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Successive-Approximations Method for Solutions of
Nonlinear Differential Equations at an Irregular-Type

Singular Point

Po-Fang Hsieh*

Mathematics Research Center
Mathematics and Information Sciences Division

Abstract: Two fundamental existence theorems for the study of analytic solutions of

nonlinear ordinary differential equations with an irregular-type singularity are proved. A

method of successive approximations involving improper contour integrals and analyticity
with respect to several complex variables is employed.

I. INTRODUCTION

1. The Problem

In the course of studying a nonlinear differential equation of a complex variable at an irregular-type

singular point, one of the main problems is to find the analytic meaning of formal solutions. In the process

of tackling this problem, one often encounters two types of existence theorems to be discussed in this

paper. These two theorems have been proved recently by M. Iwano [1, 2] by means of Tychonoff-type

fixed point theory, which was originally devised by M. Hukahara [3, 4] . The aim of this report is to mod'f'

the proof of these theorems by using a method considerably more constructive, namely successive approx-

imations. While doing this, one can see that there are two difficulties which are not usually seen in the con-

ventional successive-approximations method; one involves the improper contour integral, while the other

requires the analyticity with respect to several complex variable.
In this chapter, we shall clarify some notations and definitions. Chapter II will state the assumptions

and the main theorems. Since the proof of these theorems are alike, only the sketch of the first theorem

will be given in Chapter III. However, the paths of integration will be fully explored there. The complete

proof of the second theorem will be given in Chapters IV and V.

2. Notations

The quantity 1 m is defined as the m x m unit matrix. For an m-column vector y with elements y1, the

expression Im (y) denotes an m x m diagonal matrix with diagonal elements {y 

If u is an m-column vector with elements u , then [u] denotes an m-column vector with elements

Iu11 . Obviously, [u ] coincides with u when all the components u1 are nonnegative and real.

For m-column vectors u and u with elements ( and { , respectively, a vectorial inequality

[u] < [u] means that Lu I < Iu.i foreachindexj.
The components of an m-row vectors q = (q, . . , qm ) are all nonnegative integers and

Iq I = q5 + q2 +..- qm - (2.1)

For an m-column vectory with elementsyj, the symbolyq stands for the scalar quantity

q = q1 q2 (2.2
Y Yl Y2 ... Ym (2.2)
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The norm of an m-vectory with elements { yj ) is

llyi1 = max Iy .yI* (2.3)
j=1 I

To simplify the notion, for a scalar w and an m-row vector y with elements yj,

WV = (wY I. I WYm ) (2.4)

expy = (expyl, * *, expy 2 ),oreY =(eY , eYm) (2.5)

Re y = (Rey,, . . ., Reyn),andlmy =(Imy1, .. ., Imy,). (2.6)

If y is a column vector, wY, exp y, Re y, and Im y are all column vectors.
For an n-column vectory with elements Iyj1 and an n-column vector functionf(x,y) with elements

Jf (x, y) } , the notation f (x, y) denotes an n x m matrix given by
j ~~~~~Y

fix ,y) ( by, f(xvy) , ay) ) . (2.7)

3. Definitions

A function f (x), which is holomorphic and bounded in x for

0 < Ix I < #, I 0< argx <0, (3.1)

where $, 0), and 0H are given constants, and which admits an asymptotic expansion in powers of x as x tends
to 0 through (3.1), is said to belong to class C (ta, e, t).

A vectorf(x,y, z), which is a holomorphic function of (x,y, z) for

0 < Ix I < $, E) < argx < 0, lly11 < 6, fIzI K < , (3.2)

is said to have Property- 1 with respect to y and z in (3.2) if the components off(x, y, z) admit uniformly
convergent expansions in powers of y and z for (3.2) and if the coefficients of these expansions belong to
class C(0, , o).

Suppose a finite number of monomials of x-§ of the same degree, say a, are given:

E21(x)= ax ( 1,2,...,M).

Then the sectors of the form

-(argy. - 2 + 21rh.) < argx <- (argy. + 2 + 2irh.) (3.3)
a I ~~2 1a I 2 I

and

-1arg zj + 2 + 27rhj) < rg x <-(arg +1 3+r (3.4)
-(arg~y. +- + 2xrh') < arg x <- (arg yj +- + 27rh~),34

a I ~2 I a 1 2 1

2
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where h. and h. are any integers, are said to be a maximal negative region of i2.-(x) and a maximal positive
region of 92(x|, respectively. The maximal negative (or positive) region means that if x tends to the origin
through any subsector of (3.3) or (3.4)), the function exp (ReQ21 (x)) tends to zero (or infinity) exponentially.

A sector E( < arg x < 0 is said to have Property- s with respect to monomials &21(x), . .. 2,QM(x)
if this sector does not contain any maximal negative region of Q21(x) for each index j and if there exists in
this sector a direction for each index j such that, x tends to the origin along this direction, exp(Re2j(x))
tends to infinity exponentially.

Remark: Since the sectors

1 5i71TiS: -(arg yj -2 + 2-nh.) + eI < argx <-(argy. + + 2-rh.)- e2
Ia 2 1a 1 2 1

and

S:- (argy. - 2 + 27Th.) + eI < argx <-(argyj + - + 2rh') -e 2 I
I a 1 2 1 2 i

where el and e2 are constants satisfying the relations 0 < el , e 2 < (27r/a), el + e2 < (37r/a), then both
have propertysh with respect to { Q2(x) If a direction arg x = 00 is given, we can choose h1 and h'

I ~~II properly such that 00 e S. and 00 e S.. Put

M M
S = S, s = S'

1=1 I' h I

Then, both S and S' are nonempty and have Property-4 with respect to { E (x), . . . M(x) . As a
matter of fact, since

M M
max { 27rh. + argy. - min (2rh1 + argy. } < 27r

and

M M
max { 2iTh1 + argy } -min { 27rh -, argy < 27rI

we can choose el and e2 so small that the sectors S and S' have central angle > ir/a.

II. MAIN THEOREMS

4. First Existence Theorem

Let there be given two systems of a + fi nonlinear differential equations:

xU+l y' = f(x y,z), xz' = g(x,y,z) (El)
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where '= d/dx. Here we assume that
(i) x is a complex independent variable and a is a positive integer.

(ii) y and z are both a- and j3-column vectors with components ( yj } and { Zk } , respectively.
(iii) f(x,y, z) and g(x, y, z) are a- and 13-column vectors, respectively, whose components have

Property- with respect toy and z in the domain

0 < IxI < (,0 < argx < 0, flyfl < d, Izff < d, (4.1)

where 0, 0), , and d are constants, with t and d positive.
(iv) The matricesfy andf satisfy

fy (0,0,0) = (z) + D,det 1Q) 0 f (0,0,0) = 0, (4.2)

where y is an a-column vector with elements ( 'Yj and D is an a x a nilpotent matrix with lower tri-
angular form.

