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On a Class of Optimal Search Problems

WARREN W. WILLMAN

Operations Research Group
Mathematics and Information Sciences Division

Abstract: Optimal policies are investigated for a class of one-dimensional search
processes in which the objective is to find a point which is near, but not beyond, a boundary
of uncertain location. Problems of this type are encountered in the analysis of mining
operations. Upper and lower bounds for the optimal expected payoff are derived, and
the optimal search policies are described explicitly for a large subclass of these problems.
Results are obtained by formulating the search as a multistage decision process and using
a dynamic programming approach.

INTRODUCTION

Optimal policies are investigated for a class of one-dimensional search processes in which
the objective is to find a point which is near, but not beyond, a boundary of uncertain location.
Problems of this sort are encountered in the analysis of mining operations. They share some
features of the problems studied by Derman and Ignall (1) but are basically different because
the main question is where to search, not when to stop. The results here are obtained by formu-
lating the search as a multistage decision process and using a dynamic programming approach.

A SEARCH PROBLEM

The search process considered here proceeds sequentially. At epoch i, where i = 0, 1,...,
a searcher has the choice of terminating the search or selecting the median mi of a random
variable yi, whose distribution is rectangular with width T. The term mi represents the desired
search point, whereas yi is the actual search location which is unknown to the searcher. The
y's are statistically independent, but each has the same distribution width T.

If the search is terminated at epoch N > 0, the searcher receives a return J such that

J = sup{0} u {G(yi): i < N}-N,

where G represents the gain from the search and has the form:

kx, if x S b; k > 0
G(x) A

0, if x > b.

The cost of a single search step has been taken as unity without loss of generality. The
quantity b represents a random boundary location and has a symmetric trapezoidal probability
density of the class shown in Fig. 1, such that the "lower" and "upper midpoints" are 0 and
so, where so > T. Also, b is statistically independent of the y's.

NRL Problem B01-10; Project RR 003-02-41-6152. This is a final report one one phase of the problem; work is continuing on other
phases. Manuscript submitted May 20, 1971.
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Figure I -A class of symmetric trapezoidal probability densities. The term T
is the distribution width of the y's, where T < h - 2.

At decision time i, the searcher knows the parameters so, T, k, i, the previous decisions
mj, where j < i, and the values of sgn(b - yj) for all j < i (i.e., the side of the boundary on which
the previous actual search points were). The problem investigated here is finding search policies
which maximize the (prior) expected value of the return. As usual, a policy is defined as a de-
cision rule which determines the searcher's action as a function of the information available
to him, for any possible realization of the search process, and for which the search always ter-
minates.

ANOTHER FORMULATION

At this point the following three sequences of random variables can conveniently be defined:

hi = min {so} U {mj: yj > b, j < i}

1i = max {0} U {mi: yj b, j < i}

Xi = max {0} U {yj: yj b, j < i}.

It is immediately apparent that a better alternative than choosing mi outside the interval [2i - T,
hi + T] always exists. Search policies for which such a choice is possible will not be considered
further.

In addition, we temporarily admit only policies for which mi is always in the interval
[2i + T, hi - T]. Conditions are established later under which this restriction can be removed
with no effect on the optimal search policies. This additional restriction makes it possible to
express the return as

N-I
J = -(k(y 1- i) [1/2 + 1/2 sgn(b - y)]- 1), sgn(0)-1,

i=O

where N is the epoch at which the decision is made to terminate the search.
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This alternative expression for the return makes this search process amenable to a dynamic
programming analysis. The boundary location b and Xi serve as the state variables in this anal-
ysis; the search points mi are the control variables, and the search "results" sgn(b - yi) are
noisy measurements of the state. The b component of the state is static; neither component
is known exactly.

STATE ESTIMATION

The temporary policy restriction ensures that the points 0 and so and the m's are all sep-
arated by a distance of at least T. By using this restriction and the statistical independence of
the random variables yi, the usual inductive use of the Bayes Rule shows that the posterior
probability density of b at epoch i (given the data available to the searcher at that time) is also
a symmetric trapezoidal density of the class shown in Fig. 1. The upper and lower midpoints
of this conditional density are hi and Ai, respectively.

The conditional density of Xi, given b and the data at epoch i, is also determined by the
posterior distribution of b, namely by the parameter 2i. Therefore, hi and 2i are sufficient sta-
tistics for the joint conditional distribution of the state variables given the data.

