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APPLICATIONS OF SECTOR-FOCUSING PROCESSING FOR STABILIZED
MATCHED-FIELD LOCALIZATION IN SHALLOW WATER

1.0 INTRODUCTION

Since it was first discussed by Bucker and others almost 20 years ago [1-3], matched-field
processing (MFP) notably increased in popularity as a technique for performing underwater acous-
tic array processing in a waveguide environment, where plane-wave signal vector assumptions do
not apply. The typical MFP procedure is to compare (or “match”) the signal replica vectors obtained
from a model of the acoustic propagation, using a series of trial source locations, with vectors
derived from received signal data. When the trial source location and the true source location
correspond, the two vectors should be highly correlated. The method has been successfully applied
to continuous wave signals from a few hertz to several kilohertz.

Much initial work in MFP consisted of the development and assessment of various algorithms
for matching the two sets of signals. Heitmeyer et al. [4] discussed MFP in a Pekeris channel, using
a simple normalized cross-correlation of the two vectors. This commonly used method is now
generally referred to as the “conventional” or “Bartlett” processor: the latter term acknowledges its
roots in the signal processing literature [5]. Another broad group of techniques, typically used for
waveguide scenarios and acoustic frequencies where the number of modes is less than the number
of receivers, is encompassed by the term “mode space processing.” Here, a matrix transformation
is performed to obtain reduced vectors of modal amplitude coefficients from the replica and data
signal vectors [6]. These can be cross-correlated using a direct equivalent of the Bartlett method,
or otherwise processed using such high-resolution techniques as the “reduced maximum likelihood”
(RML) processor, which we shall describe later. In the mode space context, Shang et al. [7-9]
studied range and depth estimation as separable problems. Yang [10-13] also investigated modal
decomposition and mode filtering methods for improving source localization. Wilson et al. [14]
considered the application of mode filtering to the case where the number of modes is greater than
the number of receivers. :

Although the Bartlett method of range-depth estimation has been widely used, it frequently
produces unsatisfactory ambiguity surfaces with broad source peaks and high sidelobes, which
closely resemble and compete with the source peak. To obtain smoother and more interpretable
surfaces, attention has turned to the use of nonlinear high-resolution processors. The most exten-
sively studied is Capon’s estimator [15], which is also known as the “maximum likelihood” (ML)
method [16] and the “minimum variance distortionless response” [17]. The ML processor has been
successfully applied to the analysis of shallow- [18] and deep-water [19] experiments.

It is widely recognized that ML is very semsitive to mismatch between the model used to
calculate the replica field and the actual data. The mismatch may be due to inaccurate or incomplete
knowledge of the requisite environmental parameters, or to system effects. Much recent work has
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been concerned with studying the nature and magnitude of the mismatch problem under various
scenarios, both for MFP in general [20-24], and for the ML processor in particular [25-29].

Mismatch is probably the most significant obstacle to the general experimental application of
MFP techniques. The sensitivity of MFP to system or environmental modeling errors is due to the
fact that, to be successfully implemented, it requires the full structure of the complex acoustic field
in the waveguide. ML behaves very satisfactorily, typically giving sharp, narrow signal peaks
discriminated against a low, flat background when the mismatch is slight. Its performance deterio-
rates sharply with only relatively minor degrees of mismatch, however, and interest has necessarily
grown in the development of more robust high-resolution methods that will continue to give stable
estimates even in the presence of mismatch. One approach is that adopted by Baggeroer et al. [30]
and Schmidt et al. [31], who recently introduced the multiple constraint beamformer (MCM). This
method, which may be seen as a generalization of ML, attempts to overcome mismatch-induced
instabilities by increasing the single point look constraint of ML through the introduction of several
additional constraints around the look direction. Their most successful processing with this method
was obtained [30,31] by designing the constraint conditions to achieve Bartlett behavior in
the neighborhood of the source peak, but ML behavior over the search region as a whole—an
approach that combines the stability of the Bartlett estimator with the background-reducing
characteristics of ML.

The method of sector-focused (SF) MFP used for eliminating mismatch instabilities represents
an essentially different signal processing philosophy from the MCM approach outlined above.
MCM recognizes that mismatch will lead to uncertainties in the location and size of the source peak
and attempts to improve the chances of finding it by increasing the physical aperture of the pro-
cessor “probe.” SF, however, seeks to remove the effects of mismatch by eliminating degrees of
freedom from the cross-spectral matrix (CSM) that contain no signal information, but do contribute
to the instability. Byrne and Steele [32] showed, in a plane-wave beamforming context, that some
eigenvectors of the CSM become unstable in the presence of correlated noise, causing ML to
deteriorate with mismatch. They subsequently introduced SF to stabilize ML in the plane-wave
case [33]. Byrne et al. [34] applied the SF approach to the case of normal mode propagation in a
waveguide. The resulting algorithm, RML, is particularly effective when the number of modes is
significantly less than the number of receivers, and shows much improved stability to phase errors
(as a type of system mismatch) in the presence of correlated noise. Frichter et al. [35] extended this
application and demonstrated a general implementation of SF in a deeper waveguide with small
spatial sectors. Smith et al. [36] showed that SF could also be effectively implemented to stabilize
MFP against environmental modeling errors by successfully localizing a source in a shallow-water
waveguide with a highly mismatched, downward-refracting sound speed profile.

