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EXPERIMENTAL DETERMINATION OF DISSIPATED ENERGY DENSITY ASA
MEASURE OF STRAIN-INDUCED DAMAGE IN COMPOSITES

Executive Summary

The use of composite materials in structural components has increased dramatically in recent years
as their cost of production continues to decline and advances in composite design methodology become in-
creasingly wide spread. As applications become more demanding, the need for reliable prediction of their
mechanical properties and behavior is becoming ever more important.

The basic obstacle to a comprehensive understanding of failure behavior in composites is the com-
plexity of their observed mechanical behavior. Composites are generally anisotropic, markedly nonlinear,
and, unlike metals, usually fail in an extremely complicated, spatially diffuse, noncatastrophic manner. The
nonlinear mechanical behavior of composites is known to be associated with damage accumulation that
causes a local decrease in stiffness of the material in areas where damage is pronounced. Moreover, the com-
plicated manufacturing process results in many imperfections that take on a variety of forms including fiber
imperfections, fiber misalignment, and geometrical irregularities in the distribution of fibers, voids or mi-
crocracks in the matrix material, and the presence of debonded areas. These defects, combined with high-
stress fields near material or geometric discontinuities, induce matrix cracking, fiber breakage, fiber-matrix
debonding, and delamination, all of which influence the overall mechanical properties of these materials.

Extensive efforts to identify the various modes of damage in composite materials have been undertak-
en in recent years. The primary finding of most of these investigations was that macroscopic fracture was
usually preceded by an accumulation of the different types of microscopic damage and occurred by the co-
alescence of this small-scale damage into macroscopic cracks. Additionally, it was generally found that
analyses based on classical fracture mechanics did not adequately model the damage effects and did not pro-
vide a satisfactory degree of predictive capability.
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velopment on a continuum basis and relate it to the material constitutive behavior. The goal of such an ap-
proach is to permit accurate modeling of the progressive loss of stiffness and concomitant inelastic behavior
caused by the underlying micromechanisms of damage. Such a model for composite failure behavior re-
quires a large parameter space for its description if it is to represent physical fact in a high-fidelity, objective
manner. The model must be generic and phenomenological in nature and must rely on extensive sets of ex-
perimental data to identify the model parameters. Only after these parameters are determined can the model
be related to particular failure mechanisms.

The purpose of this report is to describe the initial stages of an approach to modeling the mechanical
behavior of composite materials consistent with the aforementioned standards. This approach, which in the
spirit of the prior discussion is largely based on systematic experimentation, provides a methodology for
quantifying the failure behavior of a broad class of composite materials and for characterizing the degree of
internal damage the material undergoes when it is part of a structural component subjected to general load-
ings. This approach also provides a factual base against which any other continuum damage approach can
be measured.

The procedure involves the determination of an energy density dissipation function which has the di-
mensions of energy per unit volume and is postulated 1o be a property of the material. Its volume integral
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equals the energy dissipated during loading because of the various internal failure events, and its value at
any point in the material is regarded as a measure of load-induced internal damage. The energy dissipation
function thus captures the collective behavior of these failure mechanisms without requiring an explicit
knowledge of these mechanisms, and, moreover, can also be related to local stiffness changes that, as will
be demonstrated subsequently, lead to a form of nonlinear structural behavior. Section § presents a detailed
description of the material model. In our approach, the energy density dissipation function is determined
from data obtained by means of an extensive series of tests performed with NRL’s In-Plane Loader, which
is a computer-controlied testing machine capable of producing multiple combinations of opening/closing,
sliding, and rotating boundary displacements. A brief explanation of the methodology for determining
(identifying) the dissipation function follows.

A representation of the energy dissipation function as a function of strain is chosen in terms of a set
of known basis functions and a set of undetermined coefficients. The task is then to estimate these coeffi-
cients. To accomplish this, a number of test specimens are first subjected to a range of prescribed combina-
tions of in-plane loads using the In-Plane Loader. These loads induce a wide range of internal strain states
in the specimens. These states approximately encompass those expected in typical structural components
under service loading conditions. The boundary displacements and boundary loads are measured for each
load combination, and are used to compute the energy dissipated internally in the specimens caused by
strain-induced damage for each test. The strain fields associated with each of the load combinations are also
determined by means of a linear finite element analysis using the constitutive properties of the undamaged
(virgin) material. The computation, therefore, neglects the effects of stiffness changes induced by the inter-
nal damage, but should be sufficiently accurate provided that no large-scale stress redistribution occurs dur-
ing the tests. Analytic estimates of the dissipated energy are then computed in terms of the unknown
coefficients for each test using the representation of the dissipation function, the computed strain fields , and
the fact that the volume integral of the dissipation function equals the dissipated energy. Finally, the unde-
termined coefficients in the dissipation function representation are determined by minimizing the difference
between the experimentally measured and the analytic estimates of the dissipated energy for all the tests.
Sections 2 and 3 detail this procedure.

The aforementioned procedure is a deconvolution procedure in the sense that the goal is to extract a
material property (the dissipated energy density function) from information obtained from the materiat in a
particular physical configuration, namely the specimen, and, thus, it is necessary to factor out specimen ge-
ometry effects. By taking this approach, the resulting dissipated energy density function can be applied to
any structural configuration, and used to develop material softening (stiffness reduction) maps for any struc-
ture (again, assuming a negligible amount of stress redistribution caused by internal damage). Indeed, in
Section 4, we demonstrate the applicability of the model by describing a computational approach packaged
as a material response simulator and its use in simulating the structural response of several stractures of in-
terest. These are a ship's mast, the test spectmen itself, and a cylindricai shell representing an idealized sec-
tion of a submarine hull. A number of different composite material systems are considered and spatial maps
of the dissipation function (softening maps) are produced for various loading magnitudes. These softening
muaps itustrate how the energy consumed by the various internat failure events is dissipated within the struc-
ture.

While the energy dissipation function can be approximately determined without explicit knowledge
of the damage-induced constitutive nonlinearities as discussed above, a more refined approximation re-
quires a representation of the full-scale nonlinear behavior. This information is also of much interest in its
own right since it is needed for stress analysis when analyzing the behavior of structural components loaded
well into the nonlinear response range where substantial load redistribution is expected. These issues are
addressed in Section 5, where a representation of the constitutive behavior in terms of the energy dissipation
function is developed along with a refined scheme for identifying the dissipation function itself.,
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In summary, an approach is formulated to characterize failure behavior and degree of load induced
internal damage in composite materials and structures . This approach is based on a systematic experimental
procedure to observe response of composite materials subjected to multiaxial load environment. The energy
dissipated by internal failure mechanisms is used as a measure of internal damage and is characterized by
an energy dissipation function, which is determined by means of a deconvolution procedure using data pro-
vided by NRL's automated In-Plane Loader, Use of this information as a failure analysis and prediction tool
is demonstrated by simulating the structural response of some naval structural components made from sev-

eral different composite materials. In addition, a general theory for the derivation of the constitutive behav-
ior of the damaged composites is presented.



EXPERIMENTAL DETERMINATION OF DISSIPATED ENERGY DENSITY AS A
MEASURE OF STRAIN-INDUCED DAMAGE IN COMPOSITES

1. INTRODUCTION

The use of composite materials in structural components has increased dramatically in recent years
as their cost of production continues to decline and advances in composite design methodology become in-
creasingly wide spread, As applications become more demanding, the need for reliable prediction of their
mechanical properties and behavior is becoming ever more important.

The basic obstacle to a comprehensive understanding of failure behavior in composites is the sheer
complexity of their observed mechanical behavior. Composites are generally anisotropic, markedly nonlin-
ear, and, unlike metals, usually fail in an extremely complicated spatially diffuse noncatastrophic manner
(Badaliance and Hill (1982); Morris and Hetter (1982); Masters and Reifsnider (1982)). The nonlinear me-
chanical behavior of composites is known to be associated with damage accumulation which causes a local
decrease in stiffness of the material in areas where damage is pronounced. In many fibrous composite sys-
tems damage, develops at applied loads much lower than the design limit (Highsmith and Reifsnider
(1982)). In materials that have a laminated structure, the complicated manufacturing process results in many
imperfections that take on a variety of forms including fiber imperfections, fiber misalignment and geomet-

rical irreoularitiag in the digtribution of fibers. voids or microcracks in thp matrix material. and the nrecence
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of debonded areas. These defects, combined with high-stress fields near material or geomeiric discontinui-
ties, induce matrix cracking, fiber breakage, fiber-matrix debonding, and delamination, all of which influ-
ence the overall mechanical properties of these materials. Extensive effort to identify the various modes of
damage in composite materials has been undertaken in recent years (i.e,. Aveston and Kelly (1973); Tsai
and Hahn (1974); Reifsnider and Stinchcomb (1978); Reifsnider (1980); Highsmith and Reifsnides {1982);
Dvorak and Johnson (1980) among others). The primary outcome of these investigations was that macro-
scopic fracture was usually preceded by an accumulation of the different types of microscopic damage and
occurred by the coalescence of this small-scale damage into macroscopic cracks. Moreover, it was generally
found impossible to model the effects of the damage using analyses based on classical fracture mechanics
approaches.

A more practical approach to modeling failure behavior in composites is to quantify the damage de-
velopment on a continuum basis and relate it to the material constitutive behavior. The goal of such an ap-
proach is to permit accurate modeling of the progressive loss of stiffiess and concomitant inelastic behavior
due to the underlying micromechanisms of damage. Such modeling would represent an extremely important
achievement from an engineering standpoint. For example, consider a laminated composite plate with a cen-
ter hole made from a commercially available composite (i.e., AS1/3501-6 graphite/epoxy) that is loaded in
quasi-static tension. Damage patterns will develop around the hole and near the corners of the plate (Morris
and Hetter (1982)) inducing degradation in material properties and forming a precursor to general failure.

An examination of the micrographs readily indicates that a detailed micromechanical analysis is out of the

_Manuscript approved Dec. 18, 1991,
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question because the characteristic scale length of damage is of the order of [m leading to the conclusion
that a continlum-based damage model would be far more appropriate under these circumstances.

The analysis of highly localized singular fields by means of continuum approaches has a long history
and there exist a number of well-established techniques developed specifically for this purpose. Most of
these approaches involve smearing out singular fields in some fashion and replacing them by locally homo-
geneous fields, an example being continuous dislocation theory (i.e. Bilby, Bullough and Smith (1955); Kra-
tochvil and Dillon (1969), among others). More generally, there have recently been a plethera of continuum
damage approaches based on the idea of an internal damage variable first introduced by L.M. Kachanov
(1958) (e.g., Allen, Harris and Groves (1987), Bazant (1986), L.M. Kachanov (1986), Krajcinovic
{1984,1986), Lemaitre (1987), Onat and Leckie (1988}, Talreja (1987)). A common shortcoming of most of
these theories is that they are usually not based on observed facts, but rather tend to use models defined over
low dimensional parameter spaces that reflect preconceived notions of the dominant failure mechanisms.
Virtually no previous studies address this problem; indeed, this is one of the primary purposes of this repert.
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tion if it is to represent physical fact in a high-fidelity, objective manner. Because the phenomena being con-
sidered are generally so complex, it seems futile to formulate models in terms of the individual failure
events; rather, the chosen model must be generic and phenomenological in nature and must rely on extensive
sets of experimental data to identify the model parameters. Only after these parameters are determined can
the model be related to particular failure mechanisms,

This report describes the initial stages of an approach to modeling the mechanical behavier of com-
posite materials consistent with the aforementioned standards. This approach, which, in the spirit of the pri-
or discussion is largely based on systematic experimentation, provides a methodology for quantifying the
failure behavior of a broad class of composite materials and for characterizing the degree of internai damage
the material undergoes when it is part of a structural component subjected to general loadings. This ap-
proach also provides a factual base against which any other continuum damage approach can be measured.

The procedure involves the determination of an energy density dissipation function that has the dimen-
sions of energy per unit volume and is postulated to be a property of the material. Its volume integrai equals
the energy dissipated during loading because of various internal failure events, and its value at any point in
the material is regarded as a measure of load-induced internal damage. The energy dissipation function thus
captures the collective behavior of these failure mechanisms without requiring an explicit knowledge of
these mechanisms, and, moreover, can also be related to local stiffness changes which, as will be demon-
strated subsequently, lead to a form of nonlinear structural behavior. In the sense that this material model
relates load-induced internal damage to nonlinear structural behavior, it is similar to the models recently
used by Schapery (1587, 89a, 89b, 90). The present approach is not limited to composites, but has applica-
tion in the general area of the mechanics of irreversible processes where there is an acute need for a reliable
and accurate procedure to expeﬁmenta}iy determine equivalcm dissipated energy density functions. This is-
sue is more Ill.l!y addr ESSBCI in Sﬂ\lﬂl'al WO['KS that deal with the thermomechanicai mt‘)deﬁmg OI iﬁéVﬁfs}BlG
processes associated with material behavior in general under mechanical loading (Michopoutos et al.
{1984); Sih (1987); and Sih ez al. (1987)). Section 5 presents a detailed description of the material model
and its implementation.

The energy density dissipation function is determined from data obtained by means of an extensive
series of tests performed with NRL's In-Plane Loader (IPL) (Mast ef al. (1983, 84)). This is a compietely
computer-controlled testing machine capable of producing multiple combinations of opening/ciosing, slid-

1ng and rotatine boundary dignlacements. Fioure 1 schematicallv describes the mpthndnlnnu for determin-

AR ARG VRSRLINAGE § RO il i divaiig s A s, £ SRR Rl OO RIUNS TN SRR RSUL B Y AV IS TaiaRE

ing (identifying) the dissipation function.
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Fig. 1 — Block diagram of processes involved in determining the Dissipated Energy function

The left subpath in Fig. 1 describes the experimental part of the identification process and basically
involves determining the energy dissipated in the specimens during the IPL tests. The initial step consists of
using the material and geometry specifications to manufacture the test specimens. Next, the loading speci-
fications are applied by using the IPL to load the specimens in the manner prescribed. Finally, the measured
boundary displacements and loads are used to compute the total energy dissipated internally in the speci-
mens due to strain-induced damage. Section 2 presents details of this portion of the identification process.
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The remaining subpaths in Fig. 1 represent the numerical and analyticat part of the process. Initiaily,
as shown in the right subpath, the strain fields associated with each of the loading conditions prescribed in
the loading specification are determined for the given material and specimen geometry. This is achieved by
finite element analyses. A class of functions with free coefficients is then defined such that one member of
this class can represent an analytic representation of the dissipated energy as a function of the strain felds.
Finally, as indicated at the bottom of Fig. 1, the particular function that is best suited for representing the
dissipation energy is computed by determining the values of the free coefficients that minimize the differ-
ence between the experimentally measured and the analytic representation of the dissipated energy. Section
3 details this part of the process.

