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. ABSTRACT

The time at which a received signal crosses a certain level
fluctuates in the presence of noise. A theoretical formula for the
standard deviation of this thresholding time is obtained. The formula
is applied to the detection of a pulse perturbed by Gaussian noise.
Two practical detection schemes, the peak-amplitude estimator and
the double differentiator, are theoretically analyzed and compared.
Also, a formula is derived which may be used to determine the ef-
ficacy of a false-alarm detection system.

PROBLEM STATUS

A final report on one phase of the problem. Work continues on
other phases.
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THE UNCERTAINTY OF PULSE POSITION DUE TO NOISE

FLUCTUATIONS IN THE PRESENCE OF GAUSSIAN NOISE

The time at which a received signal crosses a certain level fluctuates in the presence
of noise. In this section theoretical formulas for the probability density of the crossing
time and its standard deviation are obtained. It is assumed that both the signal and noise
have been modified by the presence of an intermediate frequency (IF) filter, as shown in
Fig. 1 where s(t) is the signal and n(¢) is the noise after demodulation. It can be shown
that the effect of the IF filter passband on the signal and noise is the same as the effect
of a baseband filter of the same shape. Hence, in the following analysis, the IF filter will
always be treated as if it were a baseband filter. Fig. 2 shows the signal and the threshold
level a which must be crossed to trigger an output signal from the threshold detector. If

an interval of time € is chosen small enough and if both s(¢) and n(t) are differentiable
functions, then

s(to +€) = s(tg) + §'(ty)e
and (1)
n(ty + €) = n(ty) + n'(ty)e,

where s'(to) and n'(ty) are time derivatives at the point ¢ = to- The probability P that
s(t) + n(t) crosses the threshold level during the interval € shall now be calculated.

FROM
RECEIVER s(t) + n(t) o | outpuT
— " »| DEMODULATOR »| THRESHOLD | SMTPWT
CIRCUITS FILTER DETECTOR

Fig. 1—Pulse position detection system

For a fixed value of n'(to), we must have s(ty) + n(¢y) <a and s(ty + €) + n(ty + €)
> a. Using Eq. (1), these two inequalities become a — s(to) — s'(tg)e — n'(ty)e < n(ty)
<a = s(tp). This inequality can be satisfied only if n'(ty) > — s'(¢). With the aid of
these last two inequalities, it is seen that

—s(tg)
P= f f fnn'(a, B) da dB, (2)
-M a

—s(tg)—Me—Pe

where M = s'(to) for notational conveneince and f,,,,'(®, f) is the joint probability density
function of the noise and its derivative. It is now assumed that n(t) is a stationary
Gaussian process with a probability density function given by
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2 DON J. TORRIERI

—1)2
fn(oz)=\/2_ﬂ10 exp [_(0420;1) ] (3)

where 77 is the mean (expected) value of n(t)
and o2 is the mean square of n(t). Since n'(t)
can be considered the result of passing n(t)

s(t)

ty tote through a linear system, n'(t) is also a stationary
TIME Gaussian process. For a linear system with a
system function H(w) and a stationary random
Fig. 2—Demodulator output signal input, it is easy to show that
y = H(0)x, (4)

where ¥ is the mean value of the output and ¥ is the mean value of the input. The sys-
tem function of a differentiator is H(w) = jw. Thus it follows from Eq. (4) that 7 = 0.
and we have the following expression for the probability density function of n'(t):

1 g2
fn (ﬁ)_\/'z?on,eXp[ 20%,], (5)
where 0,2,' is the mean square of n'(¢).

It shall now be shown that n(t) and n'(t) are uncorrelated. For a stationary process,
we have the general relation

At (t) = —R(7), (6)

where 7 = t; — t5 and R(7) is the autocorrelation function. Because R(1) is an even func-
tion for a real process n(t), the derivative in Eq. (6) vanishes at the origin if it exists
there. Thus

——— d

n(t)n'(t) = —5-R(7) =0, (7)
dr 7=0

and n(t) has been shown to be uncorrelated with n'(t).

