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A TEST OF THE CAPABILITIES OF CHIEF
IN THE NUMERICAL CALCULATION OF ACOUSTIC
RADIATION FROM ARBITRARY SURFACES

INTRODUCTION

The computer program CHIEF as developed by Schenck (1) and Barach (2) is
designed to obtain approximate solutions to exterior steady-state acoustic radiation
problems for surfaces of arbitrary shape vibrating with a prescribed normal velocity.
To test its capabilities as a research tool, CHIEF was applied to several problems for
which accurate answers have been obtained using harmonic expansions.

The first examples involve the acoustic radiation from an oblate spheroid whose top
half is vibrating with unit normal velocity and whose botiom half is rigid. The acoustic
radiation impedance of the top half and the mutual radiation impedance coefficient between
the two halves of the spheroid obtained using CHIEF are compared with resulis obtained
using a harmonic expansion in oblate spheroidal harmonic functions. A Fortran com-
puter program called OBRAD (3) was used to accurately evaluate the necessary sphe-
roidal functions.

An example designed to test CHIEF's ability to handle a multiple surface is that of
the radiation of a uniformly pulsating sphere in the presence of a similar stationary
sphere. Here the results from CHIEF are compared with those of New (4), who has
obtained accurate values for both the near-field and the far-field pressures using a
harmonic expansion in terms of spherical functions.

The accuracy and computation time of the results using CHIEF are discussed in
terms of the surface subdivision scheme and the number of Gaussian quadrature points
used to evaluate the non-self Helmholtz integrals. In addition, new input subroutines to
CHIEF which provide numerous geometrical options are discussed. A computer print-
out of these subroutines is given in the appendix.

REVIEW OF THE COMBINED HELMHOLTZ INTEGRAL
EQUATION FORMULATION (CHIEF)

Consider a finite region bounded by the regular, closed surface S, as shown in
Fig. 1. Let an arbitrary point on the surface be denoted by g. The region exterior to
$ is assumed to be filled with an ideal, homogeneous fluid of density » and sound speed
c. Let an arbitrary point in this exterior region be denoted by %#. The gurface s is
vibrating at an angular frequency « with a known normal velocity distribution v(€). The
steady-state pressure p(%) may be obtained by solving the Helmholtz scalar wave equa-~
tion,

(v2+ ) p (0 = 0, (1)

where k = w/c . The time dependence e :** has been suppressed.
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Fig. 1. - An arbitrary surface S

The solution to Egq. (1) must be finite and must satisfy the radiation condition at
infinity,

2
1i Op(x . .
RlTw fl%(x) + ikp(X)} r_Rds =0, {2}
SR -

where Sy is the surface of a sphere of radius R surrounding the surface 8. In addition,
the pressure p(i) must satisfy the boundary condition on §,

ap 4
Eryi iwpv (£}, {3)

where 3/2n, denotes the outward normal derivative evaluated at the surface point §. The
solution to Eq. (1) which satisfies the boundary conditions, Eq. {2} and Eq. (3), is given
by

ds(g), (4)

.. 1 . D e~ ikd(X, £) . . g ikd(X,E)
p{x} *Ei}f-’(g)a—% [.fﬁ;i—.é}]+ iawpv(E) _d(i, 5

where d(x, £) is the distance between the exterior point % and the surface point €.

This expression allows p(x) to be evaluated when the pressure on the surface p(#)
is known, In order to obtain p(£), the point of observation i is allowed to approach the
surface. When the limiting process is properly performed, one obtains the surface
Helmholiz integral formulation,

. 1 .. 3 e-ikd{é’.h] ) . e—ikd@ L B)
- = - i ——— 3 dS . 8
P () 277{’9(5) aﬂf[ | e ST I ® (5)

If the field point is taken interior to the surface 5, one obtains the interior Helmholtz
integral formulation,

1 L3 -ikd@, €] . e—ikd(F D)
0= f’pm *[e |t deev(®) S
47 <

ds(g),
P T D G (o ®

where ¥ is the inferior point.
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The CHIEF program solves for the surface pressure p(¢) using Eq. (5) and, if
necessary, Eq. (6).

In order to solve Eq. {5), the surface is subdivided into small areas. The normal
particle velocity is chosen to be constant over each subdivision, and it is assumed that
the pressure is constant over each subdivision. The latter assumption is an approxima-
tion that will be good only if the true pressure does not vary much over each subdivision.
The approximation can be improved, if necessary, by further subdivision of the surface.

The surface integrals in Eq. (5) can now be broken up into integrations over each
subdivision 5,4, giving

—ikd(E".5g)

oo 3 e .
2mp(€") —Zpﬁf — [__—Md(?g', S :IdS(gﬁ)
A Sg 4 B

f JikddL g
+ 1mpz d(lj E ) dS(Eﬁ). (7)

where p 4 and v, are the pressure and normal particle velocity for the subdivision S;.

