this section we give some of the computational details of the
From Eq. (5) we have

evaluation of Eq. (11).

) -e* ( a X4+ (i 2(e - k)-(ls)U ()
'U'~rI'~'Ir\~~,''S\'-)J (e -k)2 + U e2

)NP* = (-1j) X4 u( P.)y Y i - 2p Y/ 1) - y r(n Ls(e) U(1+y t(v
= ( 1)8 2+ ILI+ )UU)~,,e(p~~y)UyV 

We shall need the following relations:

21 Ve(O)UI() = + 2Y T1, 22
R= 1 eeVeX = /12L 

Then, setting I-L = 0 in the numerators, we obtain

2 1 )]jeA *( 1 )8 =A 4 ,/ 

x k Tr[(l-y5)y8(bLP-iy p)yp(l+y )(1n iy )]

x Tr [(1 1- ys) yy (iy * (e - k) +lHe )(2yLe - iy * e)(iy *(e - k) +Ae)Y" '~y*vI

and

2 1 nP P (1) 8'X 4 (P-2 - 1

}

(A3)

x Tr [( 1- y5) y11(iy (p + k) - /,p)(211p + iy * p)(iy * (p + k) -1,,p) yP * (1 + Y5)(1n - iy * n)]

x Tr[I('l- YS) Y/(8le + iy * e) yPiy * v] I* (A4)

21
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Also,

E letllP*(-l)
8

4 = _ 2__ _ 6_____
r, , t, u -1 (p * k )(e *k ) IHpMI,1-efL

x Tr[(ly 5) yp (Ip - (y * p) y (iy * (p +k)- -tp )yP( I + Y')( - iy *n)]

x Tr [(1- yS)yL(-iy * (e- k) -Le)Y(1 e+ iy * e)yP(1 + ys) iy *v] . (AS)

The evaluation of the traces is a straightforward but tedious task. We merely state
some needed intermediate results and the traces themselves:

(iy (e- k) + 1e) (2 1 1e -iy *e)(iy * (e - k) + 11e) = 211e( 1e2 + e k)

+21Le2iy e- 2 (1-e2 - e * k) iy * k
(A6)

(iy * (p + k) - p,) (2Up + iy * p) (y * (p + k) - 1p1) = 2jp(t 2 - k p)

-2,p2iy p- 2(Ap2 + k * p) iy * k

Then

r?,u em k e*(-l) 8A4 -1

x Tr [(I - 5) y*luLp _ iy *p) YP(l + Y')<H OL, iy * n)]
(e . k)

x Tr [(1- y5 ) y' (21e(te 2 + e k) + 211e2 iy e- 2(11e2 - e * k) iy * k)yPiy * v]

)R XP) P* (- 1)8 X4 = _ 1r, -, t, u 2411,u 1e11v

x 2Tr [ ( -YS) Yp(8ie + iy *e) qPiy .V]2 
(p k)

x Tr [( 1- Y ) YL (2up (gp2 - p * k) -2jp 2 iy *p -2 (up2 + p *k)) yP( 1 + ys ) (pHn - iy *n )],

and

N S e)R P*( 8%a4 = +1

r, ,tu 261Lpp1n1e1u1(P * k)(e * k)

x Tr[(1I- y 1) y'L;<up - iy * p) y X(ly *(p + k) /-t ,pyP( 1 + yS) ('Un - iy *) I>

x Tr [(J - ) yI(iy * (e -k) + Aze >Y; X~ue +i'y e) yp(l + y )y .v].
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Now we evaluate the traces, some details of which will be given. First let

Tr(1-y5)y/"yuyAy/5ypye TuX7P'PY '

and .

Tr (1 - y5) ygy)yPyc RbIPOp

Al the above traces may be expressed in terms of these tensors. Thus,

Tr[(l - y -) yA (I.LP - iy * p) ypel + y5><,an -iy * n)] =-2p~n'RtXP',

Tr[( 1- y5) Y9(2,11e(1,e2 + e * k) + 2/1e2iy e -2 (1Le2 - e * k) iy * k) vPjy * v] =

[- 2) e2ev1' + 2 (Ue2 - e k) kxC ] RjR XPr,

Tr [( 1- y5) Yu (2/IP2 (,P 2_ k *p) - 2p2 iy * p - 2 (p11,2+ k * p) iy * k) yP(1 + Y5 ) (1 n - iy n)]

2[-2 1,p2pXnr- 2(1,,P2 +p k)kAnC]RIP0,

Tr [(- y S) YL(,Up - i y * ; y ( p + pk )- IpzyP( I+ y5 )(8n - iy * n)]=

-2 ip (P + k)/nYT~A PVY+ 24ip2noRJ"Pc'

and

Tr [(l- y5 ylLeiy * (e-k)+)Ue)YX/Le+ iy * e~yP(I+ ys)iy- v]=

- 2i (e - k)/e8vYTI1X 3Py + 2ije2VaRtXP

Therefore,

21 f ~e)e*( )X4 221 1
X X 2 (A - ~ 1- ) = 2v

r,3, t,u pUl 

x pXna[y 2eR Xva - (I.L2 - e - k) kX'v "] Rll?'101R Pa
(e . k)2

21 Xna P*( )
8
A4 = - 1

rst,u 2 Apn~le v

x 1 exv[iL2p Ino" + (112 +p - k)kX n-r]RAP-R1'Pa'
(p .) 2 P P

and
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2 Re 3 eRl P*( 1 )4 -1

(p -k)(e . k) (

-jL 2nO'(e -k)ac'eA7y RupuTuObaXA pY'

_Ae2 V' po(p + k) nyT~AO PVRLAP' + jLp2j112 naVa'R1,%pR,,%p,

The following list of identities are needed:

TrfytyYPyO'J] = 4(,PC - MP8O+ Mw8P)

Tr[ySylLyyyPyin] = 46AX,0A

yayp6yY = yvaA3 - yv138 + yaoLN + Ea'y~ysyv,

EtlXPUEMza"Y = 1! [68 Xa( 8 P/ 8 0Y - 8PY01a )

+85X/( 8 P18 oaO- 8p08C ) + 8 7y(8Pcc 8c / 8P68ya)]

C/"P-e6z/1X,8= 2! (8P,8,50- 8Y8A)

ePXaeAXY =3!8CY,

ekLOeXP- pCr = 4!

and

TyacX,6P = 8P-aRX 3PV _ 8a"ROYOP7 + 8OLXRAPPY _- e ccIRu6Py

From these relations one can prove that

Rp XPO-RI XPO = + 28B 8 F

T'uuX/6PVRILXPu' = -20L6W

TaX8PVTPy'A'Py' = 288- aI8n668yy,

R&XPURAX'Pa' = +26BX'800'

Then
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)H eRA (-1) 4 = + 24 2 [(1 - e * k)p - k-1e 2e * p],* 8%4 -Le
1

Ae2 
1 1 v (e * k) + 2 * e

)RfIPm*( 1)8 A45 = +2 4 (-n V) [(11p2 P + k) e .k +,U 2p . e] 

I ?eIP (-) .p) 4 = +2 * (-n V) [2p * (e - k) e * (p + k) -1 p2 e * k+ Ae2p * k] .

From these results we obtain

24 n I V

/-p, 1n Ae bv (p . k) 2 (e k)2

X I[e2(p k ) +-p2 (e k) 2]q (k-e)

- e * kp * k [(q * (k - e) 2 + e * (q-k ))2 ]I

where q = p + k.

r t
r,S5, t, U

a,

r,
;P

and

2 Re r
r, s, t, u
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