THE VALUE FUNCTION

Let it be the class of search policies which satisfy the restriction imposed previously and
for which the functional dependence of the action at epoch i on the previous search points and
results is determined by hi and 2i for all values of i. Since the joint conditional distribution of
b and Xi is also determined by hi andli, and since the values of yi are statistically independent,
the following definition is unambiguous for a policy 7r E Gi:

Definition. For h - T > 2 -_ T, ir E ad, L(i, 2, h, ;r) is defined as the conditional expected
future return at epoch i from policy ir given that 2i = 2 and hi = h, where the future return at
epoch i is the total return minus the return that would result from terminating the search at
that epoch.

For 7r E 61, the notation 7 (i, 2, h) is used to denote the action specified by 'r at epoch
i for 2i = 2 and hi = h. The value function Q is now defined as follows:

Definition. Q(i, 2, h) A sup L(i, 2, h, ir).
ir Eq1

The results of Stratonovich (2) imply that the conditional expected future return for an
optimal policy at a given epoch of any realization is determined by the conditional probability
distribution of the state under those conditions. Therefore, if Ai= 2 and hi= A, then Q(i, 2, h)
is the supremum of the conditional expected future returns for all policies satisfying the restric-
tion imposed in the section "Another Formulation." In particular, Q is the optimal value func-
tion if optimal policies exist.

THE BELLMAN EQUATION

For 7r E %, the additive expression for J and the statistical independence of the y's imply
the recursion

f(i, 2, h, m, 7r), if 7r(i, 2, h) = "search at m"
L(i, 2, h, Oir) =

0, if 7r-(i, 2, h) = "terminate search,"

where

f(i, 2, h, m, Tr) A L(i + 1, li+1, hi+s, 'r) - 1 + k(yi - Xi) [1/2 + 1/2 sgn(b -y)]).

h i=h
mCm
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Using the state estimation results derived earlier, f can be evaluated as

f(i, 2, h, m, 'rr) = Pr(yi G b) [k & (yi-Xi) + L(i + 1, m, h, 7ir)]

+ Pr(yi > b) L(i + 1, 2, m, 7r) - 1,

where the expectation is also conditioned on the event yi S b. Since Xi depends only on {yj:
j < i} and since the y's are statistically independent,

I& / yjb (Xi)

'i='
h{=h

mi=m

= /1i=1 (Xi) = 
hi=h

mi=m

Also, it is straightforward to show that

Pr (yi < b/2i = 2, hi = h , mi = m) = h - 2

Finally, the Bayes Rule implies that the conditional density of yi, given yi S b, is

P~i M(t) = Pr(yi G blyi = t) py,(t
Pr(yi G b)

_ Pr(b a t)

where all probabilities are conditioned on 1i = 2, Ai = A, and rn, =r. So

h -tI
Sh-m Ts if It - ml - 1/2T

PU!/ (t) = 
Pyiyi0hb Iis

t0 otherwise.

Therefore,

I m+l/2T h -_ t I T2= -2t * *-dt = mr-
I=1,
hI j=h
mi=11

From the additivity of the expectation operator, it follows that

f(i, 2, h, m, 7r) = h Q [L(i+ 1, m, h, 7r) + k(rm -2 12(AT )]

+ h _ I L(i + 1, Q, m, 'r)-1.

4
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From the dynamic programming argument explained in Bellman (1), an optimal policy
for a multistage decision process must be optimal at every intermediate epoch (the Principle _
of Optimality). It follows by a standard backward induction argument (3) and by an appropriate -

limiting procedure if an optimal policy does not exist, that the value function satisfies the fol-
lowing Bellman Equation:

Q (i, , A) =max {0, sup sup f(i, 2, A, mT)
I ±+T Tmsh-T rEtq J

If r°' is an optimal search policy (assumed in 61 with no loss of generality), it is a further con-
sequence of this argument that

(i) Q(i, 2, h) > 0 ~=>Q(i, 2, h) =f(i, 2, h, T'i(i, 2, A), iT
0

)

(ii) Q (i, 2, A) = 0 = 7rT(i, 2, h) = "terminate" orf(i, 2, A, T'i(i, 2, A), iT0 ) = 0.