The aforementioned procedure is a deconvolution procedure in the sense that the goal is to extract a
material property (i.e., the dissipated energy density function) from information obtained from the materiat
in a particular physical configuration, (i.e., the specimen), and, thus, it is necessessary to factor out specimen
geometry effects. By taking this approach, the resulting dissipated energy density function can be applied
to any material configuration and used to develop material softening maps for any structure. In Section 4,
we demonstrate the applicability of the model by describing a computational approach packaged in a mate-
rial response simulator and its use in simulating the structural response of a ship’s mast. A nummber of dif-
ferent composite material systems are considered and spatial maps of the dissipation function are produced
for various loading magnitudes. These maps illustrate how the energy consumed by the various internal fail-
ure events is dissipated within the structure as a function of load and material.

The specimen used for the experimental measurement of the dissipated energy can also be regarded
as a structure where the same process can be applied. We perform such an analysis in Section 4. Although
this does not seem to be directly associated with naval structures, we chose to emphasize the fact that the
technique of simulating the response of a structure does not depend on a particular shape or loading, but
rather on the material response used for its construction. At the same time, this structure has additional sig-
nificance because of the essential role it plays in the whole process. Finally, Section 4 also preseats simula-
tions of the structural response of a cylindrical shell representing an idealized section of a submarine hull.

The procedures in our approach have been implemented in a highly automated fashion by a sequence
of computational activities that use the analyses described in the following sections. Figure 2 shows a data
flow diagram view of these processes and their relationships. The process of acquiring the IPL data and the
computation of the measured total dissipated energy for the test specimen is described in Section 2, and is
achieved through the processes “IPL15” and “GETABS,” the latter of which evaiuates the absorbed and dis-
sipated energy in the specimen. Section 3 describes the computation of the dissipated energy density func-
tion. This is performed by

* using “PATRAN" to create the complete finite element model of the specimen,

» feeding the finite element data to the “ABAQUS” finite element code via the “PATABA” data transia-
tor,

etermine the strain field for each point in the specimen, and

=
g 2.
2}
[
=

» performing a linear elastic ana

* piping the measured dissipated energy of the specimen and the strain fields through the “ABAPAT”
translators into “ABSPAT.”

» “ABSPAT” then computes the dissipated energy density function by deconvolution and uses an opti-
mization scheme to minimize the difference between the measured and the approximated values of
the dissipated energy as described in Section 3.

Control of the interprocess and intercomputer communications is achieved through a user interface modute.
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The simulation of material stiffness loss over any particular structure as described in Section 4 is
achieved by

» using “PATRAN” to specify the finite element idealization and loading specification of the structure,

« piping the data to “ABAQUS” via the “PATABA” data translator to compute the strain fields associ-
ated with the selected loading conditions, and
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be displayed using “PATRAN.”

Again, control of the interprocess and intercomputer communications is achieved through another user in-
terface module.

PATRAN F‘ATABA

I

USER INT. I::—D ABAQUS I

Measurement of Total Dis-

-gipated Energy Associated | S .' , .
_ with tested specimen o g
——i :
GETABS ,I Meas.OE | | ABSPAT | ABAPAT
. for Spec . ) .
/-—-_. ;

Computation of Dissipated Ener-
i gy Density Function Assoclated

with Tested Materia!
iPL15 - Comp. DE '
for Mat. : e
- Simulation of Dissipated Energy
e - Distributions Associated with
) Specific Structura
: | ABSORB ABAPAT
“IPL-D/ABAD . -

§

PATRAN |—— 3. PATABA

USER INT.

| ABAQUS

Fig. 2 — Computational implementation of the current approach in terms of the essential modules and their
functional relationship
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More detailed versions of the computational descriptions pertaining to all the aforementioned pro-
cesses are presented in the corresponding sections (2, 3 and 4) of the report.
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of the damage-induced constitutive nontinearities as discussed above, a more refined approximation requires
a representation of the full-scale nonlinear behavior. This information is also of much interest in its own
right since it is needed for stress analysis when analyzing the behavior of structural components loaded well
into the nonlinear response range where substantial load redistribution is expected. Section 5 addresses and
develops a representation of the constitutive behavior in terms of the energy dissipation function along with
a refined scheme for identifying the dissipation function itself.

2, DATA ACQUISITION THROUGH THE IN-PLANE LOADER SYSTEM

2.1 Material Specification

Composites associated with naval applications range through a wide variety of materials. Each differ-
ent combination of matrix, fiber, fiber coating (for matrix-fiber interface), layup angle, stacking sequence,
etc., corresponds to a different material. Our approach is specifically tailored to organic matrix composites.
In general, the particular material specification for an application in a stracture depends not only on the me-
chanical considerations but also on a host of additional considerations such as cost, electromagnetic and
thermal properties. Approximately 100 material systems with graphite fibers ranging from AS1I to IM7
(Hercules Corp.) and several thermoset and thermopiastic organic polymers have been tested and character-
ized with the present approach. Here we limit our description to the materials selected for the applications
discussed in this report. A brief description of these materials is given in Table I in terms of the matrix, the
fiber, and the angle of layup. Appendix A is a complete list of all the materials tested up until now.

Most of the materials were received in the form of panels out of which the specimens were cut and
machined to the specimen specification.

Table 1 — Fragment of the Materials Database Describing Four of the 101 Different
Materials Used in the Present Study

ITEM | RESIN FIBER LAYUP SUPPLIER | FILE PROJECT
001 3501-6 AS1 +- 15 Hercules mt-1 NAV-SEA
002 . . +-30 . mt-2
007 . AS4 +- 60 . mt-7
040 PEEK . +- 60 ICI mi-40

2.2 Specimen Specification

The specimen geometry shown in Fig. 3 was designed to satisfy the following requirements:

+ The characteristic dimensions be large enough relative to fiber diameter and lamina thickness to en-
sure that the material could be analyzed as either a single mechanically equivalent homogeneous
anisotropic monolithic material, or a collection of layers of varying orientations of such materials.

s The overall specimen size be small enough to keep material costs at a manageable level.
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« A strain riser be present to guarantee that high-strain regions occur well away from all specimen
boundaries.

Figure 3 shows the single edge-notched specimen that resulted. It is important to note that the primary
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function of the notch is to act as a strain riser to ensure satisfaction of the last requirement above, and A0r 10
mimic a crack in the fracture mechanics sense.
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Fig. 3 — (a) Schematic of the specimen and the associated areas, (b) photos of representative specimen before testing
(feft) and after testing (right) for material 2 with 3501-6 resin AS1 fiber and +/- 30° layup and loading path 11

2.3 Loading Specification

The experimental system used for measuring the dissipated energy in the test specimens is the In-
Plane Loader System (IPLS). Appendix B presents a detailed description of this testing system. The primary
component of the IPLS is a custom-made, fully automated testing machine (the In-Plane Loader or IPL)
shown in Fig. 4. The remaining components of the IPLS are a computer that fully controls the IPL and a

graphics processor that is used for various postprocessing operations in conjunction with the computer sys-
tem.

The objective of the IPLS is to control the rigid body motion of the boundary of the specimen that is
held by the movable grip. Because the actuators are constrained to move in a plane parallel to the specimen,
the resulting motion involves only three degrees of freedom relative to any frame of reference on that plane.

The relation between the prescribed actuator displacements and the resulting grip motion is illustrated
in Fig. B3(a) and B3(b} of Appendix B. It is important to note here is that the grip motion can be resolved
into three basic components: sliding ., opening/closing ., and rotation ®. Specified combinations of ac-
tuator displacements, therefore, map into particular combinations of these three basic motions.

It is convenient to use a reference frame located at the initial position of the notch tip for both the
boundary displacements (denoted by u relative to this frame) and the resulting reaction forces . Figure
B3(c) of Appendix B illustrates these displacements and tractions and the resulting deformati
imen.

on of the enac-
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(b)

Fig. 4 — (a) Side view of the In-Plane Loader. (b) View of the grip area of the In-Plane Loader

The decomposition of the applied displacements relative to this frame into a sliding motion uy, an
opening/closing motion u;, and a rotational motion #; is shown in Fig. B3 (d,e,f) of Appendix B and Fig.
3(b, c and d), respectively. For dimensional homogeneity, u; is defined as the length of the arc traveled by a
point 1 inch away from the notch tip rigidly connected with the moving grip along the direction of the rota-
tion, instead of using the actual rotation in radians.
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Y

4
T
n
[

Fig. 5 — View area of the IPL specimen in the grips (a) before applying any loading, (b) after applying scme translation
of the upper grip parallel to the x- axis, (c) parallel to the y- axis, and (d} afier applying rotation about the origin of the x-
y frame of reference

Subsequent. analysis requires that we compute the energy dissipated within the material at a discrete
set of observation points as the specimen is loaded by applying a predetermined series of boundary displace-
ments #P. Here p = 1,...,n and n denotes the number of observation points. The details of these computations
will be discussed in the next section; here we attend to the sampling strategy. It is advantageous to think in
terms of a three-dimensional displacement space with coordinates (1, u;, u;). The issue then is how to se-
lect a representative family of paths that cover the space and how to sample along each path.
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It is not expected to observe any significant path-dependent behavior during this initial loading

nhﬂﬂ‘ﬂ RU fh‘l& we mean fhai we Q‘?mt\t tha manhaninal recnnnca nf tha nl ar amr mndnt thin anana
LR LRGN A WAL LR luwu:uu\'r-u l\‘all\lllﬂh Ul. Liiv lllﬂl‘lllﬂ[ a(— mi: }N}III. ll!. !nl,uﬁ ﬂ}lﬂbc tU

depend only on the current state of internal strain and to be independent of the particular path followed ta
achieve this state. This type of path independence is consistent with the observations of Schapery and Lam-
born (1988) and greatly simplifies matters because it pcrmits us to cover the displacement space with a fam-

‘I}V n*F 1(\5‘"‘!11'\8 ns}th(: s‘.plpr-tsﬂ en]p]u on ﬁ'\» hacie nf convaniana
ALY L/LAOALY WL WASLLY Vlllvllvv

Towards this end, it was decided to cover the boundary displacement space with a set of 15 uniformiy

distributed radial loading paths as indicated in Fig. 6. Note that because of geometry and material symmetry
ead be

ahout the x axic {Fiﬂ 5, nnlu the hnlf-ehnnp r\nrmc?nnrhna to rmmh\m chrhna rhcn‘ianpmghf fnn‘-.f\\ need be

LOLEES

congidered. The reqmred set of observanon points is genetawd by samphng along each paih at 5(} distinct
points starting from 0 mils and terminating at a maximum of 50 mils of displacement yielding a total of 750
points per material system. Then a particular test in that the actuator motions are continnousty vatied cor-
responds to a specific path in this space. This path can be represented by a vector originating from the origin
of the space and components given by 1; = ra; for i = 0, 1,2, where a; are the coordinates of the
unit vectors along the loading path direction, and r is a scalar multiple denoting the proportionality of the
path and ranging from 0 to 0.05 inches in steps of 0.001 inches corresponding to the successive observation
points. Only 15 specimens are required, and 50 observations per loading path are obtained from a single
specimen. Table 2 shows the coordinates a; of the unit vectors for the selected loading paths.

=
N

Fig. 6 - Definition of the proportional loading paths in the boundary dispiacement space {loading path 11
is a representative case), and the uniform distribution of the 15 paths used in the present methodology

10
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Table 2 — Coordinates of Load Path Unit Vectors for each one
of the 15 Loading Cases Applied by the IPL

LOADING ag a a

0.000 -0.707 -0.707
2 0.000 -1.000 0.000
3 0.000 -0.707 0.707
4 0.500 -0.500 -0.707
5 0.707 -0.707 0.000
6 0.500 -0.500 0.707
7 0.707 0.000 -0.707
8 1.000 0.000 0.000
9 0.707 0.000 0.707
10 0.500 0.500 -0.707
11 0.707 0.707 0.000
12 0.500 0.500 0.707
13 0.000 0.707 -0.707
14 0.000 1.000 0.000
15 0.000 0.707 0.707

The locus of the end points of all loading paths for the same increment is a half-sphere as shown in
Fig. 6, where loading path 11 at an arbitrary increment is presented as an example.

2.4 Testing Procedure

The IPL is instructed to apply loads along the designated loading path for each specimen. Because
each test is performed twice to establish the degree of reproducibility, 30 (2 per loading path) specimens are
required for analyzing a single material. After the IPL calibration phase is complete, a stack of thirty spec-
imens from the same material is loaded on the magazine of the automated specimen feeder of the IPL and
the testing phase follows. The following sequence of events is repeated for each specimen.

« The specimen is fed from the specimen magazine into the grip area of the IPL.

* Pressure is applied on the hydraulic grips to clamp the specimen with the appropriate force to prevent
slippage and crushing of the specimen.

* The operator uses the digital imaging system of the IPL to control the positioning of a crosshair on the
image of the area between the grips as acquired by the overhead video camera. Notch tip location and

selected points between the grips are thus automatically fed into the computer of the IPLS, to establish
the frame of reference.

* The remainder of the test is performed automatically, with the computer control system measuring
specimen thickness and controlling the grip pressure, selecting and applying incrementally the load-
ing path. The sysiem monitors and stores the boundary forces and displacements for each ioading step,

11
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and using this data the total energy dissipated in the specimen for each loading increment in the load-
ing path is computed and stored along with the force displacement data.

I E Camnnifafianal and Thata Thaoaninéian
Mret  CAFRIZETLALEIMAVIIINAD SIIIU LFGSLG 3OULOLL ILFLILRIL

Figure 7 is a data flow diagram showing the computational process corresponding to the ieft subpath
of Fig. 1. The data from the A/D and D/A converters are directed to module “IPL15” through the Input/Out-

Fig. 7 — Block diagram of the computational modules and resources involved with the determination of the
measured total dissipated encrgy

put driver module. “IPL15” controls the data acquisition and control process by controlling the following
operations:

* it controls the positioning of the actuators and the associated hardware;

» it collects the force and displacements (¢, &) at the 50 sampling points along the loading path from the
~ transducers;

» it then transforms them into those referring to the frame of reference attached on the tip of the notch
as in Fig, 5(a);

+ it computes and displays the total and instantaneous values of the total dissipated energy lost in the
specimen due to damage according to the methodology described in Section 2.6;

+ it finally stores all measured quantities in files (one per material), Here the term “material” is used for
a laminate of specific fiber, matrix, and lamination angle.

