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ABSTRACT

The equations of motion of a satellite have been derived in a
local vertical coordinate system. The method of derivation and the
form of the equations provide a simplified means of visualizing and
planning the maneuvering within multiple satellite constellations.
The equations are also useful in station keeping, rendezvous, and
collision avoidance considerations.
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THE EQUATIONS OF MOTION OF A SATELLITE IN A
LOCAL VERTICAL COORDINATE SYSTEM

INTRODUCTION

The equations of motion derived in this report have been previously published (1,2).
However, the method of derivation and the form of the equations presented herein should
permit a more intuitive comprehension of the relative motions of orbiting masses. This in-
formation should be especially useful to persons concerned with the problems of satellite
rendezvous, positioning, and collision avoidance.

The equations are derived and presented in a "local vertical" coordinate system, which
is defined as a coordinate system rotating at an angular velocity and phase very nearly
equal to that of the orbiting objects under consideration. It is felt that this coordinate
system provides an intuitive reference system for considering the relative motion of orbit-
ing objects. The validity of the equations will, of course, require that the objects con-
sidered remain in very similar orbits. Thus, the usefulness of the equations is restricted to
satellites injected into nearly identical orbits and to the terminal phase of rendezvous
maneuvers.

THE LOCAL VERTICAL COORDINATE SYSTEM

The local vertical coordinate system is defined such that the z axis is always in the
direction of the radius vector R from the center of rotation to a point in the cluster of
orbiting objects. This radius vector is constrained to rotate with a constant angular veloc-
ity X so as to describe a Keplerian circular orbit; thus, the square of the angular veloc-
ity must be inversely proportional to the cube of the radius. The direction of the y axis
is parallel to the angular velocity c, and the direction of the x axis forms a right-hand
coordinate system. (It is parallel to the velocity of the tip of the radius vector R.) The
origin is chosen to be the tip of the radius vector as shown in Fig. 1.

THE EQUATIONS OF MOTION

The effective force on a point of mass m in the rotating local vertical coordinate sys-
tem described above is the sum of the external forces, i.e., the gravity force, the centrif-
ugal force, and the Coriolis force. Thus,

F = mi = F(ext) - m(R+ r) _ mwa X [cX (R+r)] - 2m[co X (R+i)], (1)
JR+ rJ 3
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SATELLITE POSITION where v is the gravity constant. By expanding the vector
triple product and IR + ri-3 , it is easily shown that

r>/ \ *r = a(ext) + (R + r)jCIw2I 1 + r 2 + 2z 3]2

$ < \~~~~~ - (co * r) co- 2(co X i), (2)

where a(ext) = the acceleration due to external forces.
R Note that R = 0 and VIIR13 = JW12.

The absolute value of R is at least 3500 miles; thus,
for VI less than 350 miles it is certainly reasonable to
neglect second-order terms i IrI/IRI. With this approxi-
mation, the equations of motion linearized in terms of
the x, y, and z components of r become

CENTER x= al - 2 (3)

i.ROTATI0t y a2-w 2 y (4)

z = a3 + 3w2 z + 2wi, (5)
Fig. 1-The rotating local vertical coor-

dinate system where al, a2, and as are respectively the x, yi and z
components of acceleration from external forces and

co is the magnitude of the orbital angular velocity of the reference coordinate system.

These equations lend themselves nicely to solution by Laplace transforms. The solu-
tions are

x xo - a 2 ( + + o +6o)t ) )(1- cos cot) (6)

_ (23- - 6zo sin cot

co ~ ~ 3

y= y cos Wt + C2(1 -cos wt) + -0 sin cot (7)

Z= 2 t + zo cos cot + (a2 + 4z0 + -i)(1 - Cos cot) (8)

+ (2a + i) sin ct

x -3at -(2a3 + 3io + 6co) (2.o - 4a) sin cot (9)

-( - 6wzo - 4io) cos cot
WO
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= (a2 - WyO) sin cot + y0 cos ct

z = +L (( + 3cozo + 2io) sinct + ( Žil + io)Coscot,

(10)

(11)

where x0, yo, and zo are the initial coordinates and xo, yo, and io are the initial veloci-
ties. Figures 2 and 3 illustrate the trajectories for various initial conditions. Motion in the
y direction is not illustrated because it is always simple harmonic motion which is easily
visualized as superimposed on the x-z plane motion.