Since n(t) and n'(t) may be considered as the outputs of two linear systems with the
same input n(t), it follows that n(t) and n'(t) are jointly normal. Since these two processes
are also uncorrelated, they are independent; thus Eq. (2) becomes

&o a=s(tg)

P= | s | (@) do (®)
-M a—s(tg)-Me—fe

Since € may be chosen arbitrarily small, Eq. (8) reduces to

OO0

P=cfyla ~s(t)] | 4+ )0 dB. (9)
-M

The integral may be evaluated by substitution of Eq. (5) and a change of variables. The
result is
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M ! M2
P=cfyla~s(t)] [M et (o) + e eon( ~gom )] : (10)

where the subscript on the time variables has been dropped and the time dependence of
M is suppressed for notational brevity. We have also defined

2

Yy
erf(y) =—\/17_7r f exp(—% ) dx. (11)

o

At this point, it is tempting to define the probability density function for a threshold-
level crossing at time ¢ by f.(t) = P/e in the limit of small €. Such a definition gives us,
however, a density function that cannot be normalized. This anomaly is due to the fact
that there may be more than one threshold-level crossing. In fact, there may be more
than one crossing even when there is no signal present at all.

Crossings that do not occur near the time at which the signal level reaches the
threshold level constitute a “false alarm” problem. This problem will be discussed in the
next section. For the present, it is assumed that these distant crossings have been suitably
excluded. It is further assumed that there exists an interval t; <t <t, in which there is
a negligible probability of more than one threshold crossing and unity probability of ex-
actly one crossing. We then can define a normalized probability density by f,(t) = P/e in
this interval and f,(t) = 0 otherwise. From Eq. (10), we have

M ' M2
fe()=7f,la—s(t)] {M erf<0—n,> +\;’2‘_ﬂ exp<"§o—rzl,>} » 1 <t <t,,

(12)
fo(t)=0, t<ty,t>t,,
where t; and t; must be such that normalization is possible; that is,
ta
fe(®)dt=1. (13)
51
It is immediately seen that t; and t, are not uniquely defined by Eq. (13). To
remedy this defect, we first define the mean threshold time by .
f= f t,(t) dt. (14)

t

We then require that the probability of threshold crossing before t be equal to the prob-
ability of threshold crossing after t; that is, we require

t to
fe(t)dt= J._ fe(t) dt. (15)
t

51

The values of t;and {5 may be determined by solving Egs. (13)-(15) simultaneously.
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4 DON J. TORRIERI

A special case arises when n = 0, s(t) is antisymmetric about ¢, and ? is the same
time as that time when s(t) would cross the threshold level in the absence of noise; that
is, s(f) = a. Such a situation is shown in Fig. 2. In this case f,(t) is symmetric about Z,
and Eq. (15) requires that t; = ¢ — T and ty =t + T. The parameter T is determined by
substitution in Eq. (13). We have

t+T
[; fe(t)dt=1, (16)
Yt—=T

which may be solved to determine T and, consequently, t; and t5. These resulis will be
referred to later.

There remains the task of justifying the assumption that led to Eq. (12). We as-
sumed that there is negligible probability of more than one threshold crossing in the
interval t; <t <{,. If there is more than one threshiold crossing from below threshold
to above it, then there must be at least one threshold crossing from above threshold to
below it. Thus the probability of multiple threshold crossing in an interval will be negligi-
ble if the probability of crossing from above the threshold to below it is negligible. Let
Pp be the probability of this reversed threshold crossing im am interval between time ¢ and
t + €. Reasoning as in Eq. (2), it follows that

=M  _a—s(t)~Me—Pe _ |
Pg = f f fon'(e, B) dax dB. €17)

a—s(t)

Calculating in a manner analogous to that leading to Eq. (12), we obtain the probability
density function of a reverse crossing in the interval t; <t <t,:

M : x|
fr(t)=fn[a_s(t)] |:_M erf <—&;) +—0\/‘12% exp< %gr)};- (18}
If
2
0< r f.(t) dt <<1, (19)
utl

then reverse threshold crossings and multiple crossings are of negligible importance. In

this case, Eq. (12) is a mathematically consistent and accurate expression for the threshold-
crossing density function in the vicinity of the pulse edge. Consequently, we may define
the standard deviation ¢, of the threshold crossing time by

t

02 = f
t

The implications of Eq. (19) shall now be elaborated. From Egs. (12) and (13), we
have

