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A GLOBAL IONOSPHERIC MODEL
1.0 INTRODUCTION

The purpose of this paper is to describe a global ionospheric model used by NRL to
analyze the performance of high-frequency radar systems. The basic ionospheric model was
developed jointly with the Institute for Telecommunication Sciences, and was primarily based
on numerical maps of ionospheric indices. These numerical maps were derived from reports by
a network of ionospheric vertical sounding stations. Because the network was rather sparse in
the polar region, the numerical maps do not accurately portray the polar ionosphere. The Air
Force Cambridge Research Laboratory has a relatively large polar ionosphere data base which it
has used to derive a set of polar corrections to the numerical maps of the F,-layer critical fre-
quency. These polar corrections are described in Section 3.4 and have been incorporated into
the ionospheric model used by NRL. Section 5 describes some of the problems to which the
ionospheric model has been applied.

Section 6 provides an atlas of plasma frequency contour maps. This atlas is a graphical
representation of the ionospheric model and will be useful in providing an intuitive feeling for
the model. Some simple graphical raytracing may also be carried out with these contour maps.

2.0 BACKGROUND

For many years numerous organizations, both governmental and private, have been
employing the HF spectrum to communicate point-to-point between long-distance stations. It
was recognized early that HF communication systems were subject to marked variations in per-
formance, and it was hypothesized that most of these variations were directly related to changes
occurring in the ionosphere. Considerable effort was made in the United States, as well as in
other countries, to develop research teams for investigating ionospheric parameters and deter-
mining their effect on the nature of radio waves and the associated reliability of HF circuits.
The investigators soon realized that effective operation of long-distance HF systems increased
in proportion to the ability to predict variations in the ionosphere, since such an ability permit-
ted the selection of optimum frequencies, antenna systems, and other circuit parameters that
would capitalize on ionospheric variations. With the encouragement provided by these findings,
it was decided that more raw ionospheric data were necessary in order to develop models that
could be used to correctly anticipate ionospheric conditions affecting HF propagation. World-
wide vertical-incidence ionosondes were established which now measure values of parameters
such as f,E, F,F,, f,E;, f,F,, and h'F. Worldwide noise measurement records were started
and steps were taken to record observed variations in signal amplitude over various HF paths.
The results of this research established that ionized regions ranging from approximately 80 to
600 km above the earth’s surface provide the medium of transmission for electromagnetic ener-
gy in the HF spectrum (3 to 30 MHz). Furthermore, most variations in HF system perfor-
mance are directly related to changes in these ionized regions, which in turn are affected in a
complex manner by solar-activity, seasonal, and diurnal variations, as well as latitude and longi-
tude.

Manuscript submitted April 10, 1979.
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The Radio Propagation Unit of the U.S. Army Signal Corps provided a great deal of infor-
mation and guidance in 1945 on the phenomena of HF propagation by issuing Technical Report
No. 6 [1]. By 1948 a treatise of ionospheric radio propagation [2] was published by the Central
Radio Propagation Laboratory of the National Bureau of Standards. This document outlined
the state of the art in predicting expected maximum usable frequencies (MUF), depicted practi-
cal problems of ionospheric absorption, covered in detail acceptable methods for determining
the MUF for any path at any time, and took into account the various possible modes of propa-
gation by applying principles which were found to work in practice. The model used to make
the MUF predictions employed the "two-control-point" method and assumed the ionosphere to
be concentric, with reflection occurring only from the regular E and F, layers.

In 1950 Laitinen and Haydon of the U.S. Army Signal Radio Propagation Agency furth-
ered the science of predicting HF system performance by developing empirical ionospheric
absorption equations and combining them with the theoretical ground loss, free-space loss, and
antenna gain factors. Thus, expected field strengths could be anticipated for radio signals
reflecting from the £ and F, regions, considering the effect of solar activity, seasonal, and diru-
nal extremes. These findings were published in Technical Report No. 9 [3].

The accumulative techniques and methods presented in the cited literature and in a
number of other studies were then combined to establish effective manual methods for predict-
ing the expected performance of HF communication systems; however, these methods were
laborious and time-consuming even when only estimates for the MUF and optimum transmis-
sion frequency (FOT) were needed. To alleviate this problem, electronic computer routines
were developed by such organizations as Stanford Research Institute (1957) [4], Radio Cor-
poration of America (1961), and the Central Radio Propagation Laboratory (1961), all of which
were based upon the established manual prediction methods. The CRPL program [5] was the
first computerized technique that incorporated a numerical coefficient representation of the
ionospheric characteristics [6]. However, only the expected MUF and FOT were predicted.