If the observation point €' is chosen to be on S_, one obtains a set of simultaneous
equations in the unknown pressures,

DA =D Bug vy (8)
B 8
where A,, and B,; are given by
~ikd(E, s
3 e arsa .
Aa = 2mé, -—f [ - ]dS(E Y, 9
A 8 S,B anf d(§a, “:'ﬁ) A ( )
where 3., is the Kronecker delta,
and
—ikd(§ £}
B, = f—_ < ds (€,).
(I ATCN SRR (10)

The Helmholtz integrals given in Eqs. (9) and (10} are numerically evaluated in
CHIEF using a Gaussian quadrature over both surface coordinates. For the so called
non-self Helmholtz integrals, when o« # 5, the user of CHIEF must input the number of
quadrature points used to evaluate the integral. The self integrals, i.e., when a = 3,
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are automatically evaluated by first subdividing the integrais into four pieces and then
evaluating each piece using 16-point Gaussian quadratures over both surface coordinates.
Obviously, the choice of the number of guadrature points to be used for the non-self
integrals is influenced by the surface subdivision scheme.

If the frequency is near one of the characteristic frequencies for the interior homo-
geneous Dirichlet problem, the simultaneous equations, Eq. (8), will not yield the cor-
rect surface pressures. In this case additional equations are obtained using the interior
Helmholtz integral formulation for carefully chosen interior points. These equations
add no more unknowns but provide additional eguations of constraint for the surface
pressures leading to an overdetermined system. Since only the correct set of surface
pressures satisfies these additional equations, their addition tends to force the solution
to the desired one. The choice of the number and the location of the interior points is a
difficult problem. The examples discussed in this paper will not require any interior
points, This will allow an uncluttered examination of the more basic question confronting
the user of CHIEF: how do both the accuracy and the computation time depend on the
surface subdivision scheme and the number of quadrature poinis?

COMPARISON OF RESULTS
Example I. Oblale Spheroid

The first example is that of radiation from an oblate spheroid, as shown in Fig. 2.
Here ¢, the radial coordinate specifying the oblate spheroidal surface, is chosen equal
to 6.2, The ratio of major to minor axes is then given by /£2:+1)/¢2 5.0. The param-
eter h, defined to be » times the ratio of the distance between the foci of the elliptical
cross section to the wavelength, is a measure of the acoustical size. Here h is chosen
equal to unity to insure thai the frequency is well below the lowest characteristic fre-
quency for the interior homogeneous Dirichlet problem. For this example the top half
of the surface is specified to be vibrating with unit normal velocity. Of interest are the
self acoustic radiation impedance coefficient of the top half and the mutual acoustic
radiation impedance coefficient between the two halves. These were first calculated
analytieally using a harmonic expansion in oblate spheroidal wave functions. Sufficient
spheroidal functions were generated to achieve convergence of the series to at least four
places of accuracy in both the resistive and the reactive parts of the impedance.

e i ivided obl heroid
A \ t\ /j P, — Tig. 2. - Subdivided oblate sphero

The problem was then input to CHIEF for various subdivision schemes. CHIEF is
designed to take advantage of rotational and reflective symmetry in the geomstry, greatly
reducing the computation time in these cages, In order to use rotational symmetry, the
spheroid was first subdivided into strips resembling orange sections. Each sirip was
then further gubdivided into bands. The number of Gaussian quadrature points for the
non-self Helmholtz integrals was selected for both surface coordinates. The normal
particle velocity was input as unity for the top half and zero for the bottom half of the

spheroid,

CHIEF was used to obtain the surface pressures p, for each subdivison. The nor-
malized self radiation impedance coefficient for the top half of the spheroid, z_ ., was
then calculated using
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n

b, 5,
am=f

Zoere R tiX )y s ————— (11)

n

pcv )

a
a=1

where S, is the area of the «th subdivision, and a=1 to n includes only the subdivisions
on the top half of the spheroid, R..; and X, are the resistive and reactive compo-

nents of the impedance. Here v = 1 m/sec is the normal particle velocity. The nor-
malization factor '

pc i 5
a=]

makes Z_,,, dimensionless.

Similarly, the normalized mutual radiation impedance coefficient between the two
halves, Z, .., s Was calculated using

P. 8,
- . — a=n+1
Zmutual - Rmutual + 1Xmutual - N ’ (12)
ocv 8,
a=n+1

where a=n+1 to N includes only the subdivisions on the bottom half of the spheroid.

The results for this case are summarized in Table 1, The impedances calculated
using the harmonic expansion are given in the last line. The column labeled "time in
seconds' indicates the computation time required to determine the surface pressures
using the CDC 3800 computer at NRL.

The first CHIEF model had 12 strips, 6 bands, used a 2-point Gaussian quadrature
for both surface coordinates (denoted 2 x 2), and required 36 sec of computation time.
The results are good except for the mutual reactance. As the quadrature is increased,
the accuracy improves, with the 8 x 8 quadrature giving surprisingly good results for
76 sec of computer time.

