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Successive-Approximations Method for Solutions of
Nonlinear Differential Equations at an Irregular-Type
Singular Point

Po-Fang Hsieh*

Mathematics Research Center
Mathematics and Information Sciences Division

Abstract: Two fundamental existence theorems for the study of analytic solutions of
nonlinear ordinary differential equations with an irregular-type singularity are proved. A
method of successive approximations involving improper contour integrals and analy ticity
with respect to several complex variables is employed.

I. INTRODUCTION

1. The Problem

In the course of studying a nonlinear differential equation of a complex variable at an irregular-type
singular point, one of the main problems is to find the analytic meaning of formal solutions. In the process
of tackling this problem, one often encounters two types of existence theorems to be discussed in this
paper. These two theorems have been proved recently by M. Iwano [1, 2] by means of Tychonoff-type
fixed point theory, which was originally devised by M. Hukahara [3, 4] . The aim of this report is to modify
the proof of these theorems by using a method considerably more constructive, namely successive approx-
imations. While doing this, one can see that there are two difficulties which are not usually seen in the con-
ventional successive-approximations method; one involves the improper contour integral, while the other
requires the analyticity with respect to several complex variable.

In this chapter, we shall clarify some notations and definitions. Chapter II will state the assumptions
and the main theorems. Since the proof of these theorems are alike, only the sketch of the first theorem
will be given in Chapter I1I. However, the paths of integration will be fully explored there. The complete
proof of the second theorem will be given in Chapters IV and V.

2. Notations

The quantity 1, is defined as the m x m unit matrix. For an m-column vector y with elements Yjs the
expression 1 (y) denotes an m x m diagonal matrlx with diagonal elements | y |

If uis an m -column vector with elements { u, | , then [#] denotes an m- column vector with elements
lu] | . Obviously, [u] coincides w1th u when all the components u. are nonnegative and real.

For m-column vectors u and # with elements f u; f and { } , espectively, a vectorial inequality
[u] < [u] means that lu | < Iu] | for each 1ndex1

The components of an m row vectorsg = (g, - - - »q,,) are all nonnegative integers and

lgl =q1 tq2 *...q, - (2.1)
For an m-column vector y with elementsy i the symbol ¥¢ stands for the scalar quantity

q
¥ o=y, By, Ty (2.2)

NOTE: This work is partially supported by NSF Grant GP 14595.
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lem; work is continuing on other phases. Manuscript submitted December 31, 1970.
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The norm of an m-vector y with elements { ¥ ) s

Iyl = max 1yl - 23)
=i

To simplify the notion, for a scalar w and an m-row vector y with elements {y]. } ,

Ym

WV = (Wyl,...,W ) (24)
y

expy = (expyy,...,expyp,)ored =(ef1, ... ¢ ™) (2.5)

Re y = (Reyl,...,Reym),andlmy=(lmy1,...,Imym). 2.6)

If y is a column vector, w” , exp y, Re ¥, and Im y are all column vectors.
For an m-column vector y with elements | Y } and an n-column vector function f (x, y) with elements
{ f].(x,y) } , the notationfy(x,y) denotes an n x m matrix given by

fyG.y) = < Eal ey, ..., %ﬂ f(x,y)> . 2.7)

3. Definitions

A function f (x), which is holomorphic and bounded in x for
0<lIx! <§,0<argx <O, 3.1

where £, ©, and O are given constants, and which adinits an asymptotic expansion in powers of x as x tends
to O through (3.1), is said to belong to class C (8,0, §).
A vector f(x,y, z), which is a holomorphic function of (x,y, z) for

0< Ix1<EgO<argx <0, Iyl <85, Izl <5, (3.2)

is said to have Property-U with respect to y and z in (3.2) if the components of £ (x, , z) admit uniformly
convergent expansions in powers of y and z for (3.2) and if the coefficients of these expansions belong to
class C(Q, 0,¥).

Suppose a finite number of monomials of x~1 of the same degree, say o, are given:

’)’.
_ Y o
Q].(x) v G=12,...,.M).
Then the sectors of the form
1 (argy, — Ty 2nh,) < argx <—1 (argy, + 24 27h.) (3.3)
o I 2 7 o ] 2 7 ;

and

1 T , 1 37 , (34)
—= — — L .
o (arg vt 5 + 27rh].) <argx < o (arg 7t 27'rh]) ,
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where &, and k) are any integers, are said to be @ maximal negative region of Q.(x) and a maximal positive

region of Q](xj respectively. The maximal negative (or positive) region means that if x tends to the origin -

through any subsector of (3.3) or (3.4)), the function exp (ReQ {(x)) tends to zero (or infinity) exponentlally i
A sector ® < argx < © is said to have Property-0 with respect to monomials { 2, (x), . M(x) J &

if this sector does not contain any maximal negative region of £,(x) for each index j and if there ex1sts in

this sector a direction for each index j such that, x tends to the origin along this direction, exp(ReQ (x))

tends to infinity exponentially.

Remark: Since the sectors

! _m 1 m
S].. 5 (argyj + 277h].) te <agx < - (arg’y]_ +

+ ) —
3 > 21th) €

and
g 1 57
.'?(argy ~——+ 277h)+61 <argx< (argy +——+27rh)

where €, and e, are constants satisfying the relations 0 <e;, e, < (27/0), €, +¢€, <(37n/0), then both
have property-t) with respect to { 2.(x) } If a direction arg x = 8 is given, we can choose h and h
properly such that 6,4 € S and 0, € S Put

Then, both S and S’ are nonempty and have Property-5) with respect to { Q,),..., QM(x) ). Asa
matter of fact, since

M M
max { 2rh, + argy. ¥ — min {217h + arg vy, <2
j=1 v 7 j/ j=1

and
T 2 h + o 27k, V<2
max T argy; | — min wh, + argy, 27,
max | : min | 2nh; +argy; |

we can choose €; and €, so small that the sectors S and S’ have central angle > 7/o.