In 1962 NBS Report 7619 [7] was issued. This report outlined a computer routine that
utilized the then most recent improvements in the theory of performance predictions, combin-
ing the more predictable ionospheric characteristics with circuit parameters to calculate expected
HF system performance: MUF-FOT, system loss, reliability, and so forth.

In 1966 ESSA Technical Report IER-ITSA-1 [8] was published with an improved electron
density model. In this model the electron density profile along the path was assumed to be ade-
quately represented by two parabolic layers; that is, the F and F, layers. The height of max-
imum ionization, thickness, and electron density were derived for locations near the points of
actual reflection along the path instead of at control points 2000 km from each end of the path.

Work beyond ITSA-1 was continued in two separate paths, one for communication
analysis and predictions, reported in ITS-78 [9], and another for analysis and prediction of the
performance of over-the-horizon (OTH) radar systems, reported in NRL Memorandum Reports
2226 [10] and 2500 [11]. The electron density model described in this report is a descendant of
the routines developed for predicting the performance of OTH radar systems.
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3.0 IONOSPHERIC INDICES MODEL
3.1 Introduction

Prediction of ionospheric indices is used extensively to estimate the performance of long-
distance, HF radio systems and is useful in the design of earth-space communication systems.

The ionosphere exhibits considerable statistical variability. If the minute-to-minute varia-
tions within the hour and the day-to-day variations within the month are averaged, the remain-
ing temporal variations, i.e., diurnal, seasonal, and solar-cycle, become quite well behaved.
These remaining variations characterize what is normally referred to as the quiet ionosphere
because the percentage of disturbed days in a month is usually relatively small.

It is the purpose of this section to review what indices are used to describe the quiet iono-
sphere; the next section will describe their use in deriving a complete electron density profile.

3.2 The Lower Ionosphere
Measurements

Information on electron densities in the lower ionosphere (50 to 90 km) is very inade-
quate, primarily as a result of limited observations. The technical problems of observations are
formidable, and the interpretation of measurements extremely difficult.

Predictions

No D-region indices are included in the present prediction model. The effects of the D
region are accounted for in the electron density model by extrapolating from the E region using
two exponential tails; this is described in Section 4.2.

3.3 The E Region
Measurements

A large volume of vertical incidence ionosonde data has been collected over about three
solar cycles, and many features of the F region are therefore well known. The minimum vir-
tual height of the E region and the variation of maximum electron density within this region as
a function of time and geographic location are readily obtained from the ionograms. The

phenomenology of sporadic E has been investigated, but a number of problems remain
unresolved.

The E-region indices which have been systematically scaled from the vertical-incidence
ionosonde records include
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Index Definition p n

1 FE The critical frequency of the ordinary component of the E layer; i.e.,
that frequency at which the signal from the ionosode just penetrates the £
layer.

h'E, The minimum virtual height of the sporadic- £ layer, measured at the point
where the trace becomes horizontal.

1 E, The maximum frequency of the ordinary component of sporadic £ (E,).

hE The minimum virtual height of the E layer, measured at the point where
the trace becomes horizontal.

TrE The blanketing frequency, i.e., the lowest ordinary wave frequency at which
the E, layer begins to become transparent, usually determined from the
minimum frequency at which ordinary wave reflections of the first order are
observed from a higher layer.

Predictions

The regular E layer is predicted using three indices: the monthly median value of critical
frequency, the height of maximum ionization of the layer (#4,,E), and the ratio of 4, E to semi-
thickness (y,,E). Using a numerical mapping method, Leftin has produced numerical
coefficients representing f,E for computer applications on a worldwide basis. They were
mapped in terms of latitude, longitude, and universal time [12]. The numerical coefficients
were derived from measurements taken during 1958 (high solar activity) and 1964 (low solar
activity). A linear interpolation procedure was used between the representative data for the
high (sunspot number = 150) and low (sunspot number = 10) solar activity periods to obtain
f, E estimates at all other phases of the solar cycle.