Each file contains the data for all specimens and loading paths for a given material. Each file consists
of a header and a series of blocks that contain information pertaining to each specimen. The header is at the
beginning of the file and contains the original filename. Each specimen block has its own header (which is
seven records long) and fifty data records {one for each experimental point on the loading path}. The header
for each specimén contains all the pertinent information associated with the corresponding specimen and
the respective loading path. Figure 8 presents a section of one of these files that corresponds to the second
material of Table 1, i.e., graphite epoxy with AS1 fiber and 3501-6 resin with layup angle +/- 30 ° The fields
in the data records, from left to right, are experimental point number, total dissipated energy D, boundary
displacements (ug, 41, and 15}, and boundary forces (g, t;, and £,).

-
[}
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MT-2.ASC :I File
__Date_ _._ Time _._Exptr _._Matrl _,_Specnu_._Thick _._Grpopn_.Width__ Header
10/20/87 13:31:44 MAST AS1-30 34 0.143 0.594 0.462
_Tran-1_._Tran-2_._Polr-1_._Polr-2_._Polr-3_._Padthk_._Coefrc_.__ N3___

0.058 -0.369 -90.000 -45.000  0.050  0.192 0.250 100.000 Fir_st
_Fidc-1_._Fidc~-2_._Lowr-l_._Lowr-2_._Notc-1_. Note-2_.__ Nl__ . N2___ Specimen

7304 2040 13648 11184 8008 7720 50 1 Header
No.Absorption._ Disp-X_ ._ _Disp-Y__ . _Rotation_._Force-X__._Force-Y___._Moment__

1 0.000E+00 0.000E+00 0.000E+00 0_000E+00 0.Q00E+00 0,000E+00 0.000E300 11
2 0.000E+00 -0.756E-05 -0.851E-04 -0.232E-04 -0.569E+00 -0.668E+00 -0.277E+01
3 -0.186E-02 ~0.118E-03 0.168E-03 -0.335E-03 0.1%1E+02 -0.502E+02 -0.137E+02
4 0.192E-01 -0.750E-04 -0.385E-03 -0.110E-02 0.140E+02 -0.637E+02 -0.109E+02
5 0.191E-01 -0.220E-03 -0.475E-03 -0.175E-02 0.151E+02 -0.906E+02 -0.116E+02
6 0.142E-01 -0.374E-03 -0.473E-03 -0.236E-02 0.168E+02 ~0,118E+03 -0.127E+02
7 0.461E-01 -0.486E-03 -0.944E-03 -0.308E-02 0.132E+02 -0.146E+03 -0.581E+01
8 0.209E-01 -0.634E-03 -0.923E-03 -0.371E-02 0.156E+02 -0.172E+03 -0.141E+02

9 0.591E-0L -0.763E-03 -0.128E-02 -0.441E-02 0.171E+02 -0.19BE+03 -0.635E+01 First
10 0.758E-01 -0.870E-03 -0.168E-02 -0.513E-02 0.185E+02 -0.225E+03 -0.941E+01 | | Specimen
11 0.940E-01 -0.970E-03 -0.218E-02 -0.587E-02 0.195E+02 -0,253E+03 -0.164E+02 Data
* - -
. . .
L [

45 -0.404E+00 -0.109E-01 ~0.105E-01 -0.290E-01 0.592E+02 -0,989E+03 -0.128E+03
46 -0.341E+00 -0.112E-01 -0.111E-01 -0.298E-01 0.579E+02 -0.101E+04 -0.138E+03
47 -0.771E+00 -0.118E-01 -0.108E-01 ~0.304E~01 0.580E+02 -0.103E+04 -0.149E+03
48 -0.3569E+00 -0.122E-01 -0.115E-01 -0.312E-01 0.580E+02 -0,106E+04 -0.155E+03
49 -0.648E+00 -0.126E~01 -0.1188-01 ~-0.319E~01 0.560E+02 -0.108E+04 -0.164E+03
5S¢ -0.787E+00 -0.130E-01 -0.121E-01 -0.326E-01 0.557E+02 -0.110E+04 -0.179E+03

e———e—

—Date__._ Time . _Exptr _._Matrl_ . Specnu_._Thick__._Grpopn_.Width__ ]
10/20/87 13:32:05 MAST AS1-30 35 0.143 0.594 0.462
_Tran-]1_._Tran-2_._Polr-1_._Polr-2_._Poly-3_._Padthk_._Coefrc_.__ N3___
0.058 -0.283 -90.000 0.000 0.050 0.192 ~0.25%0 100.0600 Secgnd
_Fidc-1_._Fide-2_._Lowr-1_._Lowr-2_. Notc-1l_._Notc-2_.___N1_ _._ N2__ Specnmen
7304 2040 13648 11184 8008 6388 50 1 Header
No.Absorption._ Disp-X__._ Disp-Y_ _._Rotation_._Force-X__,_Force-Y__._Moment

1 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
2 0.000E+00 -0.312E-04 ©.193E-03 0.462E-04 -0.308E+00 -0.287E+00 -0.514E+01

3 0.337E-02 -0.487E-05 -0.468E-05 0.671E-04 -0.947E+01 -0.400E+02 0.137E+02 Second
4 0.937E-02 0.188E-03 -0.355E-03 0.655E-04 -0.177E+01 ~0.113E+03 0.119E+02 | | Specimen

L _’J Data

Another process called “GETABS” extracts the dissipated energy values from the aforementioned file
and stores them into files ready to be used from the resources available for the determination of the dissipat-
ed energy density function as described in Section 4.

—
L% )
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All these processes were originally executed on a PRIME 750 minicomputer, but recently an effort
has been undertaken to recast them in a more contemporary form on the NeXT cube computing platform.

2.6 Computation of the Dissipated Energy

In this section we discuss in detail the procedure for computing the energy dissipated internally in the
specimen during an IPL test. We employ the following convention in the rest of this report: superscript p (p
= 1,....50) denotes an experimental point on a given loading path; I {! = 1....,15) denotes a particular loading
path; r = 1,2 denotes a particular test repetition; and subscript i {i =0,1,2} denotes the compenents of the
boundary forces and displacements.

Mapinnidne Gunt dha dabnl amanner Somsmnsdad ta tha omaniman fas annlh avaaraanial soctnt a ae Fonatiam F

AULIDIUCL (3151 0T Wtail Elivlg)‘ unpaucu (LS Ry apubuucu JLV B w1 UAP\.:I ALV Wllll.y CAS LLALIWLAVIL WL
the boundary displacement vector #. These energies, which we denote as WP, can be computed from the
measured boundary forces and displacements by using the standard definition of mechanical work. Thus

g
W= W) = [fds )
0
or in component form,
ul uf ul wh
= J.tfds,- = Ifg ds0+ IIII, dsl + Ifgd-fz. (2)
0 ¢ 0 0

Each term in Eq. (2) represents the energy stored in the specimen due to one of the measured force-dis-
placement pairs (t? s u‘}’ ) and is denoted by Wf Hence, we may express WP as the sum

W= WO+ Wi+ WE, 3)

The integrals in Eq. (2) can be approximated using a discrete representation, i.e.,

1 P a—1 a a-1
52 +tﬂ }(uo“uo )
1 1 a a—~1
L 52“1*’1 Yy —uy ) @
L ~1
fz )(u2 -u, },

or in general

14
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1 4 a -1 a a-1 .
W?=§Z(ti+t? Y(u; —u; ), for i =0,1,2. (5)
a=1
This approximation process is graphically depicted in Fig. 9 where the quantities in the summation
are defined geometrically on a representative traction vs displacement graph.

The arefl below the curve reprcscnt? the energy Wf for loading up to point p as the sum of all trape-
13 —_— 1 a a -
zoids of area 5 (ta,-+t? Y (u; —u; )
The total energy W”can now be computed by substituting Eq. (5) into Eq. (3) and taking the sum of
the three terms. Thus,

2 p
w"=%z N (Y () - 'y, for p=1,2..,50. 6)
i=0a=1
Consider now the situation when the specimen unloads. We assume that when the specimen is unload-
ed proportionally from any point a of the curve in Fig. 9, the unloading occurs elastically along a line from
the point @ to the origin. This assumption is largely based on observations made during the early years of
IPL use when unloading data were collected; it was found then that almost all specimens tested unloaded
linearly and showed a maximum 2% permanent displacement set. These permanent displacements are likely
a consequence of initial stresses introduced during manufacture and were deemed small enough to ignore.
This characteristic non-metallike behavior during unloading has also been observed by other investigators (
Shapery and Lamborn (1988)) and it is currently attributed to the propensity of organic composites to form
microcracks instead of flowing plastically.

t. A

e N g
R{ u;

Fig. 9 — Schematic representation of the integration scheme used for the compute
LV‘;’ as the sum of the rectangular slices under the load-displacement curve and of
the energies associated with the loading of the specimen up to the point p
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During unloading, a portion of the total energy W? is recovered because of the elastic nature of the
unioading response. This recoverable energy, denoted by a componentwise basis as R is simply the trian-
gular area under the line from g to the origin, or

= if.’u?

I I

for p=12..,50. (i)

Knowing the available energies W" and the recoverable energies R" , it is a simple matter to compute
the energy DP dissipated in the spec;men Thus, on a componentwise basxs, the energy dissipated in the
specimen as it is loaded up to point p is simply the difference

DY =W ~-RE, for p=1,2,..,50, (8)

3
and, in graphical terms, is just the shaded area under the load-displacement line in Fig. 9. Substituting the
expressions for the total and available energies from Eqs. (5) and (7) for each component i in the relation
above, therefore, gives for Df"

-1

P
2 (ta,-+f?_l) (u‘: _ )_%;fuf, for p=1,2,...,50. &)

!0! o

The total dissipated energy D” (the energy which appears in the second column of the acquired data file
shown in Fig. 8) can now be computed by summing D’f componentwise and results in

2 p 2
= X Y T ~a ) - 8 for p=1,2,.,50. (0
i=0a=1 i=0
The dissipaied energy compuied this way can be considered to be a measured value since i is derived
directly from measured quantities and the only sources of error are from the discrete numerical integration
described and the quantization error of the data acquisition process. However, the very operation of integra-
tion also serves as a noise/error reduction methodology and works more in a beneficial rather than a detri-

llll;lll.d-l Mainicr lu. I.lll.b Ladi. ﬂb ld.l as wo mmw, UIUDE cucrgy vamcb l{:}}l%{;ﬂl u.!c. U.l.lly i‘:lu.clllpl. L\) aeasuie
dissipated energy caused by mechanical deformation in composite materials.

Figure 10 is a graphical represcntation of the boundary displacements and tractions as well as the as-
anldl.Gd I.Ul.a}. d.lld dmalydtm'} mimgica fU.l i ﬁi % BPCL.IIHGH ful IUGU.I.I.IE l.!dl-u 11 fUI. lllal.i;l.id}l AS}.‘JU kbecﬁlld
row of Table 1). Loading path 11 does not have any rotation applied on the specimen as can be seen from
Table 2 and from Fig. 6. This results in the apparent zeroing of the curve in Fig. 10(a.2}, which consequently
results in the blank energy graphs 10{c.2) and 10(d.2). However, due to the other two displacement compo-

mants thava 10 & Frmna ran~tiam 11 tha satntisan divasiine oo 10 ahoacern e Tia 100 A
AAWALECDy CLICAG 4y G IVRLOL TUQALEIVART 111 LHIGC RULALIUNL SIICALIULLE GO 1D 2IVUWILL 1L L .'5‘ LW WV.L).

The dissipated energy curves start with values very close to zero and suddenly rise steeply. This hap-
pens as the corresponding dlsplacements cxhibxt an abrupt increase and the tractions reach a maximum value

I" i‘"\nn 'ﬂ'\lf‘ finnfnﬂﬂ ’rh A ﬁl\l!\ ‘Q A !'l g Fatsl kﬂ drrroaorn '\I‘PQT‘, i‘ noar ﬂinﬂ*‘n
&nG NICh rapio:y GOCrease, 1nis POLL canoe lu!.Ul !.IL\-I,UU as UUulllllE a ua..uquUu GUEWLOIL Pretay alIval Liciviie

material behavior (i.e., no energy dissipation) and the point at which the material first exhibits nonlinear be-
havior with accompanying energy dissipation,

atin e anaroiac far tha thras comnanonte 1n Biog 1nfr\ n\ Tnfn T\ anr{ Tﬂfn 7‘6 I}IF}F}Q ‘l‘:ii!

Cumm " onft

Uullllllﬂu\lll WL bLLNn UIIU 6IUD AL I.ll\( LLLE Wb UUlllt}Ull\lllEﬁ 1L K IEU t\i EA S
10(e) for the energy absorbed from all three component combinations in the specimen. S}mxlarly, summahon
of the dissipated energy components in Figs. 10(d.0), 1({d.1), and 10(d.2) yields the total energy lost in the
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Fig, 14— Evolution of dispiacemnents (a0, a.i, a.2), tractions (b.0, b.1, b.2), total absorbed energies (¢.0, ¢.1, c.2), dissipated

energies (d.0, d.1, d.2), total absorhed energy (e), and total dissipated energy (f), vs the magnitude of the experimentally im-
posed displacement vector llult of loading path 11 for the first specimen of material 2 ( AS1, 3501-6, +/- 30 %)
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specimen shown in Fig. 10(f). The morphology of the displacement, traction, and energy evolution curves
for the rest of the loading paths is not necessarily identical to that of loading path 11.

2.7 Statistics of the Process

To compare the repeatability of the process, Fig. 11 shows the dissipated energy evolutions for both
specimens used on loading path 11 together with their average and absolute difference evolutions.

Ag it seen in Fig. 11({d} the specimens behave almost 1d9nfmnﬁv A gmall difference of the order of

AS1L S SRRt liRL0 LAY QLiARA0S SRR ARAE

12% appears at the Iast experimental point, very deep in the nonhnear region where the enormous amount
of damage has made the material more unstable than it is in the linear region. The root mean square error
(RMS) between the two values of the dissipated energy for the two specimens from the same material has
never been found to exceed 5% for all materials tested.

An entire IPL test takes about 10 seconds, five of which are spent installing the specimen in the grips.
As a result, the specimen testing rate can be 360 specimens/hour. At this rate, data can be collected for [2
different materials per hour. The overall daily production rate for an 8-hour day is, therefore, 960 specimens,
or 96 different materials, or 24 materials systems {(since we use 4 layup angle combinations for each fiber-
resin combination). The total number of experimental points per fiber-resin combination is 6000. Each load-
ing path corresponds to 2.4 KB of data while 288 KB are acquired for each material system. The daily
throughput capacity of the acquisition process approaches 20.74 MB/day.

