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SUFFICIENCY THEOREM FOR DISCONTINUOUS OPTIMAL COST SURFACES*

INTRODUCTION

The optimal cost surface (OCS) is the plot of the values of the optimal value func-
tion above the state space. This surface is obtained as part of the solution of an optimal
control problem. Even though the properties of this surface are dependent entirely on
the given elements of the problem, researchers have found it profitable to hypothesize
about its properties in deriving results in optimal control theory. For instance, current
field-type sufficiency theorems require that the OCS be continuous [1-8]. The deriva-
tions of the fundamental partial differential equation of dynamic programming in Ref. 9
are based on the OCS having bounded second partial derivatives. These properties, how-
ever, are not always met, even in rather simple control problems [10]. Recent Lotka-
Volterra models of prey-predator control systems provide simple examples where the OCS
is discontinuous and has unbounded first partial derivatives [11,12]. A discontinuous
OCS arises particularly in state-constrained optimal control processes [13].

An assumption which has survived all known examples is that the OCS is the counta-
ble union of disjoint submanifolds. In this report we examine the problem of arranging
these submanifolds in such a way that the properties of the resulting OCS can be utilized
in establishing optimality over a very general class of optimal control processes, especially
state-constrained processes. In particular, we model the optimal value function with a
V-type function. This function may be locally discontinuous on submanifolds of codimen-
sion 1. A nontransversality condition and a discontinuous nontransversality condition are
presented. The latter condition keeps a trajectory of the control process from entering
any submanifold of the OCS from a discontinuous edge. These properties and conditions
are formulated in a sufficiency theorem which states that, if certain conditions are met by
a control policy, then it is optimal. The defining of these properties and conditions, to-
gether with the sufficiency theorem, provides a classification of the OCS for general opti-
mal control processes with state constraints. An example is given to demonstrate the im-
plementation of the results.

DEFINITION OF OPTIMAL CONTROL PROCESS

The optimal control process under investigation has its dynamical behavior governed
by a system of ordinary differential equations and has its evolution of state described by
the motion of a point in n-dimensional Euclidean En. The seven basic elements needed
in defining the optimal control process are four functions (f, U, fo, and go), two sets (X
and 0), and a function space Q2. These elements are described subsequently.

*Presented at conference on Optimization Problems in Engineering and Economics, Naples, Dec. 16-20,
1974.

Note: Manuscript submitted April 25, 1975.
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HAROLD L. STALFORD

The dynamical behavior of the optimal control process is modeled by the state ve-
locity function f in the state equation

X = f(x, v), x C En, v C Em, (1)

where f is a function with domain En X Em. We let <p(.), an absolutely continuous func-
tion, represent a solution of Eq. (1) when controlled by a control policy u( ), a Lebesgue
measurable function of time. With initial time to the initial state satisfies

ep(to) = X0 . (2)

The state space X is a subset of En. It is considered to be a topological space pos-
sessing the induced topology from En. The terminal set E0 is a closed subset of X.

The controller of the process is equipped with the elements n and U. The control
function space E2 is the space of all Lebesgue measurable functions of time defined on
bounded intervals with range in E'. Constraints on the control functions in &2 are given
implicitly by the set-valued function

U:X - power set of Em . (3)

Given x C X, the set U(x) is a set of control values available to the controller at the
state x. U(x) is nonempty for all x C X.

A solution of Eq. (1) for some control u C 2, u: [to, tf] e Em , given initial condi-
tions, is called a trajectory. A trajectory p: [to, tf I - En is said to be admissible if it
lies entirely in the state space X for all times t contained in [to, tf]. An admissible
trajectory is said to be terminating if <p(tf) is contained in (D. The time tf is called the
terminating or final time for a terminating admissible trajectory. The time tf belongs to
the interval [to, Go); tf does not have to be the same terminating time for distinct trajec-
tories unless it is constrained to be fixed by the terminal set 0. For nonautonomous
systems (that is, f an explicit function of t), one component of sP is the time t itself.

A control u E Q, u: [to, tf I -> Em is said to be admissible if it has at least one cor-
responding admissible trajectory ep: [to, tf ] - X such that

u(t) E U[o(t)] bit C [to, tf I * (4)

Here, the trajectory p corresponds to the control u if

-t
0(t) - p(to) = f f[p(r), u(r)] dT (5)

for all t C [to, tf].

Let xo be contained in X. Let C(xo) denote the set of all admissible controls having
at least one terminating admissible trajectory emanating from xo. For u C C(xo), let
T(xo; u) denote the set of all terminating admissible trajectories p emanating from xo,
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corresponding to the control u, and satisfying Eq. (4). The domains of u and p coincide
for all tp contained in T(xo; u).