II. MAIN THEOREMS

4. First Existence Theorem

Let there be given two systems of a + § nonlinear differential equations:

otl

X y, = f(x,y,z), XZ’ = g(x,y,Z) (El)
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where ' = d/dx. Here we assume that
(i) x is a complex independent variable and o is a positive integer.
(i) y and zare both a- and -column vectors with components { Y }and {z, } , respectively.
(iti) f(x,y,z)and g(x,y, z) are a- and B-column vectors, respectively, whose components have
Property-U with respect to y and z in the domain

0< IxI< g0 <argx <0, Iyl <d, Izl <d, “.1)

where ©, e, £, and d are constants, with & and d positive.
(iv) The matrices fy and f satisfy

£,(000) =1,() + D,det 1,(r) # 0,£,(0,00) = 0, (4.2)

where v is an a-column vector with elements { v } and D is an a x a nilpotent matrix with lower tri-
angular form. ‘
(v) Equations (E{) possess a formal solution of the form

y o~ Z foQ,z~ Z ngQ, “4.3)
=0

=0

where fsz and gqarea- and f-column constant vectors, respectively, and in particular,

I foll < d, lgol < d. 4.4)
Let
Y )
Q.(x) = — G=12,...,0); @5
! ox?

the first existence theorem is stated as follows:

THEOREM A. Assume that, in the sector © < arg x < ©, there exists a subsector ©F < argx < o
which has Property- S with respect to | Q(x), .. ., £,(x) }. Then the equations (E ) have a unique solu-
tion | F(x),G(x) | which is holomorphic and bounded in x for

0< Ixl < &, 0% < arg x < OF, (4.6)

where 0< &y <&, and which admits asymptotic expansions of the form (4.3) as x tends to zero in the
sector (4.6).
The sketch of this theorem will be given in the next section.

5. Second Existence Theorem

Let u be a given n-column vector with elements {uk } . The second existence theorem concerns a sys-
tem of equations similar to (E;), except that the vectorial functions f and g, besides x,y and z, depend
on an arbitrary function of the form V(x)=1,(x*)C, where C is an arbitrary n-column vector. This
system is:

x0tly' = flx, V(x),p.2), xz' =g(x, V(x):p,2). (E,)
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Here we assume that
(i) f(x,v;y,z) and g(x,v;y,z) are a- and -column vectors, respectively, which admit uniformly con-
vergent series in powers of y and z in the domain

0< IxI<g,0<argx <O, vl <6, Iyl <d, Izl <d, (5.1)
and whose coefficients are functions with Property-l with respect to v in
0< IxI<g0<argx <O, vl <8, (5.2)

with 6 a positive constant.
(ii) The matrices fy and f, satisfy

£y(0,0;0,0)=1,(7) + D, det 1,(y) #0,1,(0,0,0,0) = 0. (5.3)

(iiy Equations (E,) have a formal solution of the form

Y~ 2 VERf() 2~ 20 V()g,(), (54)

lgl1=0 tg1=0

where fq {x) and £, (x) are a- and -column vector functions, respectively, which belong to class C (Q,@, £),
and in particular,

I foCo)ll <d, lgo()l < d. (5.5)
Now, the second existence theorem is stated as following:

THEOREM B. Assume that, in the sector © < arg x < ©, there exists a subsector 0 * < argx O* which
has Property- with respect to { Q;(x), ..., Q_ (x) | . Then the equations (E,) have a solution of the
form { F(x, V(x)), G(x, V(x)) } whenever x and V(x) are in the domain

0< IxI<g%,@* <argx <O*, Iyl <8§°, (5.6)

where 0 <£° <&, 0<8° <8§. Furthermore, this solution admits uniformly convergent expansions of the
form (5.4) so that F(x,v) and G(x,v)are a- and f-column vector functions with Property-\l, with re-
spect to v in the domain (5.6).

The complete proof of this theorem will be given in Chapters IV and V.

III. PATHS OF INTEGRATION AND PROOF OF THEOREM A

6. Reduction of Theorem A

In order to prove Theorem A, we consider for a positive integer N the following transformations to

N—1

N—1
y= 2, ey rmyz= 3, x' + 8y, (6.1)
=0 =0
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and
ny = 1,25 Py, b =0y, (6.2)
where Q(x) denotes the a-column vector with elements { Qj(x) } . Then P, and Q, satisfy

ot = —8i{x 2 *
XML P =1 (@ 20)) Fx, 1, O Py, 0)) ' (6.3)

xQ)y = 80r,1, €N P, 0)) S

A
where f(x,n,¢)and é\(x, n, ) are a- and B-column vector functions, respectively, which have Property-U
with respect to 7 and § in

0< Ix1<gy,0<argx <O, linl <d, 1§1<dy, (6.4)

where £, .and d, are constants which depend on /V, EN <&.dy depends ond and &, and

A A .
1,(0,0,0) = D, £,(0,0,0) =0, e

A A \ (6.5)
70,00) = 0, £0,00) = 0 S

Therefore, we have the inequalities

e, ON<a(inl + g+ By 1xI1V |
(6.6)

120, m ) N<H' (Il + 151y + By Lxl |

A
where H, H', and B, are positive constants, and A and H' are independent of N, for (6.4). Moreover, f and
Ay - . . ces .

g satisfy Lipschitz conditions with respect to (1, {), namely

Il?(x,n1,§1)~f(x,n2,§2)1|<H(nnl—n2 I+ 1g =52
and
120e,nt, ¢ — 20, E)I<H (' —n? 1+ gt =2 1)

for (x,n', ') and (x,1%,¢?) in (6.4). By the fact that D is nilpotent, we can assume without loss of
generality that H satisfies

8H < llyll’sin 20¢ 6.7)
where lyll’= min lyl. Also,we take IV so large that

1<ja

4H' < N. (6.8)
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Then, the proof of Theorem A is reduced to that of solving the following:

PROBLEM A. If we have (6.7)and (6.8), then there exists a unique solution { ¢, (x), ¥, (x) } of (6.3)
such that for suitable chosen & 1'\, and Ky,
(@D ¢y (x) and ¥ (x) are holomorphic and bounded a- and B-column vector functions, respectively, for

0< IxI< gy, 0% <argx <O, (6.9)

(i) ¢y(x)andy N(x) satisfy the inequalities

[0y <Ky IxtV [e7REEE ]y Gyl <K, |xV (6.10)

forxin (6.9).
Moreover, a solution of (6.3) satisfying

[Py] =0(IxIMy[emRe 2 g I<o(lxV) (6.11)

Is unique.
Theorem A can be derived from the solution of this problem by using an argument similar to that pre-
sented in Section 12.

7. A Fundamental Lemma

Let A(7) be a scalar function of 7, defined in the interval
O* < T O% 7.1)
such that
20e SA(T)< 7w —20€ (7.2)
for any preassigned €; This function A(7) will be given specifically in the next section. Define the function
w(7) by
.
w(T) = exp f cot A(t)dt, (7.3)
0 0o

where 8 is a fixed angle in (7.1).
Instead of finding the solutions of Problem A, we shall prove the following:

LEMMA A. There exists a continuous function A (1) defined in (7.1) and positive constants SJ'\', and K,
such that (6.3) has a unique solution { ¢, (x), Y, (x) | satisfying
G ¢ N(x), and ¥ N(x) are holomorphic and bounded a- and B-column vector functions, respectively, for