2
(t —D)2f(¢) dt. (20) ‘
: |

0,

t ’
fz %n exp<— M2> fola—s(t)] dt=1—

M
y I 50—'21, M erf(—) fnla—s(t)] dt (21)

t1
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Substitution of Eqgs. (18) and (21) into Eq. (19) yields, after some manipulation,

t
0<1- ’ Mf, [a—~s(t)] dt <<1. (22)

t1

We conclude that Eq. (22) must be satisfied for Eqgs. (12) and (20) to be applicable. It
is noteworthy that Eq. (22) implies that M > 0 in at least a subinterval of the interval
t; <t <ty. In particular, if M is a constant, it must be positive.

A special case of interest occurs when the noise is so weak that there is essentially
zero probability of more than one threshold crossing in the interval t; <t <t¢,. Since
f.(t) = 0, it follows that

M o, M2
- ) =—n_ 2
Merf< On') NG exp( 20%) (23)
The use of this relation in Eq. (12) then gives
fo(8) = Mf,[a = s(t)], t; <t<ty,
(24)
fe(t)=0, t<ty,t>t,.

It should be remembered that Eq. (12) is valid for any stationary Gaussian noise
process, including nonwhite Gaussian noise. The formula does not apply to non-Gaussian
noise. However, it is shown in the appendix that Eq. (24) is approximately valid for weak
noise, even if it is non-Gaussian.

FALSE ALARMS

If the noise entering a pulse-detecting system has an amplitude exceeding the thres-
hold value, a spurious detection may occur. This phenomenon is called a false alarm. To
reduce the probability of a false alarm, a detector should include a rejector circuit which
blocks all input pulses which do not exceed a fixed level for a specified period of time.

Let L be the rejection level and T the time duration which must be exceeded if the
pulse is to be passed by the rejector. We now determine the probability that a noise
pulse will have an amplitude greater than L for the time T;. This probability may be
deduced by the same reasoning that led to Eq. (8). Thus if Py (T;) is the probability of
a noise pulse of duration T, then

(>}

(=<} oo 0
Py(Ty) = L Fur®d8 | faeda+ [ tewras £ IRCCECY
. .

~L

This relation gives the probability of a noise pulse occurring during an arbitrary interval
of duration T;. It is an approximate relation which increases in accuracy as T; decreases.
For larger T;, the expansion of Eq. (1) is no longer valid, and, consequently, neither is
Eq. (25).
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Using Egs. (3) and (5) and assuming 7i = 0, Eq. (25) reduces to

Py(Ty)=1-~ert <f—> - JO f,(B) ext (%) dg. (26)

2 n n

Suppose a pulse of duration T; > T passes the rejector. The probability that a noise
pulse of duration T; occurred during the same interval and that no signal was received
during this interval is given by the joint probability function Py 4. Let Py|y be the con-
ditional probability that no signal was received, given that a noise pulse occurred. If Pp
is the probability that the passed pulse is a false alarm, then

where the last equality follows from the fact that the signal and noise are statistically inde-
pendent. From Eq. (25) it is apparent that Py (T;) < Py(T) when Ty = T. Since Py <1,
it then follows that Pp <X Py (T). It can be shown that erf(x) > 1 — 1/2 exp (—x2/2)
when x > 0. Using this inequality and Eq. (26),

1 o L2
Pp<if1+—— % Sk
F=y (1 NEE T%Er) exp< 20,%)’ (28)

where T is the minimum possible duration of a passed pulse.

PRACTICAL APPLICATION

A situation of common occurrence is a signal consisting of pulses which, in the
vicinity of an edge, have the form shown in Fig. 3. The threshold level ¢ is set at half
the value of the signal amplitude. In this symmetrical situation the mean crossing time is
the time at which the unperturbed signal reaches the threshold level; that is, s(t) = a. We
now seek to evaluate the probability density function given by Eq. (12). As mentioned
previously, when s(t) is antisymmetrical about #, we have t; =7 — T and t5 =t + T. The
parameter T is determined from Eq. (16).

