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Jacobian Variational Principles and the Equivalence
of Second Order Systems

WiLLiaM B. GorboN

Mathematics Research Center
Mathematics and Information Sciences Division

Abstract: Two systems of differential equations are said to be equivalent if the tra-
jectories of one coincide with the trajectories of the other modulo a transformation of
independent (time) variable. The equivalence of second order systems is discussed, and
the results obtained are used to derive a variational principle for the plane restricted
three-body problem.

1. INTRODUCTION AND NOTATION

Variational techniques have recently been used to obtain information concerning the ex-
istence of periodic solutions to conservative Hamiltonian systems whose potentials have con-
vex or infinitely deep wells. (See Berger [1-3] and Gordon [6-7].) That is, we consider dynamical
equations of the form

i+ VFV(x)=0 (N

and seek periodic solutions in a neighborhood of a point p for which V¥ (p) = 0 or wind around
singularities ¢ for which V(x) — —w as x — q.

In this report we shall derive a variational principle which may be of use in obtaining an-
alogous results for the circular, plane restricted, three-body problem, i.e., equations of the type

¥+ 2Bx+VV(x) =0 ' )
where B is a square matrix which satisfies

B%=—] ; BT =—B. (3)

This variational principle is a direct analog to Jacobi’s Variational Principle (given later) which
holds for systems of type (1) and will be expressed in an isoperimetric form; i.e., it will be shown
that every solution to Eg. (2) is an extremal for a certain functional F restricted to a manifold
of the type J = constant, where J is a certain other functional. As the title of this report suggests,
the derivation consists of transforming Eq. (2) into a suitable form by a change in the independent
parameter. Finally, we mention that the variational principle discussed here seems to be re-
lated to the principles described by Birkhoff [4, 11.3].
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2. VARIATIONAL PRINCIPLES

A. Let T be a class of paths in R¥ which consists of either (a) paths with two fixed, given end-
points, or (b) closed paths. For every path fin T given in euclidean coordinates by x = x(¢),
let

0* (f) =fo<x(z>, i(1)) dt,

where Q is some smooth function on R2?¥. Then, as is well known, if I" is a reasonable class,
the condition that f be an extremal for Q* is that V°Q* (f) = 0, where V° is the Euler-Lagrange
operator

The operator V°Q* can be rigorously defined as a distribution of the same class as the Dirac
& function, and when multiplied by a certain Green’s operator, it becomes a “true” gradient
vector field in an appropriate Sobolev space of paths (cf. [5,6]).

Now let M be a riemannian manifold with metric g;;, and consider the conservative dy-
namical system corresponding to the (velocity independent) potential ¥ on M. Jacobi’s Varia-
tional Principle asserts that every dynamical trajectory with total energy % is a reparametrized
geodesic corresponding to the “Jacobi metric” (h — ¥)gi;. But geodesics are extremals for either
of the following two functionals: f — [|x|dt or f — [|%|? dt. This latter variational principle
is the most convenient one. In fact, if the Euler-Lagrange operator is applied to the former func-
tional, one does not obtain the usual equations for a geodesic. In the older texts this difficulty
is handled by allowing as admissible paths only those that are parametrized by arc length. We
shall examine this phenomenon more closely later when we consider how certain second order
differential equations (sprays) transform under a change of parameter.

B. To express Jacobi’s Principle in a more convenient form, we introduce the following
functionals: ‘

E(f) =f|5c(t)|2V<x(z)> dt:
J(f) =—;f|5c(t)|2 dr.

Then Jacobi’s Principle can be written V°(E — 2hJ) =0, or
VOE(f) = 2hV°J (f). - (4)

That is every trajectory with total energy h satisfies Eq. (3), modulo a change in parameter.
The parameter in Eq. (5) is not real physical time but is the arc length associated with the Jacobi
metric. For future reference we note that
VeE(f) =—=2V(x)5%— 2(x - VV(x))x + |%]2VV(x) (5)
VeJ(f) =—%. (6)
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Warning. It is not true that every solution of Eq. (4) is a reparametrized solution of the
dynamical equation (1). In fact, each solution of Eq. (4) is a reparametrized solution of one
of the following:

E+ UV =0 (7a)
YV =0 (7b)
i—VV=0 (7¢)

From Egs. (4-6) it is easy to see how solutions of Eq. (7b) are obtained: they are curves V =
constant. To see how solutions of Eq. (7¢) are obtained from Eq. (4) suppose for simplicity
that ¥ is a convex function which assumes an absolute minimum value at x =p, and let V' (p) = 0.
That is, we suppose that p is an attractor. The total energy of any nonequilibrium solution of
Eq. (1) is positive. Suppose we set & < 0 in Eq. (4). An inspection of Egs. (4-6) shows that
changing the sign of A is equivalent to changing the sign of 7 the attractor becomes a repulsor).
Hence for 2 < 0, we obtain a solution of Eq. (8c).