Sector focusing is a powerful and flexible signal processing technique. Both the size and shape
of the sector are variable. Once these quantities have been chosen, the dimensionality of the pro-
jection matrix derived from the sector can also be selectively adjusted. These three parameters
together provide a wide variety of options for maximizing the performance of the technique, which
is particularly useful for resolving multiple sources in a highly mismatched environment [37].

We present an elaboration of the derivation of the SF algorithm presented in reference [35] that
clearly indicates where the mechanisms of mismatch-induced instability lie within ML. We then
show how these may be avoided by eliminating degrees of freedom from the CSM. Then, using the
example of a continuous wave source in a shallow-water channel, we demonstrate how sector size,
shape, and dimensionality can be adjusted to suit the physical characteristics of the waveguide, and
to take best advantage of the SF dimensionality reduction procedure to stabilize the localization
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process. We also explain the relationship of SF to the Bartlett and RML processors, in the
small and large sector limits, respectively. Our overall purpose is to take a significant step toward
a comprehensive appreciation of the method and to provide a helpful guide to its successful
implementation.

2.0 MATHEMATICAL BASIS FOR SECTOR FOCUSING

We will describe a derivation of SF that is specifically designed to demonstrate (1) how the
technique achieves stable MFP by restrlctmg the processing to a reduced set of eigenvectors of
the CSM and (2) how the set of eigenvectors used may be adjusted by varying the size, shape, and
dimensionality of the sector aperture. ‘

2.1 Rationale

The SF method is designed to eliminate senmsitivity to mismatch that is accentuated by the
presence of a large correlated noise component. The rationale behind SF is best understood in terms
of the eigenvectors z, and eigenvalues A, of the CSM (denoted here by K) and their contribution
to the ML estimator. The matrix K consists of averaged cross-correlations between the complex
acoustic pressures P, measured on the N hydrophones of an array and may be written

K=< PPT> . 1)

P is a column vector whose entries are the P,, T denotes conjugate transpose, and <...> denotes
an average over time samples (snapshots). The acoustic pressure field from which K is derived is
due to a source at range rp and depth 2z from the hydrophone array superimposed on the ambient
noise field, which is due to surface waves, wind, shipping, and other sources. In the case considered
here, more hydrophones than waveguide modes are used to construct the replica vectors e(r,z),
whose entries are the predicted complex pressures at the hydrophone locations due to an assumed
source at location (r,z). In this case there are eigenvectors of K (those with the smallest eigenvalues)
that are orthogonal to all e(r,2z). Since the eigenvectors contribute to the ML estimator through their
inner products with the replica vectors according to

N
ML (n)=1/e'(n) Kt e(n) =1/ 0,71 2,7 e(r2) )
1

n=

(with X z,, = A, 7)), those eigenvectors that are orthogonal to the replicas make a null contribution.
However, when (any kind of) mismatch is present this is no longer the case. These orthogonal inner
products no longer vanish, and their unwanted contributions to the ML estimator are amplified
because they are weighted by the reciprocals of the smallest eigenvalues of K. Their presence may
seriously degrade the performance of the ML estimator. Sector focusing seeks to diminish this
degradation by eliminating the destabilizing terms from the summation in Eq. (2). This is achieved
by forming a projection matrix from the most significant eigenvectors (those with the largest
eigenvalues) of a covariance matrix formed from the superposition of many independent simulated
sources at variable locations within the sector into which the focusing is concentrated. Sector
focusing allows the processing to occur only on the eigenvectors that the source would energize
were the source in the sector being processed. This reduces the instability induced by mismatch
errors while it improves the input signal-to-noise ratio.
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Sector focusing cannot determine (a priori) which eigenvectors of K have a significant projection
on the signal arrival, but it can and does determine which eigenvectors are needed to describe a
source from a given physical sector. Simply put, SF asks the question, “If a source were in this
sector, which eigenvectors of K would it project onto?” It then uses only the contributions from
these predetermined eigenvectors in the formation of the estimator. In so doing, it trades some
resolution for significant stability against mismatch errors.