0<IxI<gy w(arg x), 0% < arg x < %, 74

(i) fEN(_x) and @JN(x) satisfy the inequalities
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[, 0)] <Ky IxIV [REE T ol <K IV (7.5)
for x in (7.4).
Since w (7) is positive and bounded, the domains (7.4) and (6.9) are equivalent in the sense that any
oint in (7.4) is contained in (6.9) if we choose £, suitably, and vice versa. Thus Problem A is solved if
p N
Lemma A is proved.
8. Determination of 4 (7)
The directions arg x = 9]. in the sector
O* <argx <O, (8.1)

such that

Re Q].(x) = Qforargx = 0].,

are called singular directions of Q].(x) and are given by

1 L

- (argy; + =5t 27h) 8.2)
or

1 L '

v (arg o 2 + 2nh’) 8.3)

where / and /' are some integers. Singular directions of the form (8.2) are called ascending singular directions
of §.(x), and those of the form (8.3) are called descending singular directions. It is to be noticed that, when
we consider Re §2.(x) as a function of arg x = 6, Re £ (x) is 2 monotonic increasing (or decreasing) function
of arg x in a small neighborhood of each singular direction of the form (8.2) (or the form 8.3));

For those j such that Re Q].(x) change their signs in (8.1), we shoose arg 7, 80 that at least one of the two
singular directions

_ 1 ks
O =7 et o) ®4
or
1 37
=— =
6, =5 ey *t5) 8.5)

is contained in (8.1). By the assumption that (8.1) has Property-& with respect to {Q(x), ..., Q.00 Y,

we can classify the setJ = { 1,2,...,a } of indices j into four classes:
JO = <];ReQJ(X)>Of0r@*<argx<_®—*} ,
o —
Jyo=1j;0%<0,, <0, <O*j ,
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A gj;@*<ej+<§*<e]._g ,

I3

;;';e].+ <e*<f,_<o* 2 .

Forj&J,, we define 6]._ by (8.5) and for j €J;, we define 0, by (8.4). Some of these four sets may be o
empty. Specially, either J, or J; must be empty, for 8* —0* < (n/0) when J, is not empty and ©* —
©%* > (n/o) when J; is not empty. Therefore ! 1,2,...,a | =J,ULLUJz0r | 1,2, ..., a}=JoUJ,UJ;5.
Since the sector (8.1) has Property- ) with respect to { Q,(x), ..., Q (x) j , the angles ©* and ©* must
satisfy the inequality, for sufficient small € > 0,

— m
max 0.+—(1+ 6 ) <©*<®*<min 0, +(—-— 6e> (8.6)
j=1 7 g - =1 - g

foralleJl UJ2 UJ3OI'].EJ2 UJ3.Put

(S} =max 0.,,0, =min 0, 8.7
k+ jer, 7+ Tk— i€l j— ®.7)

where k=1,2,3 or k=2, 3. Then A(7) is defined by

0(7—93__*'46),@3_"'1 —4e<T<O*

20
i m m
=<5 - STS — = .
A(T) > s Oy, 55 ¥ de <7 ®3__+2U 4e (8.8)
i
U(T—®2+—4€)+TT,@*<T<®2+—2—E +4e.
Noticing that
®2+ = maX0j+ (]GJI UJz UJ3 0rj€J2 UJ3)2
3 (8.9)
83_ =min0j_‘ (] EJI UJz UJ3 0rj€]2 UJ3) S(

we see that by (8.6) A (7) satisfies
206 <A (1)< 71— 20¢ for O* <7< O*, (8.10)

9. A Fundamental Inequality

In order to prove Lemma A, we need an integral inequality stated as follows:

LEMMA 1. Let x, be an arbitrary point in the domain (7.4). Then there exists an a-vector path I',  with
elements [T, | such that '
1

(i) Each curve ij joins the point x| with the origin and is contained in the domain (7.4) except for
the origin. '

(i) Ifty satisfies

a
2NGEy,  max  w(1)? < Iyl sin20e, (v "= min lyl), 9.1)
N g ! =1

<7<O*
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then

xl
xV-0-1 gRE ) 0 o 2 Ly (Ve RE2 G0
0 Iy 11" sin 20€

G=12,...,

Here, the integration is carried along F

a).

©.2)

We shall define the path vector F and prove assertion (i) of Lemma 1 in this section. Assertion (ii)

will be proved in the next section.

First, let us define an a-column yector function a(r) with elements | a;(r) | in the interval (8.1).

If j€J,,
a(T) g 0* < 7 < 0%,
If jeJ,,
‘ 0(7'—6]-_ + 4e), 6']-_ -2e <7< 0¥,
7
a]-(T) =\ 73 0]-+ t2e <7<, -2e
\0(7—9]-+ —46)+77,®*<T<0]-+ +2e.
IfjeJ,,
(L. 0,, +2e<r<O*
\ 2: jt == == s
a]'(T) =)
o(r-0;, -4e) + m,OFS TS0, t2e
If j€J,

x o(r-6,. + 4e), 6]-_ -2¢ <7< 0%,
a;(r) =

T
)\7, 0*<7<0;_ -2e.

It should be noticed that either J, or J; is empty. By virtue of (8.6), it is easily seen that

20e < a]-('r) <7-20¢ for @* <7< O

Moreover, by virtue of (8.7),

ai(1) SA(r), 0, -2e <7T<O*(GEJ,J3), [

G > A(), OF <7< 0, +26 GEJ,,05) )

©-3)

©.4)

©.5)

©.6)

©.7)

©.8)
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T T ‘
/ cot ¢;()dt < / cot A (r)dr 9.9) -
0 0 e

for6<r< 9]-+ +2e(jet,,J,) and forf)j_ -2e<7t<0(je,J3).
Let (r,0) and (p,7) be the polar coordinates of the point x; and of the variable point x on the curve

I’].x1 respectively. Then the curve ijl is defined as follows:

Hence, we have

) Ifa<0;, +2eorf, -2e<0,thecurve I';, consists of a curvilinear part T
i i 7%, part 1;

.
p =rexp f cot a;(r)dt
]

(9.10)
<7< 6j+ +2¢ or 9]-_—2€< T<4,
and of a rectilinear part F]
-
0<p<rexp / cot a;(r)dt,
(]
(9.11)
T=(9]-+ +2¢ or 0]-_—26.
(i) If Bip +2e<O< 0]-_ -2e, the curve ijl consists of only a rectilinear part l"]

0<p<r,7=0. (9.12)

By virtue of (9.9), the curves l"]-x1 defined by (9.10), (9.11), or (9.12) are contained entirely in the
domain (7.4), except for the origin. This proves assertion (i) of Lemma 1.

10. Completion of Proof of Lemma 1

In order to prove assertion (ii) of Lemma 1, we need the following differential inequalities.

