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Finite-Time Stability of Linear Discrete-Time Systems

LEONARD WEISS! AND JONG-SEN LEE?2

Mathematics Research Center
Mathematics and Information Sciences Division

Abstract: A unified approach to finite-time stability of linear discrete-time systems is
developed in this paper. Some results from linear algebra are used in deriving new and
computationally feasible finite-time stability criteria. Connections are made to the
Lyapunov-like nonlinear theory of finite-time stability. Corresponding results are also
derived for stochastic linear discrete-time systems.

INTRODUCTION

Difference equations arise and are of utmost importance in the fields of, for example, numer-
ical analysis and sample-data control systems. Stability is of particular interest, and certain
classical notions of it have been extensively studied (see [1]-[5] and in particular the compre-
hensive survey paper by Jury and Tsypkin [6]).

In this paper we consider the concept of finite-time stability of linear discrete-time systems,
and we develop a theory which parallels, to some extent, that given in a separate paper on dif-
ferential equations [7]. Our main objective is to obtain computationally manageable finite-time
stability criteria.

We consider finite-time stability of force-free deterministic systems, as well as of linear
systems driven by white noise. In addition a complete connection is given between the Lyapunov-
like theory of finite-time stability for nonlinear discrete-time systems and the linear theory
developed in the sequel. The results should be of interest to workers interested in stability theory
per se as well as numerical analysts mterested in computation of error bounds.

NOTATION AND DEFINITIONS

The symbol |-} denotes the Euclidian norm on R*; ||4|* is the spectral norm of an n X n
matrix 4; {A(4)} is the set of eigenvalues of A; and if the latter are real, A = max {A (4)}. The
transpose of 4is A’.

Consider the system of linear equations

2(k+1) =A(R)x(k), k=0,1,2, .., (D

where 4 (k) is an n X n, real matrix. A solution of (1) is uniquely geherated by recursion from
a given initial condition x(0), and at the fth instant, this solution is denoted by

x(£;0,2(0)) £ x(£) =®(£,0)x(0), 2
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where
B(£,0) =A(I—1)A(4—2)--4(0) 2 T[ A(h), £>1 3)
k=0

and

®(0,0) =1 (the n X n identity matrix).

| Definition 1. The system (1) is stable With respect to (a,8,N), a < B, if [lx (0)}| < aimplies
lx(£)|| < B forall £ € {0,1,...,N}.

Definition 2. The system (1) is stable if for every € > 0 there exists 8(€) > 0 such that
lx(£)[| < efor all integers £ = 0, provided ||x(0)[ < &
CRITERIA FOR FINITE-TIME STABILITY
THEOREM 1. The system (1) is stable (Definition 1) if and only if
ok <8 k=1,..n | “*

.Proof. Frqm )
(Dl =@ (£,0)x(0) < Il (£,0)1* [lx(0)}

with equality for some x(0) (independent of |x(0)|)). Hence, if ||x(0)] < a, then a simple cal-
culation shows that (4) is necessary and sufficient for |lx (£)|| < gforall £ € {0,1,...,N}. m

COROLLARY 1. Let A in (1) be a constant matrix. Then (1) is stable (Definition 1) if and
only if

M <8 k=1, ¥ ®)

Consider the following lemma.

LEMMA 1. For any n X n matrix A and any positive integer k, ||A*||* < (|4|* )*, with equal-
ity if and only if A is normal. .

Proof. The inequality follows directly from a well-known property of the product of bounded,
linear operators [8]. To prove the statement regarding equality, write

lak* =Rz ((47)e(4)%)
= Av2 ((4'4)¥) if and only if 4 is normal.
But by the spectral theorem for symmctrié matrices- [8] it follows that

Rz (47 4)e) =XK1z (474) 2 (J4]*)*. m
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The following results are immediate from Corollary 1 and Lemma 1.