2.2 Formal Derivation of the Estimator

We can construct the SF estimator to restrict the processing to only those eigenvectors of the
CSM that could be involved in describing the source, if it were in the sector, in the following
manner. Consider a linear filter w/Kw and require the high-resolution weight vector w for this filter
to have minimal projection outside of the subspace spanned by those eigenvectors. If we label the
projection matrix described in the last section as V, then this “sector-focusing” constraint takes
the form wiw = wiVVTw. The sector-focused ML estimator is obtained by optimizing the filter
wiKw for minimum variance, subject to this sector-focusing constraint, together with the usual
“distortionless-look” constraint w'e = 1. To determine w we must therefore minimize the dual
constraint cost function

T =wiKw + ARe(wie—1) + Awi(Z - VV)w, (3)

where A and A, are Lagrange undetermined multipliers and [ is the identity matrix. The minimi-
zation is accomplished by setting the derivative of I' with respect to w' to zero, i.e.

oT/ow! = Kw + Me/2 + Al - VVHw=0. 4)

If we premultiply the RHS of Eq. (4) by V' and replace w by Va (a is any k x 1 complex vector
and k is the rank of V), we obtain

ViKva + M Vie/2 + MV - Vivwhw=0. ®)

The columns of V are generally orthonormal vectors, so that Viv=l Hence, the third term on the
LHS of Eq. (5) vanishes and the expression reduces to

w+ MV(VIKV) Viez=0. (6)

If we premultiply this equation by e and use the constraint w'e = 1, we obtain an expression which
can be solved for A4, i.e.,

M =—2/ etV(VIKVY ! Vie. (7
Substituting Eq. (7) back into Eq. (6) gives the weight vector
w = V(VIEKW) 1 vie / eTV(ViIKV) T Vie, (8)

and further substitution of w into the filter wiKw gives the SF estimator
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SF = wikw = Vv vt X v(viEy] Vi

eTV(VfKI/)_IV*e eTV(VTKV)—lVTe
) e’”V(VTKV)_IV* kviviey Ve
| [eTV(VTKV)_lVTe]Z

1

‘ . %
e*V(VfK‘/)_lv‘”e

Inspection of the last line of Eq. (9) shows that V pre- and post-multiplies K, and therefore
projects the covariance matrix into the space of the columns of V. It similarly projects the replica
vectors e. By this means, processing is concentrated on those eigenvectors that describe sources
within the sector to which V corresponds.

2.3 Sector Limits

From the previous discussion, the set of eigenvectors used in processing is clearly determined
by V, which is in turn dependent upon the choice of sector parameters. To implement SF, the sector
shape and size (i.e., the range extent and depth extent), as well as the processing dimensionality,
must be decided. These parameters may be adjusted to achieve the desired estimator performance.
The practical choice of values for a specific application is frequently difficult and requires some
experience. However, a general guideline is that as sector size and dimensionality are increased,
resolution is improved and stability is reduced. To illustrate this feature and to provide some
intuitive feeling for the technique, we will examine the theoretical behavior of the SF estimator in
two special cases.

2.3.1 The “Small” Sector Limit

If the sector size is made smaller, the processing becomes more stable and the resolution
decreases. The small sector limit occurs when the sector shrinks to a single point. In this case, the
sector has an essential dimensionality of one, i.e., it only takes one eigenvector to describe data
from the sector. The V matrix is therefore an N x 1 matrix (i.e., a vector, which has unit norm
because VIV=1 )- In the implementation of SF used here, where the sector surrounds the search
point (a very typical implementation), the V matrix then becomes the replica vector itself at the
search point. Thus, V = e, where efe = 1. If we now substitute e for V in the SF estimator Eq. (9)
we find

SF = L .1 ke, (10)

eTe (eTKe)_leTe (eTKe)_1

which is just the Bartlett estimator [4]. The small sector limit of SF processing is Bartlett
processing, which indicates that SF can always be made to achieve the Bartlett conditions of
maximum stability (and minimum resolution) by collapsing the sector until it becomes a single
point at the search location.
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2.3.2 The “Large” Sector Limit

As the sector size is increased, a stage is eventually reached where further increases in size
have no effect on the processing. In this large sector limit, the sector encompasses such a large part
of the search space that the columns of V, which describe sources placed throughout the sector, and
therefore, in this case, throughout a large part of the waveguide, span the same vector space as the
columns of the modal matrix U (the matrix whose elements are the sampled values of the depth
modal functions at the array element depths) [7,10]. This may be formally expressed V = UX, where
V and U are both N x M (M < N is the number of modes), and X is M x M. Since U and V span the
same vector space, X has full rank, so its inverse is defined. If we now substitute UX for V in
the SF estimator Eq. (9), we find

1 1

SF = =

duxlxvikuy” xivte ofumx! (k0] x¥iute

e T ay
u(vky)” Ute

which is just the RML estimator [34]. The large sector limit of SF processing is RML processing.
As we will see, this limit may generally be achieved using sector dimensions significantly smaller
than those of the waveguide.

RML usually gives higher resolution, with lower stability, than the Bartlett processor. However,
as we shall show, the application of SF with a careful choice of sector dimensions lying between
the small and large limits will generally perform better (i.e., give higher resolution while maintaining
stability) than both of these other two methods.

3.0 THE SIMULATED EXPERIMENT

To illustrate the effects of different implementations of SF, we performed a series of simula-
tions in a representative shallow-water environment. In this section we describe the propagation
model used to perform the required acoustical calculations, the experimental geometry and environ-
mental parameters, the method by which mismatch variations were introduced, and the quantification
of the ambiguity surfaces.