LEMMA 2. Let $; be the arc length of the curve I‘]-x1 measured from the origin to the variable point x
on this curve. Then,

d -Re Qj(x)
e

o > |x|-o-1RE ) lyl'sin20€ (10.1)
7

and

dlxl
-1 x40 = - -1
x| as; Ix1 (102)

holds as x moves on ij .
1
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In fact, if (10.1) and (10.2) hold, then

N -Re Q (x) le—Re n]-(x)

—(l | )= lx|N-o- (llyll 20€ -Nlx10),

If we choose E}{, such that (9.1) is satisfied, then
2(llyll' sin 20€ - Nlx!9) = llyll' sin 20€
for x in (7.4). Thus

d (lxINe—Re Q]-(x) ) > ||'y|l' sin 20€ | |N-0-1 e—Re Qj(x)
de 2

for x on Ui . Then, assertion (ii) follows and Lemma 1 is completely proved.

(10.3)

(10.4)

In order to prove Lemma 2, put x = pel”. Notice that on the curvilinear part F]'-, p isa function of 7

given by (9.10). Since

dp _
Gr = P oot a;(r),

we have

1/2 F
= % l:{di (pcos7')} Z o+ 1 I (psmT)} :I = L

sina;(r) ’

where the “~” isfor 0 <7< 6]-+ + 2¢ and the “+” is for 0]-_ -2e<7< 4. Thus,

% = FelT (cot a;(r) + i) sina;(r) = S GO
7

accordingas 6 <7< 0, +2€ or f;--2e<7< 0. Hence, we have the equality
2 (Re () = £p=9-11y;l cos (a;(r) - o7 + arg ;)
ds]- ] zp v ' 87,

where “4+” isfor § <7< 6]+ +2e and “-”isfor 9 -2e<< 7< 0, and consequently,

-Re ©:(x)

d R0 - = tp-o-l ly;le 17" cos (g;(r) - o1 +arg y))

ds]-

according as 0 < T<0] t2eo0rf;_-2e<7<94.

On the other hand, by the definitions of the functions a; (7) and of the angles 0+, 0;_, we have

]

w

V8]

= o
a;(r)- o7 targy; =

2

— t40e (mod 27), 0;_-2es<1<6;_+—-6¢,

?1—406 (mod 27), N -g +6e<T< 00 +2e.

(10.5)

(10.6)

(10.7)

(10.8)

(10.9)

(10.10)
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Hence o
*cos(g;(r) - o7 +arg 7]-) = sin40€e > sin 20e. e
Lone

This proves the inequality (10.1) for x on I.
On the rectilinear part 1"],, x=pe? and s=p. Thus,

d_ e—Re Qj(x) - _e—Re n]-(x) d

&, o Re Qj(x) (10.11)
= g Re @) p=71 ly;l cos (arg y; - 06) > eRe Qf(x)p“’"1 ly;lsin 20¢€

because 0, +2e <0 <0 -2e. Therefore, (10.1) is true as x moves on 1"]-x1 .
In order to prove (10.2), we observe that s; isreal. Then

dlx| d d d
1 dlxt _ d -4 —re (L =
IxI as, " a, log lx! as, (Re log x)=Re (a’s]- log x) = Re (x

-18x

> - -1
ds]-) Ix| (10.12)

Here we use (10.7) when x in on l"] When x ison T; , this inequality follows immediately from the
fact the lxI=s;.

Thus, Lemma 2 is proved.
11. Solution of Problem A

Consider, for an arbitrary point x,; in (7.4), the system of integral equations

IENE f T R O] (31,0 0) o), ¥ () ) dx
0

(11.1)
()= / 18 (1, @0 o), ¥ () dx s
0 :

where the integration of the jth component of the first equation of (11.1) is carried along the curve fo1
defined in Section 9 and the integrations of the second equation are carried along the segment Ox; join-
ing x,; and the origin. Applying the integral inequality (9.2) and using successive approximations, a dis-
cussion analogous to that in Chapter V will prove Lemma A, and consequently give the solution of Prob-
lem A.

Thus Theorem A is proved.
IV. PROOF OF THEOREM B

12. Reduction of Theorem B

In order to prove Theorem B, we first consider, for a positive integer /V, the following transformations
to (Ez)

yo= 2 VE@A,@+ny, 2= 2 V)Tg () + iy (12.1)

IgI<N igI1<N
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Then the transformed equations can be written as
A .
Xty = 1, (ny +£0, VO, Sy) (
A ’ (122)
xt = g, Ve, $a) S
A
where f(x,v;7,{) and fg\(x, v;n,§) are holomorphic and bounded vector functions of (x, v, 1, {) for

0< Ixl <, 0% < argx < O, vl <8y, Inl<dy, I$1< dy. (12.3)

Here £,,,8, and dj; are constants which depend on N, &y < £,6 <4, and dy dependson d,§y,
and & ;. Further,

A A R
f,(0,0;0,0)=D, £(0,0;0,0)=0, |

A A : (124)
£(0,0;0,0)=0, £0,0:0,0)=0. |
Therefore, we have the inequalities
A N
IfGe,vin, ) 1< H(lInlt+ 111 + By vl '
) (12.5)

Ilg(x,v;n,i‘” < H' (Inl+ g1y + By ol v 5
for (12,\3) where H,H', and By, are positive constants and H and H' are independent on N. Moreover,
f and g satisfy Lipschitz conditions with respect to (n,§) with Lipschitz constants H and H', respec-
tively, in (12.3). Since D is a nilpotent matrix, we can assume without loss of generality that / satisfies
8H < lyl'sin20e (12.6)

for a preassigned number €. Also, we take /V so large that

4H'< NI Reul',(1Reul’=min {Reu;) ). (12.7)

ny=1,(e2CNPy, Sy =0y, (12.8)

Then, the equation (12.1) is reduced to

Pl = 37071 1, ("2 fx, V(x); 1, (€2 ) Py, Q) '
: (12.9)

' QA
Ol =371 20, V) 1,(e2 @) Py, Oy) )
Thus, the proof of Theorem B is reduced to solving the following:

PROBLEM B. If we have (12.6) and (12.7), then there exists a solution |y (x,V (x)), Y (¢, V(x)) |
of (12.9) such that for suitably chosen &y &y and Ky

() oy (x,v) and Yy (x,v) are holomorphic and bounded a- and B-column vector functions, respec-
tively, for
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0 < 1x|<§]'v,®*<argx < 0%, vl < 85y (12.10)

(i) oy Cc,v)and Y (x,v) satisfy the inequalities
[on G, ] <K\, 101V [eRE2E Ny (e, HI<K, IvIY, (12.11)
N N N N

for (x,v)in (12.10).
Moreover, a solution of (12.9) satisfying

[Pyl = 0(IVE)IY) [eRe 2O g, I=0(1VE)IY) (12.12)

is unique.
In fact, we can prove Theorem B from the solution of Problem B in the following manner. Owing to
the transformations (12.1) and (12.8), the quantities