(v) Equations (El) possess a formal solution of the form

y ~ E x2fQ, Z xQgQ, (4.3)
2=0 2=0

where f 2 and g, are a- and 13-column constant vectors, respectively, and in particular,

11f o11 < d, lgoll < d. (4.4)

Let

Q2.(X) = - (I = 1, 2, . . . ,a); (4.5
I ax(,

the first existence theorem is stated as follows:

THEOREM A. Assume that, in the sector 0 < arg x < 6, there exists a subsector 0* < arg x < E0*
which has Property- U with respect to Q. (X)- . . . 2(x) ~. Then the equations (E1 ) have a unique solu-
tion ' F(x),G(x) ) which is holomorphic and bounded in x for

0 < Ixl K< 0, E)0* < arg x < 0*, (4.6)

where O< $,0 <, and which admits asymptotic expansions of the form (4.3) as x tends to zero in the
sector (4.6).

The sketch of this theorem will be given in the next section.

5. Second Existence Theorem

Let ,u be a given n-column vector with elements Pk ) The second existence theorem concerns a sys-
tem of equations similar to (El), except that the vectorial functions f and g, besides x,y and z, depend
on an arbitrary function of the form V(x) = 1J(x")C, where C is an arbitrary n-column vector. This
system is:

xG+ IYt= f(x, V(x);y,z), xz' = g(x, V(x);y,z).

4
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Here we assume that
(i) f(x,v;y,z) and g(x,v;y,z) are a- and 13-column vectors, respectively, which admit uniformly con-

vergent series in powers of y and z in the domain

0 < Ixl K< , K) < arg x < 0, 1fvff < 6, flyll < d, ffzl1 < d, (5.1)

and whose coefficients are functions with Property-U with respect to v in

0 < IxI < #, (i< arg x <, lvii < 6, (5.2)

with 6 a positive constant.
(ii) The matrices fy and fz satisfy

fy (0,0; 0,0) = 1a(T) + D, det 1a( y) 0, fz(0,0; 0,0) = 0. (5.3)

(iii) Equations (E2 ) have a formal solution of the form

y V(x)qfq(x), z E V(x)qgq(x), (5.4)
1 q I =0 Iq 1=0

where fq (x) and gq (x) are a- and 1-column vector functions, respectively, which belong to class C (0,, ,),
and in particular,

II fo(x)if < d, lfgo(x)fl < d. (5.5)

Now, the second existence theorem is stated as following:

THEOREM B. Assume that, in the sector (D < arg x < 0, there exists a subsector a * < arg x E)* which
has Property-2 with respect to { l2, (x), .. . , Q2Q(x) } . Then the equations (E2 ) have a solution of the
formr F(x, V(x)), G(x, V(x)) } whenever x and V(x) are in the domain

O< 1xI<K°,Q*<argx<K*, fy11 <6 0, (5.6)

where 0 < ,° < ,, 0 < 6 ° < 6. Furthermore, this solution admits uniformly convergent expansions of the
form (5.4) so that F(x, v) and G(x, v) are a- and 13-column vector functions with Property- U with re-
spect to v in the domain (5.6).

The complete proof of this theorem will be given in Chapters IV and V.

III. PATHS OF INTEGRATION AND PROOF OF THEOREM A

6. Reduction of Theorem A

In order to prove Theorem A, we consider for a positive integer N the following transformations to
(El):

N-1 N-1
y E XtfQ + n7N I z E X'gQ + ONE (6.1)

Q=0 Q=O

is
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and

rqN = 1.(e ( )x) PN' PN = QN' (6.2)

where Q(x) denotes the a-column vector with elements { Q2(x) . Then PN and QN satisfy

x°1PN= 1la(e "(x)) f(x,1la(e'-'(x))PN, QN) I(6.3)

XQN = A(X, Ia(e (X))PNQN)

where f(x , ,) and g(x, a, t) are a- and 1-column vector functions, respectively, which have Property-U
with respect to i1 and ¢ in

OK lxl<4ye3 <argx <, 11711 <KdN, Il IdN, (6.4)

where tNand dN are constants which depend on N, SN < , dN depends on d and tN' and

A A
fr( (0,0,0) =DfjO0O0O) 0,

p(0,0,0) 0, g(O,0,O) 0 * (6.5)

Therefore, we have the inequalities

AlX(X , <) •H(11771, + i11i)+ BN IxIN
(6.6)

11(x, A , )II (llAli + ilt11) + BNIXIN\
A

where H, H', and BN are positive constants, and H and H' are independent of N, for (6.4). Moreover, f and

g satisfy Lipschitz conditions with respect to (n, t), namely

11 f(X,,ql, l) - (X,q2, t2) 1 < H(Iha' -_2 11 + ii t1 -¢2 11

and

11 g( 7 ,¢t)- xn2, t2) II < H' ( 11 w 2 1+11r1_ 2' 

for (x,71', I') and (x, 12 , t 2 ) in (6.4). By the fact that D is nilpotent, we can assume without loss of

generality that H satisfies

8HK< iyll'sin2ae (6.7)

where 1y 11' min iyj I . Also, we take N so large that
1 ]ja

4H' < N. (6.8)

6
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Then, the proof of Theorem A is reduced to that of solving the following:

PROBLEM A. If we have (6.7) and (6.8), then there exists a unique solution { ON(x), 4 N(x) } of (6.3)
such that for suitable chosen and KN

(i) ON(x) and fN(x) are holomorphic and bounded a- and :-column vector functions, respectively, for

OK< Ixi< 0*<argxK<,*, (6.9)

(ii) ON(x) and fN(X) satisfy the inequalities

[ONf(x)] <KN Ix IN [e -Re 52(x)], 11 fN(x)l 6KN IXIN (6.10)

for x in (6.9).
Moreover, a solution of (6.3) satisfying

[pN] =O(lxiN) [e-Re2(x)] ggQ jj<0(jxVV) (6.11)

is unique.
Theorem A can be derived from the solution of this problem by using an argument similar to that pre-

sented in Section 12.

7. A Fundamental Lemma

Let A (T) be a scalar function of r, defined in the interval

E)* < T <(3* (7.1)

such that

2 e 6 A (T) 6 r-2 e (7.2)

for any preassigned e; This function A(r) will be given specifically in the next section. Define the function

C(T) by

)(T) exp f cotA(t)dt, (7.3)

J0 

where 00 is a fixed angle in (7.1).
Instead of finding the solutions of Problem A, we shall prove the following:

LEMMA A. There exists a continuous function A (T) defined in (7.1) and positive constants and KN
such that (6.3) has a unique solution { ,N(x), ?N(x) satisfying

(i) N(x), and TN(x) are holomorphic and bounded a- and ,B-column vector functions, respectively, for

O < I x I < l i (arg x), O* < arg x < W* (7.4)

(ii) ,N@(x) and QN(x) satisfy the inequalities

7
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[?N(X)] <KN IxIN [e -Re n(x)], 11 QN(x)ij <KN IxIN (7.5)

for x in (7.4).
Since co (T) is positive and bounded, the domains (7.4) and (6.9) are equivalent in the sense that any

point in (7.4) is contained in (6.9) if we choose N suitably, and vice versa. Thus Problem A is solved if

Lemma A is proved.