3.1 The SUPERSNAP Propagation Model

The acoustic calculations for this report were performed using the SACLANTCEN Normal-
Mode Acoustic Propagation (SNAP) model [38]. The model divides the environment into three
layers, as shown in Fig. 1. The water column, which incorporates a depth-variable sound speed with
constant density and volume attenuation, is underlain by a layer of sediment, which also allows a
depth-variable sound speed with constant density and attenuation. The subbottom is a semi-infinite
half-space with depth-independent sound speed, density, and attenuation. For the depths and
frequencies considered here, the model predicts 20 propagating modes. Of these, only the lowest
10 were used for the field calculations, since the remaining modes were trapped in the sediment
layer and, therefore, highly attenuated.
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Fig. 1 — Waveguide environment and geometry; environmental parameters are indicated, including the sound speed
profile in the water, sediment, and bottom layers. The experimental arrangement of source and receiving array are
shown, as is the random placement of noise sources used to determine the correlated noise component in the covariance
matrix.

3.2 Configuration of the Experiment

The environment in which the experiment simulated here was performed consists of a range-
independent, shallow-water wavegulde of 100-m depth and 1 g/cm density overlaying a sediment
layer of 500-m thickness, 2 g/cm density, and an acoustic attenuation of 0.0425 dB/A at the
150-Hz source frequency. The water and sediment layers are underlain by an isospeed, semi-infinite
basement. The sediment has a constant compressional velocity gradient: the sound speed increases
linearly from 1746.0 m/s at the water-sediment mterface to 2058.8 m/s at the sediment-basement
interface. The basement has a specific density of 2 g/cm and a constant compressional velocity of
2058.8 m/s. Since the basement has properties matching the base of the sediment layer, reflections
at the sediment-basement interface may be neglected. Shear wave propagation was not incorporated
into the problem. These parameters are typical of a continental shelf environment, such as the
environment off the coast of Panama City, Florida.

A vertical array of 20 evenly spaced hydrophones spanning the water column is suspended in
the waveguide and extends from 3 to 98 m in depth. The hydrophones, therefore, have a spacing
of 5 m, which is the half-wavelength value at 150 Hz. The 150-Hz narrow-band source was placed
5 km from the array at depths of 15, 50, and 75 m. The search region to locate the source extends
from O to 100 m in depth and from 3000 to 7000 m in range. The grid spacing is 50 m in range
and 1 m in depth.
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Shipping noise was modeled by simu-

0 7 . lating the random movement of 40 distant
. : *@  sources whose ranges were constrained to
10 ' lie in a random pattern within 10 to 100 km
. ' of the receiving array. These sources were
20 . placed at a 7-m depth and were allowed to
I ' move at a constant speed of 12 kt between
] . simulated snapshots taken at an interval
30 B of 1 s. Levels for the source and modal
] noise were both 30 dB, giving 0 dB signal-
40 to-(modal)-noise ratio. White noise at a
E 3 level of 10 dB was also added.
= 50 -
e 3
a ]
60 3.3 Water Sound Speed
Profile Variations
70
. The focus of our investigations was
80 the performance of the SF estimator in the
] presence of a water sound speed profile
%0 _: mismatch. Figure 2 shows a typical sum-
’ mer sound speed profile (the central solid
] line) for a midlatitude shallow-water
100 — ‘ ' environment, which was derived from
1510 1520 1530 1540 1550 database sources [39]. It is seen to be

SOUND SPEED (m/s) : strongly downward refracting. A pair of

Fig. 2 — Mean and mismatched sound speed proffles. Solid line d.Otted lmc:’S can.be seen to_ the left and
indicates the mean summer sound speed profile used to calculate Tight of this profile. These lines represent
the replica field; dotted lines represent profiles that deviate from sound speed profiles that deviate from the
the mean by =0, where o is the statistical standard deviation. central profile by +1o, as determined

Since both sg and o are functions of depth, by adding percentages statistically from the database. Careful
of the standard deviation at each depth, perturbations of the mean examination of Fig. 2 shows that the 10

rofile change both the profile gradient and the offset. L. ! .
P & P & | deviation of the sound speed profile is

neither uniform nor symmetrical and gradu-

ally increases with depth. The effects of

mismatch of the water sound speed profile
were investigated by first using the central profile to calculate the replica acoustic pressure field,
against which the detected field was to be matched for a grid of estimated source depths and ranges.
Mismatches were then introduced by varying the sound speed profile used to simulate the detected
pressure field by selected amounts within the 10 envelopes. The mismatches were accomplished
in the following manner. Let so(z) be the mean sound speed profile and o(z) be the standard
deviation about this mean profile at each water depth z. If the sound speed is perturbed by a
percentage o of the standard deviation at each depth, the mismatched profile is given by

ac(d)

100 (12)

@)= so(Z) £ —

Since o(z) is depth dependent, the use 6f Eq. (12) ensures that the profile gradient is varied,
together with the offset, so that mismatch is simulated which is realistic from the point of view of
matched-field processing. In this study, values of a were used which corresponded to —40% and
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—50% deviations from the mean profile. The —-50% value represents a large mismatch. Beyond this
value no meaningful assessment of the performance of the SF estimator could be made, since even
the Bartlett estimator, which is considered normative, then failed. Here, we investigated adjust-
ments in performance of the SF estimator as sector size, shape, and dimensionality were varied
under conditions of severe sound speed profile mismatch of this type.