MULTIPLY LAUNCHED SATELLITES

One of the problems associated with multiple payload launches is the possibility of
collision among the payloads. It is generally recognized that the probability of collision of
separately launched satellites is extremely small; however, in multiply launched satellites,

z
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Fig. 2-Elliptical motion of a satellite having only z initial velocity
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which are placed into essentially the same orbit by a single launch vehicle, the probability
of collision becomes significant. By judicial selection of the separation velocities of the
payloads relative to the launch vehicle, measures can be taken which will minimize the pos-
sibility of collision. One obvious measure is to separate the payloads so that drag forces
will cause them to continually separate. For instance, consider two satellites, one having
a higher drag force. The satellite with the high drag will lose more energy and spiral into
higher velocity orbits. Thus, to avoid the possibility of the higher-drag satellite overtaking
and passing the low-drag satellite, it should be initially separated into a higher velocity
orbit.

Another consideration is that it is possible to separate satellites from the launch ve-
hicle into orbits which have identical periods and differ only in inclination and/or eccen-
tricity. This could result in periodic collisions at the orbital frequency and obviously
should be avoided. This problem can be analyzed using the previously derived equations.

Let the local vertical coordinate system have its origin at the center of mass of the
system of satellites and launch vehicle. In this coordinate system the trajectories of satel-
lites impulsively ejected with initial velocities co, yo, and io are easily obtained from these
equations.

Consider the case of an initial velocity purely in the x direction, or flight line, where
No = io = 0. Then

x = -3cot + 4ko sin ct (12)

z = - (1 - cos Wt) (13)
co

and

y = 0. (14)

The resulting trajectory in the x = z plane is a cycloid as shown in Fig. 3.

Eliminating the parameter ct between the x and z equations results in

(x + 3i 0 t) + ( ( ) =5)

Wt2 W2

which is an ellipse centered at x = -3kot and z = 2o0 /o/ with major and minor axes
a = 4io/c and b = 2o0 /co.

Thus, the cyloidal motion can also be thought of as an ellipse falling behind at the
rate of 3iot. A negative initial x velocity would, of course, cause the ellipse to fall ahead.
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Consider the case of an initial velocity only in the z direction:

x = 2zo (1 - cos cot) (16)
co

z = ° sin cot (17)

y = 0 (18)

Since x and z are truly parametric in cot, time can be eliminated, which results in a
closed orbit described by

(x + 2 zo)2 z 2

(x +2z) + Z- = 1 (19)
6,2 62A0 0

<^)2 W12

This is an ellipse centered at z = 0 and x = 2io/co with a = 2 io/co and b = iolco as
illustrated in Fig. 2.

Thus, if perturbations such as drag are neglected, a satellite separated with only the
z component of velocity will return to its starting point once per orbit and collide with
the launch vehicle and any other satellite separated simultaneously with only z velocity.
It is easily seen that satellites with only y initial velocity oscillate with a simple harmonic
motion along a line in the y direction with the orbital period.

It is also easily deduced that a combined initial velocity of y and z (no x) serves only
to rotate the ellipse previously described out of the x-z plane. Thus, any separation of sat-
ellites with no x component of initial velocity will result in a collision with the launch ve-
hicle and, for simultaneous separations, with each other. Simultaneous separations having
the same initial x components of velocity will result in collisions at the orbital period, re-
gardless of their initial y and z components.

Thus, to minimize the possibility of collisions, the drag effects must be considered
and the separation velocities chosen so that an x component is always greater than zero,
unequal to the x component of any other satellite. If there is a zero x component, it must
be assured that the launch vehicle is pushed out of the way with an additional impulse.