8. Determination of A (T)

The directions arg x = O in the sector

)* < argx < E*, (8.1)

such that

ReQ.(x) = Oforargx = 0il

are called singular directions of 2 1.(x) and are given by

-(argyj + -2 + 27Th) (8.2)

or

-(arg yj - + 2iTh') (8.3)
a 1 ~2

where h and h' are some integers. Singular directions of the form (8.2) are called ascending singular directions

of E7(x), and those of the form (8.3) are called descending singular directions. It is to be noticed that, when

we consider Re Q2 .(x) as a function of arg x = 0, Re f2 (x) is a monotonic increasing (or decreasing) function

of arg x in a small neighborhood of each singular direction of the form (8.2) (or the form (8.3));

For those j such that Re Q2.(x) change their signs in (8.1), we shoose arg zj so that at least one of the two

singular directions

01+ =(argy 1 j+ ) (8.4)

or

O. -(arg y + 3-) (8.5)
a- 1 2

is contained in (8.1). By the assumption that (8.1) has Property-U with respect to k2 1 (x), .. . ,a(x) }
we can classify the set J = , 2, . . .2 , a } of indices j into four classes:

Jo = j; Re Q1(x) > O for 0* 6 arg x 6 O*)

Ji = ( j; Ko* < Oi*+ < Of-< 6* I

8



J, = E i-3 < Oj-, < 3*< Oj_ tr
J3 j RLRPOT 24 

J = <E;0 O)*<K 1 Ke*

For j CJ 2 , we define 0_ by (8.5) and for j E J3, we define 0.+ by (8.4). Some of these four sets may be

empty. Specially, either Jo or J1 must be empty, for 6* - 04 < (ir/a) when Jo is not empty and 19* -
*> (7/() when Jl is notempty.Therefore f 1, 2,.., a UJ U J3 or , 2, .. .,a JO UJ2 UJ3.
Since the sector (8.1) has Property- 3 with respect to ( Q 1 (x), . . .2, Q(x) ,the angles 09* and 0O* must

satisfy the inequality, for sufficient small e > 0,

max 0+y-(+j 6e) 6A* )*min 07 + ( -6e) (8.6)

forallj E Jl U J2 U J 3 orj E J2 U J3. Put

ek+ =max Oy+, 0 )k_ = min 0._ (8.7)ieik ijEJk 1 87

where k = 1, 2, 3 or k 2, 3. Then A (r) is defined by

+_-4e <r <"
L (-r-E3_+4c),E)3- 2a-eT8

A ( I) = 2'2+ 2I + 4e 6 T 42 (8.8)

G( E2+ 4e) + 7r, e 6 T < 192 2 - + 4e.

Noticing that

(2+ = max 01 + (E J U J2 U J 3 orj eiJ 2 U J3) 8

k (8.9)

3 = min01 _ CEE Jt U J2 U J3 ori E J2 U J3)<

we see that by (8.6) A (T) satisfies

2ue <A (@) < ir - 2e for 0)* <6 - <0* (8.10)

9. A Fundamental Inequality

In order to prove Lemma A, we need an integral inequality stated as follows:

LEMMA 1. Let x 1 be an arbitrary point in the domain (7.4). Then there exists an a-vector path FX with
elements ' FjX # such that 1

(i) Each curve rFx joins the point x 1 with the origin and is contained in the domain (7.4) except for
the origin.

(ii) Iff< satisfies

a
2N(Q max w(T)6 11 y II' sin 2ue, ( 11 II' = min I yI),

(3 0*:<T-< * j= 1

NRL REPORT 7243 9
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then

J XIl -_ eRe 2j(x) Idxl 6 2 IxuiNe &R 1(x,)

fo WN-11-1 e ldx I < 11,y 11'sin 2(ye Ix, I~e(9.2)

Here, the integration is carried along Fx.
We shall define the path vector rX and prove assertion (i) of Lemma I in this section. Assertion (ii)

will be proved in the next section.
First, let us define an a-column vector function a(T) with elements aj(T) ' in the interval (8.1).
if IJe 0 ,

aj(T) = 2 (*6T6 3.(9.3)

If jVEJi,

,(T-0- +4e), 0 -2e<T63*,

aj() =j2 >Oj+ +2c<KTK<O j -2e, (9.4)

\ a(T-03+ -4e)+-7,)*<6T60 + +2e.

If I eJ 2 ,

2 O+ + 2e S *,

T a(T- _0j+ - 4e) + 7T, *6 T 6 j+ + 2e.

If jCEJ3

\ a(T - 0i- + 4e), Oi- - 2e 6 T (9.6)

| 2 T 6 K j -2e.

It should be noticed that either J0 or J1 is empty. By virtue of (8.6), it is easily seen that

2ae 6 ai(T) < 7T - 2ae for E3* < T < 0* (9.7)

Moreover, by virtue of (8.7),

a, (T) 6 A (T), Oj_ - 2e 6 T7 6 E)* ( (E J1, J3),
(9.8)

ai (T) >A (), E)* < 7<0O+ + 2 e(jeCJi, J2)

10
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Hence, we have

r T R~~~~~~TJfT cot aj(t)dt 6 cot A (t) dt (9.9)

for 0 6 r 6 O + + 2e (jGJ1 ,J2) and for 0j1 - 2e 6 T 6 0 (j 1 J, ,J3).
Let (r,0) and (P,T) be the polar coordinates of the point xl and of the variable point x on the curve

Fix respectively. Then the curve rFx is defined as follows:

(i) If 0 < 0j+ + 2e or 01 - 2e < 0, the curve F1x consists of a curvilinear part

p = r exp cot aj(t)dt

(9 .10)
0•T07j++2e or0 1j-2e•T•0,

and of a rectilinear part F1

rTo 6p 6r exp J cot a1(t)dt,

.(9.1 1)
'r = 0j+ +2e or 0 j - 2e.

(ii) If 0j+ + 2e 6 00 6 1j -2e, the curve Fix consists of only a rectilinear part rF

0• p < r, T =0. (9.12)

By virtue of (9.9), the curves rjF defined by (9.10), (9.11), or (9.12) are contained entirely in the
domain (7.4), except for the origin. This proves assertion (i) of Lemma 1.

10. Completion of Proof of Lemma 1

In order to prove assertion (ii) of Lemma 1, we need the following differential inequalities.