3.4 Statistical Quantification of the Anibiguity Surfaces

To provide a means of quantifying thé ambiguity surfaces produced by the SF estimator under
the various implementations, and a measure of peak discrimination, the peak value (P), mean
background level (u), and standard deviation of the background (o) were calculated over the search
region for the surface. The mean level was calculated by excluding a 13-point by 13- -point box
(600-m range by 12-m depth) surrounding the peak location. The measurements of peak-to-background
ratio (PBR) used were then given by

PBR = 10 log[(P-w)/c] . (13)

This measure can be thought of as giving the height of the peak above the background in units of
the standard deviation and is expressed in decibels.

4.0 SIMULATIONS
4.1 Forming a Sector

For this study we used the “sliding” seétor implementation of SF described in previous work [36].
In this method, a fixed-shape (in our case rectangular) sector is moved along with the search point,
which is contained within it (see Fig. 3). We then calculated the replica vectors for a cartesian grid
(5 rows and 5 columns) of sample points within the sector. The spacing of the rows and columns
is determined by the overall range and depth extents of the sector. The sector covariance matrix,
Q, was formed by averaging the outer products of the replica vectors from the points in the sector,
i.e., Q = < e(rg,z5) €(rgzg)T >. The average was formed by a superposition of independent sources
at the locations (r,, zs) within the sector. The number of points in the sector (i.e., 25) was kept
constant throughout the study. This number always exceeded the number of modes supported by the

SAMPLE POINTS
WITHIN SECTOR

B ® #
/ / ? Fig. 3 — Schematic layout of search sector.
4 H H H ¥ = Once the range and depth extents have been
o chosen, the sector space is spanned by a
‘ O = 5x5 grid of sample points. The sector

H b x H ' [o gy cova . . . .
S > riance matrix is formed by averaging
SECTOR SEARCH POINT . 5 Y the outer products of the replica vectors
BOUNDARIES K s H 'R LI for these points. In the example shown here,
‘ the central sample point is also the search

| point.
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waveguide (i.e., 10) and also ensured thatj Q, from which the projection matrix V was derived, had
full rank.

4.2 Essential Dimensionality

Although the sector covariance matrix Q is formed from sufficient independent replicas from
within the sector to have full rank, its “essential” or effective rank (or dimensionality) may be much
smaller. If the sector is very small, it may only require (say) one or two replicas to accurately
describe sources from within it. The essential dimensionality of its corresponding covariance matrix
will then be correspondingly either one or two. As the sector is made larger, the sources spaced
within it more thoroughly represent the modal structure of the waveguide, and the rank of Q
increases. If we perform an eigenvector decomposmon of O we may, for the purposes of this study,
define its essential dimensionality (k) as the number of eigenvalues greater than 1% of the largest
eigenvalue. (Recall that V is formed by usmg the eigenvectors belonging to the largest k eigen-
values of Q as its columns.) In Fig. 4(a), we show the eigenspectrum of Q for a 5-m x 1-m sector.
This small sector has k=1 (the eigenvalues for n>1 are seen to be zero). In contrast, the
700-m x 40-m sector, whose eigenspectrum is shown in Fig. 4(b), has k = 10. We will see that, as
the size of the sector increases, the value of k also increases until it reaches the limit of the number
of modes.

To see how the essential d1mens1ona11ty changes with sector range and depth extent, we plot
the maps of k shown in Fig. 5 (a—c). These maps were constructed by varying the size and shape
of a sector surrounding a search point placed at 15-, 50-, and 75-m depths, respectively. The x axis
in each case shows the range extent of the sector, while the y axis shows the depth extent. The
contour lines mark the borders between dimensionality regions. We see that, as expected, the smallest
sectors have a dimensionality of one. The largest ones have a dimensionality of 10 (the number of
modes). The dimensionality does not increase beyond this value, however large the sector becomes.
We note from these figures that we can attam the same k using differently shaped (e.g., tall-thin
or short-wide) sectors. It is also evident, by comparing Fig. 5 (a—c), that the value of k for a
particularly shaped sector may also vary with sector depth.

4.3 Demonstration of the Small Sector Limit
In Sec. 1 (Eq. (10)), we showed formally that SF is identical to the Bartlett estimator when the

V matrix is replaced by the replica at the search point. We can demonstrate that the Bartlett
estimator is equivalent to the small sector limit by performing a simulation in which the range and

x 1073 x 104
e L e — 20 —— et
08 5-m x 1-m SECTOR (a) 15 700-m x 40-m SECTOR (b) |
06 | ‘ '
04 | ] 10
02 | ] 05
0 |

L s L " s " 1 0 : . : . ) L X .