If 24 strips and 12 bands are used, a 2 x 2 quadrature again gives a poor value for
the mutual reactance. As the quadrature increases, the accuracy again improves. In
general, the accuracy should be better for increased subdivision for the same guadrature,
However, possible random errors may cancel, yielding significantly greater accuracy
for the coarser subdivision scheme. This is apparently the case for the model using 12
strips, 6 bands, and an 8 x 8 quadrature.

Apparently good results can be obtained for this oblate spheroid using rather crude
surface subdivision and a small number of quadrature points. It is important to note
that the far-field pressure pattern does not depend on the radiation reactance and will be
extremely accurate for all of the models except those using a 2 x 2 quadrature. Because
of the smaliness of the mutual reactance, the near-field pressures should also be accu-
rate for all but the 2 x 2 quadrature.
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Tahble 1
Results for the Spheroid with¢ = 6.2, h = 1.0
Number of .

Number Number Time
j Quadrature Reers Xserr R utusl X tuat

of Strips | of Bands Points {=eec)
12 8 22 36 0.2364 ; 0.5063 | 0.1830 | ©,08148
12 6 4% 4 49 0.2371 00,5254 | 00,1760 [ 0,03996

12 6 8x8 78 0.2389 | 0.5285 | 0.1743 | 0.03508 |

24 12 22 108 0.2361 | 0.5172 | 00,1767 | 0.04543
24 12 4x 4 154 0.2360 [ 0.5234 | 0.1751 | 0.03936
24 12 6x 86 227 6.2361 | 0.5248 { 0.1748 | 0.03823
24 12 §x8 338 0.2361 | 0.5249 | 0.1748 [ 0.03791
Harmonic expansion 20 (0.2369 | 0.5287 | 0.1739 | 0.03481

Example II. Thir Oblate Sphevoid

Next consider the radiation from a thin oblate spheroid whase top half is vibrating
with unit velocity and whose bottom half is rigid, Here h = 1.0, and £ = 0.02 so that
the ratic of major to minor axes is very nearly equal to 50, The radiation impedance of
the top half of the spheroid and the mutual radiation impedance coefficients between the
two halves of the spheroid were calculated using a2 harmonic expansion in spheroidal
wave functions and using CHIEF with various subdivision schemes. The resulis are
given in Table 2,

Table 2
Results for the Spheroid with # = 0.02, R = 1.0
Number of .
gusr;l;ei ciuéna?}?ii Quadrature rfsl:j Reart X ety Routuat X tat
2 Poinis

i2 8 4 x4 42 0.2906 | 0.4643 @ 0,2300 : 0.3897

12 8 8 x8 &5 0.2513 06,4247 | 0.2494 | ©0.3160

24 12 4 x4 148 0.2460 [ 0.4241 0.2436 | 0.3048

24 12 8 x8 334 0.2284 | 0.4678 | 0.2183 | 0.1983

24 18 8x8 €78 0.2267 | 0.4728 | 0.2135 { 0.1817

48 24 4 x4 170 0,2285 | 0.4714 | 0.196% | 0. 1880
48 24 8x 8 2204 0.2288 | 0.5464 0.1950 | 0.09471
Harmonic expansion 20 0.2302  0.5732 | 0.1874 | £8.06135

The results using a model with 12 strips, 6 bands, and a 4 x 4 quadrature are very
poor. Increasing the quadrature to 8 x 8 does not improve the results much. Increased
subdivision gradually improves the results. However, even with 48 strips, 24 bands,
and an 8 x 8 quadrature, considerable error occcurs in the mutual reactance, A good
far-field pattern should be obtained for this model, but more subdivigions and increased
computer time would be required to obtain very accurate impedances.
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Example III. Two Spheves

To determine the capability of CHIEF regarding multiple surfaces, the two-sphere
problem, whose geometry is shown in Fig. 3, was considered. The spheres were chosen
to have ka = 1.0, where a is the radius of each sphere, and were separated by a distance
equal to their radii. One sphere was pulsating uniformly, while the other one was rigid.
The two-sphere problem has been solved analytically by New (4) using expansions in
spherical wave functions.

PULSATING| SPHERE

Fig. § - Two-sphere geometry

SPHERE

Consider the near-field pressure magnitude on the axis of the system, as shown in
Fig. 4. The dashed line represents the 1/r dependence to be expected if the rigid
sphere were not present. The results of New are represented by the solid line, while
the dots represent the results of CHIEF using 6 strips, 6 bands, and a 4 x 4 quadrature
on each sphere. The pressures are normalized to the pressure magnitude that would
exist on the surface of the pulsating sphere if the rigid sphere were not present. The
maximum error was less than 6%. When 10 strips, 10 bands, and a 4 x 4 gquadrature
were used, the maximum error was reduced to less than 1%.