A SIMPLIFICATION

Defining the two new variables

s A h -I

and

u Am - Q,
the Bellman equation can be written as

Q(i, 2, A) =max I0, TsupTIS [+ +s) + k(u 12 a))]

+ - Q(i + 1, 2, 2+ u) - 1}}.SII

Because of the current policy restriction, the search must terminate at epoch i if hi - 2i < 2T,
which implies that

Q (i, 2, 2) = 0.

To avoid a contradiction, therefore, Q (i, 2, 2 + s) must depend only on s. This makes the fol-
lowing definition unambiguous:

Definition. For s 2' 0,

V(s) -Q (i, , + s).

Furthermore, the Bellman equation and its boundary conditions for this search process can
be expressed as

V(s) = max 0, sup {su [V(s-u) +k(u- 2 )]+-V(u)-1}}I TI -T -S12(s - ua) S
V(O) = 0
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Henceforth, only this simplified equation will be referred to as the Bellman equation for the
search process, and V as its value function.

LEMMA. If V(s) is a solution to the Bellman equation,

V(s) ='0 Os < 2T or -- k 1.
4 12.s

Proof. (.=).
By definition, V(s) 2 0 and s < 2T X V(s) = 0.

If

ks kT2 1, V(s) > 0, and s - 27T,
4 l2.s

then

sup { V(s-U) +-V(u) > °.
T6u<S-T S S

because

- ku < for all u E (T, s- T).
5 4

Therefore, I u"* E [T, s - T] such that V(u*) > 0. This argument can be repeated, replacing
s by u*, because (ks/4) - (kT2/12s) is monotonic in s. After a number of such repetitions not
exceeding s/T, this argument implies that R u* (E [T, 2T] such that V(u*) > 0. If u* =2T in
the last repetition, the Bellman equation and monotonicity of (ks/4) - (kT2/12s) would imply
that

ks kT2 kT kU
412s 2 24

a contradiction. Any other possibility contradicts the Bellman equation.

(X)
If s -' 27T and (ks/4) - (kT2/12s) > 1, then it follows from the Bellman equation (using u

='s/2) that

ks kmi2V(s) -- 12- + V(2) > V(2) -- O. El
4 12s 2 

COROLLARY. A unique solution to the Bellman equations exists for this search process.

Proof. From the preceding lemma, the Bellman equation is equivalent to

V(s) supT{I~s) [S - u(ku 2 -l U)) -J1] + I(s) u V(s _ u) + I(s) u V(u)};

V(O) = 0,

where

6
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if--- > l and s 2 2T
4 12s

I(s)- A rr
I) otherwise. e

An extension of Theorem 1 in Chapter IV of Ref. 3 can be applied to this equation to give the
desired result. C

OPTIMAL POLICIES

If 7r* E 6U is a search policy such that iT* (i, 2, A) = "terminate" X hi - i < Smwi and if

V(s) S U (V(s - U*) + k[U* - 2 (S- U)]) + V -

otherwise, where u* = iT* (i, 2, h) -2, s=h-2 ,andwhere

s Ain inf ts - 2 T: k -2 k 1} I max 2T, (2+ |2 2 + 3}2
L4 12s k2 '

~ 1( 3 

then ir* is optimal since the solution to the Bellman equation is unique. Formal differentiation
of the right-hand side of this equation with respect to u gives the following expression for
S > Smin

(s -2u) + [V(U) -V(s - U)] + (- [V'(U) + V'(s,- u)] - V'(s - )

All three terms are zero if u = s/2, suggesting that the following policy, referred to here as 7r-,
is optimal:

[Terminate search if hi -i < Smin

Choose mi = 1/2(hi + 2i) otherwise.

This policy is not always optimal, however. For example, if so = 8, T = 0, and k= 1, the
expected return from Tr- is 1, whereas an expected return of 25/24 is given by the policy:

{ mO = 3-1/3.

Terminate search at epoch 1 if hi = 3-1/3, (i.e., if yo > b).

Choose mr = 5-2/3 and terminate at epoch 2 otherwise.