Definition 2.1. A denumerable decomposition D of a set X C En is defined to be a
denumerable collection of pairwise disjoint subsets whose union is X. This is written as
D = {Xj :j C J}, where J is a denumerable index set of the disjoint subsets.

Let B be a subset of En. A mapping F :B - R is said to be differentiable locally
Lipschitzian if and only if there is an open set W containing B such that F may be ex-
tended to a function which is differentiable and locally Lipschitzian on W.

Definition 2.2. Let X be a subset of En and D a denumerable decomposition of X.
A real-valued function V:X - El is said to be piecewise differentiable locally Lipschitzian
with respect to D if, for j C J, the restriction VJXj :Xj - El is differentiable and locally
Lipschitzian; that is, there exists a collection {(Wj, Vj):j C J} such that Wj is an open set
containing Xj, Vj: Wj - E1 which is differentiable locally Lipschitzian, and Vj (x) = V(x)
for x CE Xj. We say the collection {(Wj, Vj):j C J} is associated with V and D.

If the process is in the state x0 C X, then it is to be controlled during a transfer of
the process to the terminal set E) so as to render the criterion

J(xo,' pu ) = go[ p(tf)] + ff fo[,p(T), u(T)]dr (6)
to

a minimum value, where go, a real-valued function, is continuous and piecewise differen-
tiable locally Lipschitzian with respect to a decomposition over a neighborhood of the
terminal set 0); fo is a real-valued bounded Borel-measurable function with domain
En X Em; u C C(xo); and p C T(xo; u).

In summary, the control process is represented by the septuple (f, U, fo, go, X, 0), 2)
where f is a function, U is a set-valued map, fo is bounded Borel-measurable, go is con-
tinuous and piecewise differentiable locally Lipschitzian, X is a subset of En, E0 is closed
in X, and S2 is the space of Lebesgue measurable controls. In particular, C(xo) represents
the set of admissible controls at x0 C X, and T(xo; u) denotes the set of all terminating
admissible trajectories emanating from x0 due to the control u C C(xo). We will let r
denote this control process.

Definition 2.3. Optimality. Let xo CX, u* C C(xo), and * C T(xo; u*). The pair
(u*, sp*) is said to be optimal at xo if and only if, for all u C C(xo) and for all <p C T(xo; u),
the following inequality is satisfied:

J(xo, 0, *u*) 6 J(xo, p, U). (7)

If the pair (u*, (p*) is optimal at xo, then the value J(xo, up*, u*) is arbitrarily de-
fined to be V(xo). If an optimal pair (u*, up*) exists for every x0 C X, then we have a
real-valued function defined on X:

V:X -e E1 . (8)
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It is for this function-the optimal value function (OVF)-that we want to prescribe very
general properties, those that will hold over a large class of optimal control processes. We
do this in the next section.

FORMULATION OF DISCONTINUOUS OPTIMAL VALUE FUNCTION

This section is devoted to setting up some very general properties of the optimal
value function that are compatible with the dynamics of optimal control processes which
admit continuous or discontinuous optimal value functions.

Lemma 3.1. A monotonicity lemma for a discontinuous optimal value function. Let
D = {X 1: ji J} be a denumerable decomposition of X. Let p: [to, tf] - X be absolutely
continuous and ho: [to, tf] -e E1 be integrable. Let V: X -e El be piecewise differen-
tiable locally Lipschitzian with respect to D. Let {Wj, Vj): j C J} be a collection associated
with V and D. Let Tj = It C [to, tf]: p(t) CXj } for ] C J. Suppose that

(i) For each j E J

ho(t) + d (Vj O p)(t) > 0 almost everywhere inT1.

(ii) There exists a countable compact subset T of [to, tf] such that Vofp is con-
tinuous on the open set 0 = (to, tf) - T.

(iii) If t is a point of discontinuity of VOtp, then inf{sup {(VO(p)(r):O < t - r < r,
'r C[to, tf]}:r > 0} 6 (VOp)(t) 6 sup{inf{(VOp)(r):O < r - t < r, T C [to, tf]}:r > 0}.
For the case t= to or t= tf only one inequality is used.
Then the function

rt
g(t) = f ho(T) dr + (Voip)(t)

to

defined for t C [to, tf] is monotone nondecreasing.