2 VL0 1) 0 V)
lgl<n
(12.13)

2. Vg, Yyl VX))

lgI<N

are a solution of equations (E,) provided that (x, V(x)) is in the domain (12.10). Let N' be an integer
greater than V.
Then

LE@2®) 20 V@ f )+ ey 6, V()
N<IgI<N'
(12.14)

2 Vg, 00+ Uy L VE))

N<lgi<N'

are a solution of equations (12.9), satisfying (12.12),; if (x, V(x)) belongs to the common part of the
domains (12.10),; and (12.10),,,. Hence, by the uniqueness of solution, the solution (12.14) must coincide
with { ¢y (x,V(x)), ¥ (x,V(x)) | . From this, the solution of (E?) expressed by (12.13) is independent
of N provided that NV satisfies (12.7). We denote this solution by { F(x,V(x)), G(x,V(x)) } . Then by
analytic continuation, the functions F(x,v) and G(x,v) are defined in the domain of the form (5.6) with
g% =sup£),,8% =sup 8y

On the other hand, v = 0 is an interior point of the domain (5.6) in which the vector functions F(x, »)
and G(x,») are defined. Therefore, by Cauchy’s theorem, F(x,V(x)) and G(x,V(x)) can be expanded into
a uniformly convergent power series of V(x) whenever (x,V(x)) is in the domain (5.6). Clearly, from
Problem B, we know that F(x,V(x)) and G(x,V(x)) admit the asymptotic expansions (5.4). By the unique-
ness of asymptotic expansions, these asymptotic expansions must coincide with the uniformly convergent
expansions. This proves the uniform convergence of the formal solutions (5 4).

Thus Theorem B is proved.
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13. A Fundamental Lemma for Problem B

In order to find the solution of Problem B, similar to that for Problem A, it is necessary to replace
(12.10),, by an equivalent domain of the form

0<IxI<fy wlargx), ] <8y [x(argx)], O* <argx< ©*. (13.1)

Here w(7) is the scalar function defined by (7.3) with 4 (7) defined by (8.6) and x(7) is an n-column vector
function with elements | x, (7) | defined as

X (1) = exp { (Re ;) /T cot A(1)dr+ (Imu,) (0o — 1) } , (13.2)
; 4 )

0

where 0, is a fixed angle satisfying @* <0, < O,
Instead of finding the solution of Problem B, we shall prove the following

LEMMA B. There exists positive constants £, 8y, and K, such that (12.9) has a unique solution

g JN(X:NV(X)),Q;N(X,NV(X)): satisfying
() ¢p(xv)and Y, (x,v) are holomorphic and bounded a- and f-column vector functions, respectively,

for (x,v)in (13.1);
(i) $N (x,v)and Y (x,v) satisfy the inequalities

[7 0] <Ky, Il [emRe 2 g e l<k,, IviV (13.3)

for (x,v)in (13.1).
This Lemma will be proved in Chapter V.

14. Fundamental Inequalities for Problem B
In order to prove Lemma B, we must prove fundamental inequalities stated in the following.

LEMMA 3 . Let (x,,v") be an arbitrary point in a domain of the form

0<IxI<g, wlargx), [v] <8y [x(argx)] , 0% <arg x < OF, (14.1)

Choose the n-column vector C so that V(x,)=v', namely, C= ln(x1 “HY v, Then there exists an a-

vector path T'..  with elements { T, \ such that
p x 1 X ‘

(i) Each Curve ij joins the point x| with the origin and is contained in the domain
1

0< lxl<§Nw(argx),Q*<argx<_@* (14.2)

except for the origin;
(ii)  As x moves on the curve ij , we have
1

V)] <8y [x(arg x)I, 0% <argx <O%; (14.3)
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(i)  If &y satisfies

max (1))’ < Iy ' sin 20, . o
2V Il LT ™) <ly o€ (144) ..
then
Xy _Re Q (X) 2 —Re (x )
X vV e T gkl e V) IV e
A Iyl sin 20e
(14.5)
(i=12,...,a).

Here the integration is carried along T,

The curves I';,  are defined exactly in the same way as in Section 9 for the proof of Lemma 1. Then
assertion (i) is evidently satisfied. Assertion (ii) will be proved in this section and the proof of assertion (iii)
will be given in the next section. )

Let x; =re'® and the variable point x = pe'". Let the components of the n-vectors V(x), ', and u be

V) ), vy | -and { u, ) ,respectively. Then (14.3) is equivalent to n inequalities.

1V, (x)1<8, exp {(Reuk) /T cotA(t)dt+(Imuk)(60—T)} (14.6.k)
]

0

as x moves on the curve I, . Observe that the curve T';. consists of two parts ", and T}’ in general, and
Jx, Jx p J ] g

we have ¥, (x) =v, (x/x, Yk . Thus
Re Ky
IV, ()= 1y | (@) exp {(Imu )@ —1) § . (14.7.k)
For x on I‘]'. , p is a function of 7 given by (9.10) and we have
T
WV )l = Iy lexp { (Reu,) [ cot a].(t)dt +({mup )@ 1)) ;
A .
consequently, by (9.9)
T
WV, )I< Iyl exp {(Re ) / cotA@)dr +(Imu ) (6 —7)§ . (14.8.k)
0

On the other hand, since v' = V(x,), v}( must satisfy the inequality (14.6.k) with 7=6. Namely,

9
v |<oy exp | (Rey) f cotA()de + (Imu,) (00 —0) ) . (14.9.k)
0

o

Hence by (14.8.k) and (14.9 k), (14.3) holds for x on F]'. .
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Forx onT;',p<rand 7 is constant. Hence, by virtue of (14.7.k), I V, (x)I< |y |. Thus, by (14.9.k),

(14.3) holds for x on I}'.
Thus, assertion (ii) of Lemma 3 is proved.

15. Completion of Proof of Lemma 3

In order to prove (iii) of Lemma 3, we need the following differential inequality.

LEMMA 4. Let s. be the arc length of the curve ij measured from the origin to the variable point x on
this curve. Then !

sz_ 1V =— Ll =L Il 1 V)l (15.1)
7

holds as x moveson T, .
In fact, if (15.1) holds for x on ij , by virtue of (10.1) we have

' —Re £ Ax) —Re £ .(x)
Ef‘ (u oI N e ) > 1xImo L Iy e i (152)
7
(v ll” sin 20e =N HNult 1x17)
forxonT', . Thus,if &, satisfies (14.4), then for x €T, we have
JXy N JXx,
—Re Q.(x) D s —Re Q.(x)
4 <|IV(x)|INe / ) > Iyl sin20e | oy V)Y e A
ds]. 2
Consequently, (14.5) follows immediately and the proof of Lemma 3 is completed.
To prove Lemma 4, notice, analogous to that for (10.2), that
-1 d = ' -1.d -1 & 15.3
1V, ()l & 1V, ()] = Re (Vk(x) a5 Vk(x)> = Reu x & (15.3)

Since |dx/ds].l =1 except for the joint of the curves F]'. and I‘]f' , it follows that

d — —
E WV, 0= — Tu | xl 1 W, )= — lullxl Lyl

for x on ijl and fork=1,2,...,n.
Thus Lemma 4 is proved.