M20.11R1D MZLIIRZD
12 D 12
-1 "
10 pec 10 Dgpec-2
@ g —
8 g 8
g F=4
s 6 g 6 /
= =
- a
S 4 7 = 4
21 / 2l
10 20 30 40 50 10 20 30 40 50
fiell {mits) (ull (miis)
(a} {b)
M2L11R1AVG M2L11R1ERR
12 12
( DSpec-‘l “‘DSpec-z )’2 ! DSpec-t “‘-1:}513315-2i
.10 L ip
2 g
£ g £ 8
£ 2
= ¢ o g
a | o
& &
il / 2
o el .....‘.m.‘_
10 2? 35 40 50 10 20 30 40 50
]l {mils} ffall (s}
{c) ()

Fig. 11 — Dissipated energies for specimen 1 (a), specimen 2 (b), their average value {c), and the absolute difference between
the two (d) for material 2 ( AS1/6501-6 [+/- 30 “ ]} and loading path i1
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3. DISSIPATED ENERGY DENSITY FUNCTION DETERMINATION

This section is primarily concerned with the right and the bottom subpaths of Fig. 1 Thcsc' subpaths
represent the flow of activities related to the determination of the dissipated energy density function P . ;t
is important, however, to clarify the range of hypotheses and assumptions employed in the present analysis
to illustrate how our procedure relates to the so-called inverse approach in mechanics of materials research.

3.1 Computational Procedures

Figure 12 describes the computational process used to obtain the dissipated energy density function
in terms of its evaluation on discrete points over the strain space.

| PATRAN ] Newtral | »| PATABA Aba. In
. o ? CRAY XMP24
S ~luserRiNT. | | ABAQUS
'|DE. Coef N N v : o
il I Meas
: | Strains
1|

ABSPAT

ABAPAT e :‘b;‘imj

SGI RIS 4D/70GT

SYMBOLICS 3600

Fig. 12 — Block diagram of the modules used to compuie the dissipated energy coefficients for cach material, along with
the computational resources utilization

A user interface that controls all interprocess and intercomputer communication is the mechanism by
which the user controls the overall process. The “PATRAN" solid modeling package is used to define the
geometry, material, and loading specifications for the finite element model of the specimen structure, which
in turn is fed into the “ABAQUS” finite element code via the “PATABA” format translator. The output from
the linear strain analysis from “ABAQUS" is then translated from “ABAPAT” into files containing the strain

and displacement distributions for the corresponding loading cases that are displayable by “PATRAN.” The
“ABSPAT” module developed at NRL then

* uses the analysis results for all the loading cases as well as the experimentally measured values of the
dissipated energy from the files discussed in Section 2.5 to synthesize the quantities necessary for es-
timating the 125 coefficients that describe the dissipated energy function,

* carry out the estimation, and

* generate one file per material system that contains the 125 coefficients.
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3.2 Strain Field Determination

The measured absorbed energy is a function of specimen geometry, ioading condition, and material,
To factor out the influence of specimen geometry and loading and obtain a dissipated energy function that
depends solely on material, it is necessary to develop a deconvelution procedure. A description of our ap-
proach to achieving this goal follows.

For every structure of a certain geometry s, consisting ofa particuiar material 1, and under a specific

| S LY Frus RS Jugra | + Aaoseibuad b
Oading condition i a sirain siate exists at aiy yuuu GEICTILET Oy the ?A?Sidﬁﬁ ‘v&tﬂx A The strain vector

corresponding to this state with the classical in-plane components (€ = (€, , €y exy) }is expected to be
a function of s, m, /, and x; that is,

€ =¢{s!l,m3x). (1D

When the structure under consideration is a specific one, such as the specimen shown in Fig. 2, a sub-
script O for both the corresponding geometry and material is used to refer to this structure (sg) and material
(mﬁ} thereafter. It will become evident from the ana]ysis that the strain field for each one of the loading cases

Avory with

needs to be determined. In the ideal case, these fields should be ex pett xmmmmy measured along with bound-
ary tractions and displacements in the IPL tests. This will be a feature of the new generation of NRL’s auto-
mated loading machines, however, the current generation has no such capabilities. The results and analysis
presented here are based on an alternative approach. The approach used in this study to estimate the strain
field was to discretize the geometry of the specimen into 150 elements as shown in Fig. 13, systematically
apply the loading and boundary conditions applied by the IPL on the specimen, and compute the in-plane
strains by running an appropriate number of linear elastic finite element analyses using the code
“ABAQUS.” The selection of the linear analysis was based on the fact that in very few of the experiments

y A
'?F
0.5" —
, 0— X
A &
— 02" —ple 0.8" N

Fig, 13 — Mesh for the view area of the specimen
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were specimens observed to fail in a way that would indicate that very large amount§ of energy h.ad been
dissipated by internal material damage. In addition, our initial purpose was to establish an aflalyt:lcal tool.
based on experimental evidence for predicting the onset of nonlinear response and an approximation 9f this
response, rather than the exact nonlinear material behavior. The three strain components corrcspondmg.to
the centroids of the elements of the specimen structure sy were stored in files organized according to loading
case. For practical purposes, instead of running 15 loading cases (one for each loading path}, only tl‘lc cases
corresponding to the loading paths (1,0, 0), (0, 1, 0), and (0, 0, 1) corresponding to pure shear, opening, and
rotation displacements, respectively, were run. This was because all other cases could be synthesized by lin-
ear superposition according to Table 2.

Figure 13 shows the finite element mesh idealization of the specimen. Although initially the entire
area between the grips had be discretized, subsequent analysis indicated that the area close to the left side
of the specimen (the side of the notch) remains unstressed for virtually all loading cases. Thus, only the view
area (as shown in Fig. 2) was actually analyzed.

3.3 Dissipated Energy Density Function

We assume that there exists a scalar function ¢ expressing a measure of the dissipated energy density
per unit of volume of the material, which only depends on the strain vector £ and the material used in the
structure, i.e., ¢ (e, m).

We furthermore assume that this function can be one of an arbitrarily large set of functions. For com-
putational efficiency, we assume that the effect of the material and strain dependence can be decomposed by
an appropriate choice of form for this function. This can be done by selecting a form expressed in terms of
a set of coefficients that depend solely on the material properties, and a set of constant basis functions. For
simplicity, the following linear combination case is selected:

¢(g,m) =0(&¢) =c;(mx,(8) +...+c, (m)x, (g) = c;(m)y,(g). 12)

In this form, ¢ represents the vector of the material depended coefficients c;, and X ; represents the
basis functions depending only on strains £ and defined at a total of n distinct points distributed over the
strain space. Equation (12) can be thought as being an interpolation function allowing evaluation of ¢ on
points other than the ones used to define the basis functions.

In our case, 125 (i.e., 5 per axis) such points were selected to be uniformly distributed in the cartesian
representation of the components of the strain space. Figure 14 shows the cuboidal distribution of the points
where the basis function for our case is defined.

To have a unique number characterizing each one of the points where the strains are evaluated, three
indices o,p, and ¢ have been chosen along the €0 €, €, axes, respectively, to count from 1 to 5 as the
(opq) frame of reference indicates in Fig. 14, This restiited in using a counter i for the points associated with
these indices in the following relationship:

i=0+5(p-1)+25(qg-1) for ,o,p,q=1,...,5. (13)

The increments along the three orthogonal strain component directions in this space are equidistanced
and the step is the quotient of the maximum value for any of the strains obtained from the finite element

analysis of the structure under consideration divided by 4 (number of spaces between the discrete points of
evaluation).
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The basis functions have the property of being equal to the value of the function at the evaluation point
(in this case, 1), and zero at any other evaluation point of their domain. A consequence of this is that the
value of the function ¢ according to Eq. (12) at an evaluation point is equal to the coefficient of the basis
function for that point. This, it turns out, is a very convenient feature for the solution scheme described later
in this section.

Figure 14 gives a graphic definition of how a basis function behaves. The five successive planes have
been shifted out of the strain space and have been drawn such that the vertical axis represents the vaiue of
the function 7 . The function has been evaluated at the point defined by (0 =4, p=3,g=13), or (i =64), and

as can be seen, the value of the function is zero at all nodal points of the strain space except for the point
where it evaluates to 1. There it remains the same regardless of the evaluation point.

By letting €, signify the strain vector for each point i for all 125 labeled points in the strain space, the
basis functions with these properties can be expressed as:

1€ = { (I)’ i f»j{ for i,j = 1,2, ..., 125. (14)

]

Introducing this relation to Eq. (12}, for one of these peoints i we obtain
(g, m) = c;(m)y, (&) +...+¢c;(m)x; (g} +... + ¢, (m)x (&)

b(g,m) = (MO0+...+c;(m)1+...+¢c, (m)C (15)

which after evaluation vields:

0{g, m) = c;(m). (16)

Thus, Eq. (12) may be viewed as an interpolation function that lineariy determines the value of the dissipated
energy density function at any point in the strain space as long it lies in the cuboidal region spanned by the
125 points.

The problem of determining the analytical expression for$ is now reduced to determining the coeffi-

cients c;, such that the family of functions represented by Eq. (12) is restricted to one which represents a
“best fit” of experimental data.

For this purpose, we assert that the total energy ® dissipated throughout the volume of the structure

under consideration ( 5q ) for each loading condition I can be computed as the volume integral of the dissi-
pated energy function over the spatial extent of the structure:

® = [o(s0)dr an
ds,
By virtue of Eq. (12), this relation reduces to

® = [ (c;(mx, (8 Up D)) + ..+ (M, (U D)) dr = [e;(my,(ep ) (8)
ds, s,
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Fig. 14 — Strain space representation and characteristic representation of an indicative basis function

Assuming that D represents an experimentally obtained value of the total dissipated energy for a given struc-
ture sy and a given loading condition Iy, there is an appropriate selection of the coefficients c; such that the
value obtained from Eq. (18) approximates this measured value. This can be expressed by

(D (SO, lo) + e = D (SO, lo) y (19)

where e expresses the error between the two values of the dissipated energy.
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3.4 Seolution and Optimization Scheme

For the case of the particular specimen geometry s and the particular loading case that corresponds
toa corres;mnding cxperimental point D the integral of Eq (1 8} can be equivalenccd by a discretized form

= H
Illu.lLdLHIg LIIU Suin UI UIC Ulbblpdl.w CHUIgy UI BKLH UI mc IJU UIUIHUH(& U.l IIIU bPCLIIIICII bHULlUIU nquauun
{19) can now be rewritten as:

110
N prnw (PP L P 30
Lr:hlre'e"' = A
e=1

where Vpg represents the volume of the element ¢ for the foading point p.

Since this represents one of many relations we can write for different increments of the index I corre-
sponding to different loading conditions, the set of these relations can now be represented in a matrix form:

[Xlc+e =d, (21)

110

where [X], ¢, and d matrices have elements described by Xip = Z X (epe) v, ,c;and &, respective-
ly. We selected every third point from each loading path {17 expenmental points per loading path} for ait 15

loading paths for a total of 255 experimental points, and g is constructed as follows:

T (WP IDPal s oo (DP) o [DP1s) ), with p = 1,4,..,49, @2

T
{DPI} = {le D4I1 37I1 [XXT 54911 * (23}‘

Equation (21) represents an overdetermined system of 255 equations with 125 unknowns. However,
the requirement that the dissipated energy is a monotonically increasing function of the strains imposes a
new set of constraints that can be now be expressed in the following inequality:

[Mlc20. (24)

The array [ M] has 125 columns and 100 rows, since it represents a tuple of 100 additional constraints.
It is defined as:

M =] &2 @25)
T
M 100 |

where M : for ¢ = 1, ..., 100 are row matrices corresponding to each one of these constraints.

Thus the problem of determining the 125 coefficients ¢; is reduced to the solution of Eq. (21) under
the inequality constraints of relation (24). This combination provides a total of 355 relations, and it repre-
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sents a classical optimization problem with inequality constraints where the objective is to minimize the
function (objective function) |}e|} such that both Eqgs. (21) and (24) are satisfied. This is a standard problem
in quadratic programming and is readily solved using well-established numerical techniques (see for exam-
ple Gill, Murray, and Wright (1981)). Appendix C gives a vector space graphical representation of the enti-
ties involved in the optimization scheme.

In light of the preceding considerations, the dissipated energy is now fully determined at ali 125 points

=22 s OF Lhu et R LI o R e v—uu. 22 2SNV AR WAl il GL 4R e PR

of the strain space since, as discussed previously, the computed coefficients represent the values of the. dis-
sipated energy at those points. The dissipated energy can, therefore, now be computed at any point in any
material that has been tested. The strains determine the particular subregion in the cube spanning the strain
space, such that a linear interpolation performed between the values of the dissipated energy at the surround-
ing point establishes the value of the dissipated energy at the intermediate point.

As a consequence of this, we can spatially map the absorbed energy over the specimen for each ex-

nenmental noint. Figure 158 shows the svolution of the dicsinated enarev dictrihintion for the synerimental

PR RRERRALLAL pAALIL. DRETAY L OEIUN O WAL DYRALMVIL UL Ui Ulobl Al il B Y AHISLLIUURNGEE TR Ui Aol liliial

points correspondmg to 20%, 40%, and 60% of the total load (points 10, 20, and 30) in association with the
total dissipated energy evolution curve for the specimen associated with loading path 11, repetition 1. These
distributions were obtained by using the structural simulator described in Section 4. In these distributions,

D (Ib*inches )

10 20 30 40 50
Hatl (mils)

Fig. 15 — Distributions of dissipated energy for 20%, 40%, and 60% of the 1otal loading, associated with corresponding the
total experimentally measured dissipated energy for the first specimen of loading path 11
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the darker the shade of gray, the higher the value of the dissipated energy density. From this figure it can be
deduced that for the low load level corresponding to 20% of the total, the total dissipated energy evolution
curves shows that almost the entire specimen is in the linear region because of the very small value of the
dissipated energy, and the corresponding distribution shows indeed that only a very small region on the up-
per right corner entered into the nonlinear domain with very smali values. As the load increases, the total
dissipatcd energy of the specimen increases and, as expected more areas in the specimen enter into the non-

Aoy voacinn wbhila tha A1d mas Intanai e shale adeae net e Toaal
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4. APPLICATIONS ON NAVAL STRUCTURES

In this section we develop the idea of a structural response simulator and show how the computed
energy dissipation fonctions can be used within the simulator to design structural components and predict
vatious aspects of their mechanical behavior,

s . N '
Reraiica diceinated eanarovy ic talran ne a manenra af intarmal ctrnttiral Aamaoa nnanea nf o simplatar
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would be for structural designers to examine simulated spatial dissipated energy distributions to form selec-
tion criteria for evaluating the structural response of structures at a particular state of the design process.
Material system designers could also use a simulator to generate spatial dissipated energy maps from which
they could determine the material response of a composite material system, and then select sets of manufac-
turing parameters to optimize the damage tolerance of new systems. Using the simulator to analyze material
softening distribution patterns could also assist in selecting a material system for a particular structural de-
sign. Finally, a structural response simulator could even be used 1o qualify material systems by using far
more realistic qualification criteria than are currently employed, e.g., strength or fracture toughness, which
only indirectly and partially assess some qualitative aspects of the materials. Indeed, it is shown in this sec-
tion that higher strength does not necessarily imply better damage tolerance.