An examination of monthly median A'E observations indicates negligible seasonal or geo-
graphic variation in the minimum virtual height of E-region ionization. A typical value is 110
km. When the lower region is included as an exponential tail of the £ layer, an A, £ of 110 km
and a value of 5.5 for the ratio (4,,E/y,, E) are used.

The median, upper, and lower deciles of f,E, are available from numerical maps [13].
However, because of its probabilistic nature, sporadic F is not included in the contour maps.
The statistics of the sporadic E are used when the ionospheric model is used for virtual path
tracing [10].

3.4 The F Region
Measurements

The vertical-incidence ionosonde network, with its long series of measurements over
much of the world, provides the current basis for F-region predictions. The following indices
have been systematically scaled from the vertical ionosonde records [14] although few stations
report all of them.
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Index Deflinition

foF; The critical frequency of the ordinary component of the F, layer, i.e.,
that frequency at which the signal from the ionosonde just penetrates
the F, layer.

M (3000)F, The ratio of the maximum useable frequency for a distance of 3000 km
for the F, layer to the critical frequency of the layer.

foFy The critical frequency of the ordinary component of the F| layer,
i.e., that frequency at which the signal from the ionosonde just
penetrates the F, layer.

h'F The minimum virtual height of the Flayer, i.e., the minimum virtual
height of the night Flayer and the day F| layer. It is measured at
the point where the Ftraces become horizontal. (In earlier years, the
minimum virtual height of the night Flayer was often combined with
that of the day F, layer, the combined tabulation being designated #'FF,.
In these cases, the minimum virtual height of the F, layer, 4'F|, was
tabulated separately.)

h'F, The minimum virtual height of the F, layer, measured at the point
where the F, trace becomes horizontal.

h,F The virtual height of the F, layer corresponding to a frequency f,
where f = 0.834 f,F,. This is based on the assumption of a parabolic
ionization distribution, which is usually considered justified as an
approximation near the maximum of the F, layer .

Predictions

The F, layer is described by three indices: monthly median values of critical frequency
SfoF>, height of maximum ionization A, F,, and ratio of h, F, to semithickness y, F,. The
monthly median values o_f f.F, and the M(3000) F, factors are available as numerical map
coefficients in terms of modified magnetic dip angle, longitude, and universal time [15]. The
data for the mapping were from the years 1954 through 1958. The solar activity dependence is
accounted for by a linear least squares fit between the high and low Zurich sunspot numbers.
The height of maximum ionization is found by first determining 4, F,, the virtual height of the
F, layer at 0.834 f,F,. A geometric formula A,F, accurate to within 6% was described by
Shimazaki [16]:

h,Fy = — 176 + 1490/ M (3000) F,. G-1)

The height of maximum ionization is then found by removing the retardation caused by lower
region ionization:

hmF2 = h,, F2 — Ret. (3'2)
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The formulas for retardation depend upon the assumed electron density profile of the
lower layers. For example, the D—F ionization can be a parabolic layer with an exponential
tail, the F—F valley a linear profile, and the F, layer, if present, a linear or parabolic ledge.
The ratio (h,, F,/y,,F,) is given by coefficients in terms of sun’s zenith angle and geomagnetic
latitude [8].

The existence of the F, layer is given in terms of a maximum solar zenith angle; i.e., the
Fy layer exists only when the solar zenith angle is less than Z_,,. lonosonde data were
analyzed to produce a map of Z,, [17]:

Zmﬂx = dy | + b.\‘,l R + ((1'“2 + b\zR) CcOS (X), (3'3)

where the a.'s and b,'s are coefficients from the map for a particular month, R is the Zurich
sunspot number, and X is the modified magnetic dip angle suggested by Rawer [18]. When
solar zenith angle is less than Z,,,, f, F, is then determined by

foFy=a,+ b, R + (a, + b,R) cos x + (a5 + b3R) cos’x (3-4)

where the a’'s and b's are coefficients from a map for the particular month and y is the solar
zenith angle. The height of maximum ionization (4, F|) is given by

hy,Fy =165+ 0.6428 yx, (3-5)

where x is given in degrees. The ratio (4, F,/y,F;) is assumed to be 4. The values thus
derived for £, F; and y,, F, are only tentative. If the height of the F, layer at f, F, is lower than
h, Fy, then h,F; and y, F, are adjusted.