Figure 4 shows the trajectories relative to the center of mass of a typical multiple pay-
load separation.

ORBITAL POSITIONING, PARKING, AND STATION KEEPING

If Laplace transforms are used again to solve the equations of motion, it can be shown
that a constant acceleration commencing at t = 0 and ending at t = T will cause the change
in motion described by
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Az

Fig. 4-Trajectories of typical multiply launched
satellites relative to the center of mass
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Ax = -- 3aTT At - 3 -4a [cosco(T+At) - cosCOAt] (20)
2 co1 T t 6, 62 

+ 2a- [sin co(T+At) - sin coAt]
6,2

AY = -a2 [cos co(T + At) - cos coAt] (21)

AZ =_a - -i [cos w(T + At) - cos coAt] (22)

-2 [sin co(T + At) - sin coAt]
6,2

4 a1Ax = -3a 1 T + - [sin co(T + At) - sin coAt] (23)

+ a3 [cos co(T + At) - cos FAt]
co

AS = a2 [sin co(T + At) - sin coAt] (24)
co

Ai = as [sin w(T + At) - sin coAt] + 2ai [cos (T+At)-cosAt, (25)co - cos T+A)-csc~],(5

where At is measured after the termination of the thrust.

It should be noted that if the thrust period T is an integral multiple of the orbital

period 27r/co, the oscillating terms go to zero. This means that the thrusting did not change
the eccentricity or inclination of the orbit.

Usually station keeping is accomplished with thrusters directed along the flight line

(the x direction). The purpose is to control Ax and Ax since these coordinates most di-

rectly affect the angular position of the satellite in orbit. If the other parameters which

are usually of little consequence for station-keeping purposes are neglected, the station-
keeping equations become

Ax = - a1
2 3a1 TAt

Ax = -3alT .

If the station-keeping equations are divided by the radius of the orbit, Ax/R and
Ai/R become an angle and an angular rate respectively, thus providing a good approxima-
tion to the equations necessary for the spacing and parking of satellites with a flight-line
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thruster. Satellites can also be positioned with z -axis thrusting; however, the rate of
change of x exists only during the period of z thrusting.

The Ax for each orbital period of z thrust is 4ira3 /co2. With a three-slug satellite and
a 10-micropound z thrust, Ax per orbital period of thrust is 40 ft. A 10-micropound x
thrust will change the position by 195 ft during one revolution of thrusting and then the
Ax will continue to change by 390 ft each revolution thereafter.

Although z axis thrusting is not very effective and cannot be used for parking, it may
be useful in applications requiring very fine positioning. It does have the advantage of not
requiring a three-axis stability.

Considering Eqs. (20) through (25) it is apparent the terminal phase of a rendezvous
maneuver consists of measuring the relative positions Ax, Ay, and Az and relative veloci-
ties Ak, AS, and Ai of a target vehicle, then applying thrust so as to make the relative
position and velocity zero.

The magnitudes and durations of the thrusts in each of the axes provide six param-
eters that can be controlled to optimize a rendezvous maneuver. Equations (20)through
(25) provide the basis for the necessary computations.

Most spacecraft maneuvers, other than station keeping, are accomplished with short
thrusts from relatively large motions. They can be treated as impulsive velocity changes.
The rendezvous or positioning equations can thus be simplified to

Ax = -3iot + 4ko sin - °i- (1 - cos cot) (26)

So ~ c c

Ay = -Osin cot (27)
co

Az = ° sin cot + 2°0 (1 -cos ct) (28)

Ai = -3k 0 + 4ko cos cot - 2io sin cot (29)

AS = So cos cot (30)

Ai = io cos cot + 2ko sin cot, (31)

where ko, So, and io are now considered impulsive velocity changes.

These equations have proven to be extremely useful in visualizing and planning ma-
neuvers necessary to position satellites in orbit and provide a means of predicting the com-
plex constellations that can be formed with multiple satellites.
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