4.1 Structural Response Simulator

To provide the engineering community with a tool for addressing the types of problems discussed
above, a structural response simulator was created that takes user-specified geometries, materials, and load-
ing conditions as inputs and creates spatial material distributions of local stiffness loss using the experimen-
tally obtained dissipated energy functions. Figure 16 shows the architecture of the structural response
simulator in the configuration used to generate the results presented in this section. It has since evolved into
a much more sophisticated form and its design now includes such advanced functionatity as user-simulater
interaction modelling via artificial neural nets and other technigues.

The Fig. 16 block diagram shows the structure of the simulator in terms of component subsystems.
The user interface was created by writing a library of function calls using the “PATRAN Command Lan-

glmop"‘ {PC1 \ that sllowg the nger to snecify the seometry, the material, and the lnading for tha stmicture nf
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interest. szuahzauon capabilities are provided through PDA’s “PATRAN” 2.4 solid modeling package. A
finite element idealization of the structure is achieved through appropriate use of PCL and all relevant model
information is stored in “PATRAN” neutral files on the mass storage memory resources of the computer sys-
tem hosting the simulator, which is currently a Silicon Graphics Iris 4D/70GT with 16 Mb of RAM and 1.3
GB of mass storage memory. The actual finite element analysis is performed by using the “ABAQUS™ finite
element code on a CRAY X-MP-24 and assuming linear elastic behavior. The objective of the finite element
analysis is to generate the strain field in the structure for the initial elastic state. The data rcquired by

HATIAMTIION o 2T dho o AT A TR A% o oo e a o a s sl MADRAMTS A AT e Tom b
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“ABAQUS” input file. The output from “ABAQUS” is stored in a file that is subsequently converted to a
strain file and a displacement file in “PATRAN” format by the “ABAPAT” process. The displacement files
are identified by the suffix “.dis” and the strain files have the suffix “.els.” At this stage, the strains and dis-
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Fig. 16 — Block diagram of the architecture of the structural simulator and computational resource atlocation

placements can be visualized from “PATRAN” or be fed into the dissipated energy module “ABSORB”
which runs on a Symbolics 3600 and generates a spatial energy absorption map by associating a value of
"'°s'patud energy with each strain combination at ev ery apaual evaluation p puuu The requncd dmblpducu en-
ergy values are computed by interpolation using the coefficients in the file “rmt.x.y.pred” that were produced
by the process depicted in Fig. 12. Finally, the white arrows that connect the user interface module with the
other simulator modules signify user control over these modules through both the user interface and the net-
working TCP/IP utilities that control intermachine data transfer.

4.2 Ship Mast

One of the design goals is to investigate the merits of using composite materials for ship masts. The
primary reasons composite masts are being considered are weight reduction and favorable radar return char-
acteristics. Tradmonal designs for metal masts were based on the assumption of linear elastic behavior and
stress-based damage criteria; namely, that internal load-induced damage was assumed to occur whenever
the stress exceeded a specified maximum stress set at 2.5 times the yield stress for the material used. As
mentioned previously, such a simplistic view of failure behavior is not justified in composites, and a more
realistic damage model such as the one being proposed in this study is required. The enhanced understand-
ing provided by such a model should lead to lower safety factors and, therefore, more efficient mast designs.
The structural response simulator together with a database of computed dissipated energy functions repre-
sent a unique medium to achieve the efficient design of composite masts.

The DDG-51 class of frigates was selected as a candidate ship for a representative mast installation.
The geometry of the mast is that of a tripod mast with a rectangular box beam and two struts with two an-
tenna platforms attached to it and the associated deckhouse as shown in Fig, 17.

The design loads selected for this case were extracted from the “DDS-170" manual. For demonstra-

tion purposes, a wind load of 30 psf (Ib/ft%) corresponding to a 90 kn head wind was selected. In addition,
an inertial load of 0.6 g’s applied downwards to the center of gravity of the mast, or 0.2 g's applied upwards
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(a) X (b)

Fig. 17 — Rendered view of (a)} the mast siructure and (b} wireframe view of the mast structure with the
view plane used for displaying the dissipated energy density distributions

on the center of gravity of the mast. A 500 Ib antenna load was assumed to be applied at the upper platform
and a 1000 Ib antenna load applied at the lower platform of the mast were also considered. Only the case of
head-on wind load is presented here, however.

The materials used for this simulation were item 007 (Resin 3501-6, Fiber AS4, Layup +/- 60°) and
item 040 (Resin PEEK, Fiber AS4, Layup +/- 60°) as described in Table 1. These materials were selected
to establish the relative merits of the thermoset 3501-6 resin material vs the thermoplastic PEEK resin ma-
terial. The material was composed of 130 successive plies of 0.0075 in. each, thus accounting for a total
thickness of 0.975 in.

Figure 18 shows the dimensions and the finite element mesh for the simulation of the mast structure
itself. A total of 106 “ABAQUS” “QUAD"” elements were used for the finite element idealization. In addi-
tion, battle damage was simulated by considering a 5 inch hole at the right side of the foot of the mast as

N .
shown in Fig, 18,

Figures 19 through 22 present the simulation results for different loading and matetial choices as seen
from the front of the mast in the 1egion indicated in Fig. 17 with a rectangular window. All figures are fringe
plots of the dissipated energy distribution over the structure. In all of these figures, the views on the left rep-
resent the dissipated energy distribution for the 3501-6 thermoset material, and the views on the right rep-
resent the dissipated energy distribution for the PEEK thermoplastic material.
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Fig. 18 — Right side view of the finite element meshing and dimensions of the mast {a); front view of the resh (b); cross
section of the mast (c)
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Fig. 19 — Front views of dissipated energy distributions of ship mast made out of thermoset materiat 007 { AS4/
3501-6 [+/-60°1) (left} and out of thermoplastic material 040 (AS4/PEEK [+/-60°7) (right}, for 1x of the total foad-
ing corresponding to front wind

30



MAST ET AL.

Ib*in/in®

-

4

Fig. 20 — Front views of dissipated energy distributions of ship mast made out of thermoset material 007 (AS4/
3501-6 [+/-60°]) (left} and out of thermoplastic material 040 (AS4/PEEK [+/-60°]) (right), for 2x of the total
loading corresponding to front wind
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Fig. 21 — Front views of dissipated energy distributions of ship mast made out of thermoset material 007 (AS4/
3501-6 [+/-60°]) (left) and out of thermoplastic material 040 (AS4/PEEK [+/-60°T) (right), for 3x of the totai

' leading correspending to front wind
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Fig. 22 — Front views of dissipated encrgy distributions of ship mast made out of thermoset material 007 (AS4/
3501-6 [+/-60°]) (left) and out of thermoplastic material (40 (AS4/PEEK [+/-60°]) (right), for 4x of the total
loading corresponding to front wind
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The effect of applying an increasingly higher load corresponding to front wind is manifested as an
increasingly higher distribution of fringes for higher levels of Ioadmg Each one of these figures has been

plotted for 1x, 2x, 3x, and 4x overload levels of the original 30 Tb/ft? loading in the same order they appear
in the document.

Another characteristic of the response of the structure due to the increasing load is the effect demon-
strated in Fig. 23 where the maximum dissipated energy is plotted as a function of the load magnitude. That
is, after a certain loading level, the material reaches a saturation level, where the dissipated energy in the
material ceases to increase. This was the reason the distributions of overload magnitudes 4 and 5 were al-
most identical and, therefore, it scemed appropriate not to present the plotted distributions for loading mag-
nitude 5. Evidence of this can be seen by comparing the dissipated energy distributions for loading

e mde T Y A AT T AT AN
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A significant observation is that the 3501-6 material seems to show a significantly higher propensity
to go into its nonlinear region than does the PEEK material. This is evident from the higher number of fring-
es and their higher intensity as they appear on the 3501-6 distributions in Figs. 19 through 22 compared to
those of the PEEK in Figs. 19 through 22, In addition, the 3501-6 material also has the tendency to dissipate
higher amounts of dissipated energy as is shown by the saturation levels in Fig. 23.

As is apparent from all these figureg, the mechanical damage. in terms of dissipated energy. cansed
by the round penetration on the left side of the base area of the mast is negligible compared to the one on
the middle level of the structure.

'
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Fig. 23 — Distribution of the maximum dissipated energy of the ship mast structure for materials 007 (AS4/3501-6 [+/-60°T)
and 040 (AS4/PEEK [+/-60°]) , vs the loading magnitude
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4.3 In-Plane Loader Specimens

The specimen used in the IPL tests is an example of a structural object. It has structural loads, i.e., the
loads applied by the IPL actuators. It has a structural geometry, i.e., the geometry of the specimen. And it
has a structural material, i.e., the material under investigation.

At any point within the structural object, strains are induced that act upon the material. In this instance,
strains induced by the actuator loads act upon the specimen material. The strains are occasionally the same
at different points of the specimen, but in general they are not. The strains act upon the specimen material,
changing it on occasion. When the strains do change, the material shows the change by exhibiting a different
elastic behavior suggesting reduction in local stiffness (softening).

[V, SUr. | PP i, (. . S, A R P =t gy e

The cchnmcmduy determined Ulbblpdlcu ENCIgy is a measure of material soft qug It is a nonlinear,
monotonic function of the strains that act upon the material. As such, the material exhibits behavioral chang-
es that may be unexpected.

Continuing in the spirit of Sections 2 and 3, material 002 in Table 1 was used as the straw person in
this application. With a layup construction of [(+30 /-30)4],, this laminated composite material has plies
constructed from AS1 carbon fibers, and 3501-6 epoxy resin.

Load icons were employed in the figures of this application to facilitate recognition of the particular
load combination being applied to a specimen. Five graphic symbols were used in combination to produce
these icons. They are: a clockwise arrow to indicate clockwise motion of the movable boundary of the spec-
imen; a counterclockwise arrow to indicate the opposite motion; an upwards-pointing arrow to indicate mo-
tion of the points of the movable boundary parallel to the y-axis; a downwards arrow for the opposite
motion; and a right-pointing arrow to indicate motion of the points of the movable boundary parallel to the
x-axis.

The interpretation of a particular combination of the graphic symbols is that the corresponding com-
bination of IPL applied motion is applied proportionally to the specimen’s movable boundary. The speci-
men, caught between its movable and immovable boundaries, deforms with a compatible motion. Loads that
are proportional to each other are represented by the same icon. The particular magnitude of the proportional
load is indicated individually, or by group where applicable.

That specimen dissipated energy is a continuous nonlinear monotonic function of load displacement
magnitude is an experimentally determined fact. The material dissipation energy is forced to be a continuous
nonlinear monotonic function of strain magnitude. How this was done is explained in Section 3; the point
being that though the specimen, undeniably, is nonlinear monotonic, the computed material dissipation
function behaves that way by analytic design.

Figure 24 depicts the loading case for load path 11 (Ip-11). The load magnitudes shown are 20, 40,
and 60 percent of the maximum boundary motion applied during the experiment for this particular speci-
men. Figure 24 also illustrates the monotonic nature of dissipated energy with respect to strains. Dissipated
energy never decreases with increasing magnitudes of loading. It is also apparent here that the dissipated

energy may not increase after reaching a certain magnitude of strain, and that a minimum magnitude of

strain is required before the dissipated energy can become greater than zero. This observed behavior corre-
sponds precisely to what we mean by the term a nonlinear monotonic function of strain magnitude.
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Fig. 24 — Distributions of dissipated energy on the deformed specimen for foading path i1, material 062
(AS1/3506-1 [4/- 30°)) for three different magnitudes of loading
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To reiterate, that specimen dissipated energy is a continuous nonlinear function of load combination
is an experimentally determined fact. In computing the material dissipation energy function from the spec-
imen dissipated energy, the only analytic control exercised is to ensure continuous behavior with respect to
the strain combination. Consequently, the nonlinear effect of strain combination as illustrated in Figs. 25,
26, and 27 is closely related to the experimentally observed behavior.

Figures 25, 26, and 27 all depict the same set of the 15 different load combinations used in obtaining
the experimental results. Figure 25 is for the case of 20% of full load magnitude, while Fig. 26 is for 40%,
and Fig. 27 for 60%. The effect of opening vs closing motion (Ip-14 vs Ip-2), which may be likened to ten-
sion vs compression behavior, is quite distinctive. At the 20% level, both cases are indistinguishable. At the
40% load level, the opening or tension case has developed an extensive hot area from the notch tip out along
the +/- 30° fiber directions all the way to the edge of the specimen, while the closing or compression case
has changed only slightly. At the 60% load level, the situation has changed dramatically again. The com-
pression case has developed a hot zone of the same configuration as that for tension. But while the zone for
opening is diffuse, that for closing is concentrated at the notch and at the edge.

The effect of opening, sliding, and closing load combinations (1p-14, 1p-8, 1p-2), demonstrates clearly
the distinction between linear effect and nonlinear effect. The opening and sliding combination is 1p-11. Lp-
14 and Ip-8 both show extensive zones of nonzero dissipated energy in the lower half of the specimen. A
linear effect would show dissipated energy as a proportional sum of the dissipated energy from cases 1p-14
and Ip-8. Clearly, 1p-11 shows no nonzero dissipated energy in the lower half of the specimen. The effect is
typical of nonlinearity. The sliding, closing combination, 1p-5, exhibits the same nonlinear effect.

The general assertion is that “if the IPL experiments were conducted using another specimen shape,
then the material dissipation energy function would be the same.” In other words, the material behavior
should be independent of the structure or of the loads that may be applied to that structure. If the preceding
discussion had been about this alternative experimental specimen, then the different specimen shape would
have produced different strain distributions and consequently different material dissipated energy distribu-
tions. The same general continuous, nonlinear, monotonic nature of the material dissipation energy function
would have been noted, but their distributions within the specimen would have been different. If a strong
relationship had been drawn between the specimen, its loadings, and the consequent distributions of material
dissipated energy from the cases presented, then a different strong relationship would have been drawn from
consideration of the results for the alternative specimen.