In the fall of 1975, NRL received from Terrance Elkins at the Air Force Cambridge
Research Laboratory a computer deck containing software which could be used to "correct” the
/., F> coefficients provided by the ITS median model [6]. The polar correction software received
from AFCRL has been adapted for use with the NRL ionospheric model. This software pro-
vides corrections to f,F, as a function of magnetic index (K), day of the year, universal time,
and geographic location. The polar corrections to the ITS median model are described in detail
in AFCRL Technical Report TR-75-0549 [19]. They are summarized below.

The first correction applied is a K, correction where 8, the correction factor, is a function
of K, only. The K, correction is global. All of the other correction factors are applied only in
the polar region. The equations for the K, correction are

f.F, (corrected) = f,F,(1 — &), (3-6)
5 =0.025xy — 0.1, -7

where the term Xy is determined by the following:

If K, < 0.3, then Xy = 1;
03 € K, <13, Xy = 2
13 € K, < 23, Xy = 3;
23 € K, <133, Xy = 4;
33 € K, <43, Xy = 5;
43 < K, < 6.3, Xy = 6;
63 < K,,, XN = 7
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Thus, a K, value of 3, which represents a normal magnetic activity level, produces no correc-
tion. Higher magnetic activity reduces f,F;. A maximum reduction of 7% occurs when K, >
6.3.

The auroral oval correction to f,F; is described in terms of magnetic activity (K,,),
corrected geomagnetic time, and corrected geomagnetic latitude. Software for determining
corrected geomagnetic coordinates was also obtained from AFCRL. The corrected geomagnetic
coordinate system used was described by Gustafsson [20]. For the auroral oval, the correction
factor « is defined such that

f,F, (corrected) = £, F, (1 + a), (3-8)
where
a = 0.4946ke ™" 125K, (3-9)

Here, e is the Napierian base and k is defined by
=129l (3-10)

X,

In Eq. (3-10), X is the corrected geomagnetic latitude in degrees and ¢ is the equatorward
boundary of the auroral oval in degrees. X, is a function of the magnetic activity such that
4 < X L6 :

X, =71-K, @

The auroral oval correction is applied if the corrected gecomagnetic latitude of the location (\) is
greater than or equal to ¢. This equatorward boundary of the oval is described by

¢6=T719—-25K,—r7, (3-12)
where ¢ must be within the limits ¢y < ¢ < @y, With
by =689 —-K,— 1, ‘ (3-13)
by =709 — K, — 1, (314
7 =5.1cos (15 (T, — 1)). _ v (3-15)

Here, T, is the corrected geomagnetic time in decimal hours (angle is in degrees).

The trough correction is the next to be applied. This is used only equatorward of the
auroral oval and only when the solar zenith angle x is greater than 90° (nighttime). The trough
correction is not applied for corrected geomagnetic times 7, in the range 6 < T, < 18. For the
trough correction the form of the correction factor «- (applied as in Eq. (3-8)) depends on the
value of k (defined in Eq. (3-10)): :

a =1, 25617 (for k > 1), ©(3-16)
=k ,
o =1.6487 t1ke 2 (for k < 1), ‘ 3-17)
where
1, =020 + cos(2wD/365)) e 71V (3-18)

and D is the day of the year. The term v is defined by Egs. (3-19) and (3-20):
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y=T.—3((for0 < T, £6), ' (3-19)
y=27—T, (for 18 < T. < 24). (3-20)

Note that only these two intervals need be defined since the trough correction is not applied in
the interval 6 < T, < 18.

In the interval 90 < x (solar zenith angle) < 94.6, the factor ¢, is reduced by

n=rn K—;:O (3-21)

to provide a smooth transition between the normal ionosphere and the trough.

3.5 Summary

The ionospheric indices used in this model are a minimum selection from those available.
The h'F, F, maps are not used because the frequency at which they appear is not available, so
it is not possible to properly adjust for retardation. In fact, if the retardation is not correctly
accounted for, the bottom of the F layer occasionally will be calculated as higher than 4, F,.
Therefore, the map of the ratio (4, F,/y, F,) is used to give consistent results. The maps of
f,F5 and ratio h,, F,/y, F, are from the same data base and are statistically consistent. Using
the ratio guarantees that y,, F, is positive.