Proof The set 0, being open, is the denumerable union of disjoint open intervals

0 = U {0i:iCI}

where I is the index set of these disjoint open intervals. For each i E I let the interval
(as, bi) designate Oi. Let [di, ei] C (ai, bi). Since the function VOp is continuous on
[di, ei], it follows from Theorem 3.1 of Ref. 6 that g is monotone nondecreasing on
[di, ei]; an hypothesis of Theorem 3.1 requires V to be continuous over X, but its proof
only uses the continuity of Vop.

Consequently, it follows that g is monotone nondecreasing over (ai, bi). From con-
dition (iii) it follows that g is monotone nondecreasing over [ai, bi].

Suppose that the intervals (ai, bi) and (bi, bi+1) are such that bi = ai+l. Thus, bi
is an isolated point in T. From the above analysis we know that g is monotone
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nondecreasing over [ai, bi] and [bi, bi+l]. Thus g is monotone nondecreasing over
[ai, bi+1]. In this way, we can remove all isolated points of T. Every countable compact
subset of the real line contains an isolated point [14]. Let Io be the set of all isolated
points of T. Let T1 = T - 10. Let °1 = (to, tf) - T1. The set T1 is countable compact
and 01 is open. Let I, be the isolated points of T1.

Let

°1 = U (alk, blk)-
kEK

From the above analysis we have established that g is monotone nondecreasing over
(alk, blk), k C K. If blk EI1, then by evoking condition (iii), we have g monotone
nondecreasing over (alk, blk+l) where blk = alk+l. By repeated use of condition (iii),
we establish that the monotonicity of g is extendable through all the isolated points of
T1. Let T2 = T1 - Ii and 02 = (to, tf) - T2. Let I2 be the isolated points of T2.

Using the process of transfinite induction as developed in Ref. 14, we extend the
monotonicity of g to the entire interval [to, tf] by removing, in the above fashion,
the isolated points Ik from Tk. If Tk+l is nonempty then it contains isolated points.
Since points of T are being removed at each stage and T is countable, the entire set T is
evacuated by transfinite induction. This completes the proof of the lemma.

In this section we speak of a manifold M to mean an embedded continuously differ-
ential n-1 dimensional submanifold with boundary (the boundary may be empty) of
En such that there exists a manifold M containing M where M is an embedded, continu-
ously differentiable, (n-1)-dimensional submanifold without boundary of En. That is,
M C M and the boundary of M, aM, is empty. For the case that the boundary of M,
aM, is empty we take M = M. The formal definitions of manifolds can be found in
Ref. 15.

All neighborhoods are considered open.

Definition 3.1. (0+ and 0 -). Let x C M and let 0 be a sufficiently small neighbor-
hood of x in En such that M slices 0 into parts 0+, 0-, and M n f. The open set 0+ is
that part of 0 belonging to one side of M, and the open set 0 is that part belonging to
the other side of M. In particular, the intersections 0 - n+, o+ n (M n 0), and,
0- n (M n 0) are empty and 0 = 0+ U (M no) u o-.

We say that two sets are Hausdorff separated if and only if they are contained in
disjoint open sets.

In the next two definitions, let X C En and let V* denote a function V* :X - E1 .

Definition 3.2. Locally Discontinuous Side. A manifold M C X has at x C M a
locally discontinuous side with respect to V* if and only if there exists a neighborhood 0
of x in En such that the set {(y, V*(y)) :y CM n o nfX}is Hausdorff separated from
either the set {(y, V*(y)):y C o+n x} or the set {(y, V*(y)):y C 0 - n x}. Moreover, we
say that M has at x two locally discontinuous sides with respect to V* if and only if the
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set is Hausdorff separated from both the latter two sets*. We call 0+ the positive side
and 0 the negative side of M at x.

Definition 3.3. Locally Continuous Side. A manifold M has at x C M a locally con-
tinuous side with respect to V* if and only if there exists a neighborhood 0 of x in En
such that V* is continuous on either (0+ n x) u (M n o n x) or (0 - n x) u (M n o n x).
That is, V* is continuous on either the plus side or the minus side of M at x.

Let V*: X -e E1 be a function and let B C X. The function V* when restricted to
the subset B is denoted as V*IB; that is,

V*IB :B eE

and

V*IB(X) = V*(X) VxEB.

Definition 3.4. V-type Function. A function V* :X - E1 is called a V-type function
if and only if there exist a denumerable decomposition D = {Xj :j C J} of X and a de-
numerable collection of disjoint manifolds {Mi: i E I} C D such that

(i) V* is piecewise differentiable locally Lipschitzian with respect to D. (Let
{(Wj, V*) : j CE J} be the associated collection.)