2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
n n

Fig. 4 — Eigenspectra of small and large sectors. Engenvalues of the sector covariance matrix are plotted as a function

of the eigenvector number, beginning with n = 1. Both sectors are centered over a search point placed at 50-m depth.
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Fig. 5 — Sector dimensionality maps. Contours separate regions
of different essential dimensionality as the sector range and depth
extents are increased. The 1% criterion has been used. The essential
dimensionality varies with the sector size and shape, and also the
depth of the search point over which the sector is céntered.

depth extents of the sector are reduced to
such a degree that all of the replica vectors
within the sector become effectively iden-
tical to each other and to the search point
replica itself. In such a case, the sector
covariance matrix, ¢, would approach
singularity, with a rank of one, and the
eigenvector corresponding to the one non-
zero eigenvalue would be equal to the
replica at the search point.

In Fig. 6(a) we show a Bartlett ambi-
guity surface for a source placed at a
range of 5000 m and at 75-m depth in
the waveguide, for a case in which the
water sound speed profile is mismatched
by -50% from the mean profile, as
prescribed by Eq. (12). The Bartlett esti-
mator correctly locates the source, but the
ambiguity surface is characteristically
difficult to interpret with high background
sidelobes and a broad signal peak. The
value of PBR is 8.19 dB. We will now
perform SF, using a sector size of
5 m x 1 m. Inspection of Fig. 5(c) shows
that, with this sector size, the essential
dimensionality of Q is 1. If we use only
the one “large eigenvector” of Q to form the
V matrix (which is still =€), and apply
the estimator in Eq. (9) in an equivalent
manner to Eq. (10), we obtain the surface
shown in Fig. 6(b). This surface is practi-
cally identical to the Bartlett surface, with
a PBR of 8.18 dB. We see that SF has the
same ability to discriminate the source peak
as Bartlett (but also achieves the same
robustness) in the small sector limit.

Sector focusing can also be “forced”
to give the same performance as Bartlett

-~ when the sector size is increased such that

the essential dimensionality is actually
greater than 1. In Fig. 7 we see SF for the
same mismatch case as Fig. 6, but using a
sector size of 5 m x 5 m. Fig. 5(c) shows
that the essential dimensionality for this
case is 2. One of the two eigenvalues is
much larger than the other and dominates
Q. Since the sector is still quite small, the
eigenvector corresponding to this eigen-
value remains strongly representative of
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Fig. 6 — Comparison of Bartlett and SF in the “small” sector limit. Ambiguity surfaces are calculated for a
source placed at 5000-m range and 75-m depth in the waveguide, with —50% mismatch of the sound speed
profile. A 5-m x 1-m sector was used for the SF case. The surfaces are practically identical. (a) PBR = 8.19 dB
and (b) PBR = 8.18 dB. ‘

the search point replica within the sector (i.e., it is still = e). If we use just this one large eigen-
vector to form the V matrix and apply the estimator as indicated by Eq. (10), we obtain the
ambiguity surface shown in Fig. 7(a). Comparison with Fig. 6(a) shows that this is again very
similar to the Bartlett surface, with a PBR of 8.08 dB.

With the 5-m x 5-m sector, the additional dimensionality (i.e., the second available eigenvec-
tor) can be used to improve the quality of the ambiguity surface and to reduce the background
sidelobe levels without losing processor stability. Figure 7(b) shows the ambiguity surface pro-
duced by SF when V contains both the eigenvector used to give Fig. 7(a) previously and the
eigenvector corresponding to the second smaller, but still significant, eigenvalue. In Fig. 7(b), we
see the source correctly predicted at the input location, but now the sidelobe background level has
been reduced to give a PBR of 9.33 dB.

What is the result of increasing sector size yet further? Figure 8 is produced with a sector size
of 35 m x 5 m. Figure 5(c) indicates that the corresponding Q has an essential dimensionality of 3.
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3000 4000 5000 6000 7000

Fig. 7 — “Forced” Bartlett behavior using SF Wwith sector larger than the “small” sector limit. Both of the SF
surfaces are calculated for a source placed at 5000-m range and 75-m depth in the waveguide, with —50%
mismatch of the sound speed profile. A sector 5-m x 5-m is used, which has an essential dimensionality
of 2. (a) Only the largest eigenvector is used, The surface is very similar to Fig. 6(a), PBR = 8.08 dB and
(b) both available significant eigenvectors are used, PBR = 9.33 dB.