Nevertheless, the conditional expected future return from fr happens to give an extremely ac-
curate lower bound for the value function. Denoting L (i, 2, 2 + s, 7r-) by V- (s) fors 0,
it can be shown by induction on n that

) =s + kT2 - k (s + 2 T n; 2 n-1 Smin 6 s < 2nS in,2 12s2 \2n 6s_ /

for n = 0, 1, 2, ....
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An upper bound for V can also be established by noting that if

V(s) _ 2 + -2 -log 2 s + d for all s E [ T. r-T],
2 l 2 s

where r 2 smin, then from the Bellman equation,

V(r)= sup {-u(r-u) +-[(r-u) V(r-u) + uV(u)]- 2-1.
T-uwr-T Ir r 12r

sup {k u(r-u) + I[(r-u) k(r- u) + ku - (r-u) 1og 2 (r-u)
T--~u--r-T r r 2 2

-u log2 u + du + d(r-u) + ( 2( ) _ _ 12 I
icr k7'2 1~ ~ ~~2r u u 2r'

=-kr + -T -1 + d-- inf {(r-u) log2 (r-u) + U log2 U}.2 12r r Tsu-r-T

Since U log2 u is concave in u, the infimum is attained by u = r/2, and

Vr kr - T2- Il +l10g2 (-~ +d-kr+kp-0r+ d.
2 12r [1 (2)] 2r 2ro 8

It therefore follows from an obvious contradiction argument that if

ks kTs2+ k-log102 s + d O 0, for all s E [T[ smin],
2 12s

then

V(s) ks + k2 -log, s + d, for all s > T.2 -j1 --o2sdfrll~'
To find a value of d which makes this upper bound as accurate as possible, we first evaluate

the zero, s, of the bound's s derivative, giving

log2 e + 1 1og2 2 e +T2

It also happens that this derivative is positive for s = sj,, implying that s < s,,in,. Since the
upper bound is a concave function of s, our purpose is achieved by choosing d such that its
value at s is zero, or equivalently,

log102 -ks kT2d~~~ = o2s212s .
Denoting ihe resulting upper bound by V+ (s), we have V+ (s) = 0 = V(§) = V- (s).

It follows from the formulas for V+ and V- that for 2n- s,,,sn .s < 2nsa,, n = 0, 1, 2,...

V+(s) - V(S) =-2 (2-s) + 12 (--_ )-log2 (_) + n -
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Therefore, V+(2s) - V-(2s) = V+(s) V- (s) if s 2 Smin/
2 . One important consequence of

this result is that V+ (2n 1) = V(2n g) = V- (2n ) for any positive integer n, and hence that
the search policy ir- is optimal for so = 2" s, if s 2' Smin/2. It is apparent from the formulas for
s and Smin that M.

Smin -< S-n =:Smin = 2T

and therefore that

S 2 -min Xt*T -1 12 log2 e
2 5k

Also, since for 2n-1 smin s < 2nsmin, n = 0, 1,...,

[V+ (s) V- (s)] log2 e + 2nkT2 > o,
S2 6S3

it follows in any case that V+ (s) - V- (s) - V+ (Smin) if S 2 Smin/
2

.

The results for optimal search policies under the constraint 2i + T mi hi - T can be
summarized as:

1. The value function V(s) is zero if and only if

s max I2T, + 2)2 + 2 4Smin.

2. It is optimal to continue the search if and only if s 2 S uin.

3. If s E [2n-fSmin, 2 nSmin], n = 0, 1, 2, ... ,

V- (5)= k s + T 2 2T)_n -- V(s) s k s- + 6 (- --- )]- 1092 s=V+ (s),

A2 log2 e 6 e T 
where A= e + R 2 + -

4. V+ (s) - V (s) S V+ (smin) for s 2 Smin/2.

5. V+ (2"sn*) = V- (2n;"a.) = V(2ns,#.) for any positive integer n if

T < 12 log 2 e 
5k

The policy ir- (where mn= hA/2 + A2/2) is optimal if so = 2nl,.

6. Cases exist for which T< (12 log2 e)/5k and iT- is not optimal.

It is also interesting to note that if T= 0, the maximum error of the bounds for V(s) fors 2 Sjn,/
2

is given by the expression

V+ (s) - V(S) - V+ (S,,,i,,) -- V(s,,,u) = 0log2 log2 e - log2 e + 1 = 0.0862,

which is independent of k.
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REMOVAL OF POLICY RESTRICTION

The derivation of the preceding results depended on an artificial restriction imposed on the
class of admissible search policies. This section shows that this restriction is superfluous if
2Tk < 1, in the sense that for every policy not satisfying the restriction 2i + T.-n mi rn, mi- T
there is a policy which does satisfy it and for which the expected return is greater. This condi-
tion obviously implies that T - (12 1og2 e)/5k (or equivalently, s -_ Smin/2), which is the case
of major interest.