The danger is in attempting to infer material behavior from specimen behavior, without regard to how
the strains are distributed within that particular specimen.
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Fig. 25 — Distributions of dissipated energy on the deformed specimen for load magnitude 2, material 002
{AS1/3506-1 [+- 30°T), for each of the load paths 1-15
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Fig. 26 — Distributions of dissipated energy on the deformed specimen for load magnitude 3, material 002

(AS1/3506-1 [+/- 30°0), for each of the load paths 1-15
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Fig. 27 — Distributions of dissipated energy on the deformed specimen for foad magnitude 4, material 002
{AS1/3506-1 [+/- 30°D), for each of the load paths 1-15



MASTET AL.

4.4 Submarine Hull

An underwater structure, such as a submarine, is subject to a vast range of loads. These loads vary
from underwater explosions, underwater wave actions, maneuvering loads, depth loads, to a whole variety
of other types of loads. The survivability of the structure under these conditions is of prime importance.

Since their invention, submarines have mainly been constructed from metals, but today, composites
are being considered as a viable alternative, Dissipated energy offers a means of mapping out or hot spotting
areas of concern on composite submarine structures. The structural loads, struciural geometry, and the siruc-
tural material act to produce strains throughout the structure that may induce changes in the material. Dis-
sipated energy as a function of strain determines when a material will change from one elastic state to
another, and is an important means of measuring both the extent of the material changes and the structural

survivability.

In this application, we consider a generic submarine and, in particular, analyze the cylindrical hull sec-
tion. The actual dimensions used are those of a generic dry dock shelter. The cylindrical shell idealization
was selected as a simple showcase for dissipated energy mapping.

The finite element model used is shown in Fig. 28 and consists of 256 shell “QUAD” elements. The
cylinder that was analyzed was 100 inches long, 80 inches diameter, and 1 inch thick. The boundary loading
conditions were those induced by rigid body plane rotations of the ends of the cylinder. These loading con-
ditions where chosen as a nominal representation of the kinds of loads that might be carried through to the
cylinder by the rest of the submarine in response to bending loads about the vertical or y-axis.The shell ma-
terial was a laminated graphite thermoset epoxy. The layers were oriented at +/- 60 ° to the longitudinal, or
z-axis, The fibers were AS4 and the resin was a 3501-6 type epoxy.

The finite element code “ABAQUS” was used to determine the interior strain field.The strains as re-
ported back by the code are for the Gauss integration points used by “ABAQUS" to determine the shell prop-
erties. Three integration points were used in this analysis, one point at the center of the laminate and two
points at about an eighth of the thickness in from each side. In this case, the dissipated energy is not com-
puted on a per ply basis, but rather on a smeared-out point basis, or a partial dissipated energy number at
an integration point. Gaussian integration is then used to compute a fotal dissipated energy through the
thickness. Both types of dissipated energy are illustrated in the following figures where the partial dissipated
energy at the outer part of the shell is shown in Fig. 28 and total dissipated energy in Fig. 29.

Figure 29 depicts the dissipated energy maps for overloads of 7X, 9X, 11X, 13X and 15X. The values
shown are for partial dissipated energy close to the outer side of the shell. As can be seen in Fig. 29, the
boundary of the hot-spotted zone (higher values of dissipated energy) at 7X overload is practically the same
as at 15X overload, An observer may interpret this in several ways; however, it is reasonable to surmise that
the damage as indicated by the hot-spotting is not going to grow unstably, and that regardless of the point
of view taken as to the meaning of the damage, the material degrades only so far and thereafter gets no
worse.,

Figure 30 depicts the distribution of dissipated energy from below the inside surface, the outside sur-
face, and throughout the thickness, i.e,. partial vs total viewpoints. The partial viewpoints show both simi-
larities and differences. In both, the extent of the hot zone is roughly the same; however, each exhibits
markedly different distributions within the zone.
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Cylindrical sheil as a section of (a) an idealized submarine , and (b} the corresponding finite element mesh

g. 28 —

Fi
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Fig. 29 - Dissipated energy distributions at the outer surface of the shell structure, for loading magnitudes of 7,9,11,13,
and 15 times overload

The total dissipated energy viewpoint shows a larger hot zone than either of the partial dissipated en-
ergy maps. It also shows a rather constant value of dissipated energy over the area of the hot zone.

From this an important inference may be drawn, that the nonlinear effect of strain on material loss of
local stiffness, or change, may not be characterizable strictly on the basis of partial or a total viewpoint.

5. A GENERAL PROCEDURE FOR DETERMINING THE DISSIPATED ENERGY DENSITY
FUNCTION AND A DESCRIPTION OF MATERIAL CONSTITUTIVE BEHAVIOR

The approximate procedure for determining the dissipated energy function ¢ (£) discussed in Sec-
tion 3 1s currently included in the response simulator, As presently formulated, this procedure has the fol-
lowing shortcomings: first, the required strain fields are computed by assuming linear elastic behavior and
by using the elastic constants corresponding to the “virgin” material, rather than by using the proper nonlin-
ear constitutive behavior, and second, the procedure is formulated only in terms of a particular piecewise
linear collocation set of basis functions for representing ¢ (€) , rather than in terms of arbitrary basis func-
tions.
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Fig, 30 — Dissipated energy distribution for (a) the inside surface of the shell, (b) the outside surface of the shell and
{c) integrated through the thickness.

Both of these issues are addressed in the present section and the underlying assumptions involved in the ma-
terial modei are carefully laid out.

To determine the dissipated energy function, we regard the composite as being composed of etther a
single mechanically equivalent homogeneous anisotropic material, or a collection of lavers of varying ori-
entations of such materials. Provided that the applied loads are either quasi-static or dominated by low tem-
poral frequencies, these homogenization procedures should provide acceptablc models since it is expected
that the wavelengths corresponding to the spatial variation of the stresses, strains, etc. should be large com-
pared to the microstructural characteristic lengths. If this is not the case, events on the micro scale can take

on a predominant role and cause significant inaccuracies,

We also postulate that the material constitutive behavior can be completely described by specifying
stress as a function of only strain and a set of internal state variables, te.,
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where C(&,¢) is a nonlinear fourth order tensor function and § is the state variable vector. The form of Eq.
(26) thus obviously precludes dealing with materials that exhibit marked strain-rate-dependent behavior. Fi-
nally, we ignore any residual stresses or strains which may exist when the loads are removed such as those

induced by the curing process.

The form of the above constitutive relation implies a restricted implicit type of path dependency in
the sense that any path dependent behavior results only from internal state transitions that are reflected by
changes in the state variables &, and not from an explicitly stated load history dependence. This section con-
siders this issue in more detail. It suffices to state here that for the most part the material behaves in a manner
similar to that of a hyperelastic material (a nonlinear elastic material with a strain energy potential) as long
as the state variables & remain unchanged. Thus, for example, when a material point is loaded up to a spec-
ified strain, the subsequent structural response is dependent solely on the current strains and is independent
of deformation history provided no unloading takes place. Upon unloading, the material behaves elastically
in that no further internal material damage takes place, however, a state transition occurs when the unloading
commences, and it is this state transition that is responsible for any memory the material might have of its
previous loading history. As mentioned in the introduction, this material model and its particular type of path
independence is similar to the model employed by Schapery (1987, 8%a, 9b, 90). Moreover, it is consistent
with the observations of Lamborn and Schapery (1988) who observed a type of path independence for a
range of tensile and torsional loads in several graphite-epoxy systems.

The remainder of this section describes a general procedure for determining the dissipation density
function using boundary force and displacement data obtained from IPL tests. The procedure is a deconvo-
lution process in the sense that the observations reflect both the effects of material behavior and specimen
geometry, and that the geometric effects must be factored out to obtain information relating to the material
alone. We also present a derivation of the precise analytical form of the constitutive equations.

5.1 Caveats

In the course of our analysis we have introduced a number of assumptions and simplifications, some
having already been mentioned. Nevertheless, we itemize them below in their entirety for the sake of com-
pleteness:

*» The material can be regarded as a mechanically equivalent homogeneous anisotropic material as dis-
cussed above. In an angle-ply composite, this assumption can be applied either on a ply-by-ply basis
or to the collection, as appropriate.

* Loading is either static or slowly varying in accordance with the considerations already discussed.

+ The material behavior can be represented as § = € (§’§) discussed previously, This assumption by
definition precludes consideration of materials that exhibit marked viscous, rate, and explicit load his-
tory dependencies. Moreover, given this assumption, a so-called work potential (energy per unit vol-
ume), ¥ (£) , can be defined such that ¢ = grad .y (&, £) (Schapery 1987).

* The total energy absorbed by the material during loading can be regarded as being composed of the
sum of a reversible (recoverable) and an irreversible (dissipative) part. The reversible component is
the energy that would be recovered if the material were to unload, whereas the irreversible part repre-
sents the energy which is dissipated by the internal damage mechanisms. The latter can be described
by a dissipation density function ¢ (€) (dissipation energy per unit volume).

¢ The constitutive relation is continuous in both stress and strain.

* The deformations are sufficiently small so that the infinitesimal stress and strain tensors may be em-
ployed.
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* Only shell-like structures are considered so that the stress and strain fields in either the entire material
or in each ply are two-dimensional with no transverse components, i.e., the stresses and strains can be
regarded as vectors having the form ¢ = (& 2 O © §)"",zmd £ = (g v &y € C}T' where
(M, €, &) is a coordinate system embedded in t?‘;e matérial or layer with one axis along t%e fiber direc-
tion as shown in Fig. 31,

* Displacement continuity is maintained between layers.

It should be stressed here that no explicit assumptions are made concerning the detailed nature of the
various failure processes, Rather, the approach is to introduce a minimal number of hypotheses that we feel
are in accordance with physicai fact and readily defensible. Moreover, many of the above restrictions can be
relaxed when the situation warrants.

5.2 Analysis Overview

The primary issue here is the estimation of the dissipated energy density function ¢ (g€) and the sub-
sequent computation of constitutive behavior. We summarize the steps below and provide more detailed ex-
planations in the remaining subsections.

* A representation is chos?‘n for the dissipation function in terms of a set of m basis functions r
X = (xl, Ay -+os xm} and an initially unknown parameter vector ¢ = (¢}, ¢, ..., C,,)} .

* A umform set of loading paths in displacement space is selected {15 for each material or 15 for each
of a set of layup configurations for angle-ply composites), boundary forces and disptacements (Z, u)
are measured at 50 equally spaced points on each loading path as described in Section 2, and the en-
ergy imparted to the specimen, W”, is computed for each observation point p. If the composite is re-
garded as a single equivalent homogeneous material {in the case of an angle-ply composite, this
implies that each layup configuration is to be counted as a separate material), then this procedure
yields n=750 values of WPper material. If the material is an angle-ply composite and we wish to an-

Fig. 31 — Coordinate system embedded in the shell structure
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alyze the constitutive behavior on a ply-by-ply basis, then the procedure yields = 750 X np values
of WP for each material, where np denotes the number of layup configurations.

» The irreversible portion of the imparted energy, DP, is computed for each observation point p using
the relationship

DP=W"’-——12-(L"-L4‘°) Qn

where Pare the boundary displacements and rPare the reaction forces.

« The assertion that D”equals the integral of ¢ (€ (x) ) over the volume of the specimen, where
x = (M, &, &) is applied at each of the n observation points p and, in conjunction with a represen-
tation of the constitutive relation in terms of ¢ (€) to be described later, the strain-displacement and
equilibrium relations, and any appropriate additional constraints, resuits in a highly overdetermined
set of nonlinear equations for the m components of the parameter vector ¢ (a system of 7 X m equa-
tions with 7 » m).

» These equations are solved numerically for ¢ and the dissipation density function ¢ (£) computed.

» The aforementioned representation of the constitutive relation is used in conjunction with the com-
puted values of ¢ to determine the constitutive behavior ¢ = € ( é, £).

5.3 Representation of the Dissipation Function

The dissipation density function ¢ (€) is represented by the linear combination

(g} =¢-x(8) (28)

where ¥ (£) is a vector of suitable C (or smoother basis) functions over the 3-space (enn’ Erpo gn;) , and
¢ the p?irameter vector to be determined. This representation is quite general in the sense that ), may be
chosen more or less arbitrarily, for instance, as interpolation basis functions over a suitable mesh defined on
(Enn, ECC’ 1 C) in which case any of the usual three-dimensional finite element shape functions may be
used; as B-splines or cardinal splines; or as locally defined or global orthogonal polynomials. The only sig-
nificant restriction on the form of the basis functions is that positivity of the quantity ¢ (£} must be assured
to maintain agreement with physical observation. When % is an interpolation basis, the components of the
parameter vector ¢ are simply the values of ¢ at the node points; however, this is not true when the later
two representatlons for ) are employed. In practice, we almost always chose to use a locally defined linear

dmtamealatiae lania ae A 4L PRES-DPR S (SR IS, S, PURUPL SE: PRPNPIRILL S B IN'o, SN
uuclp\nauuu Uﬂblb Allld LLELS 1S HIUCCU LLC SILUALLUIL ACsCTIDEd 111 .)cuwu J

5.4 The Constitutive Relations

In this section we present an overview of the material model and describe in detail a procedure for
computing the constitutive behavior in terms of the dissipated energy density function ¢ (g).

The basic premise is that the material can be regarded as always being in one of two distinct domains:
namely, either purely elastic or inelastic. When the material is in an elastic domain, no internal damage is
presumed to occur; this results in behavior that is load history independent and reversible in the sense that
no energy dissipation takes place. The material enters an inelastic domain during loading after a certain
strain-dependent threshold is crossed. Here progressive internal damage leads to behavior that is irreversible
in nature with energy being dissipated by the various internal damage mechanisms. A restricted type of load
path independence, whose precise nature will be discussed shortly, is applicable in this domain.
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One way to model this type of behavior is to postulate the existence of a surface I' (§) such as
F(g.&) = 0O in strain space with the following property: namely, that whenever the strain £ associated
with some material point P is either inside the surface " (§) , or outside T" (&) with decreasing dissipated
energy ( dd (g)/d|g] <0), then P is in an elastic domain. When € is outside of T (£} with increasing
dissipated energy ( d (g)/d|g| > 0), P is in an inelastic domain. Here the vector & is a vector of internal
state variables that can be thought of as damage parameters and the surface T (£) "acts as a threshold that
defines the elastic/inelastic transition. The surface I (£) thus plays a role that is loosely analogous to that
of the yield surface (in stress space) in classical plasticity theory with the state variables & in the role of
strain hardening parameters. )

The model we used is based on the above considerations with the additional assumptions that there is
only a single scalar state variable £ that takes on discrete values &/, (§=0,1...), and that the function
F(g, &’ } inthe definition of I' (&) be identified with level surfaces of the dissipation function ¢ (E).A
state transition takes place each time the material switches from an inelastic to an elastic domain. The state
variable £V is defined by

=0 29)
for material in the initial state, and by

& = maxd(g).j = 1,2,.. (30)
otherwise, where max ¢ (€) represents the maximum value of energy dissipation encountered in the previ-
ous inelastic domain. Also, the function F (g, &I } is taken in the form

F(g,&) = ¢(g) -F. @D

We assert that the state variable £ is monotonically increasing, which implies that the threshold sur-
face T (&) always expands in strain space in the sense that the elastic _g?main interior to the surface
r (E ) must always be included in the elastic domain interior to I"( C"' } . Also, the parameters that occur
in the description of the constitutive behavior in both the elastic and inelastic domains are functions of the
state variable &, thereby implying the existence of a denumerabie set of elastic and inelastic domains pa-
rametrized by & alone. This leads to the important conclusion that the only memory the miaterial has of its
past is via the state variable &, which implies a one parameter type of history dependence.