(ii) V*I is continuous over X - 0 U U MiA.
X-EUUMi iEI

iEI

(iii) V* I is continuous over U Mi.
U Mi iGI

iEI

(iv) 0) U U Mi is closed in X.
iCI

(v) Mi, i CE I, has at each x C Mi either a locally continuous side and a locally dis-
continuous side or two locally discontinuous sides, all with respect to V*.

The collections {Xj: j E J}, {MiA: i C I}, and {(Wj, Vj*) j C J} are said to be asso-
ciated with the V-type function V*.

Note that each manifold Mi, i C I, is by definition a member of the decomposition
D. Here, I denotes the index set of the manifolds.

Remark 3.1. Property (iv) is needed in some of the proofs of the theorems and
lemmas contained in this report. It is included so that the set X - 0 U U Mi is open
in the topology of X. iPI

*1V* is continuous over M1fn 0 n X, restrictively.
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The next definition gives a condition for the impossibility of a trajectory entering a
point on a manifold. This is established in the lemma following it.

Definition 3.5. Nontransversality Condition. A manifold M satisfies at a point
x0 CM the nontransversality condition on the positive side (on the negative side) with
respect to the control process F if and only if the following condition holds:

NT Condition. There exist a manifold M and a neighborhood 0 of x0 in En such
that, for every y C 0 n AlMf n x, the inequality

N+(y)- f(x,v) > 0 VxC0fniX, MvcU(x) (9)

holds, where N+(y) is the unit normal to M at y that points into 0+. The "negative side"
version of this definition replaces 0+ with 0 and N+(y) with N-(y), the unit normal
pointing into 0 -. If x0 C M - 3M then M can be replaced with M.

Lemma 3.2. Nontransversality of Trajectory. Let x0 be contained in a manifold M
without boundary where M C X. Suppose the NT condition is satisfied, say, on the posi-
tive side of M at x0 with respect to the control process F. Then there exists no control
policy u : [tl, t2 ] - E' with corresponding solution Ap: [tl, t2 ] -e 0I U (M n 0) of
(1) satisfying (4) such that

p(tj) C 0o (10)

p('t2) =.X0 . (11)

Proof. Suppose, to the contrary, there exists such a control u with corresponding
trajectory up. Let t3 C (t1 , t2) be the first time that p(t3 ) CM n 0. Denote yo = O(t3).
Thus, ep(t) C 0+ for all t C (t1 , t3 ). Note that the NT condition is satisfied on the positive
side of M at yo with respect to the control process F. It then suffices to show the im-
possibility of the control policy U : [t1, t3 ] - Em with corresponding trajectory
0: [t1 , t3] - 0+ U (M n 0) of (1) satisfying (4) and

ep(t) C 0 Vt C (tl, t3) (12)

W(t3) = Yo - (13)

From (9) it follows that, for all y C 0 n M n x,

N+(y) * (ot) > 0 almost everywhere tC(t 1 , t3 ). (14)

Integrating (14) over the interval (t1, t3 ), t C (t1, t3 ), we have, for all y CO n M n x,

N+(y) - [yo - p(t)] > 0 V tC(t 1 , t3 ). (15)

Note that, in particular, Eq. (15) implies that
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N+(yo) *[yo - 0(t)] > 0 V t C (t1 , t3 ). (16)

This is a statement that the trajectory ,p belongs to the closed (flat) half space below the
tangent plane to M at y0 . Denote this half space by H(yo, yo).

For y CO f n M n x, let Ty((M) represent the tangent plane to M at y. Translate this
tangent plane by the vector yo - y to the point yo and let H(y, yo) denote the closed
(flat) half space below the translated tangent plane. Equation (15) is a statement that
the trajectory ,p belongs to H(y, yo) for all y C o n M n x.

Define the cone H as

H = f H(y, yo).
yCOfnmnx

Thus,

ep(t) CH V t C (t1 , t3 ). (17)

This is a contradiction, since the tip of the cone H (a sufficiently small neighborhood of
y o intersected with H) is contained in 0 - u (0 n M). That is, it lies on the negative side
of M at yo rather than on the positive side. This completes the proof of the lemma.

Definition 3.6. Discontinuous Nontransversality Condition. A V-type function
V* :X - El is said to satisfy the discontinuous nontransversality (DNT) condition with
respect to the control process r if and only if, for each xo C Mi, i E I, where Mi has at
xo a locally discontinuous side in the positive direction (in the negative direction) with
respect to V*, the manifold Mi satisfies at xo the nontransversality condition on the
positive side (on the negative side) with respect to the control process F.