THEOREM 2. If A in (1) is a constant matrix, then a sufficient condition for stability (Defi-
nition 1) of the system (1) is

i < (%)””- | ©)

THEOREM 3. IfA in (1) is ‘constant and normal, then (6) is a necessary as well as suffi-
cient condition for stability (Definition 1) of the system (1).

A general necessary condition is given by the next theorem.

THEOREM 4. The system (1) is stable -(Deﬁnition 1) only if
max { |\ (®(£,0))[} <G, k=1,...,N. ~ )
Proof. The spectral radius and spectral norm of ®(%,0) are related by
max {|\(@(k,0))[} < [@(k0)"-
Applying Theorem 1 completes the proof. &

" From the fact that A € {\(A4)} implies A¥ € {A (A7)}, we obtain the following result.

CoroOLLARY 2. If (1) is time-invariant, then a necessary condition for stability (Definition
l)is

max {r(4)]} < (£)". | ®

The above Corollary allows a novel proof of the following classical result.

THEOREM 5. If the system (1) is stable (Definition 2) and time-invariant, then no eigenvalue

of A lies outside the unit circle in the complex plane.

Proof. If (1) is stable, then for every € > 0, there exists 8 > 0 such that (1) is stable with
respect to (8,¢,k) for every integer £ = 1. By Corollary 2, max {|A(4)|} < (&/8) V¥ for integers
k = 1. Then, for some v = 0, max {|A(4)|} < (1+v)V* for all integers k& = 1, whxch on taking
the limit, implies max {|\(4)|} < 1.

FINITE-TIME STABILITY VIA LYAPUNOV-LIKE FUNCTIONS

Our objective is to connect the qualitative approach to finite-time stability of nonlinear
discrete-time systems developed in [9] (see also [10]) to the linear theory developed here.

Let Sy = {0,1,...,N}, and let A denote the backward-difference operator, i.e, Ag(k) =
g(k+1) — g(k). The theorem below, which holds also for nonlinear difference equations,
is proved in [9].

THEOREM 6. The system (1) is stable (Definition 1) if and only if there exist a real-valued
function V(x,k), defined for all k € Sy, and a real-valued function ¢(k), defined on Sy-1,
such that

AV(x,k) |0 < (k) forall k € Sy_,all |z <8, ©9)

AITITCCYIND
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where A V | denotes the backward difference of V along the trajectories of (1), and

2 o(j) < |:min V(x,k)]—[max V(x,())]
jeSy_, llxl=8 [l < a—e
J<k

for all k€ Sy, € > 0 though arbitrarily smal;. g

’

To apply Theorem 6 to the system (1), we take V" as a function of x alone, i.e.,
V(x) = 1n |-

Then
(AV(x)|o) (k) =AV(x(k))=V(x(k+1)) —V(x(k))
lxCk+ D) _ | I B2 (k)|
llx ()| llx (&
< In||4 (k)" .

= |n

Let ¢(k) =In |4 (k)||*. Then
| S eG) =In (4G=DI* |4k-2)]* ... 14(0)]*)

JESN_4
j<k

= In |®(k,0)[* for all £ € Sy.
Hence, from (11) and condition (10) of Theorem 6 we get
In |®(k,0)|* < ) < In =2
nfl@k0)" < ¥ () <In

a—E€
jeSy_y
i<k

(10

(11)

for all £ € Sy, € > 0 though arbitrarily smali. Letting € —> 0, we obtain as a sufficient condition

for stability (Definition 1) of the system (1),

@ (k,0)* <& for all k € {0,1,...,3},

which is the sufficiency part of Theorem 1.

STABILITY UNDER WHITE-NOISE PERTURBATION

Consider the linear discrete-time system

x(k+1) = Ax(k) + Bu(k), k=0,1,2,...,

(12)

where 4 is n X n, B is n X m, and u(-) represents a vector white-noise sequence with zero mean
and covariance matrix Q(k) (i.e., E {u(k)} =0, and E {u(k)u’'(j)} = Q(k)8«;, where 8j; is

the kronecker delta and E == Expectation).