V. PROOF OF LEMMA B

16. Successive Approximations

We shall prove Lemma B by means of successive approximations in this chapter.

Let (x;, »") be an arbitrary point in the domain (13.1), where g/’Q and § ; are to be specified in the next
section. It is easy to see that the system of equations (12.9) is equivalent to the system of a + 8 integral
equations
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(D(xl,vl)=fl xo~1 1a(e—9<x))f(x, V) 1, (€9 @ (x, V(x)), ¥ (x, V(x)))dx
0
(16.1)

W(xg,v')= f 1 x e, V(x); 1 €)@ (x, V(x)), ¥ (x, V(x)))dx
0

where V(x)=1, (x*)C, with C chosen so that V(x, )= v'; namely, C=1 (xl—“) v*. For the first equation,
the paths are taken along the a-vector path I' deflned in Section 9, and that for the second equation is
taken along the straight line segment Ox . .

The successwe approximations for (16.1) are defined to be the sequence of functions {&) (x, , v!),
) (x;,v') (m=0,1,2,...)given recursively by the formulas

O x,,»y=0, ¥ Ok, ,v)=0 (162)

and

q)(m+1)(xl avl)

1l

f xR fx i),
0

1, ) @) (V) w ) e, V)))d,

xl
D vty f x g0 V) 1,2 (16.3m)
0

&) (e, V(x)), T (x, V(x))) dx

m=0,1,2,...) . J

Here the paths for (16.3) are taken as those for (16.1).
We shall prove that a sequence defined as 1 <I>(m)(x ), \I/(m)(x vy} (m=0,1,2,...) converges
to the desired solution of (16.1), or, equ1valent1y, to that of (12 9) in the following steps:
(I)  Each term of the sequence tID m) (e, vh),  m) v } given by (16.3) is well defined and
holomorphic in (x;, v') for (13 1);
(D) The sequence | &™) (x,, 1), W™ (x;,v')} (m=0,1,2,...) converges uniformly to Loy, vh),
Y@y, v') | inany compact subset of (13 D;
(1)  The limit functlons { gp(xl,v ), x,b(xl,v )} satisfy the integral equations (16.1);
(IV)  The functions { (p(x1 ;1) W (x,,v'), ) are a solution of the differential equation (12.9) satisfying
the properties described in Lemma B;
(V) A solution of (12.9) satisfying (13.3) is unique.
Step (I1I) means the interchange of limiting process and contour integration. Also, due to the relationship
between x; and v’ through the function V{(x), step (IV) is not a trivial consequence of step (III).
The constants E 6 and K, will be specified in 1 step (D). If steps (1) through (V) are proved, the unique
solution { ¢(x,v), xp(x )} wﬂl be denoted by { gpN(x v), th(x v) } . Thus, Lemma B is proved.
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17. The Functions &V (x, v) and ¥ D (x, v)

We shall prove step (I) by means of mathematical induction.
Let (x1,v') be an arbitrary pomt in a domain of the form (13.1), V(x) be a holomorphic solution of
xv' =1 ,(W)v such that V(x;)=»'. Then the vectorial functions ey ey, v') and ¥ (x,, v") are given by

/‘ F D, V(x)) dx
0
f l e Dx, v(x)) dx
0

A
FPeyy = x77711 @2 £(x,v;0,0)

oDy, vh)

, (17.1)

T, 01

where

gD, ) = x 1 g(x,v;0,0)

and the first integration is taken along I',  while the second integration is taken along Ox, .

A. Existence of Integrations—Since the integrands of (17.1) are holomorphic on their respective paths,
except at x = 0, we shall first prove the convergence of the integrals at x = 0.

For the first integration, let x%; be the last point of 1"] onT=0. t+2eoront=0; —2¢, according
as whether 0* <0 <0, +leorf, —2e<0<O*, when x moves from 0tox, along I';, . Let re =
lx* {. Then, from the defmmon of Uiy and the formulas (9.4) to (9.6), it is readily seen "that

1

— 1
. o 1
re =r Ml > r(sin 20¢)° > 0. (17.2)
] sin a].(G)[

This means that for each j, no matter where x, islocated in (13.1), the path F is always has rectilinear
portion F of positive length. Furthermore, o

Re Q(x) > 0 on I“]'.'. (17.3)

Denote the jth components off(l) by fj(l) . Then, by (12.5), we have

—R )
P V) = 0 (lxfo 1V 1Re i 7R 200, (17.4)

By (17.3), the right-hand side of (17.4) tends to zero exponentially as x approaches the origin along 1"
Thus, the jth components of the first integral exists at x = 0.

Furthermore, the integrand is bounded on I';,. , whether there is a curvilinear portion F or not, and
the length of I';,. s finite. Thus, the jth component of the first integral exists.

These facts are true for every component, Hence q)(l)()” , v!) exists for arbitrary (x;, "' )in (13.1).
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For the second integral, notice that the paths are taken along the straight line Ox, and, consequently,

21

x~ldx =dp. By the fact that each component of the integrand is bounded, thanks to (6.6), the existence o

of the second integral, namely ¥ (x,,v"), follows immediately.
B. Upper Bounds—By (12.5), we have

[FOG, VD] < jxj=o 1By V(x)uN[e-Reﬂ(x)], lgMee, V) < By I V) IV (17.5)

for
0< IxI< gyw (argx), ©* <argx < O,
Choose £y so small that

2Nl (& max w(M)? < Iyl sin 20e.
O* <7< O '

Then, by (14.5), we get

2B
@ 1 < _“N 1 Re Q(x,)
[(b @1, )] ¢l sin 2 o€ Iy ||[e, ' :l

for (x,,v") in (13.1).
To estimate the upper bound of ¥ (x,,v'), notice that

l C xR m o)
Vi x)l = (x—1> e (arg x, - arg x).

Then
—4 el = =L V@)l = Repy) lxI-LIV @)
dlxl dixl 'k Hx k

= (Re ) IxIFHIVE) I = IReul” IxI-L IV ()
for some k. Thus

4 y)IN = N IRe ul’ IxI-L 1Vl
dlxi
Hence, by (12.5), we have

By

R ) S— 1

I D x,, v <
for (x,,v')in (13.1).
Now, we can choose K and § N such that

4By 2By

Ky = max \ Tyl sin20e ° NIIReulI',( J

(17.6)

17.7)

(17.8)

(179)

(17.10)

(17.11)
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and b satisfies

Ky Sy  max  IxDIVN<dy,. (17.12)
| eo*<r<o*

These inequalities are needed to define ®(™) and ¥(M) by (16.3).