Some aspects of the inelastic behavior implied by this model are illustrated in Fig. 32, which shows
how the dissipation density function and an arbitrary stress component G, vary with £ alonlg three arbitrary

radial paths in strain space in the two inelastic domains bounded by the surfaces I and I" ,respectively.
Here I” denotes T (&) and increasing values of j imply increasing values of the associated state variable

We examine the inelastic behavior regime first. Let us assume that the work potential y (€) canbe
taken as

y{g) = ©(g) +¢(g) 32
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Fig. 32 — Dissipated energy density as a function of (a) strains, and (b} corresponding stress-strain space

1

where

() = 5(5(2) B

. 33)

We chose this particular form for Eq. (33) because the term @ (£) is equal to the energy density re-

covered if the material were to unload linearly from its present state, and, as is shown in this section, is en-

ergetically consistent with the postulated elastic unloading behavior. It is obviously not the only choice we
could have made, but it is by far the simplest.

Since takin

1]
v}
£
¢
©
€]

Ly

!Q

= grad y (¥, £) , by definition

= grad @ (g) + grad @ (¢
grad @ (g) + grad . () 34
Equation (34) is a system of first order linear partial differential equations in ¢ (€) and can be dealt
with routinely the method of characteristics (Courant and Hilbert (1962)) when the proper initial conditions
are specified on the surface T (&) ; namely,
PN AN r ,r" W]
(€)= [T, (a,0)) ]

Q

(35)
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N r o
Here (0., 01,) are surface coordinates r (8) g =¢ (§ o, ®,) denotes the set of
gel (E_;’ ) and are regarded as specified, and | C° (g, ( oy, 0y} ) ] is the known matrix representation

of the constitutive relation for the previous elastic domain.

In general we cannot find explicit closed-form expressions for ¢ (g) that satisfy the initial conditions
of Eq. (35). There is, however, one such case where such a solution can indeed be found; namely the case
where the constitutive relation for the prior elastic domain, i.e., Eq. (35)is linearin g, i.e.,

o(e) = [C° (e, (o, o) e, 36
andwhere the matrix [CB (E (al,az))] is constant over the transition surface l"(&’} ie.,

LL {ap’, (o, 0,)) _J = [C°(&)] on IV. These criteria are certainly met when the elastic domain cor-
responds to that of the “virgin™ material assuming it to be linear and homegeneous in a mechanical sease.
Thus, taking the scalar product of Eq. (34) with £ and using the definition of @ (£} decouples the system

of Eq. (34) and results in the following single first order linear partial differential equation for ® (€} ;

g-grad & -20 = —(g-grad 0 (€)), (37}

with initial conditions _

O™ = 1 (7 () 0 0 [C (T, 0y, 01" (Fr oty 0)) a8

Equation (37) with initial conditions of Eq. (38) again can be solved by means of characteristics to
yield the following expression for © (g)

. ﬁ i
I

evaluated on the characteristic lines. The above integral is taken along a characteristic line, that are defined
by

) e=e(t a,a,p) =& (¥ a,a)p (40)
and where by J—? we mean
Uy
ad g e
aT = e (8, o, 0)). O))

Equation (40) can be regarded as a coordinate transformation relating the coordinates (t,, ., B
to (€, €4, €3} . To obtain ¢ (g) we also need the in verse transfonnat.lon (€, €, € ) = ai, 2 B}
and we must be able to evaluate the gradients grad &' (€}, gradef} {g),and gra{i gt {g), with
o= (o » ®,} . A closed-form expression for the } Tnv rse can be found when the e, ( ¥ = 1,2) are taken

tha af tha 1 that th t
as g wa‘uiua Gi 30 ang:Cs that the '}}'{}Su'x{)ﬂ YECIOT 1% ] makes withthe £ axes, ie. .

¥
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r
£
= 1 (42)
o, ‘ ril.
Then using Eq. (40), Eq. (42) becomes
g
Y
. (43)
T
and from Eq. (40), we get for B:
£
B = % (44)
le

where the term gﬁin . (44) is now understood to be a function of £ whose values are obtained by substi-
tuting Eq. (43)into € (&’ s Oy, az) . Equations (43) and (44) therefore define the sought after coordinate
transformation (£,, €,, £;) — (¢, O, B).

The gradients [grad o (g) ], grad egr (€), and grad g|32 (€) are now readily evaluated by using
Eqs. (40) and (42) through(44). Thus, =

1 Eis‘f .
gradgay(g) = H aiy*]'e? ’ (5)
where
10
b, =101| (46)
00
[grad e" (8) ] = [grad £" (¢) ] [grad 0 (e)], @7

where [ grad ,e" (€) ] = [grad " () ]|

is known since the transition surface is already
determined, and o=u(g)

grad B’ (¢) = (—2 (I—B[gradggﬁ(g)] ))g. (48)

where I is the identity matrix.

The stress field ¢ (€) can now be obtained by substituting the expression for @ (£, Oy, Ol ) inEq.
(39) into Eq. (34) and using the relationships between g and (&, &, &), B) as given in Eq. (40). Thus
O (£) is given by
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: r B
2 14do,
o= [C]+—=5 (T-B[grad £ (¢
e DL
p
1 ' s
_p? _!' ; (grad g" () Jgrad o ()t | (49)

Elastic behavior

In the elastic regime we assume that the material can be modeled as a particular type of nonlinear hy-
perelastic material; namely one that allows for no initial stresses and has linear stress-strain behavior along
radiaf paths in strain space. This later assumption was invoked to maintain energetic consistency with the
representation for ¥ in Eq. (32) so that the energy available for elastic unloading is always givenby ® (g} .

This assumption also agrees with repeated observations of linear unloading behavior during the IPL tests,

The type of behavior we are attempting to model is illustrated in Fig. 33 where the }inear behavmr
along radial paths is shown for two elastic domains with associated transition surfaces I and I" (Fig. 33
(a) and (b), respectively). The important point to note here is that the elastic constitutive behavior is gener-
ally nonlinear; it is only guaranteed to be lincar along the radial paths mentioned above. Also note that the
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Fig. 33 — Stress-strain behavior for state T { a yand state I’ (b}
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effective elastic stiffness is expected to decrease with increasing values of the state variable & ,which in turn
correspond to increasing values of energy dissipation as illustrated in the Fig. 33.

Consistent with the above assumptions, we propose a constitutive relation in the elastic domain having
the form

e n ra'l

< = ((E( o V)Y el (20
P = A G U, W) Es WY

where C° is now taken to be a vector rather than a matrix, Equation (50) has a deceptively simple form;

however it is really quite general and easily subsumes the usual linear form

[4]e. (1)

at this is indeed the case is readily demonstrated since € can always be written as

£ = _é_ (al o,) |e| along some path with £ being the associated unit vector. Therefore Eq. (51) assumes
the form of Eq. (50) with C given as
Ci(a,0) = [A]1E(a, o). (52)
For the ini ...1 state & , the constitutive behavior is assumed to be given by the equivalent form of Eq.
(51) with the matrix A computed using the “virgin” material properties. For subsequent states
& LI =1,2,. Eq (50) is used where stress continuity across the surface I’ leads to the following ex-

pression for the vector Cce (¥, g)

F‘

c@le = (53)

where G (gp) is computed by evaluating the stresses given by Eq. (44) on the surface r.
We stress hat Eq. (51) with C* given by Eq. (53) suall esults in elastic constitutive behavior that

1¢ inharantly n
59 Al W (8§

e le mane
nonlinear because O TE oy e

SCaust v\, €) I8 gcuci‘auy I glVCIl in Dq (52}).

5.5 Equations for the Determination of the Parameter Vector

The irreversible portion R of the total energy imparted to the specimen via the boundary loads at ev-

ery observation point { in an IPL test series for a given materjal can be computed by numerical integration
since all tractions? and applied boundary displacements  required for the computations were previously
measured and stored. Thus, R is given by

d 1 . .
f= [rdu—5 (W) (54)

where i = I,...,n. On the other hand, the energy absorbed by the specimen is by linear additivity

=] oE@)dr=cf @)y, 55)
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where the volume integration is to be taken in a Stieltjes sense over the plies, When doing ply-level analyses
of angle-ply materials, we have used the representation given by Eq. (28), and the Einstein summation con-
vention is in effect. But @' must equal R’ by energy conservation, therefore

R=c| % (c)dx. 56
i %E en)ds (56)

The quantity £ ( ¢, x) that appears in Eq. (55) is the specimen strain field corresponding to the i
observation and is not known explicitly; however, it must satisfy the constitutive relation as given by Eq.
{49) as well as the equilibrium and strain-displacement equations, i.e.

divg’ = Q, 753

and

g = sym (grady’). (58)

The appropriate boundary conditions are free surface conditions (no tractions) except on the gripped
surfaces where displacements are prescribed. Equations (54) through (58) form a coupled system of nonlin-
ear equations whose solution places restrictions on the quantities (¢, €, ¢, u) .

5.6 Method of Solution

The nature of the system of Egs. (54) through (58) suggests solution by the following iterative pro-
cedure:

1. An initial estimate of the strain field, i.e., £'C () is obtained by solving Egs. (57) and {58) using
the constitutive reiation

g =[]

~

where | ~C0 } is the stiffness matrix for the unstressed material and can either be obtained from the literature
{when available) or estimated from mixture theory. The problem defined here is linear and is readily solved
by finite element methods, or, in certain cases, by closed-form procedures {Muskhelishviii (1953), Mast
(1973a,73b)).

2. Using &' 0 {x) as the estimate for €’ (&, x) , an estimate of the parameter vector ¢ is obtained from
Eq. {56) subject to the constraints that each component of the imparted energy be monotonically increasing
along cvery loading path. This involves solving a linear or quadratic programniing problem as explained in

Section 5.7.

wn

(59)

3. Equations (57), (58), and (49) are solved numerically with the value of ¢ in the representation for
¢ (Eq. (28)) taken as ¢ ; the new estimate of € is utilized in Eq. (56) to obtain an updated estimate of ¢;
and the process is repeated until successive estimates differ by (hopefully) a sufficiently small amount.

Note that except for the initial step, determining the estimate of €’ (¢, x) always involves solving a
set of nonlinear boundary value problems. Although this is in general difficult and time consuming, as a
practical matter, unless one is interested in venturing deeply into the nonlinear regime where significant
strain redistribution occurs due to spatially widespread material stiffness changes, sufficient accuracy should
be attainable by implementing only a single cycle of the iteration procedure. Thus, we usually need only to
solve the linear problem described in Item 1 above, and the difficulties mentioned above should be of little

54



MAST ET AL.

concern. If the need does arise to implement more than one cycle of the iteration pracedure, techniques such
as homotopic continuation methods (Watson (1986)) applied along each loading path are available to help

allacvinta tha Aiffi nltisa
alieviaie the GIrncuIties.

5.7 Initial Estimates of the Parameter Vectors

As mentioned previously, 5"0 (x) is computed by solving a linear boundary value problem. Indeed,
using the fact that any boundary displacement u produced by the IPL can be represented by a linear com-
bination of opening/closing (u,), shdmg (ug), and rotating (u &) displacements, only three finite element anal-
yses need be performed in this step since any strain field €' (¥) can be represented as

g0 = ¥ gi0k (60)
k

by linear superposition, where §in (x) are the strain ficlds corresponding to unit boundary displacements

in the k™ direction.

With E‘O (x) known, the quantity jv orX,j (g 0 {(x))dxin Eq. (56) may be computed.
Thus, setting

jw,xj (8 X)) dy=F, (61)
Eq. (56) may be written as the linear set of equations
[Flz = W, (62)
where W= (RL, ..., R™ T; z= go, and
Fll v Flm
[Fl = ... .. e |s (63)
F,..F,.

B sl
- fim My
...... {64
Fnl an Wm

Equation (62) is an overdetermined system and there exists no value of z that satisfies it exactly. Rath-
er, one must seek to minimize the norm of the error vector ¢ = (W - [F) z) to obtain a best approxima-
tion to the sofution. This is the usual state of affairs in parameter estimation; indeed, the more highly
overdetermined the system, the better the situation since one generally wants to work with as many inde-
pendent observations as possible to filter out any undesirable stochastic variations (noise). Only if enough
observations are linearly dependent can it happen that rank ( [F]) = rank ( (F1) < m, in which case

there exists 7 — rank ( [F] ) solutions to Eq. (62). This situation should not arise if the experimental testing
program is well thought out.

Assuming for the moment that Eq. (62)(62) is indeed overdetermined, we seck to minimize the norm
of ¢ = W— [F]z subject to the constraints that
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* the values of @ are positive at the node points of the interpolation mesh, i.e.,

>0, (65)
to maintain positivity,

» the dissipated energy is monotonically increasing along each radial loading path in displacement
space, i.e.,

row ([F1}; -z>0

(row ((F]) ;,; —1ow ([F]) ) -220,i = iy oryiy =1 .

where Eq. (66) applies to each loading path, i, is a point at the beginning of the path, and i is the end
point.
Note that the above constraints are linear inequality constramts in z, and as such are readily dealt

with, Tweo widely used measures of vector magnitude are the L2 (Euchdean) and L™ (Chebychev) norms giv-
en by

Hgl}iz = (x%+x%+ ...+x:)2, 67y
and
llgcﬂL_, = maxx((|x}|, [Xgs «vor [ X0 (68)

respectively. Minimizing |l¢|| in Eq. (62) under the LZ norm subject to the constraints of Eqgs. (65) and (66)
is a problem in quadratic programming since the objective function || W — [ F] zil ;2 18 quadratic in the vari-
ables (zy, 2y, ..., Z,) . This is a well-established discipline and many efficient procedures are available to
deal with such problems. Minimizing |¢} under the L™ norm is just as straightforward, and perhaps easier,
because there exists a well-known technigue due to Lagrange for converting such problems into linear pro-
gramming problems that can be solved using the simplex method or one of its variants. A highly readable
discussion of these optimization issues is presented by Gill Murray, and Wright, (1981).
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Appendix A
Materials Data Base Description

Material System AS1/3501-6 (Thermoset)

3501-6 AS1 +/- 15 Hercules mi-1
+- 30 . mt-2
+-60 mt-3
+/-75 . mt-4

Material System AS4/3501-6 (Thermeoset)

AS4 +/-15 . mi-5
+-30 . mi-6
+- 60 ) mi-7
+-75 . mt-§

Material System AS6/3501-6 (Thermoset)

AS6 +/-15 mt-9
+-30 mt-10
+-60 mt-11
+/-75 . mt-12

Material System IM6/3501-6 (Thermoset)

IM6 +-15 . mt-13
+-30 . mt-14
+/-60 . mt-15
+-75 . mt-16

Material System IM7/3501-6 (Thermoset)

M7 +/-15 . mt-17
+/-30 . mt-18
+-60 . mi-19
+-75 . mt-20



ITEM

025
026

027
- 028

029
(30

031
032
033

MASTET AL.