To obtain a formal proof that these three cases exhaust all the possibilities, we first note
that (A — V)|x|? is an integral (= constant of motion) of Eq. (4). The three cases Egs. (7a-7¢c)
correspond to the sign of (A — V), (positive, zero, negative). In the first case, Eq. (4) is reduced
to Eq. (1) through the parameter transformation dt = d7/(h — V), where 7 is the parameter
in Eq. (4). The third case reduces to the first case by changing the signs of 2 and V.

Finally, we mention that when we use variational methods to obtain periodic solutions

to Eq. (4) for a dynamical system consisting of a number of attractors, it is easy to exclude the
case of Eq. (7¢), i.e., periodic solutions in a neighborhood of repulsors.

C. We now state a variational principle for Eq. (2).
PRrROPOSITION. Let K(f) = [ x - Bx dt, so that V°K = 2Bx. Then every solution of Eq.

(2) is a reparametrized solution of

Vo(E +K) (f) =2hV0)(f). (8)
Moreover, every solution to Eq. (9) is a solution of

X+ 2Bx+ VV(x) =0, or (2)
i—2Bx— VV(x) =0. (2)*

The proof makes use of a simple lemma. Let F and G be two Lipshitz continuous maps
from RY¥ X R¥ to RV, and consider the two second order systems

¥=F(x, x) (9)
i=G(x, x). (10)
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We want to know when two such systems are equivalent modulo a change in parameter. The
answer is easy in the case when one of the maps F or G is homogeneous of degree 2 in x. (In
the language of differential geometry, such a system is called a spray.)

LEMMA. Suppose that G is homogeneous of degree 2 in x and that
F(x, x) =G(x, x) + ¢(x, %)%, (11)

where ¢ is a smooth scalar-valued function on R¥ X RN. Then every solution of Eq. (9) is a
reparametrized solution of Eq. (10) and every solution of Eq. (10) is a reparametrized solu-
tion of Eq. (9). In particular, if x = x(t) is a solution of Eq. (9) with initial conditions x(0) =
x9, X(0) = Xy, then there exists a solution y = y(s) of Eq. (10) such that y(0) = x,, ¥(0) =
Xoand such that x(t) = y(s(t)), where the function s = s(t) is obtained by integrating

S b(x(0), i(2)), s(0) =0, $(0) = 1.

$
The proof is elementary and involves a straightforward transformation of parameters. The

homogeneity condition on G is essential; as is well known, it implies that if x = x(z) is a solu-
tion of Eq. (10) then so is x = x(kt), where k is any real number.

D. We now sketch a proof of the proposition. The proof will also serve as a derivation of Jacobi’s
Principle. (For the latter case, set B = 0.) The essential point of the proof is that the system
of Eq. (2) has a first integral, viz., the well-known Jacobi constant

h=—; 32+ V(). (12)

Rewriting Eq. (2) in terms of the parameter s = arc length and using Eq. (12), one obtains
20h—V)i— (2 - V)i + [2V2(h—V)]Bi+ VV =0,
where now denotes d/ds. Hence |x[2 = 1, so that this last equation is equivalent to
2(h—V)i— (- VV)x+[2V2(h—V)]|iBx + |%|2VV =0.

Then, provided that ¥ # h, this system is a second order system homogeneous in x. Apply-
ing the lemma with ¢ (x, x} = —x V¥, we obtain the equivalent equation

2(h—V)i—2(x - VP)x+ [2V2(h — V) ]|x|Bx + |x|2VV = 0.

This system has the first integral |x|2(h — ¥) = constant. Setting this constant equal to 1/2,
we obtain

2(h = V)i —2(x - VV)x + 2Bx + |x|2VV =0,
which is (6).

This completes the proof.
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