The far-field pressure pattern in the plane bisecting the spheres was also calculated
using the CHIEF model with 6 stripg, 6 bands, and a 4 x 4 quadrature on each sphere.
Figure 5 gives the pattern as a functionofthe polar angle 9. Again the solid line repre-
sents the results of New, while the CHIEF results are represented by dots. As expected,
considering the good accuracy of the near-field results, the far-field is extremely
accurate. The total computation time for the two-sphere problem using the coarser
subdivision scheme was 126 sec,

GEOMETRICAL OPTIONS

CHIEF is not restricted to a specific coordinate geometry. Any convenient coor-
dinate representation may be used to describe the surface. However, the free-space
Green's function and its normal derivative are described internally in CHIEF in terms
of a Cartesian coordinate system. Therefore, input subroutines are required which con-
tain conversion formulas giving the Cartesian coordinates of an arbitrary surface point
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120
1L00— — — — Lfr DEPENDENCE
NEW
= & = CHIEF
080
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>
.
-
20k "‘*:r:h
PULSATING RIGID
SPHERE SPHERE
| i t
) ) 1 2 3 4 s 3
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Fig. 4 - Near-field pressure disirtbution on the
axig of two spheres, one pulgating and one rigid

- — NEW
120 = = = CHIEF

1401

0.80

070 I [ [ I 1 l | L
© 20 40 &2  BG  100 120 40 180 180

POLAR ANGLE {DEGREES)

Fig. 5 ~ The far-figld pressure distribution for
two spheres, one pulsating and one rigid

as well as the Cartesian componenis of the normal vector to the surface at that point.
The area element associated with the surface coordinates is also required. The entire
closed surface is separated into regions such that each region is deseribable in terms of
a single geometry. Each region is assigned an integer index that corresponds to the
appropriate conversion formulas in the input subroutines.

In an effort to increase the utility of CHIEF, conversion formmulas have been added
to the input subroutines so that a wide range of geometrical options is available. These
options, which are listed in Table 3, are discussed below. Included are formulas giving
the Cartesian coordinates {x, y, z), the Cartesian components of the unit pormal &,
and the magnitude of the area element ds for any surface point {u, v} (Ref. 5}. The
notation (u, v} = (a, b) means that a and b are the two surface coordinates. Any of
the surfaces can be transiated or rotated by modifying the formulas giving the Cartesian
coordinates., For example, option 15 describes the cutside surface of a sphere centered
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at (x, v, z) = (0, 0, 0). To describe a sphere centered at (x, vy, z) = (¢, 0, 0), change
the equation for x in terms of the surface coordinates (u, v) = (¢, ¢)to

x = CC(33) sinu cos v + c,

1. yz plane with Cartesian coordinates, (v, v} s (v, 2z), normal in + x direction.

x = Constant = CC(1)

Yy T u
zZ =v
& =8,
dS = du dv

2. yez plane with Cartesian coordinates, (u, v) = (y, z), normal in -x direction.

x = Constant = CC(2)

Yy T u
2 =v
e, = -8,
dS = du dv

3. xz plane with Cartesian coordinates, (u, v) = (x, z), normal in + y direction.

X = u

y = Constant = CC(3)

Table 3
Geometrical Options Added to CHIEF
Direction of Direction of
Surface Normal to Surface Normal to
Surface Surface
1. yz plane +x 11, Outside of circular Qutward
2, yz plane —X cylinder
3. xz plane ty 12. Inside of circular Inward
4. xz plane —y c¢ylinder
5. xy plane tz 13. Outside of elliptical Outward
6. xy plane -z cylinder
7. xy plane, polar +z 14. Inside of elliptical Inward
coordinates cylinder
8. xy plane, polar —z 15, Sphere Qutward
coordinates 16. Oblate spheroid Outward
9. xy plane, elliptical +3z 17. Prolate spheroid Qutward
coordinates 18. Toroid Outward
10. xy plane, elliptical —z
coordinates
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10
Z =y
§n=é‘y
ds = du dv

4, =x=z plane with Cartesian coordinates, (u. v} = (x, z)}, normal in -y direction,

X =4y

¥ = Constant = CC(4)
z =v

& = —%y

d5 = du dv

8. xy plane with Cartesian coordinates, (u, v) = {x, y), normal in+ z direction.

X = u

vy =v |

z Constant = CC(5)

& = :
en—éz i

48 = du dv

§. xv plane with Cartesian coordinates, (u. v) = {x. ¥}, normal in -z direction.

z = Constant = CC{6)

6 = —e

1] z

dS = du dv

T. xy plane with polar coordinates (r, 8}, 0<r<® 058 <2u, (u, v} = (r, 9}, normal
in +z direction,

Inthe xy plane the curve of constant ris a circle of radius r centered at (x, ¥} i
= (0, 0), and the curve of constant & is a semi-infinite line originating at (x. ¥}

:(0‘ 0)'
X T ucos v
Y = u sin v

3]
n

Constant = CC(7)

Fal _
% T %2

dS = u du dv

i ;
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8., xy plane with polar coordinates (r, 8), 0xr<®, 0€8 < 2w, (u, V) = (r, &
normal in -z direction,

In the xy plane the curve of constant r is a circle of radius r centered at
(x, y) = (0, 0), and the curve of constant ¢ is a semi-infinite line originating at
(x, y) = (0, 0.