4.0 ELECTRON DENSITY PROFILE MODEL
4.1 Introduction

Section 3 described how a set of indices describing the vertical electron density profile is
generated. This section will describe the procedure used to generate a vertical electron density
profile from this set of indices. The electron density in terms of the plasma frequency squared
is given by

N =1.24 x 10'° £, 2, (4-1)

where N is the number of electrons per cubic meter and fy is the plasma frequency in MHz.
Just prior to exiting from the routine, the profile is converted back to plasma frequency vs
height for use in the contour mapping routines.

4.2 D Region

The profile is generated in two steps. First, the coefficients which describe the various
segments are calculated and then the electron density profile is generated from these
coefficients. The lower D region is considered first. The lower D layer (40 to 65 km) is given
by

sz (/l) — f/%/ (40) eO.lZ(h——40), (4_2)

where fy(40) is the plasma frequency at 40 km, which is assumed to be 2.01 x 1072 MHz, and
h is the height. This corresponds to an electron density of 5 electrons per cubic centimeter.
This mode! of the lower D region was suggested by Nestorov [21].
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The expression used to describe the upper D region (65 to 98 km) is an adaptation of the
exponential model suggested by Nestorov:

S 2h) = fn2(65) ekt (4-3)

Rather than tie the upper exponential to the solar zenith angle as Nestorov did, the exponential
coefficient k is chosen to merge the exponential upper D region with the E-region model. Thus
the upper D-region model follows the diurnal and seasonal variations of the E-region model.
The expression for k is

k =1n{fy2(98)/fy*65)}/(98 — 65), (4-4)

where fy(65) is the plasma frequency at 65 km from the lower D-region model. fy(65) is 8.98
x 1072 MHz. This corresponds to about 100 electrons per cubic centimeter. fy(98) is found
by evaluating the E-region parabola at 98 km. The slopes of the equations used for the D layer
are not continuous at the two merge points (65 and 98 km). This produces cusps at these
points in the virtual height profile. However, the electron density is sufficiently low at these
points so that the cusps do not significantly affect the direction of rays in the high-frequency
range.

4.3 E Region

The ionospheric indices used are f,E, median (ordinary-ray) critical frequency of the E
layer; h,E, height of maximum ionization of the E layer (110 km); and y, E, the E-layer
semithickness (20 km). The electron density (proportional to plasma frequency squared) is
modeled as a parabola:

h, E—h)

2 — 2
Snéh) = (fL,E)* |1 I E

I, (4-5)

where fy(h) is the plasma frequency at a height 4.
4.4 E — F, Valley

Normally there is a valley in the distribution of electron density between the E and F,
regions. Only the total density in this valley is modeled, not the shape. In this area between
the E and F, regions the electron density is modeled by a straight line between a point on the
top side of the E-region parabola and a point on the lower side of the F,-region parabola.
These two points are both defined in terms of the f,FE. The point on the top side of the E-
region parabola is at 0.8516 f,E. The point on the bottom side of the F,-region parabola is at
0.98 f,E. The height 4, of the upper point is

. 0.98 /,
/u hmFZ ymFZ ‘/ - I f (4'6)
SoF
The height #; of the lower point is
0.8516 ,,E
hL = hmE +ym ‘/ - l / / (4-7)

The constants 0.8516 and 0.98 have been chosen to represent as nearly as possible measured
depths of the valley.
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4.5 F, Region

The F, layer is described by three parameters: the critical frequency (f,F)), the height of
maximum ionization (#,,F,), and the semithickness (y, F|). The F, layer may be either linear
or parabolic. If linear,

i) =S, (h — h,Fy + y,F), (4-8)
where S, is the slope defined by
_ (faFl)2

S (4-9)
Vs
The term y¢ is defined by
ys = /’2 - hmFl + ymFI (4'10)
or
ys=1,
whichever is larger. The term /4, is height in the F, layer at f, F:
. 2
anl (4 11)
hy= huFy— yuF 1l —|=1. -
2 2= Ymi2 7. F,
If the F| layer is parabolic,
2
2(h) = (f,F)* 1 - L i (4-12)
fN of] ymFI .