If s(t) is approximated by Fig. 3, it may be described analytically by

s(t)=a+M(t—t) T-L<t<i+ )
’ M "M
- a
= +~’
s(t) = 2a, E>F 4o > (29)
- a
s(t) =0, t<t " )

where M is the slope of the ramp and is assumed to be a constant; that is, M = s'(). Itis
also assumed that T is large enough that s(t + T) = 2a; that is, it is assumed that T > a/M.
We now use Eq. (3), with 7 = 0, and Eq. (29) in Eq. (12). The result is
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N
1 M2(t—T7)2 M 0, _ M2
fc(t)—\/ﬁonexl)[ 202 M erf o, +\/ﬁexp 202 ||’
- a - a
—— <<ttt +—>
f= St<t+y
Tr i<t <T+T, . (30)
O‘nl a2 M
fe(t) =5 nexp 202 . .
-1 -2,
t-T<t<t-
f.(t)=0, t<t-T,t>t+T. J

This equation may now be combined with Egs. (16) and (20), which yields

M g, M2 a a
2 = — | + n f —_ — f —_
% ‘:erf<0n, ) M/2n exp( o2 )]‘:er <on> e ( o, )
2a a2 o2 a3\ o, a2
— = _ __ZL+ 3 - = n 1
\/;on exp ( 202 >} M2 (T M3 ) 3n0, P\ 202 )’ (1)

and

' 2
+M\(;—’2_L7T exp<—2§g€'>:‘ [erf(Z—n) - erf(—g': )] (32)

The condition under which Eg. (31) is a good approximation is given by Eq. (22).
Noting that M = 0 for ¢t > t + (a/M) and for t <t — (a/M), Eq. (22) becomes

a

n

2 erf( > <<1. (33)

A tangential signal-to-noise ratio is defined as 8.5 dB. For this value a/0,, =~ 1.33 and

2 erf(—a/0,,) ~ 0.18. Thus the above inequality is barely satisfied when a tangential signal
is present. The left-hand side of Eq. (33) represents the probability of a reverse threshold
crossing in the interval t — T <t <t + T. Cer-

tainly, if this probability is 18%, the theoretical

development of the first section becomes highly 2qf-———— — —
questionable. Therefore, it may be concluded

that the signal-to-noise ratio must be somewhat s(t)
greater than tangential for Eq. (31) to provide

an accurate value of the standard deviation.

- ——
~+|
4+ m——————

To use Eq. (31), we must know the values T-7
of M, g, and 0,'. Each of these quantities is a TIME
function of the IF filter shown in Fig. 1. In
addition the detection process employed by the Fig. 3—Edge of an idealized pulse
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threshold detector may alter one or more of these quantities. In the next two sections,
we shall consider specific choices of the threshold detector and the IF filter.

PEAK-AMPLITUDE ESTIMATOR

A simplified schematic diagram of a peak amplitude estimator is shown in Fig. 4.
This circuit is an adaptive threshold detector; that is, it will locate the leading edge of a
pulse regardless of its amplitude. In effect, the threshold level is adjusted when the pulse
amplitude changes. The input signal and noise, s;(t) + n;(t), are fed into this threshold
detector from the demodulator, as shown in Fig. 1. The operation of this circuit is most
easily explained if it is initially assumed that n;(t) = 0, that the filter bandwidth is wide,
and that the amplifier has a gain G = —2. Suppose that s; (¢) has the form indicated in
Fig. 5. Referring to Figs. 4 and 5, it is seen that the output signal sy(¢) is a sharp pulse
rising at time ¥ + 7, where 7 is the time delay of the delay line. In Fig. 5, § is the delay
of the filter. It should be noticed that so(t) goes from above the threshold to below it,
whereas our derivations have assumed the opposite. However, it may be easily verified
that a threshold crossing from above to below does not change any of our formulas if we
merely interpret M as the absolute value of the slope and @ as the absolute value of the
threshold level.