]

b4 u Qos v

u sin v

"

¥
z = Constant = CC(8)

B = @&
TI‘_—“Z

dS = u du dv

9. xy plane with elliptical coordinates (i, ¥), 1 <p<® 0< ¢ <27, (0, v) = (1, ¢,
normal in +z direction.

In the xy plane the curve of constant » is an ellipse of interfocal distance
2 CC(9) centered at (x, y) = (0, 0), and the curve of constant  is a hyperbola which
is orthogonal {o the family of ellipses for the same value of CC(9).

x*x = CC(H ucosv
y =CC(9) (u? -1 sinv
z = Constant = CC(10)

g8 =8
n~ Tz

ds = CC(9? (u2 - 1% (u? —cos? v) du dv

10. xy plane with elliptical coordinates (u, y), 1< 1 <®, 0<y < 27, (u, v) = (i, ¥,
normal in —z direction.

In the xy plane the curve of constant » is an ellipse of interfocal distance
2CC(12) centered at (x, y) = (0, 0), and the curve of constant ¥ is a hyperbola
which is orthogonal to the family of ellipses for the same value of cc(12).

"
#

CCAD ucos v

CC(12) (u? ~1)% sin v

o
it

z = Constant = CC(13)

&
n z

>
it

dS= CC(12)? (u? ~"1)% (u? ~cos? v) du v

D— |
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11, Quiside surface of a cireular eylinder along the z axis, (u, v) = (2. 8) —-w< z <,
0 < & < 2w, normal outward from the cylinder. The radius of the cylinder is a con-
stant given by €c¢15) .

On the cylindrical surface the curve of constant : is a circle of radiug CC(15)

centered at (x, y, zy = (0, 0, z), and the curve of constant & is a line parallei to
the z axis.

CC(158) cos v l

Il

X

"

¥ CC{15) sin v

zZ = U

&

A s .
n excosv+ey sin v

dS = CC(15) du dv

12. Inside surface of a circular cylinder along the z axis, (u, vi=(z, ). ~a <2< ®, 0 < & < 27,
normal inward. The radius of the cylinder is a constant given by €C(15).

On the cylindrical surface the eurve of constant = is a circle of radius CC(16)
centered at (x, y, z) = (0, 0, z), and the curve of constant # is a line paraliel to the
z axis.

x = £C(16) cos v

y =CC(16) sin v
z =u
én = —-é‘x cos v —é‘y sin v

a8 = CC(16) du dv

13. Outside surface of an elliptic cylinder along the z axis,(u, v) = (2, ¥}, ~® <z < ®,
¢ < < 2w, normal outward from the cylinder. The interfoecal distance of the ellip-
tie cross section is given hy 2cc17), The surface is one of constant » = CC(18),
where 1 < 4 < w,

On the cylindrical surface the curve of constant z is an ellipse of interfocal
distance 2 cC¢17) centered at {x, v. £} =(0, 0, z), and the eurve of constant ¢ is a
line parallel to the = axis, one of the two lines produced by the intersection of a
hyperbolic cylinder and the eiliptic ¢ylinder.

x = LC(17y CC(18) cos v
cC(17y {ecc18y? — 1% sin v

¥

Z =Uu

£

2

- e CC(18)2 - 1 cos v ¥ 8, cCl18) sin v
cC(18) —cos? v [CC(18)? — cos? v1*

¥
aﬂ)

dS = CC(17) [CC(18)2 —cos? v) * du dv
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Inside surface of an elliptic cylinder along the z axis, (v, v) = (z, ), —®@ <z <®,
0 < ¢ < 27, normal inward. The interfocal distance of the elliptic cross section is
given by 2CC(25). The surface is one of constant . = CC(26), Where 1 <y <w.

On the cylindrical surface the curve of constant z is an ellipse of interfocal
distance 2CC(25) centered at(x, y, z) = (0, 0, z), and the curve of constant y is a line
parallel to the z axis, one of the two lines produced by the intersection of a hyper-
bolic cylinder and the elliptic cylinder.

x = CC(25) CC(26) cos v

cc(2s) [cc(26)2 ~13% sin v

y =
Z = u
2 %
a . CC(26)2 -1 . CC( 26) .
en——ex— COSV’—&y sin v
CC(26)% — cos?v [CC(26)% —cos? v

%
dS = CC(25) [CC(26)% — cos?v] ™ du dv

Qutside surface of a sphere, (u, v)= (&, ¢), 028 <7, 0 £¢ < 2w, normal outward
from the sphere. The radius of the sphere is a constant given by CC(33).

On the spherical surface the curve of constant ¢ is a circle of radius
CC(33)sinéd centered at (x, y, z) = (0, 0, CC(33) cos &), and the curve of constant ¢
is a half circle between the poles of the sphere.