Lemma 3.3. Countable Compactness of Discontinuities. Let xo E X. Let u C C(xo),
p C T(xo; u), and tf be the terminating time for the trajectory <P. Let V* :X -+ El be a
V-type function satisfying the discontinuous nontransversality condition with respect to
the control process r. Let S denote the set of all discontinuities of the function V* 0:
[to, tf] -) El. Let T = {to} U {tf} U S. Then T is a countable compact subset of
[to, tf]. Moreover, V*o0p is continuous from the left except possibly at t = tf.

Proof. It suffices to show that for each t C S n (to, tf) there exists 6 > 0 such that
V* 0p is continuous on (t- 6, t). For, in this case we can write

[to, tf] = {to} U {tf} U {[ta(k), tk] :k EK}

where K indexes the points of S n (to, tf) and where ta(k) represents the last discontinuity
before tk; for k = 0 we take ta(0) = to if to eS and for k = 1 we take t1 = tf if tf rzS.

Since

U (ta(k), tk)
kCK
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is an open subset of the real line, it is the countable union of disjoint open intervals. Since
the intervals (ta(k), tk) are already disjoint it follows that the index set K is countable.
Thus S and, therefore, T are countable. T is compact since T = [to, tf I U (ta(ktk).

kEK

Let t C (to, tf) n S. That p(t) belongs to U Mi follows from the properties (ii) and
iji

(iv) of Definition 3.4. Suppose p(t) C Mi. It follows from Lemma 3.2 that the trajectory
ip cannot enter Mi at p(t) from a discontinuous side since V* satisfies the DNT Condition.
If Mi has at ip(t) two locally discontinuous sides with respect to V*, then there is 6 > 0
such that qo(tl) C Mi for all t1 C (t - 6, t). Property (iii) of Definition 3.4 states that V*
is continuous over Mi. Thus V*0p is continuous over (t- 6, t).

If Mi has at p(t) only one locally discontinuous side with respect to V*, then, ac-
cording to property (v) of Definition 3.4, Mi has at p(t) a locally continuous side. From
Definition 3.3 it follows that there exists a neighborhood 0 of tp(t) in En such that V* is
continuous on, say, (0+ n X) u (M f 0 niX). There exists a 6 > 0 such that p(t1) belongs
to the latter set for all t1 C (t- 6, t). Consequently, V* 0p is continuous over (t- 6, t).
This shows that V* 0fp is continuous from the left except possibly at t = tf.

SUFFICIENCY THEOREM FOR DISCONTINUOUS OPTIMAL VALUE FUNCTION

The sufficiency theorem given below is designed to establish the optimality of a
pair (u*, so*) in a control process that may not have a continuous optimal value function.
A discontinuous optimal value function arises particularly in state-constrained optimal
control processes [13].

A function V* :X - E1 is lower semicontinuous if and only if, for all xo C X,

V(xo) < sup {inf {V(x): 0 < lax - xo 11 < r, x C X}: r > 0) .

For a V-type function, the V* lower semicontinuity, for each x CZ Mi, i C I, is equiv-
alent to

V*(x) < limit {inf [V(xk): k > mi]) (18)
Xm X

for all sequences (xm) C X converging to x.

Theorem 4.1. Sufficiency for Discontinuous Optimal Value Function. Let xo C X.
Let u* C C(xo) and p* C T(xo; u*). For the optimality in X of the pair (u*, y'*), it is
sufficient that there exists a V-type function V*: X - El with associated collections
{Xj: 1 C J}, {AMi iC i CI, and {Wj, Vj*): j C J} such that the following conditions are
satisfied:

(i) V* satisfies the discontinuous nontransversality condition with respect to the
control process F.

(ii) V* is lower semicontinuous.

9
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(iii) For each u C C(xo) and each sp C T(xo; u) there exists a convergent sequence
(tk) contained in [to, tf] of ep such that

go0p(tf)] a limit V*[/p(t)] . (19)
tk- tf

(iv) fr

V*(xo) = go[f*(t7)] + ft o[(p*(r), u*(r)] dr
to

where t* is the terminating time for ep*.

(v) For all xCXj, v C U(x), jIJ

fo(x, v) + grad Vj*(x) * f(x, v) a 0. (20)

Proof. Let u C C(xo), p C T(xo; u), and tf be the terminating time for the trajectory
up. In view of condition (iv) we want to show that

V*(xo) 6 go[p(tf)] + f fo [p(r), u(r)]d. (21)

Let

t
g(t) = fJ[p(T)), u(T)]dr + (V* 0p)(t)

Jto

for all t C [to, tf - 6], where 6 > 0. Condition (v) implies that

fo[fO(t)' u(t) a + d (V.*Op)(t) a 0 almost everywhere in Tj, jCJ,

where Tj = {tC [to, tf] :ep(t)CXj}. Thus,condition (i) of Lemma 3.1 is satisfied.