LEMMA 2. Let s* be the arc length of the curve rFx reasuredfrom the origin to the variable pointx
on this curve. Then,

d e-Re j(x) > ixo-le -Re 2j(x) iky 11' sin 2ae (10.1)
dsj

and

XI4- dlxI X I ix-, (10.2)
di

holds as x moves on FIXi

I11
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In fact, if (10.1) and (10.2) hold, then

d (IxjNe -Re f2i (x) ) Ix IN-u-1e -Re Qj (x) (11,yl1 2ae -NlxlO). (10.3)
dsj

If we choose tN such that (9.1) is satisfied, then

2(11y11' sin2ae -Nlxl)> 11byll' sin2ae

for x in (7.4). Thus

d (IxINe -Re &2j(x) ) > Il" Ii' sin 2ae Ix N--le -Re E2(x) (10.4)
dsj 2 x

for x on jX . Then, assertion (ii) follows and Lemma 1 is completely proved.
In order to prove Lemma 2, put x = pe!T. Notice that on the curvilinear part rj, p is a function of r

given by (9.10). Since

dp = p cot ai(r), (10.5)

we have

dr = - [{dr (P cos r) 2 + .{ d (P sinr) 2 ] 1/2 (T) (10.6)

where the "-" is for 0 6 r60 1<j+ + 2e and the "+" is for 0j_ - 2e < Tr 0. Thus,

dx = TelT (cot aj(r) + i) sinaj (r)=e (ai)+)i (10.7)
ds1 i 1 T

according as 0 < r < 0j+ + 2e or 0j_ - 2e < T 6 0. Hence, we have the equality

d (-Re Q2j(x)) = +p-1-l1 kyji cos (aj(7) - ar + argyj) (10.8)

where "+" is for 0 < r < O• + + 2e and "-"is for 0j_ - 2e < r • 0, and consequently,

d• -Re kyj(X) = ±p01 lyileRe I (X) cos (aj(T) - aU + arg 'yj) (10.9)

according as 0 6 r <•j+ + 2e or 0j. - 2e < r < 0.
On the other hand, by the definitions of the functions aj(T) and of the angles 0j+ I0 F', we have

7T 7r~~~~~~~~~~~~~~~~i8 2+4ae (mod27r), 0j-2e6 r 0 Er +--6e,
ai(T) - aT + arg yj = ' (10.10)

/ 2-4ac(mod 27r), Oj+-7 + 6e i+ +02e.

12
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Hence

±cos(aj(r)-aT +argyj) = sin4ae>sin2ae.

This proves the inequality (10.1) for x on rF.
On the rectilinear part F;, x = p eiO and s = p. Thus,

d e-Re Oj(x) = -e-Re j(x) d- Re Qj(x) (10.11)
dsi dp I

= -e Re Qj(X) p-F-1 I licos (arg'yj - c0)> e-Re 5Y(x)p-a 0` kyjI sin 2Ue

because Oj+ + 2e 6 0 6 0 j -2e. Therefore, (10.1) is true as x moves on Fix
In order to prove (10.2), we observe that sj is real. Then

1xV_1 dlxl = d log dxl=d (Relogx)=Re( d logx)=Re(x 1dx )- lx1-1 (10.12)
ds1 dsi Is dI ds1

Here we use (10.7) when x in on r. When x is on r, this inequality follows immediately from the
factthe Ixl=sj.

Thus, Lemma 2 is proved.

11. Solution of Problem A

Consider, for an arbitrary point x 1 in (7.4), the system of integral equations

0x I)= XI X-0-1 IaenX) (x l(e nW))p o(x), t (x) dxI

I A(11.1)
21(Xi1) =_ J -1g (XI 1 (en Q( ) ) (x), 0 (x) ) dx\

where the integration of the jth component of the first equation of (1 1.1) is carried along the curve F.
defined in Section 9 and the integrations of the second equation are carried along the segment Ox, join-
ing x1 and the origin. Applying the integral inequality (9.2) and using successive approximations, a dis-
cussion analogous to that in Chapter V will prove Lemma A, and consequently give the solution of Prob-
lem A.

Thus Theorem A is proved.

IV. PROOF OF THEOREM B

12. Reduction of Theorem B

In order to prove Theorem B, we first consider, for a positive integer N, the following transformations
to (E2 ):

y = Z V(x)qfq(x)+17N, z I V(x)qgq(X)+ v. (12.1)
Iq l<N Iq l<N

13
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Then the transformed equations can be written as

A

XU+l1 N = la(CY)7N+f(X, V(X); 7NN) I
(12.2)

= g(x, V(X);7N, 7 N),

A A

where f(x, v; 17, t) and g(x, v;,7, t) are holomorphic and bounded vector functions of (x, v, i7, t) for

0K< 1x| <N, K *< argx < K*, iviiKN < N 11q11 < dN, 11ik11 < dN (12.3)

Here 4N, AN and dN are constants which depend on N, 4N < t, 5N < 6, and dN depends on d, ANN
and 5N. Further,

A A

f,,(0,0; 0,0) = D, f (0, 0;0,0) = 0,/
A ~~~~~~~~~~~~~~~(12-4)

f(O, 0; O. O) =O. g(O, 0; O. O) =O.;

Therefore, we have the inequalities

A

(12.5)

Al (x,v; 7,t <H'(117i11 + Il li)+BN IlvilN

fAor (12.3), where H,H', and BN are positive constants and H and H' are independent on N. Moreover,
f and g satisfy Lipschitz conditions with respect to (r7,¢) with Lipschitz constants H and H', respec-
tively, in (12.3). Since D is a nilpotent matrix, we can assume without loss of generality that H satisfies

8H< lkyll'sin2ae (12.6)

for a preassigned number e. Also, we take N so large that

4H'< N 11 Re p11', ( 11 Re II' = min {Re Pk )- (12.7)

Put

17N = 1 (en (x)) PN, RN = QN (12.8)

Then, the equation (12. 1) is reduced to

P= x- 1 (e- A(X))f(x, V(x); la(en( ))PNQN) |
(12.9)

Qv~ Rgx, VWX; 1,(e (x)) PN, QN) 

Thus, the proof of Theorem B is reduced to solving the following:

PROBLEM B. If we have (12.6)and (12.7), then there exists a solution ,PN(x,V(x)), ON(x, V(x)))
of (12.9) such that for suitably chosen tN by and KN

(i) pN(x, v) and PN(X, v) are holomnorphic and bounded a- and :-column vector functions, respec-
tively, for

14



NRL REPORT 7243

0 < Ixl< ,)* < argx < (*, Ilvlv < 6N; (12.10)

(u) oN (x, v) and QN(x, v) satisfy the inequalities

[FpN(x,v)] •KN llvlIN [e Re (x)], I 1N(xv)ll KN llVIIN, (12.11)

for (x, v) in (12.10).
Moreover, a solution of (12.9) satisfying

[pN] = 0(l V(x)iiN) [e-Re n(x), 1 QN11 = 0(11 V(x)11N) (12.12)

is unique.
In fact, we can prove Theorem B from the solution of Problem B in the following manner. Owing to

the transformations (12.1) and (12.8), the quantities

E V(x)q fq~)+l~QX)f(,Vx 
lql<N q

N' ( (12.13)
E V(x)q gq (X) + QN (X, V(x)) 

Iq <N

are a solution of equations (E2) provided that (x, V(x)) is in the domain (12.10). LetN' be an integer
greater than N.
Then

la (en Q(X)) E Vxq f(X) + PN' (X, V(X)) 
N< Iq [<N'