5,(t) + n(1)

! FILTER
s (1) + ni(t) +l s(t) + n(h) ZERO- solh)
i i | @ ! CROSSING |—t
+ DETECTOR
DELAY l
— AMPLIFIER
LINE sa(t) + na(t)

Fig. 4—Peak-amplitude estimator

When noise is present at the detector input, there will be two contributions to the
zero-crossing fluctuation of s(¢). One contribution is the noise at the leading edge of
89(t); the other is the amplitude fluctuation of the flat portion of s, (). The latter fluctua-
tion is due to the noise in the upper branch of the circuit of Fig. 4.

A filter is inserted to reduce the noise in the upper branch. However, decreasing the
filter bandwidth lengthens the rise time of s (f). Consequently, the amplitude of s, (¢) at
time ¢ + 7 is decreased. As seen in Fig. 5, this decrease will cause an erroneous early
detection of the pulse. To remedy this situation, the amplifier of the lower branch must
have its gain adjusted. If the amplifier gain is G,

S(E+T7) =51 (E+7T) +so(t+7)=51(t +7) + G s;(2). (34)

To ensure that s(t + 7) = 0 in the absence of noise, it is necessary that

= —ﬁgﬁ_)i). (35)
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If Eq. (35) is not satisfied, the zero crossing of s(t) will occur at a time t + 7 + At.
If At is small,

L ST s T+T)+ Gs;(t) (36)
sSE+r) sj@E+7)+ Gs:_(?)’

where the prime denotes differentiation. This change in zero-crossing time is equivalent

to a change Aa = sj(¢t)At in the threshold level which defines the pulse-edge location.

From now on, we assume that Eq. (85) is satisfied and, consequently, that At = 0.

Since we are interested in determining the position of the edge of a pulse, we can
approximate the pulse by a step function to simplify the mathematics. As mentioned pre-
viously, the signal entering the threshold detector may be considered the result of a pulse
passing through an equivalent baseband filter (Fig. 1). Let u(t) be the signal entering this
filter and h(#) be the impulse response. Then

oo

5;(t) = f h(t —t')u(t') dt', (37)

where s;(t) is the input signal in Fig. 4. Suppose the filter transfer function is H(w) =
|[H(w)le k@, that is, the filter phase response is assumed to be linear over the range of
significant values of |H(w)|. It is also assumed that H(0) = 1. If u(¢) is a step function of
amplitude 2a, occurring at ¢ = 0, the convolution theorem may be used with Eq. (37) to
show that s;(k) = a;. Thus we may make the identification ¢ = k. It then follows from
Eq. (37) and the convolution theorem that

() =2 f [H(w)lei @ (t=T) deo. (38)

It is immediately noticed that s;-(t) is maximum at ¢t = t. Referring to Figs. 4 and 5, the
absolute value of the slope of s(t) at t =t + 7 is
M=|s'(t+7)==sh(t +71)— sy (f +7) =—Gsy(t) — s} + 1), (39)

where G is assumed to be negative. It is assumed that the delay time 7 is chosen large
enough that s'l (t + 1) = 0. Then Egs. (38) and (89) yield

o0

M= —G% |H(w)| dew. (40)

—00

The mean-square noise associated with s(t) is

02 =n2(t)=[ny(t) + ny(t)12 = n%(t) + n22(t) + 2nq (t)ng(t). (41)
To evaluate the right-hand side of Eq. (41), we let Sy(w) denote the power spectrum of
the noise entering the IF filter. Then the power spectrum of the noise entering the thres-
hold detector is

Si(w) = Sp(w)IH(w)I2, (42)
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where H(w) is the transfer function of the IF filter. The delay line has no effect on the
power spectrum, so

(e o]

- g2 2
n(t) =%— J‘_oo Sj(w)dw =g—ﬂ f So(w) H(w)|? de. (43)

—o0

If we let H,(w) represent the transfer function of the filter in the upper branch of Fig. 4,
we similarly obtain

057 | So(@IH@IH @) deo. (44)

After some manipulation the last term in Eq. (41) becomes

oo

mOng = g | Sol@)H)Hy ()il de, (45)