As a result of Lemma 3.3, condition (i) implies that T = {to} U{tf} U S is countable
compact where S are the discontinuities of V* 0 p. Condition (ii) of Lemma 3.1 is, there-
fore, satisfied. Invoking Lemma 3.3, we have that V* Op is continuous from the left
except possibly at t = tf. This satisfies the left inequality of condition (iii) of Lemma
3.1 for t E [to, tf] . Condition (ii) of Theorem 4.1 together with condition (ii) of Defini-
tion 3.4, implies that the right inequality of condition (iii) of Lemma 3.1 is satisfied for
t C [to, tf]. With all conditions of Lemma 3.1 met, it follows that g: [to, tf - 6] eE
is monotone nondecreasing for all 6 > 0.

Consequently, V*(xo) < g(t) for all t C [to, tf) and, therefore,

10
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V*(xo) 6 fto o [ p(r) u (r)] dT + V* [(t)I * (22)

From condition (iii) of Theorem 4.1, we can write

limit V*%[p(tm)] < go[.o(tf)] (23)
tm > tf

for some convergent sequence (tm).

Inequality (21) follows from (22) and (23). This completes the proof.

CONTROL PROCESS WITH DISCONTINUOUS OPTIMAL VALUE FUNCTION

Consider the bilinear control process with state equations

x1 = -v + x2 (1- V), vC[0,1] (24a)

X2 = -x 1 (1 - v) (24b)

with state space X = E2 and terminal set E) = {(0,O)}. For a given initial state xo =

(x , x°), we desire to minimize the transfer time to the origin:

J(xo)lp0'U) =f dT. (25)
to

Thus, fo = 1 and go = 0. The set-valued function is given by

U(x) = [0,1] bVx E E2 . (26)

The control function space R is the space of all Lebesgue measurable functions of time
defined on bounded intervals with range in El. An admissible control policy u C C(xo),
xo CE2 , with u : [to, tf] - E1 , satisfies the relation

U(t) C [0,1] Vt C [to, tf] (27)

and has a terminating trajectory sp C T(xo; u).

Let Fo represent the above control process.

We seek to find a pair (u*, p*) u* C C(xo), * C T(xo; u) for each xo CE2 and to
discover a V-type function V*: E2 - E1 with associated collections

11



HAROLD L. STALFORD

{X1 :1 C J}

{Al :i CI

and

{(Wj, Vj*) j C J}

such that conditions (i)- (v) of Theorem 4.1 are satisfied with respect to the control
process FO.

For this purpose we make the following definitions. Let J = {1, 2, ... , 5} and
I = {1}. Define h :E2 -* E1 with

h(x 1 ,x 2 ) = 1 + X2+ 2 X
X1 X2 1 2

for all (xl,x 2 )E E2 -{(0,0)} and with h(0,0) = 0. Write p: {x2 :x2 < 0 and x 2 > -2)
- E1 such that

h[p(x 2 ),x 2 ] = 0 VX2 < 0. (28)

The solutions p(x2) of (28) for x2 < 0 are unique, and p is a smooth function. The
function p is plotted in Fig. 1 for p(x2) < 2. Define

X1 = {(xl,x 2 ) :xl > 0, X2 = 0}

X2 = {(xlx2) :h(x 1 ,x2 ) > 0}

X 3 = {(x1,x2):h(x1,x2 ) = 0, x2 < 0}

X4 = {(xlx 2 ) :h(x 1 ,x2 ) < 0}

Xs = {(0,0)}

M1 = X1 .

Let W1 = W5 = E 2 , W2 = X 2 , W4 = X 4 , and W3 = {(xl,x2) :x2 < 0}.

Define A : E2 - {(0,0)} -* E1 as the arctangent function such that

Stan- () ' X1 > 0, X2 > 0

A(xlx 2) =.l(-)+ tan-, (+Xl) x1 < 0, x2 > 0I ~~~ ~ 2- Continued

12
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7r + tan- (X-)' X1 < 0, X2 0 

32 + tan ~-Ax2)X X1 > °, X2 < °

X2

2-

I1-

U

-2

-2

III 1111111
-1 F c

Fig. 1-The curveof p

Xi

2

Define 0 j C J, as follows:

Vl(X 1 ,X2 ) = X1 V(xi,x 2 )CE 2

V2*(x1 ,x 2 ) = A(xl,X 2 ) + x +2x V(x1,X2)CX 2

V3*(x1 ,X2 ) = A(x1 ,x 2) + 1 + x V(x1,x 2 )E W3

V4*(x1 ,x 2) = x1 - p(x2) + V2*[P(x2), X2] V(xl,x 2)CX 4

V5 (x 1, x2) = 0 V(x 1, x 2) C E2 .