(12.14)

iV(x)q gq (x) + QN'(X IV(X))
N< Iql<N'

are a solution of equations (12.9), satisfying (12 .12)N if (x, V(x)) belongs to the common part of the
domains (12 .10 )N and (1 2 . 10 )N,. Hence, by the uniqueness of solution, the solution (12.14) must coincide
with SO N(xV(x)), IN(xV(x)) . From this, the solution of (Ep) expressed by (12.13) is independent
of N provided that N satisfies (12.7). We denote this solution by , F(x, V(x)), G(x, V(x)) ) . Then by
analytic continuation, the functions F(x,v) and G(x, v) are defined in the domain of the form (5.6) with

= sup t, 6 0 = sup b .
On the other hand, v = 0 is an interior point of the domain (5.6) in which the vector functionsF(x, v)

and G(x, v) are defined. Therefore, by Cauchy's theorem, F(x, V(x)) and G(x, V(x)) can be expanded into
a uniformly convergent power series of V(x) whenever (x,V(x)) is in the domain (5.6). Clearly, from
Problem B, we know that F(x, V(x)) and G(x, V(x) ) admit the asymptotic expansions (5.4). By the unique-
ness of asymptotic expansions, these asymptotic expansions must coincide with the uniformly convergent
expansions. This proves the uniform convergence of the formal solutions (5.4).

Thus Theorem B is proved.

15
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13. A Fundamental Lemma for Problem B

In order to find the solution of Problem B, similar to that for Problem A, it is necessary to replace
(1 2 .10 )N by an equivalent domain of the form

0 < IxI < ci K (argx), [v] < 8 [x(argx)], 1* < argx<* (13.1)

Here c(T) is the scalar function defined by (7.3) with A (T) defined by (8.6) and X(T) is an n-column vector

function with elements ( X-(T) ) defined as

Xk(T) = exp (Re Ik) cotA (t)dt + (Im (d - T) , (13.2)

where 00 is a fixed angle satisfying 0* • 00 .
Instead of finding the solution of Problem B, we shall prove the following

LEMMA B. There exists positive constants N "N and KN such that (12.9) has a unique solution
4 sNff(x, V(x)), tIIN(xV(x)) )satisfying
(i) fN (x,v) and ON(x,v) are holomorphic and bounded a- and -column vector functions, respectively,

for (x,v)in (13.1);
(ii) fN(x, v) and QN(x, v) satisfy the inequalities

[p'N(xv)] •KN IIvii [e Re2(x), il4N(x,v)li•KN IvlN (13.3)

for (x, v) in (13.1).
This Lemma will be proved in Chapter V.

14. Fundamental Inequalities for Problem B

In order to prove Lemma B, we must prove fundamental inequalities stated in the following.

LEMMA 3 . Let (x I, v ' ) be an arbitrary poin t in a domain of the form

O< Ixl<Nci(argx), [v] <6 N [x(argx)],0*<argx<o*. (14.1)

Choose the n-column vector Cso that V(x 1 ) = v' ,namely, C l(x 1 ) v1. Then there exists an a-
vector path Fx with elements { Fix; such that

(i) Each curve Fjx joins the point x 1 with the origin and is contained in the domain

OK< Ix I<KN(argx),E)*<argx<O)* (14.2)

except for the origin;
(ii) As x moves on the curve Fx , we have

[IV(X)] < 6N[x(argx)] , * argx <K5*; (14.3)

16
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(iii) If tN satisfies

2N ibLIi(#N o*max _
2N11911( O0* <T <0)*

o(T))0 < 11 Y 11 ' sin 2 ac,

I X,

Jo

1xI1,0 1 IIV(x)IINe I I dx I< 2 1I V(x) ||Ne Re52 1 (X,)
lkyll' sin2ue

(14.5)

Here the integration is carried along rx.

The curves rjX are defined exactly in the same way as in Section 9 for the proof of Lemma 1. Then
assertion (i) is evidently satisfied. Assertion (ii) will be proved in this section and the proof of assertion (iii)
will be given in the next section.

Let x1 = re io and the variable point x = pe ir. Let the components of the n-vectors V(x), v1 , and p be
{ Vk(x) ), ( vk ,and I k , respectively. Then (14.3) is equivalent to n inequalities.

iVk(x)i<6Nexp (ReIk)
0o

cotA (t)dt + (Im dk) (00 -T) }

as x moves on the curve rF- . Observe that the curve r. consists of two parts rF and rF in general, andIX< )X I I

we have Vkx I vjP(/ 1 )k . Thus

Re Pk

1 k(X) 1 = 1 Vk' I ( P )
exp { (Imn k) (0 -T) }

For x on r' , p is a function of T given by (9.10) and we have
I

i Vk(x)i = I vk I exp { (ReUk) cot a1(t)dt+(Im Uk)(0 T) }
consequently, Pd + ('in byk(9.9)

consequently, by (9.9)

I Vk(x) I < I vk I exp ( (Repk) cot A (t)dt + (Im Pk) (0 - r) I

On the other hand, since v' = V(xi ), vk must satisfy the inequality (1 4.6.k) with T = 0. Namely,

I vk I < aN exp ( (Re k) J cot A (t)dt + (Imu k) (0 °-0) '

Hence by (14.8.k) and (14.9.k), (14.3) holds for x on F..i 

then

(14.4)

(14.6.k)

(14.7.k)

(14.8.k)

(14.9.k)

C, -

17
r'�

G = 1,2,.. .,a).
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For x on7 , p 6rand T is constant. Hence, by virtue of (14.7.k), l Vk(x)1 6 I v' 1. Thus, by (14.9.k),
(14.3) holds for x on F7.

Thus, assertion (ii) of Lemma 3 is proved.

15. Completion of Proof of Lemma 3

In order to prove (iii) of Lemma 3, we need the following differential inequality.

LEMMA 4. Let s. be the arc length of the curve F.x measured from the origin to the variable point x on
this curve. Then

d- 11 V(X) 11 >-I X I 11l 11 11 V(X) 11 (15.1)

holds as x moves on F.
In fact, if (15.1) holds for x on rFX , by virtue of (10.1) we have

d (11 V(x)i -e Re "I()) I3 I"xo1 l V(x)ilNe 1 j(X) (15.2)

.(iiyii' sin 2ae-N I Ipl Ix F)

for x on Fx . Thus, if tN satisfies (14.4), then for x E F.x we have

d ( V(x)i e (X ) > _11 1' sin 2Ue I1x1G II V(x)iiN eRe 121(x)

I

Consequently, (14.5) follows immediately and the proof of Lemma 3 is completed.
To prove Lemma 4, notice, analogous to that for (10.2), that

IVk(x)J-, ds IVk(x) I= Re (Vk(x)- 1 y Vk(x)) = Repkx- d* (15.3)

Since idx/ds-I = 1 except for the joint of the curves F' and F? ,it follows that

d I'~~) ~k x Vk(x)l)- ""llpl xl- 1 IV(x0l

forx on rFx and for k = 1, 2, . . ., n.
Thus Lemma 4 is proved.