»
1

CC(33) sinu cos v

y = CC(33) sin u sin v

z = CC(33) cos u

€ =& sinucos v+ & sinusinv+ g cosu
d8 = CC(33) sin u du dv

Quiside surface of an oblate spheroid, (u, v) = (7, ¢), 02 n<m 0<¢ <27, normal
outward from the spheroid. The interfocal length of the spheroid is a constant
given by 2CcC(34). The surface is one of constant ¢ = CC¢35), where 0 < £ < o,

On the spheroidal surface the curve of congtant ¢ is a half ellipse containing
the poles of the spheroid, and the curve of constant » is a circle of radius

CC(34) [£2 + 1J* sin » centered at (% v, 2) = {0, 0, CC(34) CC(35) cos 7). The z axis is
the axis of symmetry.

E
n

cc(34) (€C(35)2 + 11* sin u cos v

cc(34) [cc(35)? + 11% sinu sin v

%
1]

N
I

CC(34) CC(35) cos u
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~

& =8, CC(35) [ce(35)? + cos? u) ™ * sin u cos v
+ &, CC(35) [CC(35)? + cos? ul ™ sin u sin v
+ 8, [ce3s)? + 11 [CC(35)2 + cos? ul™* cos u
ds = cC(34)? [ec(35)? + 11* [e(35)? + cos? ul® sin u du dv
Qutside surface of a prolate spheroid, (v, v) = (n, &), 0 <7 <7, U< e < 2r, normal

outward from the spheroid. The interfocal length of the spheroid is a constant
given by 2€C(42), The surface is one of constant # = CC¢43), where t ¢ r < w .

On the spheroidal suriace the curve of constant ¢ is a half ellipse containing
the poles of the spheroid, and the eurve of constant » is a cirele of radius
cce42) [£2 - 11* sin v centered at (x, v, z) = (0, 0, CC(42) CC(43) cos 7). The z
axis is the axis of symmetry.

= CC(42) [CC(43)2 —11* sinu cos v

-3

= CC(42) [cc(43)2 —1)% sinu sin v

g

N
B

CC(42) CC(43) cos u

1224
1"

&, CC(43) [CC(43)? — cos? ul ™ sin u cos v
+ &, CC(43) [cc(43)2 — cos? ul™* sin u sin v
+ 8 [cc(43)? — 1% [0C(43)2 — cos? ul ™* cos u

dS = CC(42)? [€Cr43)? —11*% [CC(43)? —cos? ul* sin u du dv

Qutside gurface of a toroid, (u, v) = (9, ¢, —v <y <w, 0 < ¢ < 27, normal outward

from the toroid. The itoroid is characterized by two radii cc¢49) and CC(50). The
ratio of these two radii C€C¢51y, 1 < CC¢51y < », forms an orthogonal system with »
and ¢ and is a constant over the toroidal surface. To completely characterize the

surface, a second constant CC(52) = [CC(50)? —CC(49)?]* is defined.

Thus the surface may be defined by giving either the constants Cc¢49) and
CcC(s0) or the constants CC¢51) and CC(52). Because the two radii are easier to
visualize, CC(¢49) and CC{50) will be the input for CHIEF.

On the toroidal surface the curve of constant ¢ is a circle produced by the inter-

section of a half plane containing the z axis and the toroid, and the curve of constant
n is a cirele produced by the intersection of a spherical bowl and the toroid. The
z axis is the symmetry axis for the toroid.

E
1

= [CC(50)2 —CC(49)?] cos v/[CCE50) —€C(49) cos ul

[ce(50)? —cC49)?] sin v/[CC{50) —CC(49) cos ul

g
I

CC(49) [CCBOY? —CC(49)21” sin uslCC(50) —CC(49) cos ul

L}
it
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&, = -8 [CC(49) — CC(50) cos u) cos v/ [CC(50) — CC(49) cos u]
-8 (CC(49) — CC(50) cos ul sin v/ [CC($0) — CC(49) cos ul
+ &, [CC(50)2 - €C(40)%1* sin u/[CC(SD) — CC(49) cos u]

dS = CC(49) [CC(50)2 —CC(49)2]3/“/[CC(50) — CC{49) cos ul? du dv

The input subroutines providing for these geometrical options are listed in the
appendix. Note that the two subroutines CCOORD and CCUNMD already exist in CHIEF,
CCOORD (U, V, NEQN, Al, A2, A3) is called in CHIEF whenever only the Cartesian
coordinates (A1, A2, A3) are desired for a surface point (U, V). The index NEQN refers
to the particular geometrical option. The subroutine CC UNMD (U, V, NEQN, AX1,

AX2, AX3, AN1, AN2, AN3, RMAGD) is called whenever all of the surface information
is desired; i.e., it provides the Cartesian coordinates (AX1, AXZ2, AX3), the Cartesian
components of the unit normal to the surface (AN1, AN2, AN3), and the magnitude of
the surface area element RMAGD.