C. Analyticity—First of all, when x; is fixed, (17. 8) and (17.10) 1mply that the integrals (17 1) con-
verge uniformly with respect to v'. Thus ®M (x;,»') and ¥ D(x, ') are holomorphic in »* for
'] <8y [x(argx;)] when x, is fixed.

Next, we shall prove that ®M(x;,»') and ¥ D (x,,»') are holomorphic in x; for (17.6) when »*
is fixed. Let xo be a point in (17.6) and sufficiently near x,. Observe that

S / 1 O, V(x))dx = f °f<1)(x,V(x))dx+ f 1 O, V(x))dx
0 0 X
? /lg(l)(x,V(x))dx= / og<l)(x,V(x))arx+ /lg(l)(x,V(x))dx
N 0 0 Xo

Here, in the first equation, the jth component of the first integral is carried along the path Iy, » and that
of the second is carried along XX, . In the second equation, the first and the second mtegrals are carried
along Qx, and Xxox;, respectively.

For the proof of the first relation of (17.13), it is sufficient to prove that

- (17.13)

q);l)(xl,vl): /of](l)(x,V(x))dx+ /lfl(l)(x,V(x))dx (17.14)
0 x

0

for each index j, where oD s the jth component of oM,

Let ¢4 and ¢, be, respectlvely, the intersection points of the paths I" X, and L'y~ with a circle Ix1=2
of small radius. Since »! is fixed and f (1)(x V (x)) is holomorphic in (17 6) by the use of Cauchy’s
theorem, (17.14 /) is an immediate consequence of

tl
/ 6, V(x))dx | > 0as 20, (17.15.j)
t

0

Here the path of integration is taken along the circular arc |x|= ¢ in (17.6). However, from the construc-
tion of Fx and I ix, > We know that Re Q (x) > 0 for x on tot;. Thus, the left-hand side of (17.15.f)
tends to zero exponentlally as £ tends to zero This proves (17.14.j).

Similarly, the second relation of (17.13) can be proved from the fact that

tl
/ gD, V(x)dx || <2mBy ¢"Reul*lsgas0-0,
14

4
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Now, let V(x) be specifically denoted by W(x,x,v"), namely W(x;,x,,v')=v'. Let $! =
W(x;,x,,v'). Then,

q’(l)(xl,l’l)"q’(l)(;él,l’l): 1\@(1)(x1’v1)_@(1)(3'21’31)} + {‘I)(l)(;‘\h%l)‘@(l)(%lﬂ’l)}

X, Xy
/ f(l)(x,W(x,xl ,Vl))dx— / f(l)(x>w(x:£19v1))dx
0 0

A A A
+ Wy, ) _<1>(1)(x1,v1)}

A

::l
f
;:l

Here we use (17.13), and the paths of integration are taken accordingly. Thus, we have that

eW(x;,v") -2 DR, ,v,) v | F7H
= -fOc, vy + 0D o (17.17)

A A
X, —x, Xy =X v=p,

exists, since we have just proved that the matrix &} (x,,»") is well defined. Therefore, ®W(x,»!) is
holomorphic with respect to x, for (17.6) when v' is fixed.

Thus, by Hartog’s theorem, ®® (x, »') is holomorphic in (x,,v') for (13.1).

In the same manner, ¥ (x,,v') is holomorphic for (13.1).

18. The Functions ® ) (x,v) and ¥ (x,v)

We have seen in Section 17 that ®W(x,,v') and ¥ D (x,,»!) are holomorphic in (x;,»*) for (13.1)
and satisfying

K K
[eWex,,v1)] < ~2]—V I IV [eRe Q0] 1w W, y!)I < —21 Iytiy  (18.1)

for (x;,v') in (13.1) with &y, 8, and Ky specified.

Let [I(m) denote the following proposition.

1I(m). (i) The functions ®)(x,,v') and ¥ (x,,v") are well defined and holomorphic for
(xy,v")in (13.1);

() M, ') and YO(x,,v!) satisfy

K
[‘I)(m)(xl,vl)—q>(m‘1)(x1,vlﬂ< 22’ Iyt |V [e—Re n(x,)] , (18.2.m)
1 ! LNy, 1[N [ o-Re 0
[@M(x,,v")] < Ky ot ---+2—m—> ItV [eRe @G ] | (18.3.m)

K :
I @ (e, p') - T E=D(x, p1)l < *% EALA (18.4.m)
2
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1 1
M, ) | < Ky (7 Foeet 2—m> Iyt IV (18.5.m)

for (x1,v')in (13.1).

We have seen that the proposition II(1) is true, due to (18.1) and (16.2).

Suppose that TI(m) is true for m =1,2,....k. We want to show that II(k+1) is true.

First of all, by (17.12), (18.3.k) and (18.5 k), the functions f(x V(x); 1,(e2) e O x, V(x)),
T®(x, V(x))) and g(x, V(x); 1 (eﬂ(x)) P E(x, V(x)), ¥® (x, V(x))) are well defined and holomor-
phic in (17.6). Thus, <I>(k+1)(x, v1) and W&+ D(x, »') are given by (16.3.k+1). These integrals
exist by the same reasonlng as thatin A of Section 17.

Since f(x,v,n ¢ ) and g(x,v,n {) satisfy Lipschitz conditions with respect to (n,{) with Lipschitz
constants / and H', respectively, by using (18.2.%), (18.4.k), (14.5), and (17.9) we have

2 Ky

*k+1) y_pk) 1 < —F=— . LS 1N [ ,-Re 2(x,)

[® (0" ) - d®(x,,01) | 17T sin 20¢ 2H e I v [e D]
< —K-j—v— iyt 1V [e‘Re Q(xx)] (18 2.k+1)

Sl 2.
and
W&+ D, 1) -0 @@, py I < —— L op By B

v r NiRe ul’ ok 2k+1 (18 .4.k+1)

for (x;,v') in (13.1), thanks to (12.6) and (12.7). Furthermore, by the use of (13.3.k), (18.5.k),
(18.2.k+1), and (18.4.k+1), we have

[q)(k-f-l)(xhvl)] < KN (71+ oot 2Tl+j> vt IV [e"Reﬂ(xl)] (18.3.k11)

e & Dy 1) 1 < Ky, (% P _1?1+_1> Iyt IV (18.5.k+1)
>

for (x;,v') in (13.1).

Now, by (18.3.k+1) and (18.5.k+1) and the same reasoning as that in C of Section 17, ® ®*D(x, v!)
and W &+D(x, v') are holomorphic in (x,,»") for (13.1).

Thus, the proposition II(k+1) is true

Therefore, by means of mathematical induction, I1(») is true for all positive integers m. Namely,
step (I) is proved, and better yet, we have the inequalities (18.2.m) to (18.5.m).