The choice of a linear or parabolic shape to the electron density of the F layer is made by com-
paring the height of maximum ionization of the F, layer (4, F)}) to the Fj-layer height at f, F,
(h, as defined by Eq. (4-11)). If h, is higher than A, F|, then the parabolic layer, Eq. (4-12), is
used for the F, layer. If h, is not higher than A, F), the slope S; defined by Eq. (4-8) is com-
pared with the slope S, of the F, layer at the point /1, (frequency is f,F)):

_ 2(./{)F2)2 (hmFZ - /'2)
2 (ymF2)2

(4-13)

If the difference (S, — S,) is positive, the linear F| layer is used. If the difference is negative,
the parabolic layer is used.

4.6 F, Region

The ionospheric parameters used for this region are the median critical frequency (f,F,),
the height of maximum ionization (4, F5), and the semithickness (y,,F;). The nose of the F,
layer is described by

h", F2 —h

1 —
ymFZ

2
fn i) = (f,F)? I (4-14)

10
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The top side of the F, region is modeled by merging a single exponential to the top of the F,
layer at a height #, determined by the relation

h = h,Fy + 025 p, F). (4-15)
Above height #, the plasma frequency fy(#) is described by the equation

h=hy

k(f F2)2 e_ k .
2 = 2 , 4-16
fN (h) 2ymF2 ( )
where
k =1875y,F, (4-17)

This top-side model is an adaptation of one developed by Bent, et al. [22].

The value of k is chosen to make the F,-region parabola (Eq. (4-14)), the top-side
exponential (Eq. (4-16)), and their derivatives continuous at #,, the merge point. This is done
to keep from causing a cusp at the merge point in the virtual height profile.

5.0 APPLICATIONS
5.1 Anomalous Propagation Diagnestics

Plasma frequency contour maps can be used to predict when anomalous propagation con-
ditions may occur. For example, the contour map shown in Fig. 1 exhibits a definite positive
tilt from the origin out to about 2700 n.mi. Line of sight at zero elevation angle is shown on
the contour map with a broken line. Since low-elevation-angle rays are more likely to become
trapped, tilts in the immediate vicinity of this broken line are critical for trapping during the
first refraction. An estimate of the operating frequency which will produce elevated modes for
a particular contour map can be obtained by finding the highest plasma frequency encountered
by the zero elevation-angle line of sight and using the well known secant law to estimate the
equivalent oblique frequency f,:

/n = fl' sec ¢’ (5'1)

where f, is the vertical plasma frequency and ¢ is the angle between the ray line of sight and
the zenith at the true height of reflection. When the elevation angle is zero, the angle ¢ may
be found by solving

R
R+ 4’

where R is the earth radius and # is the true height of reflection. Making use of the identity
sin2 ¢ + cos? ¢ = 1, Eq. (5-1) may be rewritten

Jo = kf, (5-3)

sin ¢ = (5-2)

where k is defined by the expression

i

21-0.5

R+ 7 (5-4)
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Following the broken line in Fig. 1 upward from the origin, we find that the vertical plasma fre-
quency increases until it reaches a maximum of about 5.5 MHz at 280 km. Equation (5-3) may
be used to predict the critical frequency for the zero-elevation-angle ray. In this case we would
estimate that at operating frequencies above 19.2 MHz all rays would penetrate and that at
operating frequencies below 19.2 MHz the low-angle rays would be refracted. Because of the
positive tilt in that region of the ionosphere where these rays are refracted, the low-angle rays
will probably be tilted into an elevated propagation mode.

The trajectory of the zero-elevation-angle ray may be predicted in greater detail by using a
raytracing program with a numerical representation of the contour maps. The contour map
shown in Fig. 1 was used with the raytracing routine developed by Jones and Stephenson [23]
to trace the low-elevation-angle rays. Interface between the raytracing program and the
plasma-frequency contour map was accomplished by an adaptation of an interpolation routine
written by ARCON Corporation for AFCRL [24]. This routine supplies plasma frequency and
the required spacial derivatives when a grid of plasma-frequency vertical profiles is input. For
an operating frequency of 19 MHz and the ionosphere shown in Fig. 1, the raytracing program
predicts that the zero-elevation-angle ray will reach a maximum altitude of 276 km at 1170
n.mi. before being refracted back toward the earth. During the first refraction the ray will be
tilted sufficiently to miss the earth. The point of closest approach of the ray to the earth
between the first and second refractions is 113 km at 2000 n.mi. Figure 2 shows graphically the
trajectory of rays between 0° and 10° elevation.