Note that the set of constants C1, C2, C3,... in CHIEF have been replaced by an
array of constants CC(100). The declaration COMMON /ALLC /CC{100) must be sub-
stituted in the main program and in CCOORD and CCUNMD for the declaration
COMMON /ALLC /C1, C2, C3,... These constants are quantities that do not vary over
the surface and must be input or calculated in the main program. Every combination
of constants appearing in the conversion formulas is calculated and stored in CC(100).
This reduces the computation time congiderably, since the calculation is only performed
once instead of every time the subroutines CCOORD and CCUNMD are called.

Most of the input constants refer to a distance and are described in terms of a unit
of length called WAVE= 1k = A/27 = ¢/w. However, some of the input constants in
options 13, 14, 16, and 17 are pure numbers and represent ratios of distances. Refer-
ence to the previous description of the geometrical options will indicate which parameters
the input constants represent.

Option 19 in subroutine CCOORD provides interior points and should be modified to
fit the specific geometry whenever interior points are required.

SUMMARY
The following observations may aid the potential user of CHIEF,

1. CHIEF evaluates the solution to a boundary-value problem. This will be a realistic
transducer model when the velocities are known; for example, when velocity control
exists.

2. CHIEF is a very flexible program, allowing the user a wide range of options.
Reducing it to a production program, capable of being used by casual acquaintances,
would remove this flexibility. If only a specific geometry is of interest, the user is
advised to write a CHIEF-like program taking advantage of the peculiarities of that
geometry. This will be more economical in the long run, if the program is to be used
extensively. I the frequencies of interest are well below the lowest critical frequency,
a simple source method, where the pressure is obtainable in terts of a single integral,
might be considered.

3. If rotational or reflective symmetry is not present, the computation times increase
significantly. The possibility of using rotational or reflective symmetry should be ex-
amined carefully. If both are applicable, it is usually best to use rotational symmetry.
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4. The results obtained using CHIEF approach the correct solution as the subdivision is
increased. Surprisingly good resulis can be obtained, especially for the far field, using
a relatively crude subdivision scheme. However, ohjects that are thin may require an
unusually fine subdivision. Also, as the acoustic size is increased, the number of sub-
divigions required to give accurate resulis will also increase. However, thig limitation,
which is fundamental to the finite-element method, will be less restrictive in the future
as computers are improved.

3. This report describes new input subroutines to CHIEF that provide for a wide range
of geometrical options. Most of the standard geometries have been included. Surfaces
of eomplex objects such as a free-flooded ring can be described by combining two or
more of the options. The user can easily add additional geometries that are desired,
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Appendix

LISTING OF THE SUBROUTINES CCOORD
AND CCUNMD AND THEIR REQUIRED INPUT

SUBROUT INE CCOORD{UV«NEQN+A1+A2:A3)
COMMON/ALLC/CCL1I00)
GO TO (14243444516 ¢748¢9110011512413414415¢16+17418219) NEUN

1 Al=CC(1)
AZ2=U
A3=V
RF TURN

2 A1=CC(2}
A2=U
A3=V
RE TURN

3 Al=U
AZ=CC(3)
A3=V
RETURN

4 Al=U
A2=CCl4)
Ad=V
RETURN

s Al=U
A2=V
A3=CC(S)
RETURN

6 Al=U
A2=V
A3=CC(6)
RETURN

7 A1=U%COS({V)
AZ=zURSINIV)Y
AZ=CCL7)
RETURN

8 Al=UXCOSI(VY)
A2=URSINLY)
A3=CC{8)
RETURN

9 Al=CC{ay#URCOS{V)
AZ=CCID) X¥SQRT {UXLU=] 4 ) ASINIV)
A3=CC(10)
RE TURN

10 Al=CCt12)y%URCOStVY
A2=CCU12)%SQRTIUEU=T1 2 ) ¥SIN{V)
A3=CC(13)
RE TURN

11 Al=CC{15)y%COS(V)
A2=CCLIS)IHSINIV)
A3=L
RETURN

12 AY=CCl16)I%COS (V)
AZ2=CCL16)1*5IN(V)
A3=u
RETURN

13 ALl=CC(21)Y%COSIV)
AZ=CC (221 %#SINIV)
A3=U
RE TURN 17
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14 AL=CC{29}¥COS{V} ;
AZ=CCTII0Y#SINIVY i
A3=U
RETURN

15 RSINU=SCCUI331%SIN{UY
Al =RSINURCOS V)
AZ2=RSINUSSINIV)
A3=CC{33y %051V} ’
RE TURN

16 CCSINU=CCI{IOIASINIUY !
A1=CCSINUXCOS(V) !
AZ=COSINURSIN(V Y
A3=CC{3T7y*COSIU
RETURN

17 CCEINU=CCI4T7y#SINILY
Al=CCSINUXCOSIY)
AZ2=CCSINUXSIN(VY
AS=CC a5 *COStU)

RE TURN

18 FAC=CC(Sa)Y/{CC(S1y=COSEL) )
Al=FAC%COSIVY
AP=FACESTIMN(Y)
AZ=FACESTN(UIRCCISS)

RE TURN

19 Al=0,
A2=U
A3=CC {60
RE TURN
END

SUBROUTINE CCUNMD(U sV +NEGNs AXT « AX2 s AX 32 AN ¢ ANZ s AN3 JRMAGD )
COMMONAALLC/CCT 1O0)
GO TO (1424034415461 7+B1 D21 0011412+013414115418641T+18) NEGN

1 ANI=1le

ANZ=C .