RESIN FIBER LAYUP SUPPLIER FILE
Material System HMS4/3501-6 (Thermoset)

3501-6 HMS4 +/-15 Hercules mt-21
+/-30 . mt-22
+/-60 . mt-23
+/-75 . mt-24

Material System HS 12000/5245 (Thermoset)
5245 HS 12000  +/-15 Celanese mt-235
+/-75 . mt-26

Material System HS 12000/5208 (Thermoset)
5208 . +/-15 . mt-27
+/-75 . mt-28

Material System 6000/5208 (Thermoset)

CELION 6000 +/- 15 . mt-29
+-75 . mt-30

Material System AS4W/3501-6 (Thermoset)
3501-6 AS4W  0,90,0%z FMI mt-31
0,90,5%z . mt-32
0,90,13%z . mt-33

Material System IM6/PEEK (Thermeoplastic)

PEEK IM6 +/-15 IC1 mt-34
+/-30 mt-35
+-60 mt-36
+-75 . mt-37

Material System AS4/PEEK (Thermoplastic)
AS4 +/-15 . mt-38
+-30 . mt-39
+/- 60 . mt-40
+/-75 . mt-41

61
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ITEM RESIN FIBER

042
043
044

045
046
047
048

049
050

053
056
057
058
059
060
061

LAYUP

SUPPLIER

FILE

Material System E-glass/Epoxy (Thermoset)

Epoxy E-glass Cloth Fiberite mi-42
Magnaweave mt-43
mi-44
Material System B238/Polyester (Thermoset)
Polyester B238 0,90 Proform Fab. mt-45
((0.90)(+/-45)), mt-46
. (0,90)(+/-45),(0,90) mt-47
(+/-45)4 mt-48
Material System CDB340/Polyester (Thermoset)
CDB340  (0.+/-45) mt-49
{+/-45,90) mt-30
Material System DB170/Polyester (Thermoset)
DB170 {0,90)5 mt-51
(+/-45,0,90), mt-52
. (0,90)(+/-45),(0,90) mt-53
(+/-45)5 mt-54
Material System Quartz/Polybutadiene (Thermeplastic)
Polybutadiene Quartz +-0 Brunswick mt-55
+-15 mt-56
+/-30 mt-57
+i- 45 mt-38
+-60 mt-5%
+-75 mt-60
+{-90 mt-61

62
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ITEM RESIN FIBER LAYUP SUPPLIER FILE PROIJECT

Material System Quartz/Polybutadiene 5% Powder Carbon (Thermoplastic)
062Polybutadiene,5%C, Quartz  +/-0 Brunswick  mt-62

063 . . +/-15 . mt-63
064 . . +/-30 . mt-64
065 . . +/-45 . mt-65
066 . . +/-60 . mt-66
067 . . +/-75 . mt-100
068 . . +-90 . mt-101
Material System IM7/HBRF-55A (Thermoset)
069 HBRF-55A 7 +-22 Hercules mt-70 SP
070 . . +-35 . mt-71
071 . . +-55 . mt-72
072 . . +/-68 . mt-73
073 . . (+/-22,90) . mt-74
074 . . (+/-68,0) . mi-75
Material System IM7/HIBRF-55A (Thernmioset)
075 HBRF-55A IM7 +/-22 . mt-102
076 . . (-55,435,-35,435) . mt-103
077 . . (+35,-55,+55,-55) . mt-104
078 . . +/-68 . mt-105
079 . . (90,+/-22) . mt-106
080 . . (0,+/-68) . mt-107
Material System Kevlar/Polyether-Sulfone (Thermoplastic)
081Polyether-SulfoneKevlar 49 Fabric ICI mt-108 Chem.

Material System TORAY 300/Polyether-Sulfone (Thermoplastic)
082 . TORAY 300 . . mt-109

Material System E-glass/Polyether-Sulfone (Thermoplastic)
083 . E-glass . . mt-110

Material System Graphite A004/Epikot 828 (Thermoset)
084 Epikote 828 A004  (0,90,90/0) TTCP mt-111 TTCP

Material System S-2 glass/Shell 828(Thermoset)
085  Shell 828 S-2glass  (0,90)5 . mt-112
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086 Ryton PPS graphite

087
088
089

096
097
098
(499
100

HBRF-55A

PEEK

FIBER

M7

AS4
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LAYUP SUPPLIER FILE PROJECT
Material System RYTON PPS/GRAPHITE (AC 40-66) (Thermoset)
+-15 Phillips ~ mt-113 Boeing
+-30 mt-114
+/-60 mt-115
+/-75 mt-116
Material System: IM7/HBRF-55A (Thermoset)
+/-22 Hercules mt-117 SP-D5
+/-35 mt-118
+/-55 mt-119
+/-68 mt- 120
(+/-22,90) mt-121
(+/-68,0) mt-122
Material System AS4/PEEK (APC-2) (Thermoplastic)
+-15 mt-123
+-30 mi-124
+-45 mt-125
+-60 mt-126
+-75 mt-127
(0,90) mt-128
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Appendix B
The In-Plane Loader System

The IPLS, shown schematically in Fig. B1, is an automated testing facility whose primary function is
to produce reliable data from which the energy dissipation function can be deduced with a minimum of an-
cillary hypotheses.

. LOADING FRAME
. HYDRAULIC ACTUATORS
MDURBLE HEAD
FIXED HEAD
E. SPECIMEN GRIPS
F. SPECIMEN LOADER,UNLORDER
G. TEST SPECIMEN
H. UIDEO CAMERA
I. UVIDED MONITOR FOR PUOSITIONING DEUICE
J. MAIN TERMINAL
K
L
¥l

- COMPUTER
- GRAPHICS PROCESSOR
- GRAPHICS TERMINAL

Fig. Bl — Schematic representation of the In-Plane Loa

B.1 System Components

B.1.1 The In-Plane Loader

This is a sophisticated automated testing machine capable of subjecting test specimens to arbitrary
displacement-controlled in-plane loading corresponding to combinations of pulling/pushing, sliding, and
rotating boundary displacements.

B.1.2 The Computer System

The computer serves as a controller by sending commands to the hydraulic actuators of the IPL
through digital-to-analog converters, and by receiving gange measurements from the IPL via the anal

TR P
FLAILG LIRTIL ULV A Ly Vid UL dlladlUg-10-

digital converters. It is also used for real-time data collection and reduction during the tests as well as for
various post-testing analyses. Among the latter are the determination of the energy dissipation function and
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consequent constitutive behavior for the material and finite element analysis of specific structural compo-
nents.

B.1.3 The Graphics Processor

The graphics processor is used to facilitate the pre- and post-processing requirements of the finite el-
ement anatyses. Specifically, it is used in conjunction with solid modeling and rendering software to produce
finite element models of the specimen itself and specific structural components, It is also used to generate
rendered 1maceg qbnwmo the gnatial distnibution of d}ss}naggd energy.

FLAIIOITAS IRty SIRWY I 230 PO RREITR

B.2 In-pilane Loader Description
Although the IPL has been described previously (Mast et al. (1983)}, its design has since evolved sui-
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B1 with a more detailed portrayat in the vicinity of the specimen grips shown in Fig. B2. Basically, it con-
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A.SFECIHEN

B.FEXED CRIP
C.HOURBLE CRIP
0.4-D DCLVDT X/DUCER
E.3-0 1L0ADING CELL

Fig. B2 — In-Plane Loader’s closeup view of the grip area

sists of three independent computer controlled hydraulic actuators connected to a movable head. The load-
ing path of each actuator can be independently prescribed, thereby producing arbitrary combinations of

opening/closing, sliding, and in-plane rotating displacements,
Each actuator unit is composed of

+ 2-Kip hydraulic linear actuator with a 6-in. stroke,
+ DC powered linear displacement transducer (DCLVDT) which is mounted on the actuator and mea-
sures ram motion relative to the actuator cylindcr,
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« electrically controlled hydraulic servo valve that receives the displacement error output of tl}e opera-
tional amplifier and delivers controlled hydraulic power to the actuator, forcing the ram to displace
the amount necessary to minimize the displacement error,

» 2-Kip strain gauge load cell mounted on the ram end, and

+ instrument amplifier to amplify the millivolt output of the load cell.

Relative displacements between the two grips are monitored by a specially designed six-component
DCLVDT mounted on the specimen side of the movable head. A three-component strain-gauged load cell

is used to monitor the movable head reaction forces.

(d)

Fig. B3 — Schematic of the equivalence between the (a) actuator motions and (b) the three modes of motion , as
well as (c) the process of composing an arbitrary loading combination, from linear combinations of the three
basic motions: (d) shear, (¢} opening/closing and (f) rotation

Two aciuator configurations deserve special attention. The first is when any of the actuators is parallel
with another, while the second occurs when the lines of action of the actuators intersect at a common point.
Both of these configurations prevent the application of the full range of opening/closing, sliding, and rota-
tion, and, consequently, were avoided in the design.

The hydraulic grips are computer controlled and operate like a pair of pliers whose handles are forced
together by a compact servo-controlled jack built into the head. Specimens are inserted in the grips from a
loading magazine via a mechanical feeding device. This ensures uniformity in the gripping conditions and
allows for a rapid throughput (currently 340 specimens/hour). A hydraulic power control unit consisting of
an operational amplifier, a pressure transducer, and an electrohydraulic valve, maintains a constant gripping
pressure as the test proceeds. The magnitude of the gripping force is selected to be sufficient to prevent spec-
imen slippage, and yet not so great as to cause failure at the grips.

The digital imaging system is provided to give the operator an efficient and accurate method of per-
forming initial specimen geometry measurements and calibrations, A video camera with a long focal length,
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positioned by a motor driven three-axis stage, is mounted over the specimen and provides a magnified {15x)
view of the specimen on a TV monitor. Horizontal and vertical cursor lines are superimposed on the TV
image and can be used to mark various features such as the initial position of the notch tip. The cursor digital
output signals are continuously monitored and saved on command.

The block diagram of the entire system is shown in Fig. B4 together with a schematic representation
of the information paths from and to the IPL relative to the computer controller, Twenty-one measuring

- actuators
LOAD CELLS
j actuators
DCLVDTs

in-plane grip
DCLVDTs

£ vl

out of plane

grip DCLVDTs

AD CONV. < > COMPUTER
COMPUTER-BUS U

— tamnoratiire . GRAPHECS
— moisture gauge PROCCESSOR

— — moisture gauge »—
\

t

3-DLOADING
CELL

NN
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B! u;;_wuu

N
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T
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[ =
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actuators
PRESSURE

I

1 /A CONV.
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Fig. B4 — Block diagram of the In-Plane Loader System

channels are interfaced with a multiniexer connected to the analoe-to-dieital converter which is connected

Seiifaiiny L ines LA pavAlD LULEDLALS D 1L Qliai e T Tl Rab Rl WIRRILAL Lo LAVLRRELANARE

to the computer throngh DMA (direct memory access) via the computer bus. Slmllarly, the digital-to-analog
converter has its output connected to the servo valves of the actuators and its input communicates with the
computer via the bus in a DMA fashion.
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Appendix C
A Vector Space Representation of the Optimization Scheme

A vector space geometrical representation of the optimization scheme provides for a simple explana-
tion of the optimization procedure. Assume for the sake of simplicity (and because we can’t represent enti-
ties having dimensions higher than three on paper) that the quantity [X] ¢ can be represented as a vector

¢ in a two-dimensional space X with X, and X, being the corresponding basis vectors as shown in Fig.
C1. The columns of the array [X] contain the components of the basis vectors X, and X, in terms of a higher
dimensional space D, the higher dimensions of which are denoted by the axis N normal to the space X,

Assume now that another vector d lies in the higher dimensional space D of which the space Xisa

but)bpd(..(: as blIUWIl 1[1 r‘lg 1.) Lllc uuwrcnu: Ul LlleC two vectors l.ucu ui:.':. lll I.lll.b ulgucl uuucumuucu apabc
and is another vector denoted as ¢ which expresses the error between the two vectors, so that

e=d-c. (C1)

This can be rewritten in the matrix form

(X]lc+e =4d. (C2)

The objective of the process is to determine a vector ¢, such as the magnitude (or norm) of the vector
¢ takes its minimum value g,according to

minfle| = ¢,. ' €3
In the case of the usual Euclidean norm, i.e., the square root of the sum of the squares of the components,
€y turns out to be the projection of the vector d of space D onto the space X, and therefore ¢ is normai to
this space.
Fig. C1(b) deals with the

responding to the matrices M, an
the form

ects o constraint S¢ » M, are the vectors cor-
1\_4; , which also lie in the space X, Then, h inequality constraint of

(M]c=20 (C4)

spectifies that the only acceptable solutions for ¢ must lie in the region of X (shaded region) defined by the
interior of the two lines which also lie in X and are normal to the vectors M, M, respectively.

However, as can be seen in Fig. C1(c), the vector ¢,,, which exactly satisfies Eq. (22) and minimizes
€ to a value ¢, may lie outside the region specified by the constraints. In this case the quadratic program-
ming methodology determines a vector ¢’,, which satisfies the constraints by being the prOJecnon of ¢,
onto the closest boundary of the shaded region. The magnitudes of the components of ¢’ o 1n the space X
will then be the desired coefficients ;. Finally, this process is valid when the spaces X and 1> have arbitrary
dimensions so long as Dim (X) < Dim (D) and so obviously applies in our case.
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Fig. C1 — Geometrical representation of the optimization procedure describing {2 ) the
solution for Eq. (C2), { b } for the constraints , and ( ¢ ) for both equation and constraints
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