If we use just the two largest elgenvectors of Q to form V and apply SF, we get the surface shown
in Fig. 8(a). This surface has a PBR of 9. 27 dB and is quite similar to Fig. 7(b). However, if we
increase V to include all three of the mgmﬁcant eigenvectors of Q, thus using all of the available
dimensionality of the sector, we obtain Fig. 8(b). In this case, SF fails to correctly identify the
source, since it puts its largest peak at a range of 4000 m. The sidelobe level has also increased,
reducing the PBR to 8.89 dB. This result may be interpreted by appealing to Eq. (2). It appears that
a mismatch of the sound speed profile by —50% is significantly large when the source is placed at
75-m depth. Most of the terms in the summation in Eq. (2) are destabilized by this degree of
mismatch; and SF must be implemented in such a way that processing can be allowed on only the
two largest eigenvectors, if stable estimation is to be achieved. The two eigenvectors may be
selected by using a 5-m x 5-m sector, and using all of the available dimensionality; or by using a
35-m x 5-m sector (or other comparable sector choice), and using only the two largest eigenvectors.
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Fig. 8 — SF with increased sector size. Both surfaces are calculated for a source placed at 5000-m range and
75-m depth in the waveguide, with —50% mismatch of the sound speed profile. A sector 35-m x 5-m is
used, which has an essential dimensionality of 3. (a) The two largest eigenvectors are used, the source
is correctly located, PBR = 9.27 dB and (b) all three available significant eigenvectors are used. SF fails as
it incorrectly locates the source at 4000-m range and 73-m depth, PBR = 8.89 dB.

4.4 Demonstration of the Large Sector Limit

If the amount of mismatch is less than that experienced in the case previously described, it may
be possible to use a larger sector with higher essential dimensionality to significantly reduce the
sidelobe background level while maintaining estimator stability. Returning to Eq. (2): this means
that fewer of the terms in the summation Will be destabilized by the mismatch, and that the sectors
may be designed to select more eigenvectors for processing. As the number of terms increases, then
SF looks more like ML, which performs very well (returning very accurate source location
predictions with good sidelobe reduction) under conditions of low mismatch.

In a waveguide, the maximum dimensionality that can be achieved is equivalent to the number
of modes M, regardless of how large the sector is made. In Fig. 9, we look at the case of a source
placed at a 5000-m range and 15-m depth in the waveguide, with the sound speed profile mismatched
by —40%, representing a significantly less mismatched case than the 75-m, —50% example used
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Fig. 9 — Comparison of SF in the “large” sector limit and RML. Ambiguity surfaces are calculated for
a source placed at 5000-m range and 15-m depth in the waveguide, with —40% mismatch of the sound
speed profile. A 700-m x 40-m sector was use}d for the SF case. The surfaces are indistinguishable. (a) SF,
PBR = 9.27 dB and (b) RML, PBR = 9.27 dB.

earlier. Figure 9(a) shows the result of implementing SF with a 700-m x 40-m sector. Inspection of
Fig. 5(a) shows that the Q for a sector of this size has an essential dimensionality
of 10, which is the value of M. According to the argument in Sec. 2.3, this should place SF well
into the large sector limit and produce identical results to RML. Figure 9(b) shows the RML surface
for the same case. Close comparison reveals that it is, indeed, identical to Fig. 9(a). Both methods
give the same PBR of 9.27 dB. ‘

Although, as we have seeun, it is possible to implement SF for the above case using a sector
dimensionality of 10, this is not necessarily the most effective implementation. We may, and in
most cases will, achieve best results using a sector size that is intermediate between the small and
large sector limits. In Fig. 10 we plot (for the same 15 m, —40% mismatch case depicted in Fig. 9)
the variation of PBR for a series of implementations of SF, with sector sizes increasing to raise the
essential dimensionality incrementally from 1 to 10. After some initial oscillation, the value of PBR
improves steadily, reaching a peak of 11.86 dB with a sector size of 400 m x 20 m, which has
an essential dimensionality of 9. When the sector size is further increased to 700 m x 40 m to give
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an essential dimensionality of 10, which is the case shown in Fig. 9(a), the PBR falls to 9.27 dB.
The “best” performance is achieved with an essential dimensionality of 9 in this case. In the
75-m, —-50% case depicted in Figs. 7 and 8, it was achieved with an essential dimensionality of 2.
The most effective way of implementing SF will clearly vary according to individual cases, and
must be determined empirically. However, by using a small sector the processor can always be
made as stable as Bartlett, and by using a large sector it can be made to perform identically to
RML. Generally, the sector size can be adjusted to give better results than either of these two other
methods. For the 75-m source with -50% mismatch, a 5-m x 5-m sector with essential dimensionality
2 gives the optimum result, which is intermediate between Bartlett and RML, but closer to the small
sector (Bartlett) limit. In contrast, for the 15-m source with —40% mismatch, a 400-m x 20-m sector
with essential dimensionality 9 gives the optimum result, which is also intermediate between Bartlett
and RML but, in this case, closer to the large sector (RML) limit.