The point of all this is not that the propagation mode predicted will be duplicated precisely
but that elevated modes of the type predicted by the raytracing routine may be expected for the
combination of operating conditions examined.

When used for raytracing, the ionospheric model must be used with a magnetic field
model. Typically, the earth-centered dipole model provided with the Jones-Stephenson raytrac-
ing program is employed. In this model the gyrofrequency f} is given by

R 3
1 + 3 cos?9)°?, 5-5
Rt ( ) (5-5)

fH=fl~;

where f} is the gyrofrequency at the equator on the ground (typically 0.8 MHz); R is the radius
of the earth; 4 is the height above the earth; and 6 is the geomagnetic colatitude. The magnetic
dip angle 7is given by

tan 7 = 2 cot 6. (5-6)

Occasionally the calculation of absorption in conjunction with raytracing is desired. The
Jones-Stephenson raytracing routine provides this option. The software package supplied with
the basic raytracing routine includes several collision frequency models. Typically the simple
exponential profile (EXPZ) is used where the collision frequency » is defined by

—a(li—

v = vye 20, (5-7)
where /1 is height above the ground; #, is the reference height (typically 70 km); v is the colli-
sion frequency at the reference height (typically 8 x 10° collisions per second); and « is the
exponential decay coefficient (typically 0.16). ’

13
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Comparisons have been made between the loss predicted by the raytracing routine and
that predicted by virtual path tracing. For example, for a test case where the sunspot number
was 28 and the solar zenith angle was 63°, the virtual path tracing model [10] predicted 39-dB
one-way nondeviative (D region) absorption loss for a 1° elevation-angle ray at 5 MHz. This
same program also calculates deviative absorption which occurs as the ray penetrates deeper
into the ionosphere and deviates from a line-of-sight path. For the test case, the deviative
absorption was 6 dB, making a total absorption loss of 45 dB. Using the ionospheric model
described in this report with the Jones-Stephenson raytracing routine, the total absorption loss
calculated for the test case was 41 dB. This level of agreement between the two programs gives
some confidence in the D-region models used. However, there remains one major defect in
using the Jones-Stephenson raytracing routine with this ionospheric model for loss calculations.
Because of the probabilistic nature of the sporadic E, this layer is not handled correctly by the
raytracing routine, which is basically deterministic. In the virtual path tracing program a
separate loss calculation is made for the effect of sporadic E. This loss is termed obscuration
loss and is applied to F-layer modes in the virtual path tracing program. The addition of this
feature to our version of the Jones-Stephenson raytracing routine is planned.

5.2 High-Frequency Radar System Performance Prediction

The global ionospheric model may be used to predict the performance of high-frequency
OTH radar systems. This requires that a model of the radar be coupled to the ionospheric
model. NRL Memorandum Reports 2226 [10] and 2500 [11] describe how an earlier version of
the ionospheric model was used for this purpose. This procedure makes use of virtual path
tracing and therefore will not describe as completely the propagation modes associated with any
specific set of conditions. This is especially true during transition when anomalous propagation
modes exist. For these modes, the ionospheric model should be used with the Jones-
Stephenson raytracing program as described in the previous section.

6.0 ATLAS OF PLASMA FREQUENCY CONTOUR MAPS

To provide a graphic picture of how the plasma frequency varies as a function of location,
season, time of day, and magnetic activity, a set of plasma frequency contour maps are included
(Figs. 3-38). All of these contour maps begin at the equator, follow the 69°W meridian north
through the north geographic pole, and then south along the 111°E meridian back to the equa-
tor. Thus each contour map provides a cross section of the entire northern hemisphere. Maps
are provided for three seasons, equinox (represented by March), summer (represented by
June), and winter (represented by December). For each season, contours were mapped for
0500 UT, 1100 UT, 1700 UT, and 2300 UT. These times correspond roughly to midnight,
morning, noon, and evening local time along the 69° meridian. For each combination of time
and season, contours were drawn without the polar corrections, and with the polar corrections
for two levels of magnetic activity (K, = 3 and K,=1).
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