Assuming the contrary, the principle of optimality implies the existance of a case for which
2k7T < 1, a policy and a realization such that mj < Ij + T (mj > hj - T is basically a symmet-
rical case) for some epoch j, and such that the conditional expected future return at that point
is greater than that of any policy which terminates then or for which Ij + T - mj - hj -7T.
Let so, T, and k be fixed such that this possibility exists and let A be the set of all such triples.
Define the set B as

B{x E R: (x, T, k) E A}.

Let (r be an element of B, such that

a < inf B + T.

Let ir denote a policy for which this possibility exists for the above values of T and k and for so
= (T. Consider any such realization and denote by i the index of the 'first epoch for which mr
< i+ 7T. Denote mi - 2i by ui.

Since termination is not optimal at epoch i and 2kT < 1, si > T, where si A hi- 2i. Since,
in addition, Ij + T < mj < hj - T for all j < i, the conditional density of b at epoch i is symmetric
trapezoidal with upper and lower midpoints hi and 2i.

Given yi > b (and us), the future return at epoch i under these circumstances is less than

max {-1, k((T+ Ui) - 2}

for any realization and policy. Therefore, the conditional expected future return under 7r is
also less than this value, which is negative since Ui < T. Given yi - b, this conditional expected
future return is less than

k(u, + T) - 1 + & [future return at epoch (i + 1) using ir given yi - b].

Now let z = (1/2) - (1/2)sgn(b - a + a), where a = max(T, us + T) and 4 is a random vari-
able independent of b and the y's, with rectangular density of median zero and width T. (A knowl-
edge of z at epoch (i + 1) is "free" extra information.) The preceding expectation is less than or
equal to

I {future return at epoch (i + 1) under it' given z = 1 - Prob {z = 1 given yi S b}

+ & {future return under ir' given z = 0} * Prob {z = 0 given yi _ b},

where 7r' is an optimal (or E -optimal) policy for the altered search problem in which z is also
known at epoch (i + 1). The first expectation is bounded by V(si - a) because si- a < (T and
the conditional density of b at epoch (i + 1) given z = I is symmetric trapezoidal, or because
si - a < T. The future return in the second case is bounded by 2kT - I in any event; hence, so
is the second term.

Denoting the conditional expected future return at epoch i under ir by F, it follows that

F < 0 + k(ui + T7)- 1 + V(si- a) + 2kT7- 1

10
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by bounding all probabilities by 1. Since the existence of a policy constraint cannot increase
the maximum expected return,

V(s,) < F.

Therefore, since V(si - a) < V(si),

O < 3kT+ kui -2 < 4kT- 2.

This contradicts the assumption of 2kT <1, which verifies the desired result.

DISCUSSION

The type of search problem described in this report can be formulated in the usual context
of stochastic optimal control problems, as outlined in the section "Another Formulation."
As such, they are discrete-time control problems with piecewise linear dynamics and criterion,
nonlinear measurements, nonadditive rectangular measurement and process noises, and un-
specified terminal time. Both the linear form of the gain function G and the rectangular form of the
measurement noise distributions were essential in deriving specific results here. Adding a con-
stant to G (x) for x - b also changes the fundamental character of the problem.

The optimal state estimator can be implemented by recursively updating 2i and hi from

the measurement sgn (b - yi)-A zi as

li+ I = max {Ii, Mizi }

and

hi,,= max {hizi, mi}.

The search policy ir- is not always optimal, but it is for arbitrarily large values of so, the initial
range of uncertainty of the boundary location, if 2kT - 1. This fact indicates that ir- is a good
search policy in practice for such cases, even when it is not strictly optimal. Also, the 7r- stop-
ping rule is always optimal.

Except for the stopping rule, iT- is a certainty equivalent policy. Its search points are the
optimal search points for the sequence of deterministic problems in which all random variables
are replaced by their current conditional means.

The practical significance of this work is that it adds to the repertory of decision process
models for which there is specific knowledge about optimal performance and policies. This
type of model can be useful, for example, in the analysis of mining operations. These results
are of little practical interest if 2kT > 1, however, because they depend on an unrealistic policy
restriction in this case.
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