19. Convergence of {®(x,v), T M (x,v)}
Since
m-1

dM(x, v )=d O, vy + D {@®* D(x, 1) - ®)(x,,v1)) (19.1)
k=0
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m—1
M (x, =D, pHy+ D ]CI)(kH)(xl RAD T 2GS S (192)
k=0
the sequence { ®™)(x, »1), ¥™)(x;,»') } converges if and only if the series in the right-hand side of
(19.1) and (19.2) converge. However, by (18.2.k) and (18.4.k), these series converge absolutely and
uniformly in any compact subset of (13 ).
Since each term of the sequence | <I>(m)(x WMy } s holomorphlc in (x,,v") for (13.1), the

limit, denoted by { ¢(xq,v"), Y(x;,v") } is also holomorphic in (x, ,v*) for (13.1).
Moreover, due to (18.2.k) and (18.4.k), we have

—Re Q(x,
[gp(xl,vl):|< Ky ||V1||N[e ° R )] (19.3)

and
Gy I < Ky IV (19.4)

for (xy,v')in (13.1). Thus, step (II) is proved.

20. Integral Expression of { ¢(x,»), ¥(x,») }

We shall prove that the limit function ¢ (x; ,v Yy and Y(x;,v") satisfy integral equations (16.1).
For the first equation, let ¢, and f denote the jth components of the vectors ¢ and f , respectively. We
want to show that, given € > d there exists an integer M(e, x, ), depending on e and x; , such that

f oot {f] (%7691, €2 ) o, Vix), W(x, Vx)) )
0

_f; (x,V(x); la(eﬂ(x))@(m)(x,V(x)),\y(m)(x,V(x))) } dx | <e (20.1)
form =2 M(e,x;).

From (18.3.m) and (18.5.m), we know that ®™) ang wmM) satisfy the same inequalities as (19.3) and
(19.4), namely

[(b(m)(x,,vl)] < Ky Iyt ¥ [e_Re n(x‘)] . (20.2)

and
™Gy w1 < Ky IV (20.3)

for (xy,v')in (13.1), independent of m.
Since the vector f(x,v;n.{) satisfies a Lipschitz condition in (n,{) with Lipschitz constant H, the left-hand
side of (20.1) is dominated by

—Re Q.(x)
4HK f 1701 T el Y x| (20.4)
I,

JX
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independent of m. By the same reason as we have seen in A of Section 17, the integral (20.4) exists. Hence,
we can choose a point x]‘?l on I"]f, independent of m, such that

x°

j1 — X A
J{ B P { £ (370051, @) 0, V), Y, V)
0

—ﬁ (x,V(x); 1, €2 ®) (x, V), \If(m)(x,V(x)))} dx <§. (20.5)

On the other hand, since the arc of I';,, from x? to x, has finite length, and (P(m)(x v) and ) (x,v)

converge uniformly in any compact subset of (13. {) we can choose a compact subset of (13.1), containing
the portion of F]x from x]° to xy, and an integer M(e,x;) such that
1

/ et Y {f] (%7001, €25 9, V6, 6, V() )
0

X7

—ﬁ (x,V(x); 1, (eQ(x)(D(m)(x,V(x)),\I/(m)(x,V(x))>} dx <—§— (20.6)

for m = M(e,x;).

By (20.5) and (20.6), (20.1) is proved. This is true for all components; thus, p{x, ,»*) satisfies the first
integral equation of (16.1).

Similarly, ¥(x, ,v") satisfies the second integral equation of (16.1), and therefore step (III) is proved

21, { o(x,V(x)), ¥(x,V(x)) | asa Solution of (12.9)

We shall prove that { W, V), v(x,V(x)) } is a solution of (12.9) whenever (x,V(x)) belongs to (13.1)
To prove this, rewrite the integral equations satisfied by ¢ (x, v) and ¥ (x,v) as

ooy 1) = f b0 a
0

@1.1)
i ) =/ " v dax
0

where

%(x,v) = x o1 1, (e~9‘(x))f(x,v; 1, € )) p(x,v), wx,»)).

W) = 5L Beevs 1, (€20)) o(x,v), Y(x.)).

Also, write V(x) = W(x,x,,v"). Then it is sufficient to prove that

T 0lro”) = B0 1), G Vo) = Fro ) 12)



NRL REPORT 7243 27

where 1° is a vector function of x given by W(xq,x;,v").
We shall prove the first equation of (21.2). Since W(x,xo,v°) = W(x,x;,»"), the first equation of (21.1)
can be written as o

Xo
SO(xO:VO) = f (I)(X,W(X,XO,VO)) dx. (213)
0
Hence

da 0y — 0
dxo o(xo,V7) = Plxo,1")

BW(X,XO,VO) aW(X,xo 9V0) aw(xo axlrvl)
+ .

0Xg Vg 0y

dx. (21.4)

X, A
+ od(x, W)
0 ow

A
However, for any constant 2, ’;\z = W(&,x,v) is an integral of the equation xv' = ln(u)v. Thus% = W(g,xo V)=
W@,xl ,vh), and

dW(E,xo ,VO)

d%, = 0.

Namely, the expression in the braces of the integrand in (21.4) vanishes identically. Therefore, the first
equation of (21.2) is proved.
Similarly, we can prove the second equation of (21.2). Thus step (IV) is proved.

22. Uniqueness

To complete the proof of Lemma B it remains to prove step (V), namely, a solution of (12.9) satisfying
(13.3) which is unique.

Suppose that there are two solutions satisfying (13.3). Let { P(x,V(x)), QCx,V(x)) } be the difference of
these two solutions. Then, there exists a positive constant K such that

P ) < K IV [F 260 o, vl < K vy 1Y (22.1)

A
for (x,,v1)in (13.1). Since f(x,v;n,$) and 2(x,v;n,¢) satisfy Lipschitz conditions with respect to (1,{) with
Lipschitz constants H and H', respectively, we have

[P(xl,vl)] < 2HK / lx I~ 1peoI [e_ReQ(x)] ldx|

1"x1

A4HK N —Re Q(xy)
STl sinzoe ) e ]

< § iV [ Re 9G] (222)
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and
Ix, |
10Ge, w1 < 2HK / L= el Y 1axl
0
2Ky v <§ Iyt & (22.3)

= NlRe pl’

Here, we use (14.5), (17.9), (12.6) and (12.7). Repeating this process, we have, for any positive integer p,

1~ _Ig 1N —Re Q(x)) 1 _Ii 1N
[Per1v ,] < - CNEAE ] QG vl < - Iyt (22.4)

for (x;,v") in (13.1). Hence
P(xlyvl) = 07 Q(xl ,Vl) = O) (225)
for (x,,v') in (13.1), and these prove the uniqueness.
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