We define a V-type function candidate V* : E2 -+ E1 as

V*(x) = V*(x) V x CX.j, j E .

13
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This function is plotted in Fig. 2. Note the orientation of the axes. The curve defined
by [p(x2), x2, V*(p(x 2 ), x2)] is plotted in the surface; this is the intersection of p with
the optimal cost surface.

X2

Fig. 2-Optimal value function V*

It is easily checked that V* is piecewise differentiable, locally Lipschitzian with respect
to D since the collection {(Wj, V0): j C J} has the necessary properties satisfied; the W's are
open and the VO*'s are smooth. Note that the restrictionsJ

V*IE2-(MUE)) and V*IM1

are continuous. The set E U M1 is closed in E2 . Let N+(x) = (0,1) and N-(x) = (0,-1)
for all x Ml1. It follows that M1 has at each x Ml1 a locally continuous side in the
positive direction and a locally discontinuous side in the negative direction. Actually,
these two directions have the values of V*(x) separated by the amount 7r. This completes
the proof that V* is a V-type function.

V* satisfies the DNT condition with respect to F0, provided Ml satisfies at each
x0 = (x , x°) E MAl the NT condition on the negative side with respect to Fo. Since aM,
is empty, we take M1 = M1. Let 0 denote the open cube

14
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{(xi~x 2 ):Ix?0 -xiI < 2~- and 1x2 -x21 < 2

Let (Y1, Y2) CE 0 A M. Let (x1 , x2 ) C -f E2 and v C [0,1]. Since N-(y 1 , Y2) = (0,-1),
the inequality (9) becomes

x 1 (1- v) > 0. (29)

This inequality holds since x1 > 0 and v < 1. Consequently, condition (i) of Theorem
4.1 is satisfied.

Since M1 has at each x CE M1 a locally continuous side in the positive direction, the
inequality (18) is satisfied for all sequences converging to x from the positive side. Let
(xm) be a sequence converging to x = (xl, 0) from the negative side. In this case we
have V*(xm) = V4*(x1m,x2 ) and, therefore,

V*(Xm) = Xlm - p(X2m) + V2•[P(X2m), X2m],

with

V2*[p(x2n), X2m] = ir + tan- 1 P(x2m) + xP(x2m +2m

Verify that

p(x2m) -+ 0 as X2m - 0

tan- 1 (x 2 m) 0 as X2m °-O

Consequently,

7r + x1 = limit V*(xM). (30)
Xm X

Since V*(x) = x1 , we see that condition (ii) is satisfied.

For condition (iii) it suffices to show, for u C C(xo), op C T(xo; u), that

limit V*[p(tk)] = 0 (31)
tk - tf

for some sequence (tk) converging to tf where p(tf) = (0, 0). It follows from the dynam-
ics (24) that the origin cannot be reached from the second, third, or fourth quadrants.
This implies that ep1(tk) > 0 and 02 (tk) > 0 for all such sequences (tk). There is a
6 > 0 such that p(t) belongs to the first quadrant for all times t C [tf - 6, tf). From
(24) we have op1(t) oj(t) + p2 (t)Mo2 (t) = -p1(t) - ,o2(t) almost everywhere t E [to, tf].
Integrating this equation over [tk, tf] gives

15
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sol2(a)+ I2(tk) + 2 9p2 (tk) = 2 ft so1 (T)dr.

There exists a sequence (tk) converging to tf such that

ftf (pr) dr • I°1 (tk) f dr;
tk ft k

consequently, these two expressions imply that

01 (tk) + it (tk) [02(tk) + 2] ( 2 (tf- tk) (32)

for all tk belonging to the sequence (tk). This implies that

limit 2 (tk) 0 (33)

tk-tf ~pi(tk) 0

since the left-hand side of (32) is bounded above zero. In the first quadrant, we have

V*[(Pl(tk), 02(tk)] < tan- 1 (2) + I/[ l(tk)]2 + [k2(tk)] 2
(p2(k)] _________________

This inequality, together with V* > 0 and (33), implies (31).

We show that condition (v) is met and then define (u*, p*) and show that (iv) is
satisfied.