V. PROOF OF LEMMA B

16. Successive Approximations

We shall prove Lemma B by means of successive approximations in this chapter.
Let (x1 , v 1 ) be an arbitrary point in the domain (13.1), where and 6 " are to be specified in the next

section. It is easy to see that the system of equations (12.9) is equivalent to the system of a + 1 integral
equations

18
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f -1i 1 (e
5 2

(X))e A2X

<>(XI, v1)= ax0 1 Aa jjfx, V(x); la (es2(x))t'(x, V(x)), 4I(x, V(x)))dx

(16.1)
rXI 

'I (xi,v ) = x 1 9(x, V(x); la (en(X)) (D (x, V(x)), I (x, V(x)))dx

where V(x) = In (x"J)C, with C chosen so that V(x, ) = v'; namely, C = 'n (x I ) vA . For the first equation,
the paths are taken along the a-vector path F defined in Section 9, and that for the second equation is
taken along the straight line segment Fix.

The successive approximations for (16.1) are defined to be the sequence of functions .(4)(m) (xl ,
P(m) (xI, VI) (m = 0, 1, 2, . .. ) given recursively by the formulas

(I() (xi, VI 0, )O ' (0 ) (Xl, v )-0 (16.2)

and

(r m+l)(xi V l t X-a-1 I (e- 2n (X ) ) A(X, vWx;A

1a (e52(x))'I(m)(x,V(x)), I,(m)(x,V(x)))dx,

(m+ 1(Xi, v) , 1 (x, V(x); 1 (e 2(X)) (16.3m)

-1, (m ) (X, V(x)), IP (m ) (X, V(x))) dxl

(m= 0, 1, 2, . . .

Here the paths for (16.3) are taken as those for (16.1).
We shall prove that a sequence defined as I q)(m) (XI, Vl), q (m) (xI, v) } (m = 0, 1, 2, .. .)converges

to the desired solution of (i6.1), or, equivalently, to that of (12.9) in the following steps:
(I) Eachtermofthe sequence (D(m)(xi, v'), 4(m)(xi, v) } givenby (16.3) iswelldefined and

holomorphic in (xl, v1) for (13.1);
(II) Thesequence ( D(m)(xI v1 ) qf(m)(xi v') (m = 0,1,2,. .. )convergesuniformlyto (p(x,,v'),

P(X1, v) in any compact subset of (13.1);
(III) The limit functions ( ,(x, ,vI), 4'(xl, v') } satisfy the integral equations (16.1);
(IV) The functions { so(x1 , vI), P (xi , v'), are a solution of the differential equation (12.9) satisfying

the properties described in Lemma B;
(V) A solution of (12.9) satisfying (13.3) is unique.
Step (III) means the interchange of limiting process and contour integration. Also, due to the relationship

between xl and v' through the function V(x), step (IV) is not a trivial consequence of step (III).
The constants if by andKN will be specified in step (I). If steps (I) through (V) are proved, the unique

solution {p(x, v), i(x, v); will be denoted by { fN(x, v), QN(x, v) } . Thus, Lemma B is proved.
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17. The Functions 41(1)(x, v) and q'(1)(x, v)

We shall prove step (I) by means of mathematical induction.
Let (x1 , v')be an arbitrary point in a domain of the form (13.1), V(x)be aholomorphic solution of

xv' = l(pv)v such that V(x1 ) = v' . Then the vectorial functions 4)( (x1, v1) and T(')(x 1 , v ) are given by

4)(1)(x 'v1) = J M l(X, V(x)) dx 

(17.1)

,(,)(xl VI) = X (1)(x, V(x)) dx 

where

f~1)(X V) = X -a1 1 (e 5 2 (X))f(xv;0,0)

(1)(Xx v) = X 1 (x, v; 0,o)

and the first integration is taken along FX while the second integration is taken along Ox_ 
A. Existence of Integrations-Since the integrands of (17.1) are holomorphic on their respective paths,

except at x = 0, we shall first prove the convergence of the integrals at x = 0.
For the first integration, let Xl be the last point of rF on T = O + + 2e or on T = Of--2c, accordingx* be thlsX, 1+ 1 e codn

as whether 3* < 0 < 0. +le or 0._-2e < 0 < *, when x moves from 0 to x1 along FxX. Letr* =
Ix* . Then, from the definition of F. and the formulas (9.4) to (9.6), it is readily seen that

j= r {s } > r(sin 2aE > a. (17.2)1 ~~1 inarsin >0

This means that for eachj, no matter where x, is located in (13.1), the path F. is always has rectilinear
portion Fr of positive length. Furthermore, IX,

I

Re fl.(x) > 0 on F". (17.3)

Denote the jth components off (1) byfi t l . Then, by (12.5), we have
I

If O )(x, V(X))I = 0 (IX I-K t +N 11 Re 11 e-Re nj(x) (17.4)

By (17.3), the right-hand side of (17.4) tends to zero exponentially asx approaches the origin along rF' .
Thus, the jth components of the first integral exists at x = 0. I

Furthermore, the integrand is bounded on FIX Iwhether there is a curvilinear portion r' or not, and
the length of F17 is finite. Thus, the jth component of the first integral exists.

These facts are true for every component. Hence, 4(1)(x 1 , v' ) exists for arbitrary (xl, v1 ) in (13.1).

20
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For the second integral, notice that the paths are taken along the straight line Ox1 and, consequently,
x-1 dx = dp. By the fact that each component of the integrand is bounded, thanks to (6.6), the existence
of the second integral, namely t(t)(xI,v' 1 ), follows immediately.

B. Upper Bounds-By (12.5), we have

[f(l)(x, V(x))] 6 x I 1 BN 11 V(x)iiN [e-Re (X) ], IIg()(x, V(x))I 6 BN I1 V(x)llN (17.5)

for

OK IxI<K co(argx), e*<argx<6*. (17.6)

Choose G so small that

2NIpII (Q; max w (T))0 6 y 11' sin2ae. (17.7)
0* 6 T 6

Then, by (14.5), we get

[4j(1)(xivl)] 6 1'i 2 LV e-Re 52(x, (17.8)

for (x1 ,v) in (13.1).
To estimate the upper bound of I( 1 )(xj,v 1 ), notice that

Re Mk (t- P-k)

I Vk(x)I = (I ) e (argx, argx).

Then

dl Ii V(X)ll = d I iVk(x)I = (Re Pk) Ix I-IVk(x)I

(Re Pk) Ix I 11 V(x) 11 > 1 Re p 11' I x 1-1 11 V(x) 11

for some k. Thus

d 11 V(x)liN > N 11Re ,11' Ixi-1 11 V(x)ll. (17.9)

Hence, by (12.5), we have

Ml4(1 )(xIv )I 6 NlRepli' liv' II. (17.10)

for (x,,v') in (13.1).
Now, we can choose KN and 5N such that

KN = max 4 I BNa ' (17.11)N t FyIT'rsin 2ae NII Rep I'f
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and 6" satisfies

KN X b max 1X() 11 N< dN. (17.12)
0* < T 6E f*

These inequalities are needed to define q)(m) and @(m) by (16.3).
C. Analyticity-First of all, when x, is fixed, (17.8) and (17.10) imply that the integrals (17.1) con-

verge uniformly with respect to v I . Thus T (1) (x, vI) and P (1) (x ,v') are holomorphic in vI for
[v1 ] • 66 [x (arg xI)] when x1 is fixed.