Just as SF can be forced into giving Bartlett behavior by selecting the one largest eigenvector
of Q when the sector is actually larger than the small sector limit, so it may be similarly forced into
giving RML behavior by using the 10 largest eigenvectors of Q when the sector is smaller than the
large sector limit. In Fig. 11, we plot (again for the same 15-m, —40% mismatch case used above)
the variation of PBR for a series of implementations of SF, with sector sizes increasing in the same
sequence used for Fig. 10. This time, however, the 10 largest eigenvectors of O are used in every
case, regardless of the essential dimensionality for any particular sector. We see that PBR falls from
an initial value of 11.40 dB, with a 5-m x 1-m sector, to 9.18 dB for a 35-m x 5-m sector. It then
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Fig. 10 — Variation of PBR with increasing sector
dimensionality. Values are calculated for a source placed
at 5000-m range and 15-m depth in the waveguide. A series
of implementations of SF were performed with sector
sizes increasing so that the essential dimensionality was
raised incrementally from 1 to 10. The best performance
(PBR = 11.86 dB) was obtained with a sector 400-m x 20-m,
which has an essential dimensionality of 9.

SEGTOR SIZE NUMBER

Fig. 11 — Variation of PBR with increasing sector size and
constant dimensionality. Curves are calculated for a source
placed at 5000-m range and 15-m depth in the waveguide.
A series of implementations of SF were performed with
sector sizes increasing in the same sequence used for Fig. 10,
except the dimensionality was maintained at 10 throughout.
The processor is “forced” to behave like RML when the
sector is only 80-m x 10-m (sector size number 4), giving
a PBR of 9.27 dB, which is equal to the RML value in
Fig. 9(b). It maintains this performance as the sector size
is increased to the “large” sector limit.
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rises slightly to 9.27 dB and remains at this value, which is the RML value obtained in Fig. 9(b),
as the sector size is further increased towards the large sector limit. Figure 11 shows that SF begins
to reproduce RML behavior when the sector size is such that its essential dimensionality is only 4.
What is the explanation? Possibly the 1% criterion we have set for counting large eigenvalues is
too high. If it were lowered, then the essential dimensionality would reach higher values with
smaller sector sizes, which may mean that the large sector limit (and RML behavior) is reached
with much smaller sectors than the maps in Fig. 5 (which used the 1% criterion) indicate.

4.5 Variation with Mismatch

As mentioned, SF implementations must be optimized for the mismatch conditions encountered.
To emphasize this feature of the processbr, we will examine the-effects of variable mismatch on
two cases. In Fig. 12(a), we plot PBR against mismatch for a source placed at 50-m depth in the
waveguide. The mismatch varies from —~50% to +50% deviation from the mean profile, as prescribed
by Eq. (12). Curves are plotted for SF (using a 150-m x 5-m sector with essential dimensionality 7)
and Bartlett. We see that SF consistently outperforms Bartlett. When the mismatch is either zero
or small, SF has a PBR 4-5 dB better than Bartlett, with stable and accurate location of the source.
As the mismatch increases toward +50% dev1at10n, the improvement offered by SF falls to 1-2 dB,
but it still returns accurate location estimates. In Fig. 12(b), we plot PBR against mismatch for a
source placed at 75-m depth in the waveguide. The uppermost curve is the variation of PBR using
SF with the 150-m x 5-m sector, as used in Fig. 12(a). When the mismatch is small it gives
5-6 dB improvement over Bartlett, but when the mismatch increases beyond +10% deviation, SF
becomes unstable and fails to correctly locate the source. This failure, indicated by the two vertical
lines in the figure, is not surprising. The 150-m x 5-m sector has an essential dimensionality of 6
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Fig. 12 — Variation of PBR with mismatch. PBR is plotted against percentage mismatch of the sound
speed profile, as prescribed by Eq. 12. (a) Source is placed at 5000-m range, 50-m depth; SF is used with a
150-m x 5-m sector implementation and gives a better performance than Bartlett, while maintaining stability over
the whole range of mismatch values. (b) Sourcc is placed at 5000-m range, 75-m depth, and the 150-m x 5-m
sector implementation of SF fails when the mismatch is greater than x10%. The smaller sector implementation
(5 m x5 m) gives less improvement over Bartlett, but maintains stability.
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for a 75-m source and we should expect, following our discussion of Figs. 7 and 8, that a sector
with essential dimensionality of more than 2 would fail in this case. In Fig. 12(b), we also plot the
variation of PBR for SF with a 5-m x 5-m sector, which has an essential dimensionality of 2. Here
we find stable localization and a steady improvement of about 1.5 dB over Bartlett throughout the
range of mismatch values. As a general rule, large sectors, leading to significant reductions in
sidelobe levels, may be used if the mismatch is small. As the mismatch increases, the sector size
must be reduced to maintain stability. If it is necessary to reduce the sector size to the small sector
limit, SF will return the Bartlett result.

5.0 CONCLUSIONS

Sector focusing is a flexible matched-field signal processing technique that can be readily
adapted to improve performance and maintain stability for different environmental and mismatch
conditions. Sector focusing performance may be fine-tuned by changing the sector dimensionality
(by adjusting sector size and shape) and by varying the number of eigenvectors in the projection
matrix. In the small sector limit, SF performs identically to the Bartlett processor. In the large
sector limit, it performs identically to the RML processor. It is generally possible, by making
careful sector choices, to obtain stable processor performance that is significantly better than either
of these other two methods.
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