AN3=0,

RMAGD =1

AX1=CClt)

AxzZ=u :

AM3=V !

RETURN

ANT==1,

ANZ2=0,

AN3=0,

RMAGD =14

AX1=CCt 2y

AX2z=U

AX3z=VY

RETURN

3 AN1=0,
ANZ=1 s
ANA=0O,
RMAGDT 1.
AXl=U
AX2=CC(3)
AX3=v
RETURN

4 ANI=O,
AM2=—1,
AN3=N,
RMAGD=T1
AXY=U
AXZ=CC {4

Ny

H
1
|
it
,
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AX3=V

RETURN

AN1=0,

AN2=0,

AN3=1.

RMAGD=1,

AX 1=

AX2=V

AXI=CCI(5)
RETURN

AN1=0,

AN2=0.

AN3==1,
RMAGHI=1,

AX1=U

AXZ2=V

AX3=CC(8)

RE TURN

ANI=O,

AN2=0,

AN3=1.

RMAGD=U
AX1=UHCOS (V)
AXZ2=UXS NGV
AXA=CC(T7)
RETURN

AN1=0,

ANZ2=0,

ANIA==1,

RMAGDH =U
AX1=UXCOS5(V)
AMZ=UNSINIV)
AX3=CC(8)

RE TURN
COSV=C0S5(V})
COSVS=COSV*COSV
U=y
SQ=50RT(UU~1 4
AN1=0,

ANZ2=0,

AN3=1,
RMAGD=CC(11)®*(UU~COSVYS)Y/SQ
AX1=CC(Q)*URCOSY
AX2=CC () *SQ¥SARTL 1 «~COSVS)
AX3=CC1Q)
RETURN
COSV=COSsIVY
Uu=usy
COSVS=COSV*COSV
SE=SORT(UU=1]1 4)
AN1=0.

ANZ2=0,.

ANIG==1.
RMAGH=CC(14y#{UU=COSVS)Y /S0
AX1=CC{12V1%U*ZO5V
AX2=CT{12I#SOQRSORT (1 « —COSVYS)
AX3I=CC(13)
RETURN
AN1=COSI({V)
ANZ2=SIN(V}Y
AN3=C,
RMAGD=CC{15)
AX1=CCl1S5S)¥*AN]
AX2=CC(15)Y*AN2

19
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AX3=Ui

RETURN

ANI==COStV)
ANZ2=—-S5TN(V}

AN3=0,

RMAGD=CC{16)Y
AX1=—CC{ 16y HANT
AXZ==CC{ 16 RANZ
AX3=U

RETURN

COSV=Casivy
COSVS=COSV*COSY
SINV=SORT (1 ,-COSVS)
BEMS=1 D/SGRT(CC( 19y ~COSVS)
ANI=CC(2CH1RDENS*COSY
AN2=CC{ 1BYSDENSHSTNY
AN3= 0 -
RMAGD=CC I T DENS
AX1=CCt21I%C05V
AXZ2=CCI{Z221%S 1INV
AX3=y

RETURN

COSV=COS VY
COSVS=COSV¥COSY
SINVzSQRTI . ~C0SVEY
DENS={  /SORTICCI 271 =-COSVS)
ANL=—CC(28)%DENS®COSY
ANPZ==CC P76 ) #DENSESTNY
ANZ=0D,
RMAGD=CC 25 /DENS
AX1=CC{ 29 COS5Y
AXZ2=CCI{201aSINY
AX3=U

RETURN

SIMNU=STM(LY
AMNLI=SInNUXCOSIVY
ANZ=SINU*STNIV)
ANI=COS{U)
RMAGD=CC (331 *5INU
AX1=CC{33 AN
AX2=CC{33)»%AN2
AXI=CC{3ZTIRANT
RETURN

COSV=CoStVY
SINV=STNIVY
cCOosSuU=costny
COSUS=COSU*COSYU
SINUSSERTI] «=~=COSUS)
FAC=1 4 /SGRT{CC{36Y4COSUS)
CCSINU=CLI39) ¥STNU
GAC=FACRCCIIS I RSINY
AN =GACHCOSY
ANP=GACRSINY
ANZ=FAC¥CC{3BY¥COSU
RMAGD=CC(40YXSINUAFAC
AXI=CCSINUSCOSY
AXZ=CCSINURSINYG
AXA=CCLATIHRCOSU
RETURN

COSVY=COSIY)Y
SINV=SINIVY
COSU=CNStuy
COSUS=COSUXCOSYU