Next, we shall prove that 4)(1 )(x1 ,v 1) and 4f(1)(x1 ,v 1 ) are holomorphic in xl for (17.6) when v
is fixed. Let x0 be a point in (17.6) and sufficiently near x,. Observe that

| f f(1)(X, V(x))dx= A f()(x V(x))dx + fX f()(x, V(x))dx 

g V dgd( (17.13)

J X(O)(xV(x)) A f( g(1)(x, V(x))dx 

Here, in the first equation, the jth component of the first integral is carried along the path FjX , and that
of the second is carried along 5Oxj . In the second equation, the first and the second integrals are carried
along Oxo and xoxl , respectively.

For the proof of the first relation of (17.13), it is sufficient to prove that

Sy~~l)(xl~vl)= 1 t()x, V(x)) A + f Q~)(x, V(x)) A (I 7.14j)

for each index j, where j) is the jth component of 1 (1).
Let to and t1 be, respectively, the intersection points of the paths F.X and F.x with a circle Ix Q

of small radius. Since v' is fixed and fj')(x, V(x)) is holomorphic in (17.6) by the use of Cauchy's
theorem, (17.14j) is an immediate consequence of

f()(x, V(x)) dx e 0 as 9 - 0. (17.15.j)

Here the path of integration is taken along the circular arc IxI = Q in (17.6). However, from the construc-
tion of Fix0 and FIX , we know that Re 2j(x) > 0 for x on tot,. Thus, the left-hand side of (17.15.j)
tends to zero exponentially as 9 tends to zero. This proves (17.14.j).

Similarly, the second relation of (17.13) can be proved from the fact that

X g(t)(x, V(x))dx 6 21BN 9II Re A11 + I 0as V - O.

22
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NOW, lot V(X) be specii1cally denOted bY W(X, X,,V' ), name1Y W(Xl,l,XV' ) = V' . Lt V' 
W(x1,xl,v'). Then,

b~l)(x v' ) (_l)(xl ) = 1k-1(1)(XI Vl)-)_ (1)l)(t V1 )) ~)X V)-~) v

= JfX, f(')(x,W(x,x ,v1 ))dx - J f()(x W(xJxiv'))dx

+~~~~~~~~~~

+ )(1~) (XA Al _@l(XA )

A

= J*~Ci f(')(x,W(x,x 1,v'))dx + { _(1)(X v, ). (1)(XIVI)} (17.16)

Here we use (17.13), and the paths of integration are taken accordingly. Thus, we have that

d(t)(0X 1 VI) .. d(1) (X 1 , 1V) dv X=X,
m A =-f(l)(X, VI) + 1( 1 ) - (17.17)

A A -xA
xX )X, XI - XI v=vl

exists, since we have just proved that the matrix Ft') (x I,v') is well defined. Therefore, 1d(1)(xl ,v') is
holomorphic with respect to x1 for (17.6) when v' is fixed.

Thus, by Hartog's theorem, 1'(')(x1 , vI) is holomorphic in (xI ,v') for (13.1).
In the same manner, xI(l)(x I, v' ) is holomorphic for (13.1).

18. The Functions D(m)(xv) and *(m)(xv)

We have seen in Section 17 that 4)(1 )(x1 ,v 1 ) and xI(1)(xl,v 1 ) are holomorphic in (x 1 ,v 1 ) for (13.1)
and satisfying

D(1)(xI'vI)] < KN jlvIIIN [e-Re K(x)] , Nt(')(XI'V')1I S 2 lIvI IIN (18.1)
2 2

for (x1,vl) in(13.1)with N X, 5 andKN specified.
Let lI(m) denote the following proposition.
11(m). (i) The functions b (m )(x I, vl) and 4 (m)(x I, v 1 ) are well defined and holomorphic for

(Xl,,V) in (13.1);
(ii) b(m)(xl,vl)and q(m)(x,,vl) satisfy

KN IIVII14)(M)(x V')_(D(-')(x" < v - lllN [e-Re52(x,)], (18.2.m)

[@(m)(X,,v1)] 6 KN (4 + * lvI IIN [e-Re 52(Xl)], (18.3.m)

I*I(m)(XI' vK)N F(Ml)(Xivv)'I 6 - IIN, (18.4.m)
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Il5J~)(XIt) 116 KN( + *-+ - ) JIVI IIN (18.5.m)

for (xI,v') in (13.1).
We have seen that the proposition HI(1) is true, due to (18.1) and (16.2).
Suppose that H(m) is true for m = 1,2,...,k. We want to show that H(k+l) is true.

A

First of all, by (17.12), (18.3.k) and (18.5.k), the functions f(x, V(x); la(e52 (X))cp(k)(x, V(x)),
4t(k)(x, V(x))) and A(x, V(x); la(e52(X)) '(Ik)(x, V(x)), (k)(x, V(x))) are well defined and holomor-
phic in (17.6). Thus, 4)(k+l)(x, ,v') and P (k+l)(x, ,v') are given by (16.3.k+I). These integrals
exist by the same reasoning as that in A of Section 17.

Since f(x, v; ?), ) and g(x, v; i1, t) satisfy Lipschitz conditions with respect to (7i, t) with Lipschitz
constants H and H', respectively, by using (18.2.k), (18.4.k), (14.5), and (17.9) we have

[(D(k+l)(X,,vl)_ID(k)(X,,vl)] < 2' K iv II1IN~eR9(
( y V i 11' sin 2ae 2 2 k

< KN lvli VN [e-Re 2(X,)] (18.2.k+1)
2 k+1

and

gllq,(k+l)(x, Vl) _ p(k)(X1 v) 11 < K , * 2 KN II VI IIN
NIIRe/I1 H 2k 2 k+t (18.4.k+1)

for (x,, V) in (13.1), thanks to (12.6) and (12.7). Furthermore, by the use of (1 3.3k), (18.5.k),
(18.2.k+1), and (18.4.k+l), we have

[C1(k+1)(x,,v1)] 6 Kjy(-2 + *--+ IIv' IN [e-Re n(x,)] (18.3.k+1)

r(k+D)(XI,,v) 11 6 KNK(4 + N+ viN (18.5.k+1)

for (x,,V') in (13.1).
Now, by (18.3.k+1) and (18.5.k+1) and the same reasoning as that in C of Section 17, cP(k+l)(xl ,v')

and f(k+t)(xj ,v') are holomorphic in (x, ,vl) for (13.1).
Thus, the proposition H(k+l) is true
Therefore, by means of mathematical induction, H(m) is true for all positive integers m. Namely,

step (I) is proved, and better yet, we have the inequalities (18.2.m) to (18.5.m).