— 00

where 7, is the relative delay time between the two branches. In general, it is exceedingly
d1ff1cult to evaluate the integral of Eq. (45). However, if both H(w) and H; (w) are
Gaussian in shape and if Sg(w) has a flat spectrum, then it is found that nq (£)n, (t) is
negligibly small if 7, > B™1, where B is the equivalent “bandwidth” of |H(w)|2lH 1 (W)
Henceforth, it will be assumed that nq (t)ny(t) is negligible. We are left with

2r

g2 1 (7
0= | So@lH@)? dw+ o [ sotrmepm @) o, 48)
The differentiation of a noise process is equivalent to passing it through a filter with
transfer function Hp(w) = ]w Using this fact and calculating as done previously, we ob-
tain for the mean square of n'(t)

o0

02,=G_2 fo Sq(w)H(w)|2w?2 dw+l— f So (W) H(wW)2|Hy (w)|2w?2 dw. (47)
n'=on )0 o 0 1 .

— 00

Once the filter functions |H(w)| and |H; (w)| are specified, Egs. (40), (46), and (47)
may be used in Eq. (31) to obtain the standard deviation of the threshold crossing time.
As a specific example, let

2
H(w)| = exp <—2%2—> (48)
0

If the bandwidth is defined as the frequency difference between the half-power points of
|[H(w)], it is easy to show that the bandwidth B and the parameter w are related by

(49)

™
“o= g2l

[
==
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12 DON J. TORRIERI
We assume that H,(w) is an RC “integrator” filter; that is,

1

jwRC +1 (50)

Hy (w) =

It is assumed in this example that the noise is white; that is, Sp(w) = N, where N is a
constant. Using Eqgs. (48) and (50) in Egs. (40), (46), and (47), there results

2
M=-G)/ a0
1/;“1 0

2 2
02 = ¢ Nwo + N erf<-—£> exp < L > (51)

\ar RC woRC woRC

02 = G2N - N erf—\/g ex 1 2
n o o/dm 3 \/— (RC)2 “° ™ (RC)® woRC | “P|\ woRC

The substitution of Eq. (51) and the jdentity a = —Ga, in Eq. (31) yields the standard
deviation of the pulse-edge fluctuation.

So far, we have ignored the zero-crossing-time fluctuation caused by the zero-crossing
detector itself. Usually, this detector is implemented by a Schmitt-Trigger circuit. Theo-
retically the Schmitt Trigger will change state when the input voltage crosses the 0-volt
level. In reality, triggering may occur anywhere within a voltage range of 2AV volts,
where AV is the uncertainty in the triggering level. If the absolute value of the slope of
the detected pulse is M and if ¢, is the mean zero-crossing time, then the detected zero
crossmg may occur anywhere in the range t, — (AV/M) <t <ty + (AV/M). Defining
0%y as the mean-square deviation from the mean zero- -crossing time and assuming that
there is a uniform probability of a zero crossing anywhere in the above range,

AV
03y = 3< ) (52)

This equation gives the lower limit of the standard deviation of the time fluctuation of a
pulse edge; that is, this equation gives the standard deviation in the total absence of noise
and under ideal operating conditions elsewhere in the detector.

DOUBLE DIFFERENTIATOR

It is observed from Eq. (46) that the presence of the upper branch of Fig. 4 causes
an increase in the noise power at the zero-crossing detector. It is worthwhile, therefore,
to investigate a detection system which contains only a single branch. Such a system is
illustrated in Fig. 6, where s;(t) represents the pulse after passage through the IF filter
and s;(¢) is determined by Eq (37). Once again, the input to the IF filter is assumed to
be a step function of amplitude 2a; the filter transfer function is H(w) = |H (w)le™ Wt Tt
follows from Eq. (38) that after passage through the double differentiator, the signal is

o0

s(t) = s; (t) =% f jw|H(w)ledw (1) deo. (53)

—00
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si(t) + (1) DOUBLE s{t) + nlt) | ZERO-CROSSING OUTPUT

" | DIFFERENTIATOR DETECTOR

Fig. 6—Double differentiator system

It is seen that s(¢} = 0 at £ = £, which is the half-amplitude point of s;(t). Thus the
double differentiator has converted the half-amplitude time to the zero-crossing time.
When Gaussian noise is present, we may apply Eq. (31) once the values of M, 03, and
02+ are known for the system of Fig. 6. From Eg. (53)

o0
M =15 (@) =% f W2 |H(w)| dw (54)
Since the power spectrum of n(t) is given by S(w) = Sg(w)|H(w)|2w?, it follows that