Let j = 1, x GX2 , and v C [0,1] . In this case x2 = 0 and grad V,*(x) = (1, 0). The
left-hand side of (20) reduces to 1 - v. Thus (20) is met for j = 1.

Let] = 2, x EX2 , and v C [0,1]. In this case we have

aV2(x) x2 + x1 (34a)

ax1x~~~~+x X

and

aV2(x) x1 + 2 (34b)

Txe inequaliyX (0 rus

The inequality (20) reduces to

16
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vh(x1,X2) > 0, (35)

which is satisfied for all (x 1, x2) C X 2.

Let j = 3, x E X3 , and v C [0,1] . The partial derivatives of V3* are given by (34)
with x1 = p (x2). The left-hand side of (20) reduces to the left-hand side of (35), with
h[p(x 2 ),x 2 ] = 0.

Let j = 4, x C X4 ,andvC[0,1]. Check that

avx - 1

ax1

and

av4* P(X2 )
ax=[p~2 12 + +aX2 IP(X2) + 22

X2

/[(2]2 + X2

The left-hand side of (20) reduces to

Xl P (X2 )
(1- v) + X2 - [p(x2)]2 + 2

x 1x2

12 + X22

After adding and subtracting the term

p(X2)X2

i t b r a a u )I 2 + X2

inside the above brackets and making use of h [P (X2), x 21 = 0, we obtain

(1- v)[p(x2 )- xi] LU~P(X2) x + X2 +
IApX2)] X22 /[p(X2) 2X2_2

For (x 1 ,x 2 )CX 4 , we have

p(X2) < X1.

In order for (20) to hold, it sufficies then to have

P(X2) + X2 < 0-

VIA~XA)2 + X2

17
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For x2 > -1, p(x 2 ) • 0, so that (38) holds. For x2 < -1, (38) holds since it is always
true that

P(X2) < 1.
/[~2]2 + X2

For j = 5, x = (0, 0), v C [0,1] the inequality (20) holds since grad V5*(0, 0) = (0, ).
This completes the proof that condition (v) is satisfied.

Define the closed-loop control policy a :E2
-+ [0,1] as

1 if xCX 1 UX 4

0 if xCX 2 UX 3 UX .

The trajectories resulting from this control are plotted in Fig. 3.

X2

-2

-1 0 1

Fig. 3-Optimal trajectories

18
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Let x0 ECX1. Define the pair (u*, sp*) as

U*(t) = {
1 Vt C[to, tf]

0 t= tf

4p(t) = xI - (t- to)

902*(O= 0

Vt [to, tf]

V t C [to, tf]

where

0tf - to = xi .

Let xo C X2 U X3. Define the pair (u*, p*) as

0 if t C [to, t1 ) U {tf}

u*(t) =
l1 if t Et[tl, tf)

V/X 1° )2+ (x2)2 cos (t 1 - t)

f * (t) = pL(t) = { : + (X2)2 - (t- t1)
r (xi)2 + (M)2 sin (tj - t)

f02*(V =t
0O Vtc[tlstf]

Vt C [to, tl)

V t C [tl, tf ]

Vt C [to, tl)

where t 1 - to C [0, 27r) satisfies

0xi
COS (tl - to) =

sin (t1 - to) =

(1)2 + (XO)2

0x
X2

I(X4o)2 + (4o)2

and where

tf - to = A(xl,X2°)+ l(Xl)o + (42)

(39)

19
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Let xo C X4 . Define (u*, (p*) as

1 if t C [to, t1) U [t 2 , tf)

0 if t C [t1 , t2) U {tf}

- (t- to) V t C [to, tl)

cos (t2 - t)

2 + (x4)2 - (t-t2)

V t C [tl, t2)

V t C [t2 , tf]

V t C [to, t1)

+ (x°)2 sin (t2 - t) Vt E [tl, t2)

0

where t1 satisfies

tl = to + A - p(x 0)

and t2 - t1 C [0, 27r) satisfies

Cos (t2 - t 1) =

sin (t2 - t 1) =

p (x2')

P(X20)

0
X2

I[P(X20)? + (X2)f

tf - to = X - p(X20) + A[p(x4),x 0] + Ap(x 202 + (X )2 . (41)

Since X 5 is the terminal set, nothing needs to be undertaken there.

From Eqs. (39)-(41), the definitions of V*, u*, ep*, it follows that condition (iv) is
met. Since all conditions of Theorem 4.1 are met, the pairs (u*, (p*) defined above are
optimal. Equation (30) shows that the optimal value function V* is discontinuous along
the positive xj axis.

20

u*(t) =

f4*(t) =

.0

xi

x 0

Vt C [t2 , tf]

with
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