For any n X n matrix G, let tr(G) = trace of G. Then we have the following definition.
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Definition 3. The system (12) is mean-square stable with respect to (o, 8, v, T), @ < B,
if the conditions E{||x(0)|2} < a2 and ¢r(Q(k)) < ¥* for all k € Sy imply E{||x(k)||?} < p?
forallk € Sy

The main result in this section depends on the following lemma.

LEMMA 2. Let F be an n X n symmetric matrix and let P denote the set of n X nnonnega-
tive definite matrices.

Then

A _ tr(PF)
MIE) = max Py

(13)

Proof. Let S be an n X n orthogonal matrix such that S'F'S = A = diag (\:). Also, let S'PS=
D.
Then

tr(PF) =tr(PSAS’')

= ¢tr(S'PSA)

=tr(DA)

= Aidis + Aadag + +ooee + Andun

<A (F) (ditdost -+ du), di =0

<X (F) &r (D)
Therefore, it is possible to choose {di; / i =1, ... , n} such that

tr(DA) M tr(PF)

A
A(F) = DA) _ _
(F) =Max =o0py = Max )

THEOREM 7. The system (12) is mean-square stable (Definition 3) if and only if
: * n-1 . *
o (J47*) + 2 S (MBI*)2 < B2 n=1,....N (14)
i=0 :

Proof. Let P(k) =E {x(k)x' (k)}. Then P(k) € P for each k, and it is easily checked
that

P(k+1)=AP(E)A'+BQ (k)B',k=0,1,2,...,

which has a solution

P(n) =A"P(0)(4A")' + nZ_IAi BQ(n—i—l)B’(Ai);, n=1,2,.. (15)

i=0

Now,

tr(P(n)) =tr(P(0)4A"(A™)') + El tr(Q(n-.—i—-l)B’(Ai)’AiB). (16)

A3TITCSYTIOND
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But, from Lemma 2

Dl AmN I tr(PA»(A%)')
Reran) = pag {———"(P) } (17)
Then (16) and (17) imply
tr(P(n)) < (M71)2 er(P(0)) + S (MBI*)? r(Q(n—i=1)), n=1,2,...,  (I8)
i=0 ‘

and the sufficiency of (14) for stability (Definition 3) follows easily from (18) and Definition 3.
To prove necessity we note first that for any fixed value of n (say n = M < N) there exists
a P(0) and a sequence {Q(k)|k=1,...,M} such that equality occurs in (18) forn=M, tr P(0) =
a2, and tr(Q(k)) =2 for all k € Sy. Suppose (14) does not hold. Then with P(0) and {Q (%)}
chosen as indicated, (18) yields tr(P(M)) > B2 thus negating stability (Definition 3). This
proves necessity of (14). ®
Now let

. 7 (8l)*
1-(jl4l*)?

Then a sufficient condition for stability (Definition 3) is given as follows.

THEOREM 8. The system (12) is mean-square stable (Definition 3) if

B2 _ 7’2)1/2N

I41* < (5= (19

Proof. The proof results from a calculation starting with (14) in which we write l4iB|* <
|l441*|B||*, then apply Lemma 1, and use the formula

k-1 ] —pk .
2 pt= =, (preal). & 20)
i=o0

THEOREM 9. IfB=1in (12) and A is normal, then (19) is necessary and sufficient for the
system (12) to be mean-square stable (Definition 3). '
Proof. The proof follows directly from Theorem 7 and Lemma 1. @
Finally, we present a necessary condition for stability. Let
X =max {|A(4)]}
and

@2 =_12__2 .
1—x

Then we have the following result.

THEOREM 10. If B =1 in (12), then a necessary condition for the system (12) to be mean-
square stable (Definition 3) is

T < (—-‘32 — “’2)”2&. @1

a2_w2

Proof. The proof follows from (14), from the fact that X < ||4||*, and from (18). ®
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