1 oo
02 = o ’( Sglw)H(w)2wt dw,
and (55)
1 .,
o2 = o f Sg(w)H(w)2w8 dw,
where Sy{w) is the power spectrum of the noise entering the IF filter. If the noise is

white Gaussian, then Sy{w) = N, a constant. If the filter transfer function is Gaussian,
then Eq. (48) may be applied to Egs. (54) and (55) with the result that

M =y _—iaca%,
3N
02 = VG w3, > (56)
and
15N
2, = 7
o T 15w 0 J

In the general case, a comparison between the double differentiator and the peak-
amplitude estimator is difficult without the aid of a computer. However, in the special
case of weak noise, we may use Eq. (24) to obtain an approximate comparison. We as-
sume that the signal s(¢) has the form shown in Fig. 3 and is described by Eq. (29). We
now combine Egs. (24), (29), (3), and (20). Since n = 0 and M = 0 outside the interval
t— (a/M) <t <t+ (a/M), we calculate

2 2
2 = %1 O\ et~ - 22 -
i Mz[m<an) e -2) - 7 e >] &)

L

<
P

(e
et
ey

1
[sows
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The threshold value is, as usual, equal to one half the amplitude of the signal. When the
noise is weak, the signal-to-noise ratio is high. Thus a/0, has a large value, and the
bracketed term in Eq. (57) has a value slightly less than unity. We conclude that

02 <A7"2. (58)

We now evaluate Eq. (58) for the double differentiator. From Egs. (56) and (58)

87N

1602wy (59)

(02)pp <

The corresponding equation for the peak-amplitude estimator is obtained from Eq. (51).
We have

TN
(02)pa > 4\({%—(00- (60)

To make a fair comparison, we must assume that both detectors are fed by signals of
equal amplitude and that both detectors have half-amplitude threshold levels. With this
assumption, a; = a, and Egs. (569) and (60) may be combined. The result is

(°2)pp <%(°é2 )pa- (61)

Thus the double differentiator gives a significantly superior performance with respect to
the standard deviation of the pulse-edge location. The only drawback is that a satisfactory
double differentiator is difficult to implement. »
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APPENDIX

Non-Gaussian Noise

The preceding derivations have all assumed that the noise is Gaussian. In this sec-
tion, the noise is assumed to be weak but not necessarily Gaussian. If the noise is weak,
it is intuitively reasonable to assume that there is only one threshold-level crossing in the
vicinity of the signal edge. Formally, it is assumed that the probability of a reverse cross-
ing (from above the threshold to below it) is zero.

Let F,,(x) be the probability distribution function of the noise; that is, F,(x) is equal
to the probability that n(t) < x. Once again, a is the value of the threshold level and s(¢)
represents the signal. Since there can be only one crossing, the probability that no cross-
ing occurred before the time ¢ is equal to F, [a — s(t)], for if n(t) + s(t) <a, then no
crossing could have occurred before the time t. Let F () be the probability distribution
function of a crossing; that is, F,(¢) is equal to the probability that a crossing occurred
before the time t. From this definition and the preceding statements,

1-F,(t) = F,[a—s(H)]. (A1)

Differentiation of a distribution function gives a density function. Thus at all points
where a derivative is defined, we have the following density function for a threshold
crossing:

fe(t) =5'(t) frla—s(t)] (A2)

In general, this expression pertains to the vicinity of the signal edge, where it has been
assumed that only one threshold-level crossing occurs. Using the same normalization pro-
cedures as in the first section, Eq. (A2) leads to Eq. (24), where M = §'(t) by definition.
Originally, Eq. (24) was derived by assuming a single crossing and Gaussian noise. The
present derivation shows that Eq. (24) is valid for any noise statistics, so long as the
single-crossing assumption applies.

It is noteworthy that Eq. (12) reduces to Eq. (24) whewn 0,,' = 0, which occurs when

the noise is weak. This observation is a manifestation of the connection between the
single-crossing assumption and weak noise.
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