19. Convergence of 4(p(m)(x,v), xP(m)(x,v) }

Since

Mn-I

q?(m)(X" v')=1( 0)(x,,v ) + E (I(k+1)(x, v')_ d(k)(x,,v')} (19.1)
k=O
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m-l
*, (Xi,V )=( *1)(Xi'vI)+ E 4)(k+ I)(xlv, -l)-(k)(x pl,) (19.2)

k=O

the sequence { q)(m)(xI ,V'), f(m)(xj ,v') } converges if and only if the series in the right-hand side of
(19.1) and (19.2) converge. However, by (18.2.k) and (18.4.k), these series converge absolutely and
uniformly in any compact subset of (13.1).

Since eachterm ofthe sequence IIm)(x,,vl) Im)(x, ,v') } isholomorphic in (xl,vl) for (13.1), the
limit, denoted by { P(x,,v'), i(X, ,vl) } is also holomorphic in (xl ,vl)for (13.1).

Moreover, due to (18.2.k) and (18.4.k), we have

[p(XIv')] 6 KN 11 vl IN [e (Xi)] (19.3)

and

111 (x,vO)iI 6 KN l1v1 IIN (19.4)

for (x, ,v') in (13.1). Thus, step (II) is proved.

20. Integral Expression of (p(x,v), 4(x,v) )

We shall prove that the limit function po(xj ,v') and i1(x, ,v' ) satisfy integral equations (16.1).
AA

For the first equation, let so. and f. denote the jth components of the vectors p and f, respectively. We
want to show that, given e > d, there exists an integer M(e, x, ), depending on e and x, I such that

X e-1 e i fj (x, V(x); 1l,(e 2(x) ) p (x, V(x), ; (x, V(x)))

- (x,V(x); la(e2(X)) (m)(x,V(x)),4f(mn)(x,V(x)))} dx <e (20.1)

for m >M(e,x,).
From (18.3.m) and (18.5 m), we know that 4j,(m) and *(m) satisfy the same inequalities as (19.3) and

(19.4), namely

[(I) Xl , )] KN 1Vi 11 [ I -e ]x,) (20.2)

and

j4A(m)(x, ,v')l 6 KN liv 11N (20.3)

for (x, ,v1) in (13.1), independent of m.
Since the vectorf(x,v;77,¢) satisfies a Lipschitz condition in (17,¢) with Lipschitz constant H, the left-hand

side of (20.1) is dominated by

4 HKN f Ixl--1 e I 11 V(x)iiN Idxl, (20.4)

jX,
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independent of m. By the same reason as we have seen in A of Section 17, the integral (20.4) exists. Hence,
we can choose a point X0 on rF, independent of m, such that

10J X-e~~-1 e i t fjA (x, V(x); la (en (X) ) p(X, V(x)), '(X, V(x)))

-fA (XV(X); Ia(en (X)) )(m)(xV(x))2V(m)(xV(x)))} dx < e (20.5)

On the other hand, since the arc of fix from x?1 to x, has finite length, and V(m)(x,v) and 4I(m)(x,v)
converge uniformly in any compact subset of (13.I), we can choose a compact subset of (13.1), containing
the portion off. from xo1 toxI, and an integer M(e,xl) such that

] X e 1 e iX) {fj (x, V(x); la (en(X)) o(x,V(x)), p(x,V(x)))
11~~~~~~~f

A , 

-fj (x,V(x); la (e52 (X) Vm)(x,V(x)), qf(-) )(xV(x)))} dx < e (20.6)

for m >M(e,xI).
By (20.5) and (20.6), (20.1) is proved. This is true for all components; thus, o(xI ,vI') satisfies the first

integral equation of (16.1).
Similarly, V.(xl ,v') satisfies the second integral equation of (16.1), and therefore step (III) is proved.

21. so(x, V(x)), 4(x, V(x)) ) as a Solution of (12.9)

We shall prove that { p(x,V(x)), ,(x,V(x))' is a solution of (12.9) whenever (x, V(x)) belongs to (13.1)
To prove this, rewrite the integral equations satisfied by p(x, v) and 4'(x,v) as

P(x ,vI)= f i(x, V(x)) dx

(21 .1)

(x, ,v') fXo 'I'(x, V(x)) dx

where

AA
4)(x,v) = xa 1 la (e (X) )f(XV; la (en(x) )o(x,v), w(x,v)).

q'(x,v) = x 1 g(x,v; la (en2 (X))p,(x,v), il(xv)).

Also, write V(x) = W(x,xl ,v'). Then it is sufficient to prove that

d P(xo,v 0) = (xo,v 0), d 0(x0,v ) = A(XOV0 ) (21.2)
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where vP is a vector function of x0 given by W(xo ,x , v').

We shall prove the first equation of (21.2). Since W(x,xo,vO)= W(x,xIv'),the first equation of(21.1)

can be written as

(Xo

A(xO,VO) = J 4(x,W(x,xo,v0)) dx. (21.3)

Hence

d A(xo'v0 ) = 1(xOvo)

(X, A
+ Am asD(XW) aW(xx0 ,v0) + aW(xx0,v0) aW(xo0x,,vd)xd (21.4)

+ J 3~~w axo + dx. (21.4

1\A=W A =WA
However, for any constant 7,7 = W(Q,x,v) is an integral of the equation xv' = In (p)v. Thus 1= W(,xO ,v,) =

W(d,xl,vl), and

dW(Q,xo,v 0 )
__________ = 0 .
dx,

Namely, the expression in the braces of the integrand in (21.4) vanishes identically. Therefore, the first

equation of (21.2) is proved.
Similarly, we can prove the second equation of (21.2). Thus step (IV) is proved.

22. Uniqueness

To complete the proof of Lemma B it remains to prove step (V), namely, a solution of (12.9) satisfying

(13.3) which is unique.
Suppose that there are two solutions satisfying (13.3). Let {P(x,V(x)), Q(x,V(x))y be the difference of

these two solutions. Then, there exists a positive constant K such that

P(x ,I0) < K 11v 11 N [e-Re (x,)] IIQ(x, , v') < K 11v, 11 N (22.1)

for (xl, v1) in (13.1). Since f(x,v;7,¢) and g{xv;ri,¢) satisfy Lipschitz conditions with respect to (mr7,) with

Lipschitz constants H and H', respectively, we have

[P(xv') ] < 2HK IxIa1 IIV(X)IIN [eRe 2(x)] IdxI

rXl

•6 4HK lIv' IIN [Re 92(xI)]

-2 jiv, IN [e-Re n(x,)] (22.2)
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and

DQ~xI~vll < 2HK | lX-1 IIV(x)IIN jdXI

< N 2HK' K v 11 N < K llv 11 N, (22.3)
NIIRepll' 2

Here, we use (14.5), (17.9), (12.6) and (12.7). Repeating this process, we have, for any positive integer p,

[P(x1,')] < K Ilv' iIN [e-Re n(X,)] , IiQ(xl,v1 )ll <• llv IN (22.4)

for (xl ,v') in (13.1). Hence

P(x,,v') 0, Q(x,,v') 0, (22.5)

for (xl ,v') in (13.1), and these